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to (aspects of) the statistical structure of input exam­
ples without mapping to target outputs (e.g., discovery 
of regularities in the phonological structure of lan­
guage). These networks are well-suited to uncovering 
statistical structure present in the environment without 
requiring that the modeler be aware what the structure 
is. One well-known example of an unsupervised train­
ing method is the learning rule proposed by Hebb 
(1949): strengthen connections between units that are 
simultaneously active and weaken the connections 
between two units if only one is active.

In spite of the superficial similarities between artifi­
cial and biological neural networks (i.e., interconnec­
tivity and stimulation passing between neurons to 
determine their activation, and learning by adaptation 
of connection strengths), these cognitive models are 
not usually claimed to simulate processing at the level 
of biological neurons. Rather, neural network models 
form a description at Marr’s (1982) algorithmic level, 
that is, they specify cognitive representations and oper­
ations while ignoring the biological implementation.

Neural networks underwent a surge of popularity in 
the 1990s, but from the early 21st  century, they were 
somewhat overshadowed by symbolic probabilistic mod­
els. However, neural networks have enjoyed a recent 
revival partly due to the success of deep learning models, 
which display state-of-the-art performance on a wide 
range of artificial intelligence tasks (LeCun, Bengio, & 
Hinton, 2015). For the most part, the field of cognitive 
modeling is still to catch up with these novel develop­
ments. Consequently, the currently most influential 
connectionist cognitive models are of the more tradi­
tional variety. We return to this issue in section 5.

1.1. Feedforward and Recurrent Networks  Con­
nectionist models are not amorphous networks in which 
everything is connected to everything else. Rather, a 
particular structure is imposed, for example, by group­
ing units into a number of layers and allowing activation 

1. Neural Networks in Cognitive Science

Artificial neural network models (also known as Parallel 
Distributed Processing or Connectionist models) have been 
highly influential in cognitive science since the mid-
1980s. The original inspiration for these systems comes 
from information processing in the brain, which 
emerges from a large number of (nearly) identical, 
simple processing units (neurons) that are intercon­
nected into a network. Each unit receives activation 
from other units or by stimulation from the external 
world and generates an output activation that is a func­
tion of the total input activation received. The unit 
then feeds the output activation onward to the units to 
which it is connected. Information processing is thus 
implemented in terms of activation flowing through 
this network.

Each connection between two units has a weight that 
determines how strongly the first unit affects the sec­
ond. These weights can be adapted, which constitutes 
learning, or “training” as it is commonly known in the 
neural network literature. Algorithms for network 
training can be roughly divided into supervised and 
unsupervised methods. Supervised training is applied 
when a specific and known input-to-output mapping is 
required (e.g., learning to transform orthographic to 
phonological representations). To accomplish this, the 
network is provided with a representative set of “train­
ing examples” of inputs and the corresponding target 
outputs. It then processes each example and the differ­
ence between the networks’ actual output and the tar­
get output leads to an update of the connection weights 
such that, next time, the output error will be smaller. 
By far the best known and most used method for 
supervised training is the Backpropagation algorithm 
(Rumelhart, Hinton, & Williams, 1986) that makes the 
network’s output activations for the training examples 
gradually converge toward the target outputs. Unsu­
pervised training, in contrast, makes the network adapt 
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because the representations and learning mechanisms 
built into neural networks are not specific to language 
and the networks receive no negative evidence during 
training. Hence, successful neural network learning of 
(relevant aspects of) syntax would undermine the 
nativist position.

A third major difference with traditional linguistic 
thinking is that neural networks do not represent 
discrete categories (be it phonemes, words, parts of 
speech, or any other category) unless these are explic­
itly assigned to the network’s units a priori. However, in 
most (and, arguably, the most insightful) models, repre­
sentations are learned in the hidden layer(s) rather than 
assigned, which results in “fuzzy” categories. To the 
extent these learned representations explain (psycho)
linguistic phenomena, neural network models reject a 
causal role for explicit representation of typical linguis­
tics constructs. The alternative proposed by connec­
tionism is that apparently symbolic behavior emerges 
from statistical regularities present in the language 
and in the mapping between form and meaning. By 
capturing these regularities, neural networks are able 
to account for a range of phenomena in human lan­
guage acquisition, comprehension, and production.

Neural network models and their ability to discover 
structure in the environment have enabled researchers 
to test the mechanisms required for many aspects of 
language behavior. For instance, such models have 
been applied to determine whether language struc­
tures need to be prespecified before exposure to lan­
guage, or whether general purpose statistical processes, 
embedded in neural networks, are sufficient for reflect­
ing human performance. Further, as language corpora 
have become more and more representative of language-
learning environments, neural network models have 
provided insight into the sources of information pre­
sent within the communicative environment that can 
contribute to learning and processing. In the following 
sections, we review key areas of language behavior 
where neural networks have been applied to explore 
environmental features that are useful for language 
learning, comprehension, and production.

2. Word Learning

In order to learn a spoken word, the listener has to be 
able to identify its phonological form, isolate it from 
continuous speech, and relate the word’s form to its 
meaning in the environment. Each of these tasks is 
hugely challenging for the learner. Neural network 
models have been used to illustrate the inherent diffi­
culties of these tasks, as well as to test potential solutions 
that the learner may bring to the situation to support 

to flow only from each layer to the next. The first layer 
receives inputs from the environment, the final layer 
produces the corresponding output, and any interme­
diate layer is known as hidden. Although this so-called 
feedforward architecture can (at least in theory) approxi­
mate any computable input-to-output function, it is 
unable to handle input that comes in over time. This is 
because the network has no working memory: each 
input is immediately overwritten by the next. Hence, 
the feedforward network is not the most appropriate 
model for simulating language processing, which is a 
fundamentally temporal phenomenon.

Elman (1990), in his seminal paper “Finding Struc­
ture in Time,” proposed a solution: include a set of 
recurrent connections with trainable weights that link 
each unit of the single hidden layer to all hidden-layer 
units. Consequently, the hidden layer receives both the 
current environmental input and its own previous acti­
vation state, which, in turn, depends on the state before 
that, and so on. In this manner, the model is equipped 
with a working memory and can therefore encode 
sequential information, or “structure in time,” making 
it well suited to processing language as it unfolds over 
time. This particular architecture became known as 
the Simple Recurrent Network (SRN) but forms part of 
a larger class of Recurrent Neural Networks (RNNs) that 
have connections through which (part of) the network’s 
current activation feeds back to the network itself.

1.2. Neural Network Models and Linguistic The­
ory  Connectionist models of language acquisition 
and processing offer a view of the human language 
system that is very different from traditional, symbolic 
models in cognition. For one, neural networks do not 
distinguish competence (i.e., language knowledge) 
from performance (i.e., language behavior). Instead, 
knowledge becomes instantiated in network connec­
tion weights in order for the network to display particu­
lar performance. In a sense, it forms procedural rather 
than declarative knowledge: it is know-how, not know-
that. Hence, there is no way for the network to assess its 
own knowledge. As Clark and Karmiloff-Smith (1993, 
p. 495) put it: “it is knowledge in the system, but it is not 
yet knowledge to the system.”

Second, language researchers from the nativist tradi­
tion have famously argued that infants must possess 
innate, language-specific knowledge or learning mech­
anisms, because otherwise language acquisition in the 
absence of negative evidence would be impossible (e.g., 
Chomsky, 1965; Gold, 1967; Pinker, 1989; among many 
others). In contrast, empiricists claim that language 
acquisition requires only domain-general mechanisms. 
Connectionism falls squarely into the empiricist camp 
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with neural processing of sequence prediction (e.g., 
Cunillera, Toro, Sebastián-Gallés, & Rodríguez-Fornells, 
2006).

These models have been extremely successful in illu­
minating the information that is present in the speech 
environment and that is also extractable using simple 
statistical processes that are potentially similar to those 
employed by the human language learner. But the 
models are also chronically limited by the fact that they 
do not construct a vocabulary. This means that they are 
unable to process ambiguities in speech, limited as they 
are by very local statistical structures. A classic example 
is the pair “recognize speech” and “wreck a nice beach” 
(Fosler-Lussier, Amdal, & Kuo, 2005), which would be 
indistinguishable in these simple, local-information 
approaches. A model with a vocabulary, with expecta­
tions (or priors) about individual and combined prob­
abilities of combinations of words, would be able to 
more accurately segment continuous speech (Kamper, 
Wang, & Livescu, 2016; Monaghan & Christiansen, 
2010; Philips & Pearl, 2015).

The TRACE model (McClelland & Elman, 1986) of 
auditory word recognition provided such a link between 
top-down lexical information with bottom-up statisti­
cal information about relations between acoustic fea­
tures of speech and phonemes (Allopenna, Magnuson, 
& Tanenhaus, 1998). TRACE has recently been adapted 
to incorporate additional information from the visual 
environment to simulate multiple cue combination in 
speech processing (Smith, Monaghan, & Huettig, 2017). 
However, the TRACE model was not designed to pro­
cess sequences of words embedded within continuous 
speech. To address this requirement to acquire lexical 
items online and simultaneously apply them to seg­
ment speech, French, Addyman, and Mareschal (2011) 
constructed a neural network model (TRACX) that 
learned to construct and identify chunked sequences of 
phonemes from continuous speech, using backward 
transitional probabilities to initially detect the word 
candidates from the language. These were then used 
for recognition of sequences of encountered speech, 
rather than, as with the SRN models, for prediction of 
the next phoneme in the sequence. The model was not 
only shown to outperform SRN models, but it also pro­
vided a framework for how a single statistical processing 
system can both generate and utilize word candidates 
from continuous speech.

These modeling approaches have thus shown the 
value of individual and combined cues present in natu­
ral language contributing to speech segmentation, 
turning a notoriously difficult problem into a task sub­
stantially more tractable. Furthermore, they highlight 
the kinds of computations that the learner must 

acquisition, and subsequent online processing of words 
in speech.

2.1. Identifying Words from Continuous 
Speech  Neural network models have been useful in 
uncovering the statistical properties of speech input 
that can contribute to speech segmentation. Elman 
(1990) investigated how statistical transitional informa­
tion from sequences of phonemes that are present in 
child-directed speech could provide clues to word 
boundaries. His SRN model had as input a sequence of 
phonemes from an artificial corpus designed to mimic 
child-directed speech, and was trained to predict the 
next phoneme in the sequence. This SRN demon­
strated that transitions between phonemes within 
words tend to be much more predictable than transi­
tions across word boundaries. Thus, the model was able 
to detect the unpredictable nature of phoneme transi­
tions at word boundaries and predicted future behav­
ioral studies on infants’ sensitivity to transitional 
probabilities between syllables in detecting potential 
words in continuous speech (Saffran, Aslin, & New­
port, 1996). Cairns, Shillcock, Chater, and Levy (1997) 
demonstrated that a similar model was able to scale up 
to detect word boundaries, as well as to learn phonotac­
tic regularities of syllable structure within words, from 
a transcribed corpus of natural language child-directed 
speech. These neural network models of segmentation 
also indicated limitations of characterizing the envi­
ronment merely in terms of transitions between pho­
nemes in speech, providing further insight into the 
process of early speech segmentation in language 
acquisition. One limitation was that transitional prob­
abilities alone provide a glass ceiling for overall accu­
racy of segmentation. Gambell and Yang (2003) showed 
that transitional probabilities between syllables in 
child-directed speech, though able to account for seg­
mentation at a rate significantly greater than chance, 
still missed very many word boundaries. So, some 
aspect of processing or of the environment was lacking 
from this modeling approach. To address this, Chris­
tiansen, Allen, and Seidenberg (1998) employed an 
SRN with natural language input, adding additional 
information about utterance boundaries and stress 
position within words. They found that these combined 
cues outperformed a model that used only one of these 
individual cues, indicating that a language-learning 
system benefits from sensitivity to combined cues for 
segmentation that are present in the speech environ­
ment. EEG studies of speech segmentation have shown 
relations between these proposed prosodic and statis­
tical cues as predicted by computational models, dem­
onstrating human sensitivity to these cues consistent 
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child-directed speech, where objects in the environ­
ment had also been encoded in the corpus transcrip­
tion. When a particular word was spoken in the 
presence of a particular object, the strength of associa­
tion between the word and the object was increased. 
They found that the strongest associations were often 
between words and the target object, such as the words 
oinko and pig being strongly associated with a pig soft 
toy in the child’s environment.

Yu and Ballard’s model was further tested by adding 
in additional cues that constrained either the referring 
word or the referent in the environment. They included 
prosodic information about words that were empha­
sized by being prosodically distinct from the rest of the 
utterance and increased the possibility of strengthen­
ing associations for those words. They also included 
information about objects in the environment for 
which the speaker and the child held joint attention 
during the utterance, again increasing the association 
strength for the attended object. Each of these infor­
mation cues improved the model’s performance fur­
ther. The model was able to exploit cross-situational 
correspondences between words and objects in the envi­
ronment, such that from a single exposure to a word 
and an object, the relation between the word and refer­
ent is not evident (because of the presence of other 
words and environmental stimuli at the same time), but 
over multiple instances the likelihood of the object 
being named when present increases. Such cross-
situational information was shown to be used by infants 
in acquiring word-meaning mappings (Smith & Yu, 
2008), supporting the computational models suggest­
ing that associationism may underlie the acquisition of 
word meanings.

This associationist modeling approach, however, has 
been criticized by researchers who propose instead 
that children do not learn by association between 
words and environmental properties, but rather that 
children propose and self-test hypotheses for a possi­
ble word-meaning link. Yu and Smith (2012) compared 
both of these computational approaches and found 
that an associationist model provided an adequate fit 
to the data and that even apparent complexities that 
seem to suggest hypothesis testing (e.g., children apply­
ing strategies such as mutual exclusivity: using a novel 
word for an unknown object appearing among known 
objects) can be accounted for within an associationist 
model. Similarly, apparent developmental differences 
between children and adults in terms of whether they 
employ an associative approach or a strategic, referen­
tial approach can also be accounted for by a model 
with a single associative mechanism (Fazly, Alishahi, & 
Stevenson, 2010).

develop—and the processing interface between online, 
speech processing and the statistical probabilities that 
have to be encoded within a growing vocabulary, to 
move toward a highly accurate and fast speech segmen­
tation system. Though these approaches have tended to 
take an abstracted input, ignoring phonetic variability 
and noise in the acoustic signal, adding such informa­
tion provides challenges but also opportunities for 
additional cues to be discovered and derived from the 
input. Bayesian approaches to discovery of word-level 
acoustic forms using unsupervised training demon­
strate the possibility of this in artificial computational 
systems (Kamper, Jansen, & Goldwater, 2016). One 
such example is increased word-final phoneme dura­
tion that is a further useful, and useable, cue for speech 
segmentation (e.g., Scharenborg, 2010) and that 
could be incorporated into a neural model of speech 
processing.

2.2. Mapping Words to Meaning  A second task for 
word learning in language acquisition is to determine 
the referent of a word once it has been isolated from 
continuous speech. This task is famously difficult to 
accomplish, because an utterance tends to contain sev­
eral words, only one of which is referring to a particular 
aspect of the environment, and because the environ­
ment contains an infinite number of potential refer­
ents for each word (Quine, 1960)—the word pig could 
refer to the small cuddly toy that a parent is waving in a 
child’s face, but it could also refer to the action of wav­
ing, to the softness of the material of the toy, the color, 
its general shape, or to the communicative act itself. 
Hence, the task can be conceived as, at the very least, a 
many-to-many mapping problem.

Similar to the models of speech segmentation, there 
are numerous models of word-meaning acquisition that 
provide abstract characterizations of the task, with the 
intention to highlight the environmental properties 
that enable this mapping task to be accomplished. 
These models explore the information present around 
the child acquiring her language in resolving this link 
between word and world. More recently, the models 
have become more concretely related to neural pro­
cessing in order to incorporate known perceptual and 
attentional constraints that, paradoxically perhaps, 
demonstrate even greater tractability of the problem 
(Regier, 2003; Yurovsky, Smith, & Yu, 2013).

Associations between occurrences of words and 
occurrences of their intended referent have been pro­
posed as a mechanism driving the formation of word-
meaning mappings (Plunkett, 1997). Yu and Ballard 
(2007) implemented a model of associations between 
words and objects that was exposed to small corpora of 
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learner, and individual words’ membership to these 
categories is then determined from exposure to the 
language. Alternatively, empiricist approaches propose 
that the categories themselves are acquired as a result 
of experience, without the need for innately specified 
structure in advance of exposure to the language. Neu­
ral network modeling approaches have been key to 
determining the extent to which such innate knowl­
edge is required in advance to simulate the acquisition 
of lexical categories within the language, and, relat­
edly, these approaches have explored the type of com­
putational mechanisms that might be able to drive the 
discovery of these categories.

Elman (1990) applied the same SRN approach as 
used for the speech segmentation task to prediction of 
words in utterances, again using a small artificial cor­
pus. The model’s input was a sequence of words in the 
utterance and the model had to predict (i.e., generate 
as output) the next word in the sequence. Utterances 
were constructed from one of four sentence frames, 
and there were 29 different words that were either ani­
mate or inanimate nouns or transitive or intransitive 
verbs. After training, the hidden unit states of the model 
were investigated to determine whether it had learned 
to reflect the lexical categories in the language in its 
internal structure, resulting only from the statistical 
sequential information from the sentences. A hierar­
chical cluster analysis revealed distinctions in the mod­
el’s representations of nouns versus verbs. Furthermore, 
clusters within the noun category were also evident, 
with animate and inanimate nouns forming distinct 
groups. More recently, Mikolov, Chen, Corrado, and 
Dean (2013) showed that recurrent and feedforward 
networks can be trained on very large natural language 
corpora and that the resulting connection weights from 
input units display semantic/syntactic word clustering, 
similar to what was demonstrated by Elman but on a 
much more realistic scale. Thus, apparent semantic 
features that relate to syntactic properties (such as 
nouns versus verbs, as well as features within a syntactic 
category, such as animacy) were detectable by applying 
generic distributional statistical learning to sequences 
of words.

The extent to which general purpose learning of 
lexical categories scaled up to a more realistic natural 
language environment was tested computationally 
by Redington, Chater, and Finch (1998). Using a large 
corpus of English child-directed speech, they mea­
sured co-occurrences between pairs of words that were 
either adjacent or separated by one word. Cluster 
analysis was then applied to these counts of associa­
tions, such that words with similar patterns of co-
occurrences should be clustered together. The results 

However, other computational models have sug­
gested that combinations of associative and strategic 
word-learning mechanisms are required to adequately 
describe performance. McMurray, Horst, and Samuel­
son (2012) proposed a hybrid network model with two 
components. The first was an associative network that 
learned mappings between words in an utterance and 
objects in the environment with a very slow learning 
rate and was able to acquire word-object mappings 
from cross-situational statistics. The second compo­
nent was a quick-responding referent selection mecha­
nism that was able to strategically select a potential 
referent for a word, under circumstances where children 
can demonstrate fast mapping between words and 
potential referents, such as conditions of mutual exclu­
sivity. The model predicted that word learning would 
be more robust from multiple presentations of a word, 
but less stable when learning is inaugurated under con­
ditions of fast mapping. Twomey, Ranson, and Horst 
(2014) subsequently confirmed these predictions of the 
model in children learning novel words: fast mapping 
and associative learning resulted in immediate word-
object mappings, but only associative learning resulted 
in long-term learning.

Additional attentional and perceptual constraints 
have recently been included in these models of associa­
tive word learning to align the referent selection mech­
anism with the cognitive processes known to impact on 
visual object processing. Samuelson, Kucker, and Spen­
cer (2017) showed how this can further improve perfor­
mance on word learning in a manner consistent with 
approaches that closely describe the actual multimodal 
input that children experience (Yurovsky et al., 2013). 
Furthermore, such associative models are able to gen­
eralize properties of the environment to learn category-
level information, accounting for children’s distinctions 
in learning names for shapes and names for materials 
(Colunga & Smith, 2005) and learning individual and 
category labels (Mayor & Plunkett, 2010). Such 
approaches provide a valuable bridge between a long 
tradition of neural network modeling in perception and 
attention (e.g., Mozer, 1991), embedding our under­
standing of language-learning models within broader, 
domain-general processes.

3. Syntactic Development

3.1. Lexical Category Learning  How children 
acquire category knowledge about words has been a 
hotly debated issue, at the heart of the nature-nurture 
debate in language acquisition. Nativists assume that 
the lexical categories, or semantic features to which 
these categories relate, are innately specified in the 
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statistical information available from child-directed 
speech in order to generate knowledge about syntactic 
categories. Specifically, they tested whether sparse, but 
accurate, frequent frames or whether less specific infor­
mation, broader in coverage, about just the preceding 
word and the following word resulted in more effective 
classification of child-directed speech into syntactic 
categories. St. Clair et al.’s (2010) model was a feedfor­
ward network, with distributional information from 
the corpora of child-directed speech as input. The 
model was required to produce at the output the syn­
tactic category of each word. The distributional infor­
mation presented as input represented either the 
specific frames of Mintz’s (2003) approach or the pre­
ceding and the succeeding word. The modeling dem­
onstrated that training on Mintz’s specific frames 
resulted in substantially lower accuracy of syntactic cat­
egory detection than training with separate preceding 
and succeeding contextual information. This model 
indicated that distributional information was suffi­
cient to generate hypotheses about the category of 
words in child-directed speech and furthermore that 
this distributional information was most effective when 
processed in terms of very local, flexible contextual 
information about only the preceding and the succeed­
ing word.

Neural network models of lexical categorization have 
largely followed the empiricist approach of determin­
ing how general purpose statistical mechanisms can 
apply to the case of language acquisition. However, 
this work has proceeded somewhat independently of 
advances in neural network studies of perceptual and 
attentional development. Exceptions, such as Samuel­
son et al. (2017), show the benefit of combining these 
approaches for word learning. For studies of categoriza­
tion, there are numerous related neural networks of 
perceptual category learning that are consistent with 
domain-general accounts of language learning that 
demonstrate more closely how computational model­
ing can relate to neural processing in the brain (see 
Schultz, 2012, for a review). For instance, young infants 
are able to categorize stimuli into separate categories, 
based on distinctions in the visual form of those stimuli 
(Younger, 1985). Westermann and Mareschal (2012) 
tested these behaviors using two computational mod­
els. The first model simulated perceptual processing of 
stimuli from different categories using a model with 
changing receptive field sizes processing the visual 
input. Visual development has been proposed to adjust 
from larger to smaller receptive field sizes during infancy 
(Spencer, Simmering, Schutte, & Schöner, 2007). Imple­
menting this property into the hidden layer of an auto-
associator model, which learned to reproduce a visual 

were spectacular, demonstrating for the first time, with 
large-scale corpora, that lexical categories were extract­
able with accuracy using simple statistical processes 
applied to natural language exposure (see Kiss, 1973, 
for a smaller-scale version, and Schütze, 1993, for large-
scale use of distributional information for lexical 
clustering in a language engineering context). As with 
Elman’s computational investigation, the clusters in 
the co-occurrence model respected broad syntactic cat­
egory distinctions, such as between nouns and verbs, 
but they also reflected nuanced distinctions within 
those categories, such as fruits and animals forming 
individual clusters. Hence, the syntactic categories 
were indeed just one level of a hierarchy of lexical cat­
egories, which is consistent with constructionist 
approaches to describing grammatical structure (Gold­
berg, 2009).

The Redington et  al. approach utilized generic, 
simple statistical processing mechanisms that are con­
sistent with the associative learning approaches that 
have been tested for effectiveness for speech segmenta­
tion (see section 2.1) and word-meaning (section 2.2) 
mappings. However, the extent to which these compu­
tations are tractable to a small child acquiring their 
language remained an open question. Redington et al. 
counted co-occurrences between each word in the lan­
guage and the 150 most frequently occurring words in 
the same corpus, but in four different positions (two 
words before, one word before, one word after, two 
words after). Thus, for 1,000 target words, the system is 
required to store 600,000 separate counts. This is likely 
to exceed somewhat the child’s working memory capac­
ity. Mintz (2003) proposed an alternative method by 
which co-occurrence information could give rise to syn­
tactic categories based on input alone that was closer to 
respecting known limitations about working memory. 
He identified the 35 most frequent pairs of words sepa­
rated by one other word (e.g., “put __ in”) and deter­
mined the set of words that occurred within the pair 
(e.g., it, them, him, things, teddy, dolly, …). Then, the extent 
to which words occurring within these frames were of 
the same syntactic category was measured. The results 
were highly accurate, with more than 90% of words 
belonging to the same category within each frame. 
Hence, using a very simple statistical mechanism, based 
on slightly more specific contextual information than 
was used by Redington et al., accurate lexical categori­
zation could proceed.

Though accurate, the frequent frames approach was 
unable to classify the majority of words in the lan­
guage, as most words did not occur within these fre­
quent frames. St.  Clair, Monaghan, and Christiansen 
(2010) applied a neural network to test the optimal 
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dependencies in the language allows an SRN to learn 
the language without starting small. These results sug­
gest that a notion of embedded syntactic structure can 
be learned by systems without hierarchical structure 
built in, that is, it does not need to be an innate 
capacity.

Nevertheless, the acquisition of relative (embedded) 
structures is challenging for children. Diessel and 
Tomasello (2005) asked English and German four-
year-olds to repeat six types of embedded clauses. Even 
though English and German have very different syntac­
tic structures, both groups of children displayed the 
same ordering range of production difficulties, with 
intransitive subject relatives (“That’s the woman who 
played the piano this morning”) being the easiest and 
genitive relatives (“That’s the girl whose dog was chas­
ing a cat yesterday”) the most difficult to repeat. Fitz 
and Chang (2008; see also Fitz, Chang, & Christiansen, 
2011) simulated this task in a sophisticated RNN model: 
The Dual-path model of sentence production (discussed in 
more detail in section  4.2), which assumes separate 
processing streams for syntactic and semantic informa­
tion. The model was able to produce embedded struc­
tures with more than 90% accuracy and to approximate 
most of Diessel and Tomasello’s experimental results. 
Furthermore, Fitz and Chang found that how well and 
fast a structure is acquired depends on its frequency 
and its similarities to previously learned structures.

Naturally, children who are acquiring their first lan­
guage are exposed to more linguistic cues than merely 
the word-order patterns available to standard SRNs. 
Reali, Christiansen, and Monaghan (2003) included 
additional lexical cues during SRN training so that the 
network also had access to information about word 
length, phonology, and prosody. Another noticeable 
thing about this simulation is that the model was not 
trained on a toy language but on over 10,000 utterances 
taken from a corpus of child-directed speech. However, 
the words were replaced by their lexical categories to 
reduce the required size of the network. Christiansen, 
Dale, and Reali (2010) took this realistic approach one 
step further by representing each of the 1,371 word 
types in the corpus by a unique vector encoding 16 
realistic phonetic cues. RNNs were then trained on 
sequences of these vectors, corresponding to the child-
directed utterances, where the network’s task was to 
predict the upcoming lexical category at each point. As 
a control condition, other RNNs were trained with a 
random assignment of the phonetic vectors to words. 
The networks with the nonrandom assignment of vec­
tors showed improved generalization, suggesting that 
infants can indeed make use of phonetic cues to 
learn grammar. An analysis of the networks’ hidden 

input at output, was able to simulate visual category 
processing development in children’s early years.

An additional simulation by Westermann and Mare­
schal (2012) investigated the processing of different 
memory systems during learning of visual categories. 
In this model, two auto-associator neural network mod­
els mapped the same visual input onto representations 
of the visual form at two output layers, via two hidden 
layers. These networks were yoked by interconnecting 
the networks’ hidden layers. One hidden layer was 
trained with a fast learning rate, representing hippo­
campal learning, whereas the other was trained with 
a  slow learning rate, representing cortical learning 
(McClelland, McNaughton, & O’Reilly, 1995). After 
training on a set of perceptual category stimuli, the 
model was presented repeatedly with a test trial, to 
simulate infant testing in habituation studies. How 
long the model took to adapt to the stimulus was taken 
as a measure of the model’s processing of the category 
stimuli. The model was able to simulate developmental 
shifts in category learning, and, importantly, the role 
of hippocampal and cortical systems could be appraised 
separately for the extent to which recent and long-term 
memory of stimuli accounted for the effects.

Such closer links between models of perceptual sys­
tem performance and models that have previously inves­
tigated more abstract treatments of linguistic input, are 
areas where cognitive models of language could be 
further informed by neural processing. As we shall see 
in the next sections, neural network models of syntactic 
processing have made substantial strides in drawing 
closer together neural processing of the brain’s lan­
guage neural network with computational approaches 
to studying language.

3.2. Learning Syntactic Structure  Most, if not 
all, connectionist models of the acquisition of syntactic 
structure have been based on models of sentence com­
prehension or production, which will be discussed in 
section  4. Here, we focus on the application of RNN 
sentence processing models to account for aspects of 
acquisition.

Most often, neural networks that learn sentence pro­
cessing are trained to generate as output a prediction 
of the next word at each point of the utterance. Elman 
(1993) demonstrated that such a next-word prediction 
SRN can learn a semirealistic, miniature language with 
multiple embedded structures. He claimed that the 
network, somewhat like a child, needs to “start small,” 
that is, it has to be trained on simple sentences first or 
must start out with limited short-term memory capac­
ity. However, Rohde and Plaut (1999) later showed that 
the inclusion of semantic (in addition to syntactic) 



284    S. L. Frank, P. Monaghan, and C. Tsoukala

errors in the use of locative verbs (e.g., fill, pour, spray) 
where they seem to understand the verbs’ meaning and 
the sentence structures, but sometimes produce ungram­
maticalities such as I filled water into the glass instead of I 
filled the glass with water. Twomey, Chang, and Ambridge 
(2014) investigated whether the Dual-path model shows 
the same behavior when it learns syntactic structures. 
Indeed, the model showed an initial preference for pro­
ducing first the theme (water) and then the location 
(glass), which leads to overgeneralization errors on 
verbs that have a location-first bias, such as fill. The 
output of the model was consistent with a corpus analy­
sis on child-directed speech as children seemed to mas­
ter location-first structures faster than theme-first 
structures. Over development, the bias toward this 
structure was reduced and gradually disappeared.

One influential view of language development is that 
knowledge of syntax helps children learn semantics, a 
phenomenon known as syntactic bootstrapping (Gleit­
man, 1990). Conversely, semantic bootstrapping (Pinker, 
1984) occurs when knowledge of word meaning supports 
the acquisition of syntax. In both cases, correlations 
between syntax and semantics need to be discovered, 
which is precisely what RNNs do when they learn to map 
sentence forms to semantic representations. Indeed, 
such models display syntactic and semantic bootstrap­
ping as an emergent side effect of learning (Desai, 
2002, 2007; Frank & Vigliocco, 2011).

4. Sentence Processing

4.1. Sentence Comprehension  With only very few 
exceptions (e.g., Sturt, Costa, Lombardo, & Frasconi, 
2003), neural network models of sentence comprehen­
sion apply the RNN architecture. If a network is trained 
on next-word prediction (the standard task in SRNs), it 
extracts statistical knowledge of the language’s word-
order patterns (i.e., a form of syntactic knowledge) 
without explicitly implementing traditional syntactic 
structures. Early SRN studies (Elman, 1991; Rodriguez, 
Wiles, & Elman, 1999; Servan-Schreiber, Cleeremans, & 
McClelland, 1991) aimed to show that these models can 
nevertheless represent hierarchical syntactic structure 
implicitly in the organization of their internal state 
space. It wasn’t until several years later that SRNs (and 
RNNs in general) were used to explain particular phe­
nomena in human sentence processing.

One aspect of sentence comprehension where RNN 
models have been particularly influential is in simula­
tions of embedded structure processing. Here, a 
direct advantage of connectionist over traditional, 
grammar-based accounts is that the former provide an 
explanation for the difficulty of processing multiple 

representations revealed that the use of phonetic cues 
improves the representation of abstract lexical catego­
ries (at least for nouns and verbs). Similarly, natural 
language processing (NLP) systems, whose primary 
aim is not to reflect cognitive performance but rather 
achieve highest possible accuracy, have utilized “char­
acter language models,” whereby individual letters 
rather than words are provided as input to the model, 
and the model must discover the categories of the 
words to which the letters belong. Such models can 
outperform models that take as input word-level infor­
mation (e.g., Kim, Jernite, Sontag, & Rush, 2016).

The Reali and Christiansen studies (Christiansen 
et al., 2010; Reali et al., 2003) demonstrate neural net­
works’ ability to learn about the general word-order 
patterns in child-directed speech. However, the argu­
ment for innate language-specific knowledge often 
centers on particular constructions that children are 
claimed to learn without sufficient input and without 
producing errors. One hallmark example is the forma­
tion of polar interrogatives: turning the man who is eat-
ing is hungry into a yes/no question requires fronting 
the correct auxiliary verb (i.e., is the man who is eating 
hungry? and not is the man who eating is hungry?). Reali 
and Christiansen (2005) demonstrated that the Reali 
et al. model is in fact able to perform correct auxiliary 
fronting, which, therefore, may not require innate, 
language-specific knowledge.

The nativism versus empiricism debate has also been 
tackled by the Dual-path model of sentence produc­
tion. Chang, Dell, And Bock (2006) used the model to 
investigate the syntax learning mechanism early in 
development. Elicited production tasks (e.g., Tomasello, 
2000) tend to support empiricism (where abstractions 
are learned through experience only, so there is no 
such thing as innate language competence), whereas 
some preferential-looking studies (e.g., Naigles, 1990) 
support nativism. The model simulated both tasks and 
was evaluated against empirical data (i.e., the patterns 
found in Tomasello). Using the same model and input 
it was shown that preferential-looking preceded pro­
duction, which led to the conclusion that children 
learn to abstract syntactic features through experience 
but that the abstraction mechanism is possible in part 
because of a preexisting separation in the brain 
between “neurons that learn sequences and neurons 
that encode concepts” (Chang et al., p. 264), which cor­
respond to the model’s syntactic and semantic pro­
cessing streams, respectively.

Moving beyond the nativism-empiricism debate, con­
nectionist models have provided explanations for sev­
eral phenomena in first language acquisition. For 
example, children tend to make overgeneralization 
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next-word prediction errors by these more realistic 
RNNs explain general patterns of reading times 
(Frank, 2013; Hahn & Keller, 2016; Monsalve, Frank, & 
Vigliocco, 2012) and brain activity as measured by EEG 
(Frank, Otten, Galli, & Vigliocco, 2015) or magnetoen­
cephalography (Wehbe, Vaswani, Knight, & Mitchell, 
2014) from participants reading naturalistic materials. 
When RNNs are directly compared to symbolic gram­
mars, the RNNs often fit the human data better and 
the grammars do not account for additional variance 
(Frank & Bod, 2011; Frank et al., 2015; but see Fossum & 
Levy, 2012, for conflicting results), suggesting that 
RNNs form more adequate models of cognitive pro­
cessing difficulty than traditional grammars do.

The ability of RNN prediction error to account for 
these general reading-time and brain-activity patterns 
may seem to suggest that many psycholinguistic phe­
nomena can be simulated in this manner. However, this 
approach has not been very successful in explaining 
much beyond embedded clause processing. For exam­
ple, Tabor, Juliano, and Tanenhaus (1997; Tabor & 
Tanenhaus, 1999) simulated garden path effects (Fra­
zier & Rayner, 1982) in an RNN, but, rather than using 
prediction error as the relevant measure, they included 
an additional mechanism that steers the network’s 
internal state toward one of several state-space clusters 
that correspond to the possible structures of the syntac­
tic ambiguity. The time required to reach a cluster was 
taken as a predictor of reading time. These simulation 
results suggest that garden path effects do not rely 
(solely) on prediction but also require sentence inter­
pretation, something that is (arguably) not reflected in 
RNN prediction error. Indeed, the equivalent of pre­
diction error in incremental symbolic probabilistic 
parsers, which do generate syntactic interpretations, 
has successfully been used to account for human gar­
den path effects (Brouwer, Fitz, & Hoeks, 2010; Hale, 
2001; Levy, 2008). Again, this suggests that next-word 
prediction does not suffice to simulate the garden path 
phenomena.

However, sentence-processing RNNs are not restricted 
to next-word prediction. An alternative is to train these 
networks to transform input sentences into representa­
tions of their meaning. As was the case for next-word 
prediction models, early form-to-meaning RNNs mostly 
formed proofs of concept that connectionist models 
can simulate the incremental mapping from sentence 
input to semantic output and were much less concerned 
with explaining human performance (McClelland, 
St.  John, & Taraban, 1989; Miikkulainen, 1996; Miik­
kulainen & Dyer, 1991; St.  John & McClelland, 1990). 
More recent RNN models of semantic interpretation 
have been used to explain findings from EEG studies. 

embeddings (as in: the cooki who the thief j who the wifek 
lovedk robbedj servedi food). In a recurrent network, each 
next level of embedding needs to be represented in the 
same network units, resulting in interference that grows 
stronger as the number of embedded phrases increases. 
This leads to increased next-word prediction error, 
which is generally taken to be indicative of processing 
difficulty in the network (Christiansen & Chater, 1999). 
Hence, increased processing difficulty for deeper 
embedding is inherent to RNNs, as it is to humans. In 
addition, Christiansen and MacDonald (2009) demon­
strated that RNNs, like humans, suffer more difficulty 
with embedded structures (e.g., the cooki who the thief j 
sawj serving i food …) than with cross-dependent recur­
sive structures (which exist in Dutch and Swiss German 
and correspond to the cooki who the thief j food serving i 
saw j …”), while right-branching structures (the thiefi sawi 
the cookj serving j food) are the easiest. They also showed 
that RNNs experience “grammaticality illusion”: the phe­
nomenon that removing a required verb from English 
sentences with double-embedded relative clauses (e.g., 
the cooki who the thiefj who the wifek lovedk servedi food) makes 
these (now ungrammatical) sentences appear more 
acceptable to human readers, who also read them 
faster. Interestingly, the reversed effect occurs in Ger­
man and Dutch (i.e., the correct double-embedded 
structures are read faster than those with a missing 
verb), a phenomenon that has also been demonstrated 
in RNNs (Engelmann & Vasishth, 2009; Frank, Trompe­
naars, & Vasishth, 2016).

English object-relative clauses (e.g., the cook who the 
thief saw …) are more difficult to process than subject-
relative clauses (the cook who saw the thief …), albeit less so 
for people with higher exposure to object-relative struc­
tures. RNNs behave similarly (MacDonald & Christian­
sen, 2002). The situation is more complex in Chinese, 
where the reversed pattern holds when the relative 
clause modifies the sentence’s grammatical subject but 
not when it modifies the object. Hsiao and MacDonald 
(2013) replicate this pattern, as well as interactions with 
noun animacy, in an RNN simulation.

One criticism that can be raised against all simula­
tions referred to thus far (with the exception of Frank 
et al., 2016) is that the models are trained and tested on 
hand-crafted, miniature languages. Hence, they have 
no knowledge of the true language and are unable to 
simulate the processing of actual experimental stimuli. 
Comparisons between model simulations and human 
behavior will therefore have to remain qualitative 
rather than quantitative. However, recent technical 
developments make it more feasible to train RNNs on 
large-scale realistic corpora and to evaluate them on 
the same items used in experiments. The size of 
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illusion, where in a sentence like for breakfast, the eggs eat 
the strong association between breakfast, eggs and eat 
results in a relatively weak N400 in spite of the semantic 
incongruency.

Note that Rabovsky et al. (2018) related hidden-unit 
update to N400 size, whereas Crocker et al. (2010) took 
basically the same quantity to reflect the P600. A recent 
RNN model of semantic illusions by Brouwer, Crocker, 
Venhuizen, and Hoeks (2017) has multiple hidden lay­
ers, where one is devoted to lexical retrieval and 
another to the integration of concept into a semantic 
representation of the sentence. The N400 is hypothe­
sized to index lexical retrieval difficulty (modeled by 
the amount of activation change in the lexical retrieval 
layer) and the P600 corresponds to the update of the 
sentence interpretation (reflected in the amount of 
activation change in the integration layer). Indeed, this 
division of labor accounted for many (if not all) ERP 
effects observed in the comprehension of semantic illu­
sion sentences.

4.2. Sentence Production  There has been substan­
tially less work on models of sentence production than 
sentence comprehension. It may seem straightforward 
to construct a production model by running a sentence 
comprehension model backward, and this is indeed 
how two recent connectionist models of production 
were developed (Calvillo, Brouwer, & Crocker, 2016; 
Hinaut et al., 2015). However, the most successful and 
empirically validated sentence production models were 
specifically designed to simulate production.

The first neural network model of sentence produc­
tion, the so-called structural priming model (Dell, 
Chang, & Griffin, 1999; see also Chang, Dell, Bock, & 
Griffin, 2000), was developed to simulate syntactic 
priming: the tendency of the speakers to repeat the 
structure of recently spoken or heard sentences (Bock, 
1986; Bock & Loebell, 1990). The model assumes a 
close link between sentence comprehension and pro­
duction; comprehension of what has been said or heard 
so far influences the production of a sentence. The 
model encodes the intended meaning (or “message”) 
by units that represent role-concept pairs (e.g., agent-
CHILD or patient-MAN) that form input to the hidden 
layer during production of the whole sentence. The 
output layer units represent words, where the most 
active unit is taken to be the produced word and is fed 
back into the network, which thereby receives informa­
tion about what has been produced so far. This model 
was able to successfully account for several structural 
priming phenomena, for instance, if Boys chase dogs was 
used as prime (i.e., active rather than passive voice), 
the model would produce the message agent-GIRL; 

Hinaut and Dominey (2013) equated the recurrent 
part of their model with the human brain’s frontal cor­
tical network, while the semantic output units are 
claimed to correspond to the striatum. The amount of 
activation change in the simulated striatum (i.e., the 
amount of semantic reinterpretation required to inte­
grate the current word) is taken to simulate the size of 
the P600 event-related potential (ERP) component. In 
this manner, the model reproduces the finding that 
object-relative clauses result in greater P600 than 
subject-relative clauses, at the point where the relative 
clause type is disambiguated. According to the model, 
this effect is caused not by structural differences between 
the two sentence types but simply by the fact that object 
relatives are less frequent and, consequently, less pre­
ferred as an initial interpretation.

All models discussed so far receive only linguistic 
input for training and evaluation. However, as observed 
in models of word learning and comprehension (e.g., 
Samuelson et  al., 2017; Smith et  al., 2017), real-life 
language use rarely takes place without nonlinguistic 
context. The CIANET model (Mayberry, Crocker, & 
Knoeferle, 2009) simulates the comprehension of a sen­
tence in visual context. It receives as input not only a 
sentence but also a simplified representation of a visual 
scene and outputs at each point of the sentence both 
a semantic interpretation and a simulated eye gaze 
toward one of two relevant parts of the visual scene. 
This model managed to capture effects of word order, 
of stereotypicality of the described action, and of con­
flict between the stereotypical actions of depicted 
agents and the action described in the sentence. 
Crocker, Knoeferle, and Mayberry (2010) applied the 
same model to account for ERP effects. They took the 
amount of change in recurrent layer activation when 
processing a word as an index of Left Anterior Negativ­
ity and P600 size. In this manner, the model could 
account for effects of word order, disambiguation, and 
the presence of a visual scene. Interestingly, different 
recurrent layer units turned out to be responsible for 
the simulated Left Anterior Negativity versus P600 
effects, indicating that the network functionally sepa­
rates the two, as does the brain.

Rabovsky, Hansen, and McClelland (2018) took the 
amount of activation change in hidden units of the 
McClelland et  al. (1989) model as an index of N400 
size, and thereby explained several well-known find­
ings. For one, the simulated N400 was stronger for less 
expected words and for words earlier in the sentence. 
Also, semantically incongruent words resulted in stron­
ger N400, but much less so if they were from the same 
semantic category as the expected, congruent word. 
Finally, the model accounted for the so-called semantic 
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lexical boost) is due to a different mechanism from 
structural priming. This prediction was confirmed 
experimentally two years later (Hartsuiker, Bernolet, 
Schoonbaert, Speybroeck, & Vanderelst, 2008).

To test whether the model could handle a language 
that is typologically very different from English, Chang 
(2009) tested Dual-path on Japanese. Despite the dif­
ferent word orders between these two languages, the 
model was able to exhibit similar levels of grammatical­
ity (93% for English and 95% for Japanese). Further­
more, the model was able to explain differences in 
production preferences between speakers of these two 
languages. For instance, in English, long phrases are 
usually placed after short ones (e.g., The woman sent a 
book to the man that she met while traveling is preferred over 
The woman sent the man that she met while traveling a book). 
This phenomenon is called heavy noun phrase shift 
(Ross, 1967), and English exhibits a short-before-long 
bias whereas Japanese has the opposite. The model was 
able to account for this crosslinguistic difference. 
Chang showed that the phenomenon is caused by a dif­
ference in the relative importance of the meaning in 
the positions (“choice points”) where the word orders 
differed. For English, the choice point was right after 
the verb, whereas in Japanese the choice point is at the 
beginning of the sentence as verbs tend to occur at the 
end of the sentence.

The Dual-path model was further able to account for 
crosslinguistic differences in lexical/conceptual acces­
sibility between English and Japanese (Chang 2009). 
English speakers tend to prefer using animate elements 
early in the sentence (McDonald, Bock, & Kelly, 1993), 
which can lead to the usage of less common structures 
such as passives (e.g., the man was almost hit by a car). At 
the same time, they do not have animacy preference in 
conjunctions: speakers of English find the man and the 
car as acceptable as the car and the man. Therefore, it was 
hypothesized that animacy can influence the func­
tional level but not the positional level from Garrett’s 
(1988) theory of sentence production. However, if this 
were the case, animacy wouldn’t affect word order in 
Japanese as this language uses case markers to indicate 
roles and repositioning words doesn’t affect the mean­
ing (e.g., in the passive sentence, man would be marked 
as the subject that receives the action hit, regardless of 
word order). Nevertheless, it has been shown that ani­
macy affects word position (Branigan, Pickering, & 
Tanaka, 2008). Using the Dual-path model, Chang 
noticed that these preferences were related to the fre­
quency of the input; by giving it sentences where ani­
mate words were used early in the sentence, the model 
learned stronger connections between animate con­
cepts and words than for inanimate ones.

action-FEED; patient-CAT as girl feeds cat instead of cat is 
fed by girl (Dell et al., 1999). However, it failed to show 
priming between transitive locatives (Boys chase dogs 
near car) and prepositional datives (Boys give dog to girl), 
which is empirically shown by Bock and Loebell (1990). 
Another limitation of the model was that, because each 
concept-role pair is represented in a single unit, the 
agent-concept MAN is different from the patient-
concept MAN. Consequently, the model is unable to 
generalize its ability to produce the man is chasing a dog 
to the ability to produce the dog is chasing a man. This 
violates the property of systematicity, which Fodor and 
Pylyshyn (1988) argued is a fundamental feature of 
human cognition that neural networks do not possess.

Chang (2002) proposed and compared two neural 
network models of sentence production, Prod-SRN and 
Dual-path. Prod-SRN is a simple extension of the struc­
tural priming model, tested on a more advanced mor­
phology and closer to a typical SRN, but it is still lacking 
systematicity. Dual-path, which is still the most influen­
tial neural network model of sentence production, was 
the first to overcome the limitation of generalization. It 
does so by creating temporary bindings between a layer 
for roles and a layer for concepts, so that there is only 
one unit for MAN, irrespective of its semantic role. 
These bindings, along with the event semantics (infor­
mation about tense and aspect, e.g., PRESENT SIMPLE), 
form the model’s semantic stream. The model has a sec­
ond stream (hence its name), the syntactic stream, which 
is an SRN that allows the model to learn syntactic cate­
gories. This way, the model was not only able to gener­
alize words to new positions, but also to generalize a 
noun as a verb; this is something that speakers usually 
do with proper nouns, for example, Skype becomes skyp-
ing. Chang (2002) compared Prod-SRN to the Dual-
path model, and the latter was able to generalize 82% 
of the time, whereas Prod-SRN only reached 6%. The 
models were also tested on unseen adjective-noun pairs 
and identity construction (e.g., a cat is a cat); Dual-path 
outperformed Prod-SRN in all tests. The model also 
expanded on Gordon and Dell’s (2003) simple model of 
aphasic production, offering a natural explanation of 
two different types of aphasia, agrammatism and ano­
mia (see also Dell & Chang, 2014).

Chang et al. (2006) applied the Dual-path model to a 
wider range of structural priming phenomena. The 
model displayed similar priming whether the prime 
had been produced or only comprehended. It was also 
able to account for long-term priming, as the extent of 
structural priming was not dependent on the number 
of fillers between the sentences. Furthermore, Chang 
et al. showed that the strong but short-lived tendency to 
repeat previously heard or said words (the so-called 
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been related to human performance or acquisition, for 
example, regarding embedded clause processing. Nev­
ertheless, the remarkable performance of current neu­
ral networks may well suggest that they embody relevant 
aspects of the human language system, affording great 
potential for further applications in the psycholinguis­
tic community.
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One criticism against models of sentence production 
is that all current models use a miniature (artificial) 
language instead of natural stimuli. Another limitation 
of the current models of sentence production is that 
none of them consider the phonological level of sen­
tence production (Garrett, 1988). Rather, they all focus 
on message planning (conceptualization) and sentence 
formation. Furthermore, even though in most models 
the hypothesis that comprehension influences produc­
tion is supported, the exact connection between these 
has yet to be established.

5. Conclusion

Connectionist models have been instrumental in 
explaining a range of human language behaviors, from 
word segmentation and word-meaning mapping to sen­
tence processing and syntactic development. These 
models’ successes have demonstrated the richness of 
the environment for language learning, contributing 
constructively to debates over empiricist versus nativist 
positions of language acquisition. They have also been 
useful in determining the knowledge required by an 
information processing system for simulating human 
behavior, addressing questions of the extent to which 
language processing is hierarchical or sequential, the 
interface between syntax and semantics, and the role of 
prediction and richer interpretation in sentence 
processing.

In the machine learning and NLP literature, deep 
learning neural networks currently outperform other 
systems on a range of NLP tasks. For example, very large 
corpora of natural texts can now be used to train RNNs 
on next-word prediction (Mikolov, Deoras, Povey, Bur­
get, & Černocký, 2011) and to let feedforward networks 
extract lexical semantics from distributional patterns 
(Mikolov et al., 2013). RNNs have been applied to select 
which image is described by a sentence (Chrupała, 
Kádár, & Alishahi, 2015) and, conversely, for generat­
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