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The transverse folding algorithm [M. C. Bafiuls er al., Phys. Rev. Lett. 102, 240603 (2009)] is a tensor
network method to compute time-dependent local observables in out-of-equilibrium quantum spin chains that
can overcome the limitations of matrix product states when entanglement grows slower in the time than in the
space direction. We present a contraction strategy that makes use of the exact light cone structure of the tensor
network representing the observables. The strategy can be combined with the hybrid truncation proposed for
global quenches by Hastings and Mahajan Phys. Rev. A 91, 032306 (2015), which significantly improves the
efficiency of the method. We demonstrate the performance of this transverse light cone contraction also for
transport coefficients, and discuss how it can be extended to other dynamical quantities.
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I. INTRODUCTION

In the last decade, tensor networks (TNs) [1-3] have gained
a prominent role among numerical methods for quantum
many-body systems. Simulating the dynamics of out-of-
equilibrium systems remains nevertheless one of the most
challenging open problems for these (and other) techniques.

In one-dimensional systems, the limitations of TN methods
for dynamics are well understood: In global quenches the
entanglement may grow fast [4-6], and the true state can
escape the descriptive power of the TN ansatz. This so-called
entanglement barrier limits the applicability of the matrix
product state (MPS) [7-10] description, and makes it difficult
to predict the asymptotic long-time behavior, even when local
observables in this limit are expected to be well described by a
thermodynamic ensemble, itself well approximated by a ma-
trix product operator (MPO) [11-16]. A number of methods
have been suggested to try to overcome this issue and extract
information about the long-time behavior of local properties
[17-27]. While there is no universal solution, understanding
the entanglement structures in the evolution TN can be crucial
to identify the most adequate one for practical computations.

In particular, the transverse folding strategy [18,28,29]
avoids the explicit representation of the evolved state as a
MPS and instead focuses on contracting a TN that represents
exactly (up to Trotter errors) the time-dependent observables.
Instead of the standard evolution in time direction, the folding
algorithm contracts the TN along space. In some scenarios,
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this allows local observables to be computed to longer times
than other approaches [30], and it is an exact strategy for cer-
tain models [31]. Recently, there has been a rekindled interest
in this approach, triggered by the interpretation of the network
in terms of an influence functional [32-34].

In local lattice models, the velocity of propagation of in-
formation is upper bounded [35-37] and the exact TN for
observables has a light cone structure. While there have been
proposals that exploit this fact to reduce the cost of the numer-
ical simulation of the evolved state with TN [38—43], and with
quantum simulation [44], until now, the potential of combin-
ing it with the transverse strategy has not been explored.

Here, we propose a strategy to exploit this property, a
transverse light cone contraction (TLCC) of the TN. As in the
original transverse folding, the TLCC does not directly suffer
from the entanglement growth in the state, and will be more
efficient than standard algorithms when entanglement in the
time direction grows slower than in the spatial one. But the
TLCC improves the efficiency with respect to the transverse
folding in all cases, by reducing the computational effort to
that of approximating the minimal network describing the
time-dependent observables in a Trotterized evolution. We
demonstrate explicitly its performance for global quenches
and different-time thermal correlators at infinite temperature,
and investigate how the strategy can make use of the (more ef-
ficient) physical light cone determined by the Lieb-Robinson
velocity [36]. We discuss possible extensions to other interest-
ing quantities.

II. LIGHT CONE TENSOR NETWORK
FOR GLOBAL QUENCHES

The one-dimensional global quench is a natural test bench
for time-evolution TN algorithms. At time ¢ = 0 the system
is prepared in a state that can be written as a MPS (e.g.,
a product state), and then it is allowed to evolve under a
fixed Hamiltonian. For simplicity, we restrict the discussion
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FIG. 1. (a), (b) Schematic construction of the minimal TN for
the expectation value of a local operator O after a global quench in
a translationally invariant setting. At time ¢t = M§ the expectation
value (W(t)|O|W¥(t)) corresponds to a two-dimensional TN. After
folding, the exact light cone is obtained after removing the mutu-
ally canceling gates. (c) Graphical notation for folded TN diagrams
throughout the paper.

to a nearest-neighbor model, and a translationally invariant
case, but the construction generalizes straightforwardly to any
model with local (finite-range) interactions and some non-
translationally invariant scenarios.

The transverse folding proposal of Ref. [18] starts from
a two-dimensional TN whose contraction represents some
time-dependent observable, such as a local expectation value.
This TN can be constructed from a Suzuki-Trotter approx-
imation of the evolution operator, where the evolution for
a discrete step of time § can be approximated as a matrix
product operator (MPO) [11,12] with a small bond dimension,
constructed from a product of two-body gates [13]. The TN
for the observable at time t+ = M§ is obtained by applying
M copies of this MPO with the initial state, which yields the
evolved state, and contracting the operator of interest between
this and its adjoint.

While standard TN algorithms such as time-evolving block
decimation (TEBD) or time-evolved MPS (tMPS) [11,47-49]
compute the observable by contracting the network in the
time direction, the transverse folding strategy performs the
contraction in the spatial direction, after folding the TN in
half, such that tensors for the same site and time step in the ket
and the bra are grouped together [see Fig. 1(a)]. After folding,
the growth of entanglement in the time direction can be slower
than in the spatial one, with the most dramatic difference
observed for integrable systems [28,46], but occurring also
in generic cases, such as the ones shown here. When this
difference in growth is present, the transverse strategy allows
reaching longer times than standard algorithms.

For a translationally invariant system in the thermo-
dynamic limit, the transverse contraction reduces to an
expectation value of the form (L(¢)|Eo(t)|R(t)), where (L(t)|
and |R(¢)) are the dominant left and right eigenvectors of

the transfer operator E(¢) = ZiA(t)’ ® Al(t), and Ey(t) =
YL A(t) ® AZ(1)(i|O|j) [10]. Here, A’(t) represents the con-
catenated [50] local tensor of the time-dependent state, itself a
MPO. In the transverse folding strategy, the boundary vectors
(L(¢)] and |R(t)) are approximated by MPS. This approxi-
mation can be found, for instance, via a power iteration or
a Lanczos algorithm, using repeated MPO-MPS contractions.

Such strategies do not take into account that the TN has a
light cone structure. Because the individual gates are local,
outside the causal cone of the operator, each gate cancels
with its adjoint. This ensures that each of the required bound-
ary vectors (dominant eigenvectors of the transfer operator)
corresponds precisely to the contraction of a triangular net-
work as depicted in Fig. 1. We can approximate directly
the contraction of such a triangle in the space direction by
a MPS. This strategy, which we call transverse light cone
contraction (TLCC), allows us to obtain (L(¢)| and |R(¢)) in
a fixed number of steps (proportional to M). Furthermore,
once we have found the vectors for M time steps, we can
directly obtain them for M 4 1 by applying a single MPO
(as illustrated in the figure), which increases the length by
one, and approximating the result via a single truncation step.
This step can be performed using standard MPS truncation
algorithms, which reduce the bond dimension by minimizing
a distance between the truncated vector and the original one.
However, for this particular problem the hybrid truncation
algorithm proposed in Ref. [29], which effectively evolves
the bond of the boundary vector according to the real time
dynamics, yields a much more efficient use of the available
bond dimension (see also insets of Fig. 2).

The TLCC strategy results in a more efficient algorithm
than the originally proposed folding, which required iterative
MPO-MPS contractions until convergence of the dominant
eigenvectors, run independently for each different time step
(in particular, for the cases analyzed in this work, we find
the power iteration required several tens of MPO-MPS con-
tractions per time step). Notice, nevertheless, that if the bond
dimension used is large enough, both the original folding
algorithm and the TLCC should result in the same boundary
vector. What ultimately determines the applicability of trans-
verse strategies is thus the amount of entanglement present in
the transverse network.

To probe the performance of the method, we consider a
quantum Ising chain, initialized in a product state |X+) =
limy— 0o [(10) + 1))/+/2]1® . We then apply the Hamiltonian,

H = Z (Jal.zaii_l + go;' + hof), )

i

and compute local expectation values after time evolution. In
all the following we fix J = 1, and a Trotter step 6 = 0.1,
and vary the parameters of the model to study integrable
(g ={0.5, 1}, h = 0) and nonintegrable (g = —1.05, 2 = 0.5)
regimes. Figure 2 shows the results and demonstrates that
the TLCC can efficiently simulate the integrable quenches. In
the nonintegrable regime, the required bond dimension grows
much faster with time, but the method is still advantageous
as compared to standard evolution, much more so when the
truncation is performed as in Ref. [29] [see the right inset of
Fig. 2(¢)].
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FIG. 2. Evolution after a global quench from the initial state |X+), for the integrable [(a) g = 0.5, (b) g = 1] and nonintegrable [(c) g =
—1.05, h = 0.5] Ising model. The main plots show (a), (b) the transverse magnetization (o,(¢)) and (c) the energy density, computed with
different algorithms using respectively the bond dimension (a), (b) D = 128 and (c) 512. Error bars represent the difference with respect to
the results obtained with D" = D/2. The TLCC contraction has been obtained both with the standard MPS truncation (green squares) and the
hybrid truncation of Ref. [29] (dark blue circles). For comparison, we also show the results of standard infinite time-evolving block decimation
(iTEBD) (blue diamonds) and Heisenberg picture density matrix renormalization group (DMRG) (purple triangles). The Heisenberg picture
results are only shown in (c), since, in the integrable case, the operator in (a), (b) can be exactly written as an MPO with constant bond
dimension at all times [17]. For the integrable case (a), (b) we show also the analytic result (black line). The insets show the scaling of the
bond dimension required to keep constant precision in each algorithm [45]. In the integrable case, this is compatible (at the later times) with
a polynomial increase D ~ t“, consistent with observations in Refs. [28,46]. In the nonintegrable case, the increase is compatible with an
exponential growth for both truncation methods, but using the hybrid truncation exhibits a slower rate than standard ones, such that longer
times can be reached with the same bond dimension. The left inset in (c) shows a zoom of the main plot to better appreciate the differences.

III. LIGHT CONE TENSOR NETWORK
FOR TRANSPORT COEFFICIENTS

The same idea can be adapted to the computation of other
dynamical quantities. It is the case of thermal correlators,
of the form C) (¢, €, B) = tr[ps O (1)0'"(0)], where ps =
e PH /7 is the thermal equilibrium state at inverse temper-
ature B, Z = tr(e PH) is the partition function, OI[f](t) is
a (local) operator acting on site £ at time ¢, and Oy(t) =
U@)'0.U (¢) is the time-evolved operator in the Heisenberg
picture. Since [pg, H] = 0, the thermal state is invariant under
the evolution, and using pg o pg /ng 2 We can write (up to

normalization) Cy (1, £, B) o< tr[U (1) p} /zog“U(z)o[l‘” pp/2)-
Using a MPO approximation to pg,> (obtained with standard
TN methods [11,12,51,52]), and the Trotterized real time
evolution as in the previous section, this quantity can be
expressed as a two-dimensional folded TN, which can be
contracted in the temporal [53-55] or spatial (transverse) [28]
direction.

Due to the invariance of the thermal state, each local
observable generates also a light cone structure that can be
exploited in the TLCC approach. Now the cancellation of
gates outside the causal cone of the operators occurs both at
the upper and the lower parts of the network [see Fig. 3(a)],
and the minimal TN has a rectangular form, resembling a
pillow, a structure which was used in Ref. [56] to evaluate
correlators in random quantum circuits. The TLCC strategy
again requires contracting a triangular TN corresponding to
the lateral corners of the figure to obtain boundary vectors
(Lg(t)| and [Rg(z)) [57]. If both operators act on the same
site (£ = 0), the time-dependent correlators can be expressed
as a contraction (Lg(t)|T3,0,,0,(t)|Rg(t)), with a single MPO
T3,0,,0,(t) constructed from concatenating the local tensors
for the unitaries, the operators, and the states [see Fig. 3(a)].

For correlators at nonzero distance £ the minimal TN becomes
elongated [Fig. 3(a), lower diagrams]. To approximate its
contraction, the boundary vectors (Lg(¢)| and |Rg(¢)) for a
certain time ¢ are first grown to incorporate, respectively, O
at the bottom of the TN, and O, at the top. These extended
vectors contain the evolution steps up to time ¢ + 2§, and
can be contracted together to obtain the correlators at £ = 1
for times ¢ + 3§ and ¢ 4 45. The vectors can be then evolved
again, following the TN structure, which does not increase
their length, but allows access to correlators at any later time
t + (24 k)é and distances £ = k, k + 1. Applying this sys-
tematically we can obtain all nonvanishing correlators. This
generalizes trivially to operators on more than one site, or with
MPO structure.

Here, we illustrate the simplest case, infinite temperature,
where pg—g o¢ 1 and the contour of the TN becomes uncorre-
lated. We consider the energy density operator

)

1

h
ol .= Joiof,, + g(o,-x +oiy) + 5 (07 +oi)s

which can be written as a MPO of range 2. Figure 3(b) shows
our results for the correlators Cgg (¢, £, B = 0) as a function
of time for several distances in the nonintegrable (g = —1.05,
h = 0.5, main plot) and integrable (g = 0.5, h = 0, inset)
cases [45].

Especially interesting is the possibility of ab initio calcu-
lations of transport properties [58] in nonintegrable models.
In particular, diffusion constants can be related to the
spatial spreading in time of autocorrelations of a den-
sity [22,59,60]. Normalizing the correlators as Crr(0,0) :=
Cee(t,0)/ Y, Cee(0, £), a diffusion constant D(r) may be

115117-3



FRIAS-PEREZ AND BANULS

PHYSICAL REVIEW B 106, 115117 (2022)

T5,0,,0,(t) T5=0,01,0,(t)
Lsddgzzs = 1 =0 jp0ls || (¢) [mmmmmmmmtmmmmooIiooootanoe
(Eal I> I (b) DDQDDWWWWW
B :0) - = 10 DDDD
Zo : = " i
|Rs(40)) =5 o , i
Cha(t =46,£=0,8) S =2, i
(Lp(49)] PO -
b (Lo(20)] 44440 E o
/ a = ] Dﬁdjjjju
i
b 0
! P ¥ Y 0 10
7" 0.0
T rys) T e :
/ 0 5 10 15 0 5 10 15

o V@s,0=2) C50@6se=4) ()

FIG. 3. (a) Schematic construction of the minimal TN for two-point correlators at infinite temperature for different times and distances
[45]. (b) Energy autocorrelations Cgg (¢, £, B = 0) obtained from the TLCC method at several distances as a function of time in the integrable
(g = 0.5, inset) and nonintegrable (g = —1.05, 7 = 0.5, main plot) Ising chain at 8 = 0. The error bars (smaller than the size of the marker)
show the difference between results with two different bond dimensions (D, D) [for the inset (200, 100), for the main plot (500, 200)].
In the inset, the black curves represent the results coming from the analytical solution of the model. (c) Spatial variance 3 of the normalized
autocorrelations (3) (inset) and corresponding diffusion constant (main plot) in the nonintegrable case obtained from the TLCC (green squares)
and TEBD (blue diamonds) with D = 1024, with error bars showing the difference with respect to D’ = 512. The solid black line in the main
plot shows a fit of the form Dy exp(b/t), which predicts the asymptotic value Dg ~ 1.9 (red dotted line).

obtained from their spatial variance [59],

2
W2@) =) Cept, )€ — (ZCEE@,W) )
¢ ¢

as % = 2D(t). Figure 3(c) shows the (linearly growing)
variance W2(¢) (main plot), and the corresponding diffusion
constant (inset) obtained from the correlators for the noninte-
grable case. The diffusion constant is well fitted by a function
D(t) = Dg exp(b/t), compatible with saturation to a constant
Dg =~ 1.9 in the asymptotic regime [61]. While TEBD (blue
diamonds) produces close values for the same quantities, the
error is appreciable in the diffusion constant already at short

times.

IV. THE PHYSICAL LIGHT CONE

In general, we expect that the physical light cone is much
narrower than the trivial one from the Trotterization, used
in the previous sections. We could thus approximate the TN
by a light cone one in which the slope corresponds to the
maximal physical velocity vig. This can be achieved by

() Leg 10°
(L(8)] 343 [R(®))

FIG. 4. (a) The physical velocity defines a much narrower light
cone than the Trotterization (background). (b) Relative difference
between (o,) computed with the LR and Trotter light cones for
the integrable global quench of Fig. 2(a), for which nt = 10 and
different sizes of the subsystem L.g, with D = 200 in all cases.

implementing a more efficient TLCC growing iteration, in
which ny = 1/(v.RrS) time steps are applied at once every
time a space site is contracted [Fig. 4(a)]. Notice that this
light cone is not exact, but has (exponential) corrections.
Thus it is convenient to consider the light cone for a sub-
system of size L. that includes the support of the operator
[62].

To probe this reduced light cone we choose an integrable
instance (g = 0.5, h = 0) for which the Lieb-Robinson (LR)
velocity is known (v g = 1, corresponding to ny = 10 with
our Trotter step), and simulate the global quench of Fig. 2(a).
Compared to TLCC for the full light cone with the same bond
dimension, we observe (Fig. 4) that the physical one, deter-
mined by v g, captures indeed the correct evolution: While the
narrower light cone deviates from full results, the errors are
reduced exponentially (until the level of original truncation
error) by considering a small window Leg.

V. DISCUSSION

We have presented a strategy that builds on the transverse
folding [18] to approximate time-dependent observables in
a one-dimensional quantum system. Noticing the exact light
cone structure of the TN and implementing its transverse
contraction, it is possible to compute long-time properties in
a more efficient manner. Combined with the hybrid truncation
[29], this allows us to reach longer times with a smaller bond
dimension whenever the temporal entanglement grows slower
than the physical one, which, as we have seen, happens not
only for integrable systems. It is possible to use the physical
upper bound of the Lieb-Robinson velocity to further restrict
the width of the relevant TN and define a more efficient
iteration.

We have evaluated the performance of the TLCC strat-
egy for integrable and nonintegrable global quenches, and
for transport properties at infinite temperature. With minimal
changes, the method extends to other scenarios, such as finite
temperature or nontranslationally invariant setups including
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impurities or a contact between two chains. It is furthermore
possible to adapt the strategy to other more complex dynami-
cal quantities.

The basic TLCC does not require an additional hypothe-
sis to truncate observables or states. Its convergence can be
systematically explored as the bond dimension is increased.
What ultimately limits the validity of the strategy is the entan-
glement in the time direction, which strongly depends on the
setup and the model [28,46,63]. The behavior of the TLCC
can thus provide useful information to determine optimal
strategies for different problems. Another parameter in the
approximation is the Trotter step, which is known to affect
the entanglement growth in standard algorithms [49]. Since
simulations with different § may be necessary to extrapolate
the exact results, it is also interesting to study how varying §
affects our observations. Further interesting avenues for future
investigation are exploring the TN cut according to different

velocities, to explore the propagation of correlations in the
TN, and effectively measure vy g.

Recently, we became aware of an equivalent strategy
for global quenches, which was independently suggested in
Ref. [64].
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