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Abstract

It is known that cortical networks operate on the edge of instability, in which oscillations can

appear. However, the influence of this dynamic regime on performance in decision making,

is not well understood. In this work, we propose a population model of decision making

based on a winner-take-all mechanism. Using this model, we demonstrate that local slow

inhibition within the competing neuronal populations can lead to Hopf bifurcation. At the

edge of instability, the system exhibits ambiguity in the decision making, which can account

for the perceptual switches observed in human experiments. We further validate this model

with fMRI datasets from an experiment on semantic priming in perception of ambivalent

(male versus female) faces. We demonstrate that the model can correctly predict the drop in

the variance of the BOLD within the Superior Parietal Area and Inferior Parietal Area while

watching ambiguous visual stimuli.

Introduction

Models of perceptual decision making

Decision making—from simple perceptual choices such as deciding upon the spatial orienta-

tion of the Necker cube [1] to complex choices such as choosing the best vacation destination—

is one of the basic functionalities of the human brain [2]. While making a decision, one needs

to evaluate the options, and withdraw all but one. The concept of such a winner-takes-all mech-

anism is well rooted in computational neuroscience. In general, the process of evaluating the

options is energy-costly as it requires assessing the utility of each option [3]. For instance,

choosing between an apple and an orange requires evaluating the taste, smell, nutritious value,

appearance, price and other potentially useful features. In models of decision making, this

assessment is often envisaged from the Bayesian point of view: the brain as a machine collecting

evidence on behalf of one or the other option. According to this viewpoint, the brain needs
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time to aggregate enough evidence favoring one alternative over the other before reaching the

critical amount of evidence that allows for making the decision. This is a time-costly process,

however taking time helps in isolating the relevant sensory information from the noise and

therefore to optimize the response [4].

In this work, we focus on modeling the most basic, perceptual decision making in neuronal

networks. In such conditions, the network needs to disambiguate between two sensory stimuli.

In laboratory conditions, this phenomenon is usually investigated with use of two-alternative

forced choice experiments [5]. In the famous study, Michael Shadlen trained rhesus monkeys

[6] to distinguish between the dots moving on the screen towards either right or left direction.

In each trial, the stimulus presented on the screen was ambiguous: multiple dots were moving

at the same time, and the task for the monkey was to estimate in which direction themajority
of dots were moving. It was found that the monkeys followed the psychometric curve: they

were most uncertain about the direction once the stimulus was the most ambiguous (almost

50% of dots in each direction). Moreover, the response of the Lateral intraparietal cortex

(LIP area) was substantially delayed with respect to the visual stimulus, which supports the

hypothesis on the aggregation of sensory information over time in the decision making net-

works [7, 8].

In the literature, one model proposed to study the perceptual decision making in neuronal

networks is the slow reverberation mechanism by Wang [9], which was designed to model the

Shadlen’s experiments on rhesus monkeys. In this model, two populations of densely intercon-

nected, spiking neurons compete with each other when supplied by noisy inputs. In this

model, the binary decision is delayed by 1 − 2[s] with respect to the onset of the stimulus

because of the recurrent excitation mediated by the slow NMDA receptors. Furthermore, the

network is prone to making incorrect decisions in a low signal-to-noise ratio regime (when a

stimulus has a low magnitude as compared to the magnitude of the background noise). The

success rate in a function of the stimulus reproduces the psychometric curve previously found

in Shadlen’s experiments.

The brain at the edge of instability

Second important paradigm with respect to the dynamics of cortical networks, relates to neu-

ronal oscillations as a result of the fact that, in terms of dynamical systems, the brain occupies

a state at the edge of instability.

Criticality [10] is a concept that refers to all neuronal networks that, as dynamical systems,

might operate nearby critical points. Biological systems have a tendency to spontaneously reor-

ganize to a critical point between order and chaos [11] which is referred to as a self-organized

criticality. For instance, intrinsic oscillations found in EEG studies are believed to be an evi-

dence for self-organized criticality in brain networks (more precisely, as evidence for brain

networks keeping balance around the Hopf bifurcation [12]). But how do the oscillations

arise? Some hint was given by Deco et al. [13] who demonstrated in a simulation study that a

network of nodes with sigmoidal transfer functions, coupled with transmission delays, can

start oscillating in the gamma range when tuned to a subcritical state.

However, although criticality in cortical networks has been researched, decision making
around the critical point is still an unexplored topic. In this work, we investigate how dynamic

states close to the critical points can account for ambiguity in decision making.

Model of ambivalence in perceptual decision making

Since Wang’s work was published, multiple rodent [14] and computational [15] models

were proposed to study perceptual choices. Most of these models aim to reproduce the

Time-delay model of perceptual decision making in cortical networks
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psychometric curve within the signal detection theory framework [14]. In particular, few mod-

els were developed to study perceptual rivalry as a winner-takes-all mechanism in neural mass

models with mutual inhibition and additionally: with balance between noise and adaptation

strength in the networks [16], with a solution to the Levelt’s fourth proposition [17], with slow

negative feedback in the mutual inhibition in the form of spike frequency adaptation [18], or

with short short-term memory in the mutual inhibition [19].

In this work, we investigate a winner-take-all population model with delayed local inhibi-

tion to characterize perceptual switches in the binary decision making. We have proposed this

model in our previous work [20]. In this work, we investigated mathematical properties of this

model, especially with respect to the influence of the value of inhibitory delays on the emer-

gence of temporal switches in the decision making.

In this paper, we first demonstrate that local inhibition within the competing neuronal pop-

ulations can lead to a Hopf bifurcation. As a result, providing the network with a weak stimu-

lus can induce ambivalent behavior, in which probabilities of making perceptual choices on

behalf on both options vary over time which can lead to perceptual switches. In presence of a

strong stimulus on the other hand, the probability of taking one of the possible decisions

approaches 100% early on, which leads to an unambiguous decision on behalf of one option.

Then, we focus of further investigating the properties of this model, but this time, with

respect to variables important for modeling biological systems. Namely, we are interested in

dependence of the certainty in the binary decision making on the stimulus strength and the

magnitude of background noise in the system. We demonstrate that this model reproduces psy-

chommetric curves observed in human and animal experiments on perceptual decision making.

We also validate the model with experimental functional Magnetic Resonance Imaging

(fMRI) datasets coming from an experiment on the impact of semantic priming on the percep-

tion of ambivalent (male versus female) faces. FMRI studies on the perceptual ambivalence in

humans suggest that frontoparietal regions cope with visual ambiguities in a top-down fashion

[21, 22]. Transcranial magnetic simulation (TMS) studies demonstrate that the Superior Parie-

tal Lobe (SPL) controls switching attention between competing percepts [23–25] (furthermore,

testing the role of the frontal lobe activity in paradigms involving bistable stimuli such as bin-

ocular rivalry or bistable perception, is difficult as it can be confounded with modulations of

attention [26] or reflect its role for conscious visual perception [26, 27]). In general, SPL is

involved in manipulating information within the working memory [28], including switching

between bistable percepts. In addition, it has been found that Inferior Parietal Lobe (IPL) can

contribute to the inference and decision making during perceptual ambiguity [22, 29]. How-

ever, IPL have not been proven to play a causal role in perceptual disambiguation.

Therefore, we assume that the decision making characterized by our model takes place in

the SPL. The model predicts that in presence of ambivalent facial stimuli, the variance of the

joint signal from the competing populations will drop with respect to the signal collected both

in absence of the signal and in presence of a strong signal (representing unambiguous stimu-

lus). We validate this prediction using datasets from an experiment on perception of ambigu-

ous (male versus female) faces. We demonstrate that while viewing ambivalent faces, the

variance of the BOLD response within the SPL and within IPL decreases as compared to the

variance of the BOLD in a control condition and while watching unambiguous faces.

Methods

Model description

Let us consider two neuronal populations (1 and 2, Fig 1). Neurons in the first cluster project

to the neurons in the second cluster with synaptic weight w1(t), while neurons in the second

Time-delay model of perceptual decision making in cortical networks
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cluster project back to neurons in the first cluster with synaptic weight w2(t). As synapses are

plastic; the synaptic weights evolve over time. Both neuronal populations receive self-inhibi-

tion with delays τ1, τ2. hat we are interested in here, is the slow, complex synaptic transmission

processes, which can occur over periods of hundreds of milliseconds to minutes [30]. These

slow transmission molecular pathways involve at least 100 compounds, biogenic amines, pep-

tides, and amino acids.

Modeling of such systems with bilinear population models was introduced by Ermentrout

et al. [31]):

_r1ðtÞ ¼
1

tr
ð� r1ðtÞ þ w2ðtÞr2ðtÞ þ I1ðtÞÞ

_r2ðtÞ ¼
1

tr
ð� r2ðtÞ þ w1ðtÞr1ðtÞ þ I2ðtÞÞ;

8
>>><

>>>:

ð1Þ

where I1(t), I2(t) denote inputs to the neuronal populations ([1/s]) and τr is the time scale of fir-

ing rates ([s]).
In this work, we extend this model by adding self-inhibition delays to the populations [32]

τ1, τ2 (Fig 1). This term is crucial for the dynamics, as it can lead to Hopf bifurcation (this

relaxation term is often used in modeling neuronal activity, from modeling Poissonian spike

trains of single neurons [33] to modeling interacting populations in Dynamic Causal Modeling

[34]).

We also consider asymmetry coming from a perceptual stimulus σ(t). In our model, the

stimulus σ(t) related to the perceptual stimulation targets the population 1 and is an addition

Fig 1. A population model of decision making. Neurons in the first cluster project to the neurons in the second cluster with synaptic weight

w1(t), while neurons in the second cluster project to neurons in the first cluster with synaptic weight w2(t). Neurons receive external inputs I1(t)
and I2(t), respectively. As this is a rate model, I1(t), I2(t) have a unit of [1/s]. In addition, both neuronal populations receive self inhibition with

delays (dashed arrows with flat heads), τ1 and τ2 respectively. The dynamics of this system is described by Eq 2.

https://doi.org/10.1371/journal.pone.0211885.g001
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to the input I1(t) in Eq 2 (a constant pulse σ(t) = σ):

_r1ðtÞ ¼
1

tr
ð� r1ðt � t1Þ þ w2ðtÞr2ðtÞ þ I1ðtÞ þ sðtÞÞ;

_r2ðtÞ ¼
1

tr
ð� r2ðt � t2Þ þ w1ðtÞr1ðtÞ þ I2ðtÞÞ;

8
>>><

>>>:

ð2Þ

In general, the two competing neuronal populations are not an isolated system but are

embedded in a bigger cortical network. Therefore, one can assume that these inputs represent

the background activity within the system and are higher than zero even in resting state (in the

absence of the experiment-related stimulus σ(t)). In our simulations, we assume that both the

inputs I1(t), I2(t) are constant and equal, as they represent the resting state.

Furthermore, in our model, synapses are plastic:

tw _w1ðtÞ ¼ � w1ðtÞ þ f ðr1ðtÞr2ðtÞÞ;

tw _w2ðtÞ ¼ � w2ðtÞ þ f ðr1ðtÞr2ðtÞÞ;

(

ð3Þ

where f ðxÞ ¼ x2

1þx2 is a sigmoidal transfer function, a.k.a. Hill function [35], and τw denote the

time scales of synaptic weights ([s]). Further, we assume that synaptic weights wi adjust them-

selves to the changes in firing rates r1 and r2 instantaneously (τw� 1), which allows to use

quasi-steady approximation for System (3) (tw _w1ðtÞ � tw _w2ðtÞ � 0).

As in the resting state (in the absence of external stimulus), this system receives equal inputs

I(t) to both nodes, the system is perfectly symmetric and both populations will be firing with

the same firing rate. Once one of the populations, i.e., population 1, receives external stimula-

tion, the symmetry breaks down. Decision making in this system is associated with decoding

which of the two populations received an additional stimulus (without estimation of the stimu-

lus magnitude). The decoding is based on the ratio of the two firing rates: the higher the differ-

ence r1(t) − r2(t), the more likely the decision that the population 1 is the one to have received

the stimulation. The evidence behind each of the two options accumulates over time (which

reflects the Bayesian view at decision making mentioned in the Introduction). Therefore, the

psychometric function takes the integral form of

p1ðtÞ ¼
1

1þ exp ð� b
R t

0
ðr1ðxÞ � r2ðxÞÞdxÞ

ð4Þ

p2ðtÞ ¼
1

1þ exp ð� b
R t

0
ðr2ðxÞ � r1ðxÞÞdxÞ

ð5Þ

Values p1(t), p2(t) can only asymptotically approach 1, therefore we add a condition that the

decision is made when at a given time point t, p(t) surpasses the threshold value of 0.99 for one

of the populations. As population 1 receives the input, this is a correct decision if p1(t)>0.99

and a wrong decision if p2(t) > 0.99. In this model, β is a parameter influencing the sigmoidal

function of the decision probability with respect to the cumulative difference
R t

0
ðr2ðxÞ � r1ðxÞÞdx.

In this work, we perform the stability analysis of the system 2 and 3, and find a regime in

which:

1. in absence of a stimulus, no decision can be made

2. in presence of a weak stimulus, we obtain perceptual ambivalence: p1(t) and p2(t) intersect

with each other at different points in time

Time-delay model of perceptual decision making in cortical networks
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3. in presence of a strong stimulus, the network makes the right decision

We use Mathematica1(http://www.wolfram.com/mathematica/) to implement a system of

delayed differential equations described by Eqs 2 and 3, in three regimes: the resting state, a

weak stimulus regime and a strong stimulus regime. We then investigate the following aspects

of the model:

Certainty of the decision making in a function of model parameters. A model for per-

ceptual decision making should be able to reproduce the psychometric curve. Therefore, we

define certainty of the decision making as

cðs; bÞ ¼ max
t�0
ðjp1ðtÞ � p2ðtÞjÞjt¼const: ð6Þ

and investigate how this quantity depends on the stimulus magnitude σ and slope parameter β.

Influence of the stimulus duration on the decision making. We also explore how the

duration of the stimulus influences the effect of perceptual ambivalence.

Influence of the background noise on the decision making. In the version of the model

introduced above (Eq 2), there is no stochasticity. However, as we model biological systems,

there should be a smooth dependency between success rate in the decision making and the

level of stochasticity in the model. Therefore, let us consider stochasticity in the neuronal

dynamics. Here, we introduce the noise term as two independent Wiener processes controlled

by parameter b as follows:

trdr1ðtÞ ¼ ð� r1ðt � t1Þ þ w2ðtÞr2ðtÞ þ I1ðtÞ þ sðtÞÞdt þ b dWð1Þ
t ;

trdr2ðtÞ ¼ ð� r2ðt � t2Þ þ w1ðtÞr1ðtÞ þ I2ðtÞÞdt þ b dWð2Þ
t ;

(

ð7Þ

Then, we investigated the success rate in the decision making with respect to the parameter b
(σ = 0.3, τ = 1.4). In order to be consistent with the fMRI experiment used for validation, we

defined the success rate on the basis of decisions made at random time points in the range

between 5 and 7 [s]. For each value of parameter b, we simulated 20, 000 iterations of the sys-

tem on the interval 0-8 [s] in R.

Open source implementation of our model implemented in Mathematica (together with

simulations of the noisy system in R) is available at https://github.com/PiotrRadzinski/

DelayModelofPerceptualDecisionMaking.

Validation in fMRI datasets

Prediction obtained from the model. Our model exhibits dynamics that demonstrates

decisional ambivalence for low stimulus magnitudes σ. As the decision making neuronal popu-

lations are close in space, they cannot be distinguished from each other with use of macro-

scopic neuroimaging tools such as fMRI or EEG. However, as in the low signal magnitude, the

model predicts that firing rates oscillate in antiphase, the joint signal coming from populations

r1(t), r2(t) should have low variance when compared to the high signal magnitude regime.

On the basis of this reasoning, we made prediction upon the expected variance of the joint

signal coming from the two populations in the system in presence of a very weak stimulus as

lower than in strong stimulus regime. In fact, in functional Magnetic Resonance Imaging, the

signal recorded in the experiment does not correspond the neuronal firing described by Eq 2

directly, but rather, relates to the oxygen consumption by neurons during the firing. This is a

weakly nonlinear dependency, where the BOLD response can be characterized as a linear

convolution of the neuronal signal with a so-called hemodynamic response function [36]

(explained in S2 File). However, as the BOLD signal is a linear convolution, the prediction of

the model will hold.

Time-delay model of perceptual decision making in cortical networks
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We then confront this prediction with the experimental datasets coming from fMRI experi-

ment on the influence of semantic priming on gender perception.

Subjects. Twenty-four female native Dutch speakers participated in the fMRI experiment

and gained monetary compensation for their participation. Only female participants were

recruited for the study, in order to avoid gender-related confounding factors [37]. The study

was approved by the local ethics committee (CMO Arnhem-Nijmegen, Radboud University

Medical Center, ethical approval for studies on healthy human subjects at the Donders Centre

for Cognitive Neuroimaging, no ECG2012 − 0910 − 058) and conducted in accordance with

their guidelines. All participants signed informed consent forms before the experiment. The

data from seven subjects were excluded from the analysis: 3 subjects failed to finish the task

and 4 subjects exhibited head motion that exceeded the maximum acceptance rate of 2[mm].

The remaining 17 subjects (females, age 18 − 29 years) reported no neurological diseases, and

had normal or corrected-to-normal vision.

Stimuli. A set of realistic 3D faces was morphed across gender (from extremely female to

extremely male) using FaceGen Modeller 3.5 (Singular Inversions, www.facegen.com, Fig 2A).

The morphing procedure started from 40 distinct faces. For each face, we gradually modulated

gender features in 5 steps with the same amount of feature transformation in each step. The

technical details upon the computation performed by the software are introduced in [38]. The

face stimuli were presented frontally and cropped around the oval of the face. We controlled

for luminance using SHINE toolbox for MATLAB [39]. The perceptual boundary within gen-

der continuum of faces was established in a separate behavioral experiment.

Experimental design. Each trial started with priming: presentation of a gender-related

word (man or vrouw) for 0.2[s]. Then, after the fixation cross (0.25[s]), a face was presented

(0.5[s]), followed by an inter-trial period of a randomized length of 5 − 7[s] (Fig 2B). Partici-

pants were asked to perform a matching task: respond yes if a word and subsequent picture

corresponded in gender, and no otherwise. The experiment was carried out in Dutch. The

Fig 2. A: The set of stimuli. Each of the 40 distinct faces was morphed from male (1) to female (5). B: Experimental design. Each trial started

with the word (man or vrouw) that was presented for 0.2[s]. After the fixation cross (0.25[s]), the face was briefly presented for the period of 0.5

[s], followed by a randomized inter-stimulus interval (ISI) in the time range of 5 − 7[s].

https://doi.org/10.1371/journal.pone.0211885.g002
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buttons were counterbalanced across subjects. The experiment was divided into 6 blocks in

order to avoid fatigue. Each block consisted of 50 trials. The order of stimuli was randomized

across blocks and participants. We used Presentation software (version 17.1, www.neurobs.

com) in order to screen the stimuli during the experiment.

MR image acquisition. Functional images were acquired using 3T Skyra MRI system

(Siemens Magnetom), T2� weighted echo-planar images (gradient-echo, repetition-time

TR = 1760[ms], echo-time TE = 32[ms], 0.7[ms] echo spacing, 1626 hz/Px bandwidth, general-

ized auto-calibrating partially parallel acquisition (GRAPPA), acceleration factor 3, 32 channel

brain receiver coil). In total, 78 axial slices were acquired (2.0[mm] thickness, 2.0 � 2.0[mm]

in plane resolution, 212[mm] field of view (FOV) whole brain, anterior-to-posterior phase-

encoding direction).

Preprocessing of functional MR imaging data. The data reprocessing was performed

using SPM12 (Welcome Trust Center for Neuroimaging, University College London, UK).

Functional scans were realigned to the first scan of the first run with further realignment to the

mean scan. We performed slice-time correction on realigned images to account for differences

in image acquisition between slices. Motion-related components were removed from the data

using a data-driven ICA-AROMA [40]. Denoised functional scans were spatially normalized

to the Montreal Neurological Institute (MNI) space [41, 42] without changing the voxel size.

Normalized data were smoothed spatially with a Gaussian kernel of 6[mm] full-width at half-

maximum.

Definition of regions of interest. We extracted region-of-interest (ROI) mask using Ana-

tomical Automatic Labeling atlas (AAL, [43]). According to our a priori hypothesis, we prese-

lected the bilateral SPL (4288 voxels) and the bilateral IPL (3792 voxels).

Computing variance of the BOLD. As the experiment only contained a few ambivalent

facial stimuli, we performed a group analysis. Firstly, we extracted the BOLD within the bilat-

eral SPL and IPL from each subject, and normalized the BOLD time series throughout the

experiment to the mean of 0 and variance of 1 within each subject. Next, we extracted all the

frames registered after the ambiguous stimuli were presented on the screen, and before the

onset of the next stimulus. Regardless of the priming, we interpreted the pictures with morph-

ing at stage 3 (the morphed images exactly halfway between male and female faces) as the

ambiguous stimuli. We obtained 4,624 frames in total for this weak-stimulus condition. Lastly,

we extracted all the frames registered after the faces of morphing phase 1, 2, 4 and 5 (unambig-

uous) were presented on the screen, and before the onset of the next stimulus. This resulted in

18,373 frames for the strong-stimulus condition. Given these two outcome vectors of BOLD

values for each of the two ROIs, we performed post hoc pairwise F-tests to test for the differ-

ence in variance between the two regimes.

Results

Simulation results

Noiseless case. Full stability analysis of this model in the resting state (σ = 0), is given in

S1 File. In the following section, we present exemplary simulation results. In our example, we

assume that the inputs to the system during resting state are equal and constant (I1(t) = I2(t) =

I(t) = 0.4[1/s]), and β = 1.

In absence of a stimulus, the dynamic system is launched from the reference point, and the

two populations will exhibit identical dynamics, and therefore also identical firing rates in

every point in time (regardless of the value of the synaptic delay τ). Therefore, the accumulated

evidence p(t) in both nodes will be constant over time and equal to 0.5, as demonstrated in Fig

3A. In order to observe an interplay between the two populations, symmetry must be broken

Time-delay model of perceptual decision making in cortical networks
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by adding a stimulus to one of the populations. In DDEs, it is convenient to perform this stim-

ulation by adding a pulse σ to one of the populations. Thus, we set the value of the firing rate

in population 2 to r2(t) = 0.4 and the value of the firing rate in population 1 to r1(t) = 0.4 + σ(t)
on the time interval [0, tmax]. In the example on Fig 3, tmax = 0.5[s], which matches typical

duration of presented visual cues in cognitive experiments on visual perception.

As demonstrated in Fig 3B, in presence of a weak stimulus σ = 0.3[1/s] and delay τ below

the critical point (τ = 1.4[s]), the system dynamics is still stable, and perceptual ambivalence

does not occur. However, as demonstrated in Fig 3C, for the same value of the stimulus σ = 0.3

[1/s] and τ right above the critical point (τ = 1.7[s]), we can observe that accumulated evidence

behind choices 1 and 2 fluctuates over time, which may account for perceptual switches. Fur-

thermore, as shown in Fig 3D, for large values of stimulus σ and the same value of the time

delay, this effect disappears.

According to our extensive simulation of this model, presence of (1) values of delay above

the critical point, for which the system crosses onto the unstable side; (2) a weak stimulus σ,

are necessary for the stability switches to occur.

We then investigate the decision certainty in the function of the slope β and the stimulus

magnitude σ. The results are presented in Fig 4. The model returns a monotonic, smooth and

concave transfer function between both stimulus magnitude σ (Fig 4B) and slope β (Fig 4C),

and the decision certainty. For certain combinations of parameters and for t high enough, this

system can return firing rates r1(t), r2(t) below zero. In order to avoid such case we maximized

certainty only on the time interval [0, 8].

Influence of the stimulus duration on the decision making. One characteristic that our

model exhibits, is that for a stimulus of certain magnitude (here, σ = 0.3[1/s]), perceptual

ambivalence occurs for particular range of stimulus duration tmax (here: for stimuli more brief

than 1.0[s]), as presented in Fig 5.

Fig 3. Dynamics in the system in a function of τ and σ (β� 1, I1(t) = I2(t)� 0.4). Upper row: the neuronal dynamics r(t). Lower row:

accumulated evidence p(t). A: no stimulus. The two populations have a constant firing rate, and the associated cumulative evidence is stable in

time and equal to 50%, for both τ = 1.4[s] and τ = 1.7[s]. Since there is no stimulus, from the symmetry of the system, we have r1(t)�r2(t). B: a

weak stimulus (σ = 0.3[1/s]), for the subcritical value of τ = 1.4[s]. The system dynamics is still stable, and perceptual ambivalence does not

occur. C: a weak stimulus (σ = 0.3[1/s]), for the supercritical value of τ = 1.7[s]. In this regime, accumulated evidence behind choices 1 and 2

fluctuates over time, which may account for perceptual switches. D: a strong stimulus (σ = 1.0[1/s]) for supercritical value of τ = 1.7[s]. The

effect of ambiguity disappears, and the cumulative evidence for choice 1 is higher than the cumulative evidence for choice 2 for the whole

duration of the experiment.

https://doi.org/10.1371/journal.pone.0211885.g003
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Fig 4. Features of the model. A: decision certainty in a function of slope β and stimulus magnitude σ. Certainty is a smooth and concave

function of each one of the two parameters. B: certainty in a function of σ, for β = 1. C: certainty in a function of β, for σ = 0.3[1/s]. The model

returns a monotonic, smooth and concave transfer function between both stimulus magnitude σ and slope β, and the decision certainty.

https://doi.org/10.1371/journal.pone.0211885.g004

Fig 5. Dependency of the perceptual ambivalence effect on the stimulus duration tmax. While the magnitude of the stimulus is fixed (σ = 0.3

[1/s]), the duration of the stimulus is varying. For the stimuli longer than 1[s], the effect of ambivalence disappears.

https://doi.org/10.1371/journal.pone.0211885.g005
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Influence of the background noise on the decision making. In Fig 6, the dependency of

the success rate on the magnitude of the noise is presented. The decision making is, in general,

sensitive to noise, but the dependency of success rate in a function of noise magnitude is

smooth as expected. Along with increasing b, the performance drops towards 0.5. Next to the

results presented in Fig 6, we performed 20, 000 iterations of the system with b = 1.0, and the

output success ratio was equal to 0.519—which demonstrates that for large values of b, perfor-

mance drops towards the chance level.

Validation in fMRI datasets

The variance in the three conditions within the SPL was equal to varw = 0.9148 and vars =

0.9720, respectively, and one-way ANOVA gives the statistic of F = 90.87 (p< �). The two-

sample, one-tailed post hoc F-test returns varw< vars at the significance level p = 0.0460. In

the IPL, the associated variances were equal to varw = 0.9148, vars = 0.9720, respectively. The

two-sample, one-tailed post hoc F-test returns varw< vars at p = 0.0050.

Discussion

In this work, we bring together a few concepts popular in models of cortical networks. Local

inhibitory networks are known as rhythm generators in the brain (both in the low [44] and

high frequency range [45]). Furthermore, cortical networks are known to operate at the edge

of instability [12]. These two aspects of the dynamics in cortical networks—sub-criticality and

interneuron-induced rhythms—rarely come together in models of decision making. In this

work, we propose a new population model which elicits the influence of dynamic state (close

to the critical point) on the decision making process. We demonstrate that local, slow inhibi-

tion can induce Hopf bifurcation which activates distinct, context dependent modes of activity

in the decision-making systems and can cause perceptual switches.

The two-population architecture resembles the model proposed by Ledoux & Brunel ([46],

Fig 1) but in that work, one of the populations is excitatory while the other population is inhib-

itory. In our model on the contrary, the two populations are symmetric: both populations

have local inhibitory and long-distance excitatory projections. Both network architectures can

yield oscillatory behavior however, they should be applied to model different paradigms;

Fig 6. The dependency of the success rate on the magnitude of the noise generated from Wiener process.

https://doi.org/10.1371/journal.pone.0211885.g006
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architecture proposed by Ledoux & Brunel models behavior of one cortical population consist-

ing of excitatory and inhibitory subpopulations (in response to time-dependent inputs) while

our model models the competition between two distinct cortical populations.

As the model characterizes the role of local inhibition in decision-making, the neuronal

delays play crucial role. We model these delays through Delayed Differential Equations

(DDEs). DDEs are often used to model biological systems [20, 32, 47–54] because they exhibit

a rich dynamical repertoire, and in particular, they fall into oscillatory regime on the edge of

instability. DDEs were also used in the neural mass and neural field models of cortical activity

[55–59]. Modeling the synapses with use of DDEs is not a common practice in computational

neuroscience though, as typically, synapses are modeled with an additional, exponentially

relaxating variable instead of a delay. We chose for this type of modeling not in order to

achieve a biologically plausible model, but to demonstrate a dynamical repertoire of networks

with delayed synaptic transmission, similarly to work by Deco et al. [60]. As opposed to [60]

however, we went beyond conditions for occurrence of the Hopf bifurcation, and we further

investigated its role in the perceptual decision making.

Mathematically, both concepts for modeling synapses—delays in transmission and addi-

tional variable with relaxation—could be merged by the usage of distributed delay instead of

discrete one. However, it is a common practice in modeling using DDEs that the first approxi-

mation is to use discrete-delay systems, as it is easier to analyze them both from mathematical

and numerical point of view.

Various GABA receptors have various delays in the brain. I.e., the fast mode of inhibition is

related to the GABA-A receptors [61, 62] which give synaptic delays lasting for several tens of

milliseconds (excluding the afterdepolarizations lasting for several tens of milliseconds as well

[63–67]). On the other hand, the slowest mode of inhibition is related to the metabotropic

GABA-B receptors which have a time scale of a few hundred milliseconds [68]. Still little is

known about the structure and functions of these receptors [69]. Finally, slow inhibition path-

ways [30], involving over 100 compounds, operate on timescales of hundreds of milliseconds

to minutes, and is more complex than the synaptic transmission. In practice, the local inhibi-

tion in the nodes of the cortical network is most probably a combination of the multiple inter-

acting processes at different time scales. In this work, we simplified the model to the very basic

system with a single value of delay referring to slow inhibition processes, as this work is a

proof of concept.

In general, the inter-population excitatory connectivity can also be delayed (especially the

glutamatergic NMDA receptors which give the highest delays). However, mathematically,

these delays in excitation do not generate oscillations on their own and therefore do not

change the dynamic properties of the model, therefore we skipped these delays from the model

for the sake of simplicity.

The model we analyzed is simplistic, because we were mostly interested in demonstrating

the dynamical repertoire of this model, so its qualitative and not quantitative features. Two

possible extensions to the model could be introducing an instantaneous relaxation (i.e., self-

inhibition without delay) and self-excitation. We consider these possible extensions and dis-

cuss their consequences for the dynamics in section S3 File. In this paper, we also did not con-

sider the dynamics without the quasi-steady approximation. In such case, the model would be

four-dimensional. We had previously analyzed the number and stability of the fixed points of

this model without the quasi-steady approximation and published the results as [70]. Further-

more, plasticity in the brain is a complex mechanism with characteristic timescales ranging

from seconds to minutes and hours. In this model, we assume only short-term plasticity, and

we are not interested in long-term plasticity effects. In fact, vast majority of the computational

models of cortical networks take only one type of plasticity into account (the exception being

Time-delay model of perceptual decision making in cortical networks
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models combining plasticity and adaptation, e.g. [71]). We, however, considered an alternative

scenario without synaptic plasticity (results presented in S3 File), and the dynamics is similar

as in case of plastic synapses (the major difference comes from shifting the stability points). In

some sub-bifurcation cases, fixed weights lead to longer oscillations in probabilities than plas-

tic synapses, but in general it is only quantitative and not qualitative difference.

We also used a simple form of a stimulus. We chose as a step impulse of the duration τ.
DDEs have an infinite dimensional space of initial conditions as the initial condition on the

interval [−τ, 0] can be defined as any continuous function. This opens a range of possibilities

for the future research on the dynamical properties of the decision making systems with delays,

for instance in a function of the stimulus properties. With respect to the stimulus magnitude,

we need to remember that the model is a firing rate model, therefore the weak input of σ = 0.3

[1/s] corresponds to a higher firing rate in the upstream populations projecting to the system.

Typically, connectivities in cortical networks are modeled as having the density of 10%, which

corresponds to the firing on the speed of 3.0[1/s], which equals 750% of the background firing

in the population model (I(t) = 0.4[1/s]). For the strong stimulus, σ = 1.0[1/s] corresponds to

the firing rate of 10.0[1/s] in the upstream populations, which is 2500% of the background

rate, consistent with experimental results [72]. On the other hand, the unconstrained firing

predicted by the model in case of strong stimuli is not in concordance with experimental evi-

dence: transfer functions in neurons tend to be sigmoidal [73], therefore the activity should

saturate for strong stimuli.

Furthermore, as the self inhibition rather than synaptic plasticity is the crucial feature in the

model, we chose for the simple form of plasticity: a sigmoidal function of the multiplication

between r1(t) and r2(t)—which is a simple implementation of the Hebbian rule. We included

synaptic plasticity because it is the integral part of learning and therefore also of the decision

making [74]. However synaptic plasticity is not central mechanism in this model as it does not

affect the dynamical repertoire of the system.

The resulting model has interesting properties. The certainty of the decision making is a

smooth, monotonic function of both the stimulus magnitude σ and the slope β (Fig 4A), and

saturates at 1. The β parameter denotes the slope which quantifies the influence of the differ-

ence between r1(t) and r2(t) on the difference in probabilities p1(t) and p2(t). The monotoni-

cally increasing function of certainty in the function of β is one of the assumptions in the

model (Eq 4, Fig 4B). On the other hand, the monotonic, increasing function of certainty with

respect to σ on the other hand is not an assumption, but an emergent feature of the model (Fig

4C), and is consistent with expectations: the ambivalence in decision making disappears once

the stimulus becomes strong enough.

Furthermore, we also found that, for a stimulus of certain magnitude, perceptual ambiva-

lence occurs for particular range of stimulus duration (Fig 5). Although we did not find any

literature reporting experimental findings on the influence of the stimulus duration on percep-

tual bistability, we believe that this effect is concordant with common sense, as presenting a

stimulus for a prolonged period of time should allow for collecting more evidence on behalf of

one option over the other.

There is a variety of neuroimaging techniques which can be used to validate this model. We

chose to validate the model with fMRI datasets, which were also previously employed to stud-

ies on perceptual decision making [75]. The temporal resolution of fMRI recordings is very

low. Therefore, we attempt to overcome this issue by operationalizing the problem as the vari-

ance of the joint signal. Note that the expected value of the variance is indifferent from the TR

of the fMRI sampling, and the accuracy of its estimation only depends on the length of the sig-

nal. Furthermore, since the direct location of the competing populations in the cortex cannot

be established, we incorporated the two parietal areas previously reported to be involved in
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solving the perceptual ambiguity into the study, SPL and IFL, in their entirety. As neuronal

oscillations are notoriously hard to capture in the fMRI experiments, we based the hypothesis

on the variance of the joint signal coming from the competing populations. Given such a sim-

plification, the nearby cortical populations oscillating in anti-phase, the joint signal collected

from these populations should drop in variance (we assumed that, even if a part of the anatom-

ically defined ROIs is not involved in this particular paradigm, this will not affect the results,

because it will contribute to the variance across all three conditions in the same fashion).

Given these assumptions, we found that the variance of the BOLD signal indeed drops in SPL

and IPL on the group level after presentation of ambiguous stimuli as compared to the vari-

ance in absence of the stimuli, or in presence of strong, unambiguous stimuli. This is, of

course, only one clue behind the bifurcation model of decision making introduced in this

work, and more in depth neurophysiological validation is necessary.

An alternative validation method could be electroencephalography (EEG): the oscillations

in anti-phase will yield higher power than the oscillations in the in-phase and, as such, they

should be detectable from the EEG readout. As we do not have any additional knowledge

upon the detailed mechanisms underlying facial perception, and as our literature-informed

regions of interest are relatively small, we believe that in this particular case, fMRI is a better

validation technique than EEG. In the future, it might be possible to use also EEG activity

transformed into the cortical space through the inverse problem, and use power spectrum for

validation of the model.

We chose the task on the perception of gender-ambiguous faces for three major reasons.

Firstly, there are exactly two possible choices in this task as the cortical networks need to dis-

ambiguate the gender of the presented face. Secondly, the face recognition is a natural, evolu-

tionary and involuntary mechanism [76], therefore it naturally engages the brain and is

associated with a natural motivation to disambiguate the stimulus, regardless of the level of

external motivation, or fatigue in a participant. Thirdly, in this experiment faces are presented

for a relatively short period of time (0.5[s]), followed by free viewing of the screen. This setup

corresponds to our model, in which we are simulating the phase transition in the dynamics of

the system in a reaction to a stimulus presented to one of the populations for 0.5[s].

In the future research, the model should also be validated with respect to other experimen-

tal paradigms related to perceptual bistability: visual (such as the Necker cube [1]) or auditory

(such as mixtures of high and low tones, which can be interpreted by the brain in multiple

ways [77]).

In this work, we present a proof of concept that the slow inhibition can yield a rich dynam-

ics in the decision-making systems. This model has a few implications. Firstly, perceptual

switches present while watching ambiguous stimuli (such as the Necker cube) are often envis-

aged as a result of the noise driven switches between attractors in the decision-making systems

[78]. In our model however, the perceptual switches can arise even in absence of the noise, as a

natural consequence of stimulation of the systems with delayed self-inhibition.
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