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Abstract
Code-switching is the alternation from one language to the other during bilingual speech. We present a novel method of
researching this phenomenon using computational cognitive modeling. We trained a neural network of bilingual sentence
production to simulate early balanced Spanish–English bilinguals, late speakers of English who have Spanish as a dominant
native language, and late speakers of Spanish who have English as a dominant native language. The model produced
code-switches even though it was not exposed to code-switched input. The simulations predicted how code-switching
patterns differ between early balanced and late non-balanced bilinguals; the balanced bilingual simulation code-switches
considerably more frequently, which is in line with what has been observed in human speech production. Additionally,
we compared the patterns produced by the simulations with two corpora of spontaneous bilingual speech and identified
noticeable commonalities and differences. To our knowledge, this is the first computational cognitive model simulating the
code-switched production of non-balanced bilinguals and comparing the simulated production of balanced and non-balanced
bilinguals with that of human bilinguals.

Keywords Code-switching · Computational cognitive modeling · Sentence production · Bilingual Dual-path model ·
Recurrent neural network

Introduction

Bilingual speakers are able to switch from one language
to the other, between or within sentences, when convers-
ing with other bilinguals who speak the same languages.
This process is called code-switching and it is common
among communities where two languages come in con-
tact. For instance, Spanish–English code-switching occurs
frequently in the USA among Puerto Rican-Americans
(Poplack 1980) and Mexican-Americans (Pfaff 1979),
French–Arabic code-switching is common in Morocco
(Bentahila 1983) and Algeria (Heath 1984), and Hindi–
English in India (Malhotra 1980).
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It is incorrect to think of code-switching as a speech
error; bilinguals only code-switch when conversing with
others who speak the same languages. Grosjean (1997)
suggested that bilinguals utilize their languages differently
depending on whom they talk to: when they converse with
someone with whom they only share one language, they are
in a monolingual language mode. When, on the other hand,
they are in a setting in which everybody speaks the same
languages, they are in a bilingual mode which allows them
to code-switch. The amount of code-switching differs per
speaker, depending on their personality as well as on the
environment and the context of the conversation (Dewaele
and Li 2014).

Another misconception is that bilingual speakers mostly
code-switch to fill in lexical gaps; this is not the case
for proficient speakers (Romaine 1986). However, in the
early stages of language acquisition, speakers code-switch
more from their less proficient language into their dominant
one, rather than vice versa, because they lack the linguistic
structures and lexicon needed to communicate; this has been
observed both in child bilingual acquisition (Genesee et al.
1995; Petersen 1988) and second language (henceforth L2)
acquisition (Sert 2005).
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Our goal is to simulate code-switching using a computa-
tional cognitive model, with the ultimate aim to further our
understanding of the underlying cognitive processes. In a
previous study (Tsoukala et al. 2019), we showed that a neu-
ral network model designed and validated for monolingual
sentence production can generate realistic code-switches
when extended to the bilingual case, by training it with syn-
tactic properties and lexical items from two languages and
by equipping it with a language control node that allows for
the production of either language. Interestingly, the code-
switches occurred in the simulations even without exposure
to code-switched sentences. In the current study, the aim is
to expand on this study in the following three ways: First,
we will test the robustness of the model’s code-switching
behavior; we will do this by replicating the study while ran-
domly varying free parameters. Second, we will simulate
balanced and non-balanced bilinguals, and shed light on the
code-switching patterns of each simulated group. During the
early stages of L2 learning, we hypothesize that the non-
balanced bilingual models will code-switch more from their
non-proficient L2 into their dominant native language rather
than the other way around, possibly because of gaps in their
knowledge of the L2. At the later stages of acquisition, how-
ever, when the non-balanced models are more proficient
in their L2, we hypothesize that these models will also be
able to produce code-switches into their L2, even though we
expect to find differences in the frequency and distributions
of code-switches between the balanced and non-balanced
simulation conditions. Third, we will investigate to what
extent the simulated code-switches correspond to what is
observed in bilingual speech corpora; this is an exploratory
analysis with the goal to validate the model patterns.

Code-switching in Balanced and Non-balanced
Bilinguals

Code-switching has been studied mainly in early bilinguals,
specifically in (i) early balanced bilinguals, i.e., people
who have acquired both languages from birth or in early
childhood, and (ii) heritage speakers whose home language
is a minority language (e.g., Spanish in the USA) and
whose dominant language is usually the one spoken in
the community (e.g., English) (see, e.g., Poplack 1978;
Bullock and Toribio 2009). Speakers who are exposed to
an L2 at a later age (e.g., during adulthood) can also code-
switch, although the frequency and patterns are known to
be different than in early balanced bilinguals. Globalization
and greater mobility have caused an increase in the numbers
of late non-balanced speakers and there is no social pressure
to refrain from code-switching (Matras 2013).

Most studies comparing balanced and non-balanced
bilinguals have focused on comprehension rather than pro-
duction, specifically on reading comprehension (e.g., using

eye-tracking) or grammaticality judgment of code-switched
sentences. For instance, Lederberg and Morales (1985)
asked different groups of Spanish–English bilinguals to rate
the grammaticality of code-switches, and correct them if
needed; they compared bilingual children, early balanced
bilingual adults, and late non-balanced bilingual speak-
ers who had Spanish as a native language (hereinafter
referred to as L1) and moved to the USA as adults where
they acquired their L2 English. They found that the late
non-balanced bilinguals showed differences in the (gram-
maticality judgment) acceptance rates compared with the
balanced bilinguals; however, the code-switching patterns
that the groups followed were similar, which led to the
conclusion that the rules governing code-switching are not
based on extensive exposure to code-switching, but rather
on “knowledge of the grammars of the two code-switched
languages in combination with some general linguistic
knowledge” (Lederberg and Morales 1985, p.134).

Guzzardo Tamargo and Dussias (2013) studied the
reading processing of Spanish-to-English auxiliary phrase
switches by balanced and non-balanced bilinguals and
found no fundamental differences in the processing patterns
between the two groups either, even though the non-
balanced bilingual group was slower.

Unlike comprehension studies discussed above, produc-
tion studies do report differences in the code-switched
patterns of early balanced and late non-balanced bilinguals.
Poplack (1980) analyzed the code-switching production pat-
terns of Spanish–English bilinguals with varying degrees
of proficiency who live in the Puerto Rican community in
New York. She observed that balanced bilinguals produced
more complex code-switches (e.g., in the middle of the sen-
tence) whereas speakers who were less proficient in their
L2 were more likely to switch only for idiomatic expres-
sions, tags (e.g., “you know”), and fillers (e.g., “I mean”).
Similarly, Lantto (2012) analyzed the speech patterns of 22
Basque-English bilinguals (10 among them were early bal-
anced bilinguals) and observed clear differences between
the early balanced and late non-balanced bilingual groups,
with the balanced group producing a wider variety of switch
patterns. Psycholinguistic studies (e.g., Gollan and Ferreira
2009, using a picture naming task) have also observed that
balanced bilinguals code-switch more frequently.

In the current study, we simulate balanced and non-
balanced bilinguals using a sentence production model.
We investigate whether the simulations yield differences
between the balanced and non-balanced bilingual groups
that are similar to those observed in the aforementioned
linguistic studies on the production of code-switches in
human speech. We thus assess whether the non-balanced
bilingual models show a large likelihood to code-switch in
the early stages of L2 acquisition from L2 to L1 and whether
in later stages of bilingual production the likelihood to
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code-switch is higher for the balanced than for the non-
balanced models.

The switch directionality of a code-switch (i.e., whether
a switch is from the L1 to the L2 or vice versa) can
be determined either in an incremental (i.e., linear, as in,
e.g., Broersma and De Bot 2006) or a hierarchical manner
(using, e.g., one of the most influential grammatical models,
the Matrix Language-Frame (MLF) model (Myers-Scotton
1993)). In the following simulations, we have taken a linear
approach because we do not want to make assumptions
about the way structural relations affect processing.

Bilingual Dual-PathModel

The computational cognitive model we employed for this
task is the Bilingual Dual-path model (Tsoukala et al.
2017) which is an extension of the Dual-path model (Chang
2002) of monolingual sentence production. The Dual-path
model has successfully modeled a wide range of phenomena
over the past years: e.g., structural priming and syntax
acquisition in English (Chang et al. 2006; Fitz and Chang
2017) and in German (Chang et al. 2015), cross-linguistic
differences in word order preference between English and
Japanese (Chang 2009), and input and age of acquisition
effects in L2 learning (Janciauskas and Chang 2018).

We chose to base our model on the Dual-path architecture
not only because of its success in modeling sentence
production but also because it is a learning model (a
recurrent neural network, RNN), which therefore allows
us to investigate whether code-switched production can
emerge from exposure to non-code-switched sentences.
Note, however, that a next-word generator, i.e., a simple
language model based on an RNN alone or any statistical
language model, is very unlikely to produce code-switches
without being exposed to code-switched sentences, as the
transitional probability between two words in different
languages would be zero. The Dual-path, on the other hand,
contains a semantic stream and a language control on top of
the syntactic stream (the RNN); therefore, it might in theory,
and does in practice as our work shows, learn to code-switch
even without exposure to code-switched input.

Model Architecture

The Bilingual Dual-path model (Fig. 1) learns to express a
given message word-by-word (see “Messages” for examples
of messages). The model assumes that there are two paths
influencing sentence production: (i) a syntactic path (the
lower path in Fig. 1, via the “compress” layers), which is a
simple recurrent network (Elman 1990), and (ii) a semantic

path (the upper path in Fig. 1), which contains information
about the thematic roles (e.g., AGENT, RECIPIENT), the
concepts they are connected to, and their realization. The
syntactic path learns the syntactic patterns of each language,
whereas the semantic path learns to map concepts onto
words. Additionally, the model receives information about
(i) the event semantics that define when an event takes
place (e.g. PAST, PROGRESSIVE) and (ii) the target
language, through the corresponding node, which acts as
the only language control of the model. Specifically, the
target language node simulates the conversational setting in
which a speaker is interacting (i.e., one target language in a
monolingual setting, both languages in a bilingual setting).
All layers use the tanh activation function, except for role
and output that use softmax.

The two streams, along with the event semantics and
target language, work together to produce grammatically
correct sentences that express a specific message.

Messages

A message is represented by (i) a target language, (ii)
event-semantic information, (iii) pairs of thematic roles and
concepts, and (iv) pairs of thematic roles and realizations
(pronoun, definite, indefinite) whenever applicable in the
case of noun phrases.

The target languages are ENGLISH and SPANISH.
The event semantics contain information regarding the
aspect (SIMPLE, PROGRESSIVE, PERFECT) and tense
(PRESENT, PAST), as well as the thematic roles that are
used in each message.

The following simulations make use of 52 unique
concepts and six thematic roles: AGENT, PATIENT,
AGENT-MODIFIER, RECIPIENT, ACTION-LINKING,
and ATTRIBUTE. The roles AGENT and RECIPIENT
are only paired with animate nouns (e.g., “son,” “cat”).
ACTION-LINKING is a combined thematic role that can be
used for all main verb types: action (e.g., “shows”), linking
(“is”), and possession (“has”). ATTRIBUTE is an attribute
expressed only with a linking verb.

Additionally, AGENT, PATIENT, and RECIPIENT are
connected to their realization: pronoun (e.g., “he” for the
concept BOY), and definite or indefinite article for concepts
that are expressed as a noun phrase (e.g., “the boy” or
“a boy”). These roles contain optionally a modifier (an
adjective, e.g., “a happy dog”). Note that in English the
adjective comes before the noun (“the intelligent woman”)
whereas in Spanish the modifier comes after the noun (“la
mujer inteligente”). This knowledge is learned by the model
through the training examples and not through explicit
syntactic labels.
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Fig. 1 The Bilingual Dual-path model receives messages (see
“Messages” for examples of messages) and expresses them in sen-
tences, word-by-word. The model is based on the simple recurrent
network architecture (the syntactic path, via the “compress” layers),
which is augmented with a semantic path that contains information
about concepts and their realization, and thematic roles. Additionally,
the model receives information on the event semantics and the tar-
get language (conversational setting). The numbers in the parentheses

indicate the size of each layer (e.g., 52 concept units); the sizes of
the hidden and compress layers vary with each training repetition
(see “Model Training”). The solid arrows denote trainable connection
weights, whereas the lines between roles, realization, and concepts
correspond to connections that are given as part of the message-to-
be-expressed (e.g., PATIENT is connected to BOOK in a particular
message). The dotted arrow indicates that the produced word is given
back as input, influencing the production of the next word

(Message-to-)Sentence Production

For a message to be expressed, the following nodes need
to be activated in the model: the event semantics (e.g.,
PRESENT, PAST) and the target language (ENGLISH,
SPANISH) that specifies the intended output language.
Furthermore, the semantic roles (e.g., ACTION, PATIENT)
are connected to their respective concepts (e.g., READ,
BOOK) and realizations (e.g., INDEF for an indefinite
article). For example, if the message is:

AGENT = WOMAN, DEF
ACTION = GIVE
PATIENT = BOOK, INDEF
RECIPIENT = FATHER, INDEF
TARGET-LANG = ENGLISH
EVENT-SEM = PRESENT, PROGRESSIVE,

AGENT, PATIENT, RECIPIENT

the model would learn to express it in English as “the
woman is giving a book to a father,” and if the target
language was Spanish as “la mujer está dando un libro
a un padre.” Following Chang et al. (2006), to express
the recipient before the patient (“the woman is giving a
father a book” or “la mujer está dando a un padre un
libro”), the PATIENT receives less activation through the
event semantics, thus prioritizing the RECIPIENT. In the
current example, the event semantics would be PRESENT,
PROGRESSIVE, AGENT, PATIENT:0.5, RECIPIENT.

When the model receives a message, it produces it word-
by-word. The produced word is the output word with the

highest activation. Each produced word is then given as
input in the next time step, and it influences the production
of the next word. The period (“.”) works as an end-of-
sentence marker and the model stops producing words when
it outputs the period or if it has exceeded the length of the
target sentence, plus 2 extra words. We allow extra words
because the model might produce a different structure than
the target one; for instance, the message of the sentence
“the boy is giving the girl a key” (double dative) could
also be expressed as “the boy is giving the key to the girl”
(prepositional dative).

Miniature Languages

In order to simulate Spanish–English sentence production,
we generated training sentences that are derived from a small
subset of the syntactic properties (“Tense and Aspect”) and
the lexica (“Bilingual Lexicon”) of the two languages. Note
that the model does not contain a phonological level because
we are only focusing on the interaction between semantics
and syntax, and not on restrictions imposed by phonology.

Tense and Aspect

The allowed tenses used in the structures are past and
present, and the aspects simple, progressive, and perfect.
The past tense is only used in simple aspect sentences (e.g.,
“the girl jumped”), whereas the present tense applies to all
three aspects. The allowed structures for the two languages
and all tenses and aspects can be found in Table 1.
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Table 1 Allowed structures for
English and Spanish Aspect and tense English example Spanish example

Simple past

SV the brother sneezed el hermano estornudó

SVO a gentleman pushed the chair un señor empujó la silla

Simple present

SV the girl swims la niña nada

SVO the grandmother kicks the toy la abuela patea el juguete

SVO (linking) the hostess is happy la anfitriona está feliz

SVO (possession) a dog has the ball un perro tiene la pelota

SVDI the man throws a book to the aunt el hombre tira un libro a la tı́a

SVID the man throws the aunt a book el hombre tira a la tı́a un libro

Perfect present

SV he has walked él ha caminado

SVO a woman has pushed the pen una mujer ha empujado el bolı́grafo

SVDI a girl has thrown a key to the lady una niña ha tirado una llave a la señora

SVID a girl has thrown the lady a key una niña ha tirado a la señora una llave

Progressive perfect

SV she is jumping ella está saltando

SVO he is kicking a chair él está pateando una silla

SVDI the father is giving the toy to a girl el padre está dando el juguete a una niña

SVID the father is giving a girl the toy el padre está dando a una niña el juguete

S, subject; V, verb; O, object; D, direct object; I, indirect object

Bilingual Lexicon

The bilingual lexicon (Table 2) is an extension of the lexicon
used in the Tsoukala et al. (2019) study. It contains 202
words: 92 English words, 109 Spanish words, and the shared
end-of-sentence marker (“.”). The Spanish lexicon is larger
because Spanish is a gendered language. For instance, nouns
and adjectives are usually expressed differently depending
on whether they modify a masculine noun or a feminine one
(e.g., “busy” is “ocupado” if it modifies a feminine noun
and “ocupada” for a masculine noun). We also included
four common-gendered Spanish adjectives such as “feliz”
(“happy”) that do not change depending on the noun it
modifies.

The verbs are either intransitive (e.g., “swims”), tran-
sitive (“carries”), double (“throws”), linking (“is,” “está”),
or possession verb (“has,” “tiene”). The two linking verbs
(“is,” “está”) and the English possession verb (“has”) were
also used as auxiliary verbs for the progressive and perfect
forms, respectively, as was the Spanish perfect-form aux-
iliary verb “haber.” Following the allowed structures, each
verb had four forms: simple present, simple past, present
participle, and past participle.

Note that syntactic category information (such as “noun,”
“participle”) is not given explicitly; the model learns
through training (via the syntactic path) that words that

occur in similar context tend to be of the same syntactic
category.

Message-Sentence Pair Examples

We hereby illustrate how a message corresponds to (and
is expressed with) a sentence. For instance, the following
message:

AGENT = WAITER, DEF
AGENT-MOD = TALL
ACTION-LINKING = SNEEZE
EVENT-SEM = SIMPLE, PAST, AGENT,

AGENT-MOD

corresponds to the following sentences in English and
Spanish:

– the tall waiter sneezed.
– el camarero alto estornudó. (literally: “the waiter tall

sneezed.”)

Changing the tense of the message to PRESENT instead
of PAST would correspond to the sentences “the tall waiter
sneezes” and “el camarero alto estornuda,” whereas further
changing the aspect to PROGRESSIVE instead of SIMPLE
would correspond to “the tall waiter is sneezing” and “el
camarero alto está estornudando.”
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Table 2 Syntactic categories in the bilingual lexicon (Spanish in
italics)

Syntactic category n Examples

Verbs 66

Auxiliary 4 is, has, está, ha

Intransitive 16 walked, swims, nada

Transitive 12 carries, pushed, lleva

Double 12 throws, gives, tira

Possession 4 has, had, tiene, tenı́a

Linkinga 2 is, está

Participlesb 56

Progressive 28 walking, caminando

Perfect 28 eaten, comido

Nouns 52

Animate 40 uncle, aunt, tı́o, tı́a

Inanimate 12 pen, book, libro

Prepositions 2 to, ac

(Predicate) adjectives 26 busy, ocupado

Determiners 6 a, the, un, una, el, la

Pronouns 4 he, she, él, ella

aBoth linking verbs overlap with the auxiliary verbs
bNine of these have the same form as a verb; e.g., “walked” is either a
perfect participle or a verb
cThe Spanish preposition “a” and the English indefinite article “a” are
differentiated, in that they have separate nodes in the lexicon

Messages that contain direct and indirect objects can
be expressed with the thematic roles of PATIENT and
RECIPIENT respectively. For instance, the following
message:

AGENT = FATHER, PRON
ACTION-LINKING = THROW
PATIENT = BALL, DEF
RECIPIENT = DOG, INDEF
EVENT-SEM = SIMPLE, PRESENT, AGENT,

PATIENT, RECIPIENT

is expressed as “he throws the ball to a dog” or “él tira la
pelota a un perro.”

Finally, messages that contain linking verbs are encoded
using an attribute:

AGENT = MAN, DEF
AGENT-MOD = KIND
ACTION-LINKING = BE
ATTRIBUTE = TIRED
EVENT-SEM = SIMPLE, PRESENT, AGENT,

AGENT-MOD, ATTRIBUTE

which is expressed as “the kind man is tired” or “el hombre
amable está cansado.”

Model Training

The model learns through supervised training. A message
is given as input and the network tries to generate a
sentence word-by-word; after a word has been produced,
it is compared with the target word and the weights are
adjusted according to the backpropagation algorithm. All
networks were trained for 40 epochs using 2000 message-
sentence pairs.

The backpropagation parameters were the same across
all simulations: the momentum was set to 0.9 and the
initial learning rate was 0.10, which linearly decreased
for 10 epochs until it reached 0.02, at which point it
was held constant from epoch 11 onward. This applies
to both the Balanced and the Non-balanced bilingual
models (“Balanced Bilingual Model (Balanced Model)”
and “Non-balanced Bilingual Models (L1 English and
L1 Spanish Models)”, respectively). Note that the Non-
balanced models are exposed to their L2 around the 15th
epoch; therefore, they start learning the L2 with a decreased
learning rate (0.02).

To increase the generalizability of the reported results
and to test the robustness of the results reported in Tsoukala
et al. (2019), we trained 40 networks per simulation,
randomizing all free parameters (as seen below), excluding
the backpropagation parameters (i.e., the momentum and
learning rate) and the training set size. The parameters
were randomized per training repetition (i.e., for each of
the 40 networks), but the same parameter values were kept
across the three different simulations: e.g., the first training
repetition of the balanced bilingual simulation had the same
initialized weights as the first training repetition of the
non-balanced bilingual model(s).

First, the message-sentence pairs were randomly gener-
ated for each simulation before the training started. The
sentences were constrained by a set of allowed structures
(“Tense and Aspect”) and for each syntactic category a
randomly selected word was sampled from the bilingual lex-
icon (“Bilingual Lexicon”). Note that the target sentences
were never code-switched.

Second, when sampling the bilingual training set for the
balanced and non-balanced bilingual simulations, we varied
the percentage of English and Spanish. The percentage
of English was sampled from a normal distribution with
a mean of 50% (standard deviation: 8) and the rest
was Spanish. Third, weights of trainable connections
were initialized using Xavier initialization (Glorot and
Bengio 2010). Last, the weights of the connections
between thematic roles and concepts (“concept”–“role” and
“predicted role”–“predicted concept” in Fig. 1), which are
not trained, were integer values sampled between 10 and 20
(the exact value was randomized once per training repetition
and was the same for all these connections).
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The hidden layer size was also sampled per training
repetition (between 70 and 90 units) and the compress layer
size was set to the closest integer to 77% of the hidden layer
size.

Code-switching

As mentioned above, the target sentences did not contain
any code-switches. To allow the model to code-switch, we
manipulated the model’s language control (target language
node) when testing, which simulates the conversational
setting, or language mode (Grosjean 1997). Only one of
the target languages was activated before the production of
the first word, and the network was thereby biased towards
producing the first word in that language, but once the first
word was produced, both languages were activated. This
allowed the model to continue in the same language or to
code-switch.

With regard to the code-switching types, in the current
simulations, we look at two types of code-switches,
which Muysken (2000) calls (lexical) insertions and (intra-
sentential) alternations:1

– Insertional switching (insertion of single words), e.g.,
“He gave the libro to my niece.” (He gave the book to
my niece.)

– Alternational switching (intra-sentential switching),
e.g., “Marı́a prefiere hacer el viaje by train instead.”
(Maria prefers to make the trip by train instead.)

Correctness of Sentence Production

A produced sentence is considered grammatically correct if
it consists of an allowed sequence of syntactic categories,
i.e., if the sequence exists in the training set. The criterion
for correct meaning is that the sentence is grammatical and
that all thematic roles are expressed correctly, even if they
are code-switched, but with no omitted or extra attributes
(e.g., not “dog” instead of “big dog” or vice versa). In some
cases, the meaning can be correct even if the produced
sentence is different than the target. For instance, if a
double dative sentence (“the woman gives the cat a ball”) is
expressed as a prepositional dative (“the woman gives a ball
to the cat”), the meaning is counted as correct because the
message is expressed correctly.

1Muysken also identified other types of code-switches (i.e., congruent
lexicalization) and sub-categories of the insertions and alternations
(e.g., insertions of fixed expressions, idioms and tags, and alternations
between sentences called “inter-sentential switching”), but these fall
beyond the scope of the model because the model produces single
sentences without context and without the usage of fixed expressions
and tags.

Method: Simulations and Corpus Analysis

We addressed the three goals of this study by running three
sets of simulations. First, having expanded the lexicon and
having varied almost all free parameters compared with the
Tsoukala et al. (2019) study (see “Model Training”), we
ran 40 training repetitions, with different parameters each,
to investigate (i) whether the model again produces code-
switched sentences and (ii) the sensitivity of this behavior
to the random parameter settings and initial weights.

Second, we simulated balanced and non-balanced
Spanish–English bilinguals and compared their production
patterns with respect to code-switching. Specifically, we
measured (i) how often a sentence is code-switched in
total and per switch direction2 (Spanish-to-English versus
English-to-Spanish), (ii) what kind of code-switches (alter-
national, insertional) are produced and at which syntactic
point, and (iii) how the patterns vary with the amount of
training and exposure to the two languages. Note that each
epoch corresponds to the amount (time) of learning, not
the amount of training examples per language; the non-
balanced bilingual models are initially exposed only to their
L1, whereas the balanced bilingual model directly receives
bilingual message-sentence pairs, thus receiving approxi-
mately half the exposure per epoch to each individual lan-
guage. Third, we test the validity of the simulated patterns
by comparing them with human data, i.e., code-switched
utterances in bilingual speech corpora.

To address the first two goals, we run one early balanced
bilingual model and two late non-balanced bilingual models
with different L1 (English, Spanish).

For the third goal, we analyzed the Bangor Miami corpus
(Deuchar et al. 2014) to obtain code-switched patterns of
Spanish–English bilingual speech.

Balanced Bilingual Model (BalancedModel)

The Balanced model was simultaneously exposed to both
languages (roughly 50% per language as described in
“Model Training”), therefore simulating balanced bilin-
guals. The Balanced model was trained for 40 epochs using
2000 message-sentence pairs and tested on 500 messages.
The training and test sets were unique per training repeti-
tion (40 training repetitions in total) and the distribution of
Spanish and English in the test messages was the same as in
the training messages.

2As mentioned in “Code-switching in Balanced and Non-balanced
Bilinguals,” our approach is linear. We start from the first word of a
code-switched output sentence; if the word is in Spanish, we mark the
switch direction as “Spanish-to-English,” whereas if the first word is
English we count it as “English-to-Spanish.”
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Non-balanced Bilingual Models (L1 English and L1
Spanish Models)

The non-balanced bilingual models were first exposed only
to their L1 for roughly 15 epochs. Specifically, the L1
English model was trained with English-only sentences
(2000 message-sentence pairs) for about 15 epochs (the
exact number of epochs was randomly sampled between
13 and 17), whereas the L1 Spanish model was initially
trained on Spanish-only sentences (2000 message-sentence
pairs). For the remaining epochs (making a total of 40), the
networks were exposed to the same 2000 message-sentence
pairs as the Balanced model and tested on the same 500
messages. Once again, there were 40 training repetitions per
model and the message-sentence pairs and test messages
were different for each run.

Corpus Analysis

To compare the simulated patterns to human data, we
analyzed the transcriptions of the Bangor Miami corpus
(Deuchar et al. 2014)3 that consists of 56 spontaneous and
informal conversations between two-to-five speakers, living
in Miami, FL. Out of the 84 speakers, 60 were equally fluent
in English and Spanish.4 Each word in the conversation
file has been automatically tagged with a language code
(English or Spanish) and a syntactic category (e.g., noun).
We selected the sentences that contained more than one
language code, resulting in 2796 code-switched sentences,
which is 6.2% of the corpus (45,289 sentences in total).
We then divided the code-switches into alternations, in case
the sentence continued in the code-switched language, and
insertions, if the code-switches were single words that were
inserted (once or several times) in the sentence. Meanwhile,
we corrected the syntactic categories of erroneous or
missing tags.5

From the 2796 code-switches observed in the Miami
corpus, we included only the 1369 that occur at syntactic
categories that are relevant to our model; for instance, we
excluded interjection insertions because interjections are out
of the scope of the model.

As an additional corpus, we compared the model’s
patterns with the code-switches observed in Poplack (1980).
Note that Poplack’s corpus is not publicly available;
therefore, we could not re-analyze the data. Likewise, out
of the 1835 code-switching instances observed in Poplack’s

3http://bangortalk.org.uk/speakers.php?c=miami
4Fluency was measured by self-reported “Spanish ability” and
“English ability.” The questionnaire results can be found on the corpus
website.
5The scripts used, as well as the resulting sentences, can be found at
https://osf.io/vd3wa/.

study, we have only included the syntactic categories that
are relevant for our study.

Note that in both corpora most switches are so-called
extra-sentential, which are not grammatically or semanti-
cally related to any other part of the sentence (e.g., tag inser-
tions, such as “you know” and “right?”) and are therefore
not included in the model.

Results

Model Performance

Balanced Model

Figure 2 shows the performance (i.e., percentage of sen-
tences with correct grammar and with correct grammar and
meaning) of the balanced bilingual model on its two native
languages: Spanish (Fig. 2a) and English (Fig. 2b). Both
languages are learned equally well: the mean percentage of
sentences that are produced with correct meaning at the last
epoch (hereinafter: correct meaning) is 83% for Spanish and
85.4% for English.

L1 English and L1 Spanish Models

Figure 3 (upper row) shows the performance of the L1
Spanish (Fig. 3a) and L1 English (Fig. 3b) models on their
native language. Note that around the 15th epoch the L2 is
introduced which slightly affects the production of the L1.

The lower row of Fig. 3 indicates the performance of the
non-balanced bilingual models on their L2, starting from the
epoch in which the L2 was introduced. Note that because
the exact starting epoch varies per training repetition, only
after the 18th epoch are all 40 training repetitions introduced
to the L2; until then, the plot shows the mean only of the
training repetitions that have already been exposed to the
L2. Figure 3c shows the performance of L2 English in
the L1 Spanish model and Fig. 3d shows the L2 Spanish
performance of the L1 English model.

Research Goal 1: Code-switching in theModels

In the final epoch, the Balanced model (Fig. 2) produces
21.4% Spanish-to-English and 27.0% English-to-Spanish
code-switches, out of all correctly produced sentences.
Examples of code-switched sentences include:6

– a boy pushed la silla (“the chair”)
– a happy cat tiene una pelota (“has a ball”)
– the uncle está triste (“is sad”)
– a dog corrió (“ran”)

6The full list of output sentences per model can be viewed online at
https://osf.io/vd3wa/.
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Fig. 2 Mean grammaticality, correctness of meaning, and code-switch percentage of the balanced bilingual model, tested on Spanish (a) and
English (b). The dots are jittered and represent each individual training repetition

The non-balanced models’ code-switching patterns
develop over time: at the early stages of L2 learning they
produce very few L2 sentences correctly, most of which
contain code-switches into the L1; for instance, on the
14th epoch the L1 English model produces 3.5% of Span-
ish sentences correctly, out of which 87.9% contain a
code-switch into English. Respectively, the L1 Spanish
model produces 5.9% of English sentences correctly, with
90.5% of these containing a switch into Spanish. Over
time, though, the models become more proficient in their
L2 and stop reverting to their L1: at the end of the
training the L1 Spanish model reaches 55.1% in meaning
accuracy of English sentences and produces 5.3% switches
into Spanish, whereas the L1 English model reaches 55.9%
accuracy on Spanish and switches back into English 3.9%
of the time. Code-switches from the L1 into the L2 are
more steady throughout acquisition: the L1 English model
code-switches 0.9% from English into Spanish, and the
L1 Spanish model code-switches 1.3% of the time from
Spanish into English.

Research Goal 2: Balanced Versus Non-balanced
Model Comparisons

The second goal of this study is to investigate the differences
in code-switch types produced by the balanced and non-
balanced models at the late stages of acquisition, when
both models have been exposed to the bilingual input for
25 epochs (i.e., the 25th epoch for the balanced model
versus the 40th epoch for the non-balanced models). Table 3
presents the percentage of the total code-switch types
(alternational, insertional, and final-word, in case the switch
is at the end of the sentence and it is therefore unclear

whether it is an insertion or an alternation) for the three
models (balanced Spanish–English bilingual, non-balanced
bilingual with L1 English, non-balanced bilingual with
L1 Spanish). The balanced bilingual model code-switches
much more frequently than the L1 Spanish and L1 English
models.

Figure 4 compares the three models with respect to the
switch type and switch direction. The percentages shown
here are against all correctly produced sentences of that
target language, not of all sentences as in Table 3.

Additional information on the exact code-switching
patterns per switch type (alternational, insertional, final-
word), language direction (English-to-Spanish and Spanish-
to-English), and syntactic category in which the switch
occurs can be found at https://osf.io/vd3wa/ under
results/supplementary plots.

Research Goal 3: Model Versus Corpus Comparison

To test the validity of the produced patterns, we compared
the simulated code-switched patterns with the ones observed
in the Miami corpus, as well as in the patterns observed in
Poplack’s (1980) study. The results can be found in Table 4.

Both corpora contain code-switches from all partic-
ipants, both balanced bilinguals and Spanish-dominant.
To compare the model results with the corpora that
contain both balanced and Spanish-dominant speakers,
Table 4 reports switches from the Balanced and L1
Spanish models combined. The simulations produce a
high percentage of noun phrase alternations, which is
also the case in Poplack’s study and the Miami corpus.
Furthermore, both the corpora and the model display a
substantial (but small) amount of verb alternations. The
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Fig. 3 Mean grammaticality, correctness of meaning, and code-switch
percentage of the non-balanced bilingual models, tested on their L1
(L1 Spanish (a) and L1 English (b)) and L2 languages (L2 English (c)

and L2 Spanish (d)) over 40 training repetitions (L1 Spanish model:
left column, L1 English model: right column). The dots are jittered and
represent each individual training repetition

other phrase alternations are fewer in the models than in
Poplack’s data, which is probably due to the fact that
with the current artificial languages we have only sim-
ulated prepositional phrases whereas the phrase alterna-
tion in the corpus include other types of phrases as well
(i.e., adjective, adverb and infinitive phrases). Both the

simulations and human bilinguals, especially in Poplack’s
study, disprefer preposition insertions.

There are also clear differences between simulated
and empirical code-switches. Unlike human bilinguals, the
model seems to favor determiner insertion, and more specif-
ically Spanish determiners. The most striking difference

Table 3 Percentage of switch
types per model over all
correctly produced sentences
after 25 epochs of exposure to
both languages (25th epoch for
the Balanced model and 40th
for the L1 English and L1
Spanish models)

Switch type Balanced L1 English L1 Spanish

Alternation 15.0% [12.7, 17.9] 1.7% [1.0, 3.1] 1.1% [0.8, 1.6]

Insertion 2.3% [1.8, 2.9] 0.1% [0.1, 0.2] 0.0% [0.0, 0.1]

Final-word 3.7% [2.9, 5.0] 0.3% [0.2, 0.5] 0.2% [0.1, 0.3]

Total 21.0% [17.9, 24.9] 2.1% [1.4, 3.6] 1.3% [1.0, 1.8]

The numbers in the brackets show the 10,000-sample bootstrapped 95% confidence interval
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Fig. 4 Model comparison of code-switching types. The percentage
is against all correctly produced sentences of that target language ”
(Spanish (a) and English (b)) and of that model, and the numbers

denote the absolute number of sentences with that switch type. The
error bars show the 10,000-sample bootstrapped 95% confidence
interval

between corpora and model results, however, is found in
noun insertions: both corpora showcase that noun inser-
tion is a major switching category among human bilinguals.

The model, however, produces less than 1% of noun inser-
tions, whereas the two corpus data report over 30% of noun
insertions.

Table 4 Number of code-switches by syntactic category and language in (i) the balanced bilingual and L1 Spanish models (“Sim.”), (ii) the Miami
corpus (“Miami”), and (iii) Table 2 of Poplack (1980) (“Pop.”), adapted to include only syntactic categories the model produces

Syntactic category of CS # English to Spanish # Spanish to English # Total CS % of total CS

Sim. Miami Pop. Sim. Miami Pop. Sim. Miami Pop. Sim. Miami Pop.

Insertions:

Determiner 102 7 3 49 3 0 151 10 3 4.8 0.7 0.5

Noun 21 120 34 6 367 141 27 487 175 0.9 35.6 31.4

Auxiliary 32 0 0 51 0 0 83 0 0 2.6 0.0 0.0

Verb 44 25 6 58 9 13 102 34 19 3.2 2.5 3.4

Adjective 0 24 3 2 58 12 2 82 15 0.1 6.0 2.7

Preposition 15 9 2 2 10 0 17 19 2 0.5 1.4 0.4

Alternations:

Noun phrase 106 103 209 37.5

Determiner 954 77 517 51 1471 128 47.0 9.4

Noun 38 25 8 178 46 203 1.5 14.8

Adjective 0 30 9 87 9 117 0.3 8.5

Verb phrase 27 13 40 7.2

Verb 297 104 183 57 480 161 15.3 11.8

Auxiliary 304 241 545 17.4

Participle 71 28 99 3.2

Prepositional phrase 100 68 55 1 60 39 101 128 94 3.2 9.3 16.9

Total 1978 489 236 1155 880 321 3133 1369 557 100.0 100.0 100.0

In alternational switching, the code-switching starts at the syntactic category presented in the leftmost column and continues in the non-target
language. For instance, an adjective alternation within a noun phrase means that the adjective of the noun phrase was the first code-switched item
of that sentence
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Discussion

Code-switching in theModels

The first goal of this paper was to verify the robustness of
the code-switch model presented in Tsoukala et al. (2019).
Having varied almost all free parameters in the current
simulations, and using an expanded lexicon, we tested
again whether the bilingual model is able to produce code-
switches that are attested in bilingual speech, even without
having been exposed to code-switched input. The models
indeed produced code-switches, thus confirming that code-
switching can partially be explained by the distribution
of the two languages involved (in combination with the
cognitive architecture of the model, in our simulations).
This is in line with Lederberg and Morales (1985), who
claimed that (extensive) exposure to code-switching is not
needed for a bilingual speaker to code-switch.

Importantly, the model is able to code-switch by merely
having (and manipulating) a language control (“target
language”) node that sets the conversational setting and
allows the model to produce in either language. No other
cognitive control was required for the model to code-switch.

It is interesting to observe the huge variance in the
amount of code-switching between training repetitions; at
the last epoch of the balanced bilingual model tested on
English (Fig. 2b), the percentage of code-switches produced
by the 40 models ranges from 2.3 to 80.8%. Large individual
variance is something that has also been observed among
human bilinguals (Dewaele and Li 2014).

As mentioned in “Bilingual Dual-Path Model,” an RNN
alone trained on non-code-switched data is unlikely to
produce code-switched sentences. As a case in point, we
trained the SRN-only part of the model (i.e., the syntactic
stream alone) using the same input and settings as described
in the “Method: Simulations and Corpus Analysis” section.
It is difficult to directly compare the Dual-path with an
SRN-only version because the former expresses a specific
message; for an approximate comparison, we gave the SRN-
only model the first word of the target message and let
it produce any sentence. The SRN-only model learned to
produce grammatical sentences but it did not produce any
code-switched sentences.

Balanced Versus Non-balancedModel Comparisons

The second aim of this study was two-fold: First, to
investigate the development of code-switches over time in
the non-balanced bilingual models. Second, to compare the
production patterns of balanced and non-balanced bilinguals
and per switch direction. On the one hand, at the early
stages of L2 acquisition, the non-balanced models have not
been exposed enough to their L2 and they strongly prefer

to switch back into their L1 (i.e., over 87% of the time).
This preference is in line with what has been observed in
bilingual language acquisition by children (e.g., Petersen
1988). When comparing, on the other hand, the balanced
and non-balanced models after an equal amount of exposure
with both languages (25 epochs), the patterns change: the
balanced bilingual model code-switches considerably more
frequently than the non-balanced bilingual models, which
is in line with what has been observed in humans (e.g.,
Poplack, 1980, Gollan and Ferreira 2009).

Note that the non-balanced bilingual models perform
better in their L1 compared with the balanced bilingual
model: 95.5% accuracy in meaning in the last epoch for
the L1 Spanish model and 95.9% for the L1 English model
on their L1 (Fig. 3), as opposed to 85.4% for English and
83% for Spanish accuracy in the Balanced model (Fig. 2).
The reason behind this discrepancy is that the non-balanced
bilingual models receive double the input in their L1 (for
the first 15 epochs) compared with the balanced bilingual
model that has two native languages. As mentioned above,
an epoch corresponds to the amount of learning time, not
the input received.

In the current simulations, we have assumed that the
L1 is the dominant language. However, a large proportion
of bilingual speakers in communities that code-switch are
heritage speakers who, as mentioned in “Code-switching in
Balanced and Non-balanced Bilinguals,” are more exposed
to (and fluent in) their L2, the majority language of the
country they live in, rather than the L1 that is mostly spoken
at home. Heritage speakers could also be simulated in the
model, by first exposing the model to the L1 only (similar
to the non-balanced models) and then introducing bilingual
input in which the L2 is much more frequent than the L1,
reflecting heritage speakers’ exposure.

Model Versus Corpus Comparison

The third goal of this paper was explorative, aiming
to validate the model by investigating to what extent
the simulated patterns correspond to bilingual speakers’
behavior. We cannot expect a perfect match between
the model’s code-switching patterns and the corpus data
because the simulations use an artificial micro version
of English and Spanish. Nevertheless, some patterns are
similar to what human bilinguals produced in the two
corpora (see Table 4 for percentages of patterns of all three
studies). There are also noticeable differences between the
modeled and human code-switched patterns, with the most
striking one being the high amount of noun insertions in
the two corpora compared with the simulations. A possible
explanation for this discrepancy is that human bilinguals
tend to prefer a specific language depending on the domain,
for instance, Spanish for food, English for school- and
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work-related terms (Fishman et al. 1971). Additionally,
bilinguals align with their collocutors and repeat syntactic
structures and utterances (Fricke and Kootstra 2016). In the
Miami corpus, for instance, when we analyzed the noun
insertions per dialogue (chat transcription), we found 117
repetitions out of the 487 insertions. The model, on the other
hand, simulates individual sentences and has no context of
what has been produced before nor a notion of domain-
specific terms; the only context given is the language
control, which specifies whether the setting is monolingual
or bilingual. Another minor reason behind the small number
of noun insertions in the model simulations is that we
have excluded from our analysis final-word switches, as
we are unable to determine whether they are insertions or
alternations. In the corpus analysis, on the other hand, we
counted 296 final-word noun switches as noun insertions.

The Role of Community Norms

One advantage of computational modeling as a method of
studying code-switching is that we can investigate which
patterns are caused by the languages’ statistical properties
in combination with the cognitive system, rather than by
community norms. Community norms have been shown to
influence code-switching patterns, to the extent that there
can be opposite preferences between communities that use
the same language pair; for instance, Blokzijl et al. (2017)
analyzed the Miami corpus and a Nicaraguan Spanish–
English creole corpus and found that speakers in the Miami
corpus preferred to use a Spanish determiner in a mixed
determiner phrase, whereas in the Nicaraguan corpus only
the English creole determiner was used. Similarly, Balam
et al. (2020) examined three Spanish–English communities
(from Northern Belize, New Mexico, and Puerto Rico) with
respect to their preference for two code-switched compound
verb constructions; the US bilinguals showed a different
preference to the Northern Belize community, once again
confirming that there are aspects other than grammar that
affect code-switching across communities that speak the
same language pair. Modeling can help disentangle the
linguistic from the extra-linguistic factors. For example,
our model produced certain patterns and in certain switch
directions (e.g., more Spanish determiners than English
ones) even though there were no extra-linguistic influences
available to the model.

Conclusion

We have shown that the Tsoukala et al. (2019) results are
robust: the Bilingual Dual-Path model can produce code-
switching patterns without exposure to such code-switched
patterns, by only having a language control that allows

the model to produce in either language. Furthermore,
we simulated three groups of bilinguals and showed the
differences between the early balanced and late non-
balanced simulated bilingual populations, as well as the
development of code-switches over acquisition for the
non-balanced bilingual models. Third, we explored how
the patterns of the simulated groups compare with code-
switching patterns extracted by two corpora that contain
spontaneous utterances from Spanish–English bilingual
populations.

Having established that the model reliably produces
code-switched sentences, we argue that it can be employed
to explain the role of syntax and semantics in specific
code-switching phenomena. As a case in point, in Tsoukala
et al. (in press), we employed the model to shed light on
a well-known effect of verb aspect on Spanish-to-English
code-switch probability. The current study’s results show
that the model can also account for differences in the code-
switching patterns between balanced and non-balanced
bilinguals.
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