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Abstract

We describe several equivalent models for the ∞-category of ∞-local systems of chain complexes
over a space using the framework of quasi-categories. We prove that the given models are
equivalent as ∞-categories by exploiting the relationship between the differential graded nerve
functor and the cobar construction. We use one of these models to calculate the quasi-categorical
colimit of an ∞-local system in terms of a twisted tensor product.
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1. Introduction

The goal of this paper is to give an explicit model for the homotopy coherent colimit of an
∞-local system of chain complexes over a topological space in terms of Brown’s twisted tensor
product construction. We use the framework of quasi-categories to describe three equivalent
∞-categories of ∞-local systems and then use one of these models to calculate the desired
colimit. We generalize the following classical story to the homotopy coherent setting. Let
k be a field, denote by Catk the category of k-linear categories and by Cat the category of
(ordinary) categories. Consider the forgetful functor U : Catk → Cat which forgets the linear
structure on the morphisms of a linear category and let F : Cat → Catk be its left adjoint.
A representation of a group G may be defined as a functor β : G → U(k-mod), where G is
thought of as a category with a single object, denoted by b, and k-mod ∈ Catk is the k-linear
category of k-vector spaces. By adjunction, we obtain a functor β̃ : F (G) → k-mod. Note
that F (G) = k[G] is the group algebra of G, thought of as a k-linear category with the single

Email addresses: manuelr@purdue.edu (Manuel Rivera)
mahmoud.zeinalian@lehman.cuny.edu (Mahmoud Zeinalian)

© Manuel Rivera and Mahmoud Zeinalian, 2020, under a Creative Commons Attribution 4.0 International
License.

https://higher-structures.math.cas.cz/
mailto:manuelr@purdue.edu
mailto:mahmoud.zeinalian@lehman.cuny.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


34 Manuel Rivera and Mahmoud Zeinalian, Higher Structures 4(1):33–56, 2020.

object b, and β̃(b) =M is a left k[G]-module. The two perspectives provided by the adjunction
(F,U) are useful when studying linear representations of groups. The colimit of the functor
β : G → U(k-mod) is the k-module of coinvariants k ⊗k[G] M , where the right k[G]-module
structure on k is given by the augmentation k[G] → k. Consider the composition of functors
i◦β : G→ U(k-mod) → Chk, where Chk denotes the category of k-chain complexes and i is the
inclusion functor. The homotopy colimit of i ◦ β, with respect to the standard model structure
on Chk, is the derived coinvariants k ⊗L

k[G] M and a model for it can be obtained by resolving
k through the bar resolution over k[G]. If G = π1(X, b) is the fundamental group of a pointed
path-connected space (X, b), then representations of G are classical local systems over X. In this
case, the colimit of a representation of G = π1(X, b) is the homology with local coefficients and
the homotopy colimit may be interpreted as a chain complex, unique up to quasi-isomorphism,
which calculates such homology groups.

We refine the above constructions and results to the case of ∞-representations of ∞-groupoids,
also known as ∞-local systems. To make sense of this, we replace Cat in the above setting by
the category Set∆ of simplicial sets and the k-linear category k-mod by the differential graded
(dg) category Chk of k-chain complexes.1 The analogue of U now becomes the dg nerve functor
Ndg : dgCatk → Set∆, where dgCatk is the ordinary category of dg categories. The analogue
of F is a functor Λ : Set∆ → dgCatk, described explicitly in section 4. For a connected Kan
complex K, Λ(K) is closely related to the differential graded associative algebra (dg algebra, for
short) of singular chains on the based (Moore) loop space of |K| as explained in [21].

We replace the fundamental group G = π1(X, b) in the above discussion by the fundamental
∞-groupoid of X, namely, by the Kan complex Sing(X) of singular simplices in X. If X is path-
connected and b ∈ X, we use an equivalent Kan complex Sing(X, b) with a single 0-simplex.
Instead of representations β : G → U(k-mod) we now consider maps of simplicial sets β :

Sing(X, b) → NdgChk. In this paper, we give a model for the colimit of β using the framework of
quasi-categories of [14]. In the context of this article, the term colimit will always be understood
in the homotopy coherent sense as introduced in section 1.2.13 of [14]. By adjunction, the data
of a map β : Sing(X, b) → NdgChk is equivalent to a dg functor β̃ : Λ(Sing(X, b)) → Chk,
which we can interpret as a chain complex β̃(b) = M equipped with an action over the dg
algebra Λ(Sing(X, b))(b, b). We proved in [21] that Λ(Sing(X, b))(b, b) is isomorphic as a dg
algebra to ΩC, the cobar construction of the dg coalgebra C of normalized chains on Sing(X, b)
with Alexander-Whitney coproduct; this observation opens up the possibility of using certain
algebraic tools to study ∞-local systems.

Using quasi-categories as models for ∞-categories we prove that the ∞-category of ∞-local
systems Loc∞X is equivalent to the ∞-derived category of dg ΩC-modules. Loc∞X is defined as
the quasi-category of functors Fun(Sing(X, b), NdgChk). We give two equivalent quasi-categorical
models for the ∞-derived category of dg ΩC-modules by taking the dg nerve of two dg categories
Mod∞

ΩC and Modτ
ΩC introduced in sections 5.2 and 5.3, respectively. The first, Mod∞

ΩC , is defined
for any dg algebra A using the notion of A∞-morphisms of A-modules while the second, Modτ

ΩC ,
is a simplification of the first and it may be described in terms of twisted tensor products, a notion
introduced in [6]. In section 6, we explicitly describe weak equivalences of quasi-categories

NdgMod∞
ΩC ≃ NdgModτ

ΩC ≃ Loc∞X .

The existence of a weak equivalence Loc∞X ≃ NdgMod∞
ΩC is a folklore result which has been used

1Note the slight change in notation here. We used Chk for the ordinary category of chain complexes. In the
remaining of the paper, we use Chk for the dg-category of k-chain complexes.
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in different contexts, as seen in Remark 5.4 of [4], for example. There are more abstract ways of
proving this claim, however, here we give a direct proof based on the combinatorics of simplicial
sets. Another version of this equivalence also appears in [5]. Finally, Koszul duality as discussed
in [17] implies that for any conilpotent dg coalgebra C the ∞-derived category of dg C-comodules
is equivalent to the ∞-derived category of dg ΩC-modules and, henceforth, equivalent to Loc∞X ;
a statement shown in [5], and in [8] in a dual formulation.

In section 7, we use NdgModτ
ΩC to compute an explicit model for the colimit of an ∞-local

system as a twisted tensor product between the dg coalgebra C of chains on the space and the
dg ΩC-module determined by the ∞-local system. More precisely, we prove the following

Theorem 1.1. Let (X, b) be a pointed path-connected space. For any ∞-local system β :

Sing(X, b) → NdgChk the colimit of β is given by the twisted tensor product (M ⊗ C, ∂⊗τ ),

where C is the dg coalgebra of normalized simplicial chains in Sing(X, b), M is the right dg ΩC-
module determined by β, and ∂⊗τ denotes the twisted tensor product differential as introduced in
[6].

An immediate consequence of our results is an alternative and more conceptual proof of
Brown’s classical theorem on modeling the chains on the total space of a fibration in terms of
chains on the base and chains on the fiber, as explained in section 8.

We go over some preliminary notions in section 2 to keep the article relatively self-contained
and accessible to a broader audience. In section 3, we review the rigidification functor described
in [14] and its cubical version introduced in [21], which are useful for understanding the dg nerve
functor Ndg and its adjoint Λ through a different angle but not essential for understanding the
results of sections 5,6, and 7. In section 4, we define Λ and Ndg and discuss some of their
properties.

Our main motivation for understanding the colimit of an ∞-local system is the possible
applications to L-theory through the work of Ranicki-Weiss [18] where the category of fractured
complexes with Poincaré duality is described as classical local systems. It is our goal to replace
the fundamental group ring in their discussion with an algebraic model for the chains on the
based loop space in hope of combining the algebraic theory of homotopy types a la Sullivan,
Quillen, and Mandell with the algebraic L-theory a la Ranicki and Weiss and obtain a purely
algebraic characterization of manifolds.

Another application in mind is to describe a model for the colimit of local systems of dg
categories that come up in the discussions of Mirror Symmetry through generalizations of the
main results of this article. In fact, similar results to those of this article should hold for ∞-local
systems with values in more general ∞-categories. Such applications and generalizations will be
studied in subsequent work.

2. Preliminaries

2.1 Simplicial sets Let ∆ be the category whose objects are non-empty finite ordinals
{[0], [1], [2], ...} and morphisms are order preserving maps. A simplicial set is a functor K :

∆op → Set where Set denotes the category of sets. We write Kn for the set K([n]). We denote
by Set∆ the category having simplicial sets as objects and natural transformations as morphisms.
The standard n-simplex ∆n is the simplicial set given by ∆n : [m] 7→ Hom∆([m], [n]). There is
a natural bijection of sets

Kn
∼= Set∆(∆

n,K). (1)
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Morphisms in the category ∆ are generated by functions of two types: co-faces di : [n] →
[n + 1], 0 ≤ i ≤ n + 1, and co-degeneracies sj : [n] → [n − 1], 0 ≤ j ≤ n − 1. For any
simplicial set K and for any integer n ≥ 0 we have face morphisms K(di) : Kn+1 → Kn

and degeneracy morphisms K(sj) : Kn−1 → Kn which we we call the structure maps of K.
The elements of K0 are called the vertices of K and for any σ ∈ Kn we denote by minσ and
maxσ the first and last vertices of σ, respectively (i.e. the image in K of the first and last
vertices of ∆n → K under the identification 1). We write |∆n| for the topological n-simplex
{(t1, ..., tn) ∈ Rn : 0 ≤ t1 ≤ ... ≤ tn ≤ 1} ⊂ Rn and |K| for the topological space obtained as the
geometric realization of K, i.e. |K| = colim ∆n→K |∆n|.

2.2 Necklaces A necklace is a simplicial set of the form T = B1∨...∨Bk where each Bi = ∆ni

is a standard n-simplex with ni ≥ 1 and the wedges mean that vertices max(Bi) and min(Bi+1)

are identified for i = 1, ..., k − 1. Each Bi is called a bead of T . Define the dimension of T by
dim(T ) = n1 + ... + nk − k. Denote by αT and ωT the first and last vertices of T . Necklaces
form a category Nec in which objects are nekclaces and morphisms are maps of simplicial sets
which preserve the first and last vertices. A set of generators for morphisms in Nec is described
in [21]. A map of simplicial sets t : T → K such that T ∈ Nec and t(αT ) = x and t(ωT ) = y is
called a necklace in K from x to y; these form a category (Nec ↓ K)x,y with morphisms given
by maps T → S ∈ Nec forming commutative triangles.

Later on we will see that necklaces t : T → K ∈ (Nec ↓ K)x,y label the cubical cells of a
cubical set. A cell labeled by t : T → K will have dimension dim(T ); this motivates the definition
of the dimension of a necklace.

2.3 Cubical sets with connections In sections 3, and 4 we will use a construction of [21],
the cubical rigidification functor, which is based on the notion of cubical sets with connections.
For this reason we recall the definition of cubical sets with connections which were originally
introduced in [7]. For any integer n ≥ 1 let 1n be the cartesian product of n copies of the category
1 = {0, 1} with two objects and one non-identity morphism and let 10 be the category with one
object and one morphism. Define a category □c with objects {10,11,12, ...} and morphisms
generated by the following functors:
cubical co-face functors δϵj,n : 1n → 1n+1, where j = 0, 1, ..., n+ 1, and ϵ ∈ {0, 1}, defined by

δϵj,n(s1, ..., sn) = (s1, ..., sj−1, ϵ, sj , ..., sn),

cubical co-degeneracy functors εj,n : 1n → 1n−1, where j = 1, ..., n, defined by

εj,n(s1, ..., sn) = (s1, ..., sj−1, sj+1, ..., sn), and

cubical co-connection functors γj,n : 1n → 1n−1, where j = 1, ..., n− 1, n ≥ 2, defined by

γj,n(s1, ..., sn) = (s1, ..., sj−1,max(sj , sj+1), sj+2, ..., sn).

A cubical set with connections is a functor Q : □op
c → Set. Denote ∂ϵj := Q(δϵj,n) : Qn+1 →

Qn. Let Set□c be the cateogry whose objects are cubical sets with connections and morphisms
are natural transformations. The standard n-cube with connections □n

c is the functor □op
c →
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Set represented by 1n, namely, Hom□c( - ,1n) : □op
c → Set. The category Set□c has a (non-

symmetric) monoidal structure defined by

K ⊗ L := colim
σ:□n

c →K,τ :□m
c →L

□n+m
c .

Let Cat□c denote the category of categories enriched over cubical sets with connections.
Cubical sets with connections will be appear in the following context: given a simplicial set

K with two vertices x and y we will describe a natural cubical set with connections C□(K)(x, y)

whose cubical n-cells are labeled by objects (t : T → K) ∈ (Nec ↓ K)x,y with dim(T ) = n. This
cubical sets with connections models the space of paths in |K| from x to y.

2.4 Enriched categories and weak equivalences In this article we will consider several
enriched categories with particular notions of weak equivalences which we now recall following
[14] and [15].

Let Chk denote the (ordinary) category whose objects are chain complexes over k which are
bounded below and morphisms are chain maps. The category Chk has a symmetric monoidal
structure given by the tensor product of complexes. Let dgCatk be the category of categories
enriched over Chk. Objects of dgCatk are called dg categories. For any dg category C we dentote
by C(x, y) the k-chain complex of morphisms between x and y. There is an ordinary category
associated functorially to C called the homotopy category of C and denoted by ho(C). The objects
of ho(C) are the objects of C, morphisms are given by the 0th homology groups of the mapping
spaces of C, i.e. ho(C)(x, y) = H0(C(x, y)), and composition is induced by composition in C.
A weak equivalence of dg categories is a dg functor F : C → D ∈ dgCatk(C,D) which induces
an equivalence of ordinary categories ho(C) → ho(D) and for every pair of objects x, y ∈ C,
the induced map C(x, y) → C(F (x), F (y)) is a quasi-isomorphism of chain complexes. The dg
category of chain complexes, denoted by Chk (as opposed to Chk) has the same objects as Chk

and the k-chain complex Chk((C, dC), (D, dD)) is the graded k-module generated by graded
maps f : C → D with differential

δ(f) := f ◦ dC − (−1)ndD ◦ f

for any (f : C → D) ∈ Chk((C, dC), (D, dD))n.
The category dgCatk has a symmetric monoidal structure induced by taking the cartesian

product of collections of objects and tensor product of chain complexes at the level of morphisms.
Let Cat∆ be the category of categories enriched over the symmetric monoidal category of

simplicial sets with cartesian product. Objects of Cat∆ are called simplicial categories. To any
simplicial category C we may associate functorially an ordinary category ho(C) also called the
homotopy category. It is defined similarly to the homotopy category of a dg category replacing
the 0th homology group with the 0th homotopy group of a simplicial set. A weak equivalence is
also defined similarly replacing quasi-isomorphisms by (Kan) weak equivalence of simplicial sets.

Throughout the article we use the Koszul sign rule: whenever x moves past y, the sign change
of (−1)|x||y| occurs.

2.5 Kan complexes and quasi-categories Recall the i-th horn in ∆n is the subsimplicial
set Λn

i ⊂ ∆n obtained from ∆n by deleting the interior and the face opposite to the i-th vertex.
A Kan complex K is a simplicial set with the following horn filling condition: for any 0 ≤ i ≤
n, any map f : Λn

i → K can be filled, namely, there exists a map f : ∆n → K such that
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f ◦ i = f where i : Λn
i ↪→ ∆n is the inclusion map. An example of a Kan complex is the singular

complex Sing(X) of a topological space X: the simplicial set having as n-simplices the set of
all continuous maps |∆n| → X with structure maps induced by those of ∆n. If b ∈ X then we
can form another Kan complex Sing(X, b) ⊂ Sing(X) whose n-simplices consist of all continuous
maps |∆n| → X sending all vertices of |∆n| to b. If X is path-connected then the inclusion
Sing(X, b) ↪→ Sing(X) is a weak equivalence of Kan complexes, i.e. it induces a homotopy
equivalence of spaces |Sing(X, b)| ≃ |Sing(X)|.

A quasi-category C is a simplicial set with the above horn filling condition being required
only for 0 < i < n. Vertices in a quasi-category are sometimes called objects. An example of
a quasi-category is the nerve of a category. Technically, the nerve of a large category is a large
quasi-category: the objects might not form a set. Thus quasi-categories may be large. The nerve
functor N : Cat → Set∆ has a left adjoint ho : Set∆ → Cat. The homotopy category of a
quasi-category C is the ordinary category ho(C).

For any simplicial set K and any quasi-category C, the simplicial set of simplicial set mor-
phisms (the internal hom in Set∆), denoted by Fun(K, C), is again a quasi-category.

Given two objects a and b in C define a simplicial set HomR
C (a, b), called the right hom space

between a and b, whose n-simplices are

HomR
C (x, y)n = {f : Jn → C ∈ Set∆(J

n, C) : f(x) = a, f(y) = b} (2)

where Jn is the simplicial set with two vertices x and y obtained as the quotient of ∆n+1 by
collapsing the face ∆{0,1,...,n} to a vertex x and then calling y the vertex opposite to the collapsed
face. If C is a quasi-category then HomR

C (x, y) is a Kan complex (Proposition 1.2.2.3 of [14]). A
weak equivalence of quasi-categories θ : C → D is a map of simplicial sets inducing an essentially
surjective functor between homotopy categories and for any a, b ∈ C0 a weak equivalence of Kan
complexes θ : HomR

C (a, b) → HomR
D(θ(a), θ(b)). Quasi-categories model ∞-categories as studied

extensively in [14].

2.6 Algebras and coalgebras Let k be a commutative ring. A differential graded associative
algebra (dg algebra) is a graded k-module with a differential d : A → A of degree −1 which
squares zero together with an associative product · : A⊗A→ A of degree 0 which is compatible
with the differential, i.e. · is a chain map when A⊗A is equipped with the tensor differential. A
dg algebra is unital if there is a map u : k → A of dg algebras such that ·◦(u⊗id) = id = ·◦(id⊗u)
and it is augmented if equipped with a map of unital dg algebras µ : A→ k where k is considered
as a dg algebra concentrated at zero with zero differential. Denote A = ker µ.

All the dg algebras consider in the text will be assumed to be non-negatively graded.
Dually, a differential graded coassociative coalgebra (dg coalgebra) is a graded k-module C

with a differential d : A → A of degree −1 which squares zero together with a coassociative
coproduct ∆ : C → C ⊗C of degree 0 which is compatible with the differential, i.e. ∆ is a chain
map when C ⊗C is equipped with the tensor differential. A dg coalgebra is counital if there is a
map of dg coalgebras ϵ : C → k such that (ϵ⊗ id) ◦∆ = id = (id⊗ ϵ) ◦∆ and it is coaugmented
if its equipped with a map of unital dg coalgebras ν : k → C. For a counital coaugmented dg
coalgebra C we denote C = coker(ν) ∼= ker (ϵ), and so we have an isomorphism C ∼= ker (ϵ)⊕k1.
The reduced coproduct ∆′ : C → C ⊗ C is defined by ∆′(x) := ∆(x) − x ⊗ 1 − 1 ⊗ x. We call
C conilpotent if for all x ∈ C there is some integer nx ≥ 0 such that (∆′)nx(x) = 0. If C is
connected, i.e. C0 = k, then C is conilpotent. The following two examples of dg coalgebras will
be relevant in the following sections.
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Example 2.1. Associated to any simplicial set K there is a natural dg coalgebra (CN
∗ (K), ∂,∆)

of normalized simplicial chains with the Alexander-Whitney coproduct ∆ : CN
∗ (K) → CN

∗ (K)⊗
CN
∗ (K). Recall CN

∗ (K) is defined as the free graded k-module generated by simplices in K

modulo degenerate simplices, ∂ : CN
n (K) → CN

n−1(K) is induced by ∂(σ) =
∑n

i=0(−1)iK(di)(σ)

and ∆ : CN
∗ (K) → CN

∗ (K)⊗ CN
∗ (K) by

∆(σ) =
⊕

p+q=n

K(fp)(σ)⊗K(lq)(σ),

where fp : [p] → [p+ q] is fp(i) = i and lq : [q] → [p+ q] is lq(i) = p+ i.

Example 2.2. Associated to any cubical set with connections Q there is a natural dg coalgebra
(C□

∗ (Q), ∂,∆□) of normalized cubical chains with Serre diagonal ∆□. Let C̃□
∗ (Q) be the chain

complex such that C̃□
n (Q) is the free k-module generated by elements of Qn with differential

defined on σ ∈ Qn by ∂(σ) :=
∑n

j=1(−1)j(∂1j (σ)−∂0j (σ)). Let DnQ be the submodule of C̃□
n (Q)

which is generated by those cells inQn which are the image of a degeneracy or of a connection map
Qn−1 → Qn. The graded module D∗Q forms a subcomplex of C̃□

∗ (Q). Define C□
∗ (Q) to be the

quotient chain complex C̃□
∗ (Q)/D∗(Q). The Serre diagonal map ∆□ : C□

∗ (Q) → C□
∗ (Q)⊗C□

∗ (Q)

is induced by
∆□(σ) =

∑
(−1)ϵ∂0j1 ...∂

0
jp(σ)⊗ ∂1i1 ...∂

1
iq(σ)

where σ ∈ Qn, the sum runs through all shuffles {i1 < ... < iq, j1 < ... < jp} of {1, ..., n} and
(−1)ϵ is the shuffle sign. The coproduct ∆□ was originally introduced by Serre and the name
Serre diagonal was given in [12], where the coproduct ∆□ and its properties are described.

We recall the definition of the bar construction. For any augmented dg algebra (A, dA, ·, µ :

A→ k) define a conilpotent dg coalgebra (BA, dBA,∆, ν) as follows.

BA = k⊕
(
sA

)
⊕
(
sA

)⊗2 ⊕
(
sA

)⊗3 ⊕ · · · ,

where s denotes the shift by +1 functor and we will write monomials in BA by {a1|...|ak} where
ai ∈ sA. Set dBA := −d1 + d2 where

d1{a1|...|an} =

n∑
i=1

(−1)ϵi−1{a1|...|dA(ai)|...|an},

d2{a1|...|an} =
n−1∑
i=1

(−1)ϵi{a1|...|ai · ai+1|...|an},

where ϵj = |a1|+ ...|ai| − j+1. The coproduct ∆ : BA→ BA⊗BA is given by deconcatenation
of monomials, namely

∆({a1|...|an}) =
n∑

i=0

{a1|...|ai} ⊗ {ai+1|...|an}.

The coaugmentation ν : k → BA is the inclusion into the first direct sum term in BA. The bar
construction defines a functor B from the category of augmented dg algebras to the category of
conilpotent dg coalgebras.

There is also a functor Ω from the category of conilpotent dg coalgebras to the category of
augmented dg algebras called the cobar construction defined as follows. For any conilpotent dg
coalgebra (C, dC ,∆, ν : k → C) define an augmented dg algebra (ΩC, dΩC , ·, µ) by letting

ΩC = k⊕ s−1C ⊕ (s−1C ⊗ s−1C)⊕ (s−1C ⊗ s−1C ⊗ s−1C)⊕ ...
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where s−1 is the shift by −1 functor and the product · given by concatenation of monomials.
We write monomials in ΩC as [c1|...|cn] where ci ∈ s−1C. The differential dΩC is defined
by extending extending dΩC = −dC + ∆′ as a derivation to a map dΩC : ΩC → ΩC. The
augmentation µ : ΩC → k is the projection to the first direct sum factor of ΩC.

For any conilpotent dg coalgebra C there is a quasi-isomorphism of dg coalgebras ρ : C →
BΩC and for any augmented dg algebra A there is quasi-isomorphism of dg algebras π : ΩBA→
A [11].

We also have a linear map τ : C ↣ C ∼= s−1C ↪→ ΩC of degree −1 called the universal
twisting cochain. We use this map in the following construction which will appear in section 4.3.
For any right dg ΩC-module (M,dM ) define ∂⊗τ :M ⊗ C →M ⊗ C by

∂⊗τ (m⊗ c) = dMm⊗ c+ (−1)|m|m⊗ dCc+
∑
(c)

(−1)|m|(m · τ(c′))⊗ c′′ (3)

where ∆(c) =
∑

(c) c
′ ⊗ c′′. It follows that ∂⊗τ ◦ ∂⊗τ = 0, so (M ⊗ C, ∂⊗τ ) is a chain complex

called the twisted tensor product of the dg ΩC-module M and the dg coalgebra C. Moreover,
the map id⊗∆ :M ⊗C →M ⊗C⊗C defines a right dg C-comodule structure on (M ⊗C, ∂⊗τ ).
The twisted tensor product construction was originally introduced in [6] to model the singular
chain complex of the total space of a fibration in terms of the chains in the base and the chains
in the fiber. This algebraic construction can be generalized for any pair of a dg coalgebra C

and dg algebra A equipped with a degree −1 map τ : C → A satisfying certain Maurer-Cartan
equation.

3. Simplicial and cubical rigidification of quasi-categories

We go over the construction of the simplicial rigidification functor C : Set∆ → Cat∆ as described
in [14], review how necklaces were used in [9] to describe its mapping spaces, and recall the
definition of the cubical rigidification functor C□c : Set∆ → Cat□c as introduced in [21].

For any integers 0 ≤ i < j let Pi,j be the category whose objects are subsets of the set
{i, i+ 1, ..., j} containing both i and j and morphisms are inclusions of sets.

Definition 3.1. Define a functor C : Set∆ → Cat∆ by first defining a simplicial category C(∆n)

for all n ≥ 0 as follows. The objects of C(∆n) are the elements of the set {0, ..., n} and for
any two objects i and j with i ≤ j, C(∆n)(i, j) is the simplicial set N(Pi,j), the nerve of the
category Pi,j . If j < i, C(∆n)(i, j) = ∅. Composition of morphisms in C(∆n) is induced by
the functor Pj,k × Pi,k → Pi,k induced by taking the union of two sets. The construction of the
simplicial category C(∆n) is functorial with respect to maps [n] → [m] in ∆ so we may define
C : Set∆ → Cat∆ by

C(K) := colim ∆n→KC(∆n).

We refer to C : Set∆ → Cat∆ as the simplicial rigidification functor.

Remark 3.2. The mapping spaces of C are described explicitly in [9] in terms of necklaces. More
precisely, for any simplicial set K and any two x, y ∈ K0, there is an isomorphism of simplicial
sets

C(K)(x, y) ∼= colim
T→K∈(Nec↓K)x,y

[C(T )(αT , ωT )]. (4)

Moreover, for any necklace T ∈ Nec, the simplicial set C(T )(αT , ωT ) is isomorphic to a simplicial
N -cube (∆1)×N where N = dimT . It is shown in [14] that if C is a quasi-category and x, y ∈ C0
then C(C)(x, y) is a Kan complex homotopy equivalent to HomR

C (x, y).
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We now review the construction of the cubical version of C introduced in [21]. In section 4
of [21], we describe a functor C□c : Nec→ Set□c such that C□c(T )

∼= □dim(T )
c for any T ∈ Nec.

The connections are needed to obtain functoriality, since certain maps in the category Nec are
not realized by maps of (classical) cubical sets but are realized by maps of cubical sets with
connections.

Definition 3.3. For any simplicial set K define C□c(K) to be the category enriched over cubical
sets with connections whose objects are given by K0, mapping spaces by

C□c(K)(x, y) := colim
T→K∈(Nec↓K)x,y

[C□c(T )(αT , ωT )], (5)

and composition induced by wedging of necklaces. This construction defines a functor C□ :

Set∆ → Cat□c called the cubical rigidification functor.

The functor C factors through C□c as explained in Proposition 5.3 in [21], which we recall
below.

Proposition 3.4. The rigidification functor C : Set∆ → Cat∆ is naturally isomorphic to the
composition of functors

Set∆
C□c−−→ Cat□c

T−→ Cat∆,

where T is defined by applying the triangulation functor T : Set□c → Set∆ on mapping spaces.

4. The dg nerve functor and its left adjoint

We define the dg nerve functor Ndg : dgCatk → Set∆ by first defining its left adjoint Λ :

Set∆ → dgCatk and then discuss some of its properties. We start with some notation. For
any simplicial set K ∈ Set∆ let (C∗(K), ∂,∆) be the dg coalgebra of simplicial chains on K

over k with Alexander-Whitney coproduct ∆ : C∗(K) → C∗(K) ⊗ C∗(K). Consider the the
map ∂′(x) =

∑n−1
i=1 (−1)iK(di) obtained by dropping first and last terms in the definition of ∂.

The differential ∂′ and the coproduct ∆′ (as defined in section 2.6) define differential graded
coassociative coalgebra structures on C∗(K) and on the shifted graded module s−1C∗>0(K).

Definition 4.1. Let K be a simplicial set. Define Λ(K) to be the dg category whose objects
are the elements of K0 and for any two x, y ∈ K0 we define a chain complex (Λ(K)(x, y), dΛ) as
follows. As a k-module, Λ(K)(x, y) is the quotient of the free k-module generated by monomials
(σ1|...|σk), where each σi is a generator of s−1C∗>0(K) satisfying maxσi = minσi+1, by the
equivalence relation generated by

(σ1|...|σk) ∼ (σ1|...|σi−1|σi+1|...|σk)

if k ≥ 2 and σi is a degenerate 1-simplex for some 1 ≤ i ≤ k; and

(σ1|...|σk) ∼ 0

if k ≥ 1 and σi ∈ Cni(K) is a degenerate simplex for some 1 ≤ i ≤ k and ni ≥ 2. Denote by
[σ1|...|σk] the equivalence class of (σ1|...|σk). Composition is given by concatenation of mono-
mials, namely, [σ1|...|σk] ∈ Λ(K)(x, y) and [γ1|...|γk] ∈ Λ(K)(y, z) then [γ1|...|γk] ◦ [σ1|...|σk] =
[σ1|...|σk|γ1|...|γk] ∈ Λ(K)(x, z). The differential dΛ : Λ(K)(x, y) → Λ(K)(x, y) is defined by
extending dΛ = −∂′ +∆′ as a derivation on monomials, similarly to how the differential of the



42 Manuel Rivera and Mahmoud Zeinalian, Higher Structures 4(1):33–56, 2020.

cobar construction is defined. The map dΛ is well defined on equivalence classes and dΛ ◦dΛ = 0.
This construction is clearly functorial on K and thus defines a functor

Λ : Set∆ → dgCatk.

Remark 4.2. Note that a monomial (σ1|...|σk) where σi ∈ Kni and minσ1 = x, maxσi = minσi+1

for i = 1, ..., k− 1, and maxσk = y corresponds to a necklace t : ∆n1 ∨ ...∨∆nk → (Nec ↓ K)x,y.

Definition 4.3. The dg nerve functor Ndg : dgCatk → Set∆ is defined by setting

Ndg(C)n := HomdgCatk(Λ(∆
n), C)

for any dg category C.

Remark 4.4. It follows from Theorem 6.1 of [21] that the above definition of Ndg agrees with
Lurie’s definition of the dg nerve functor in [15]. Hence Λ : Set∆ → dgCatk is the left adjoint
for Lurie’s dg nerve functor. Moreover, it is shown in [15] that the simplicial set Ndg(C) is a
quasi-category.

It follows from [21] that Λ is weakly equivalent to taking chains on the mapping spaces of C,
as we recall next.

Proposition 4.5. For any K ∈ Set∆ there is a natural weak equivalence of dg categories Λ(K) ≃
(Q ◦ C)(K) where C : Set∆ → Cat∆ is the rigidification functor and Q : Cat∆ → dgCatk is the
functor which applies the simplicial chains functor on the mapping spaces of a simplicial category.

Proof. For any two x, y ∈ K, the chain complex Λ(K)(x, y) is isomorphic to the chain complex of
normalized cubical chains on C□c(K)(x, y), as explained in section 6 of [21]. Then by Proposition
3.4, there is an isomorphism of simplicial sets C(K)(x, y) ∼= T (C□c(K)(x, y)) where T : Set□c →
Set∆ is the triangulation functor. Finally, the desired result follows from Lemma 7.2 of [21] which
says that there is a natural quasi-isomorphism between the chain complex of normalized simplicial
chains on T (C□c(K)) and the chain complex of normalized cubical chains on C□c(K).

By Proposition 6.2 of [9] there is a natural weak equivalence of simplicial categories C(K ×
L) ≃ C(K)×C(L). Hence, by Proposition 4.5 and a classical result of Eilenberg-Zilber it follows
that there is a weak equivalence of dg categories Λ(K×L) ≃ Λ(K)⊗Λ(L). We describe explicitly
the map AWΛ : Λ(K × L) → Λ(K)⊗ Λ(L).

Proposition 4.6. For any simplicial sets K and L, there exists a dg functor AWΛ : Λ(K×L) →
Λ(K)⊗ Λ(L), endowing Λ : Set∆ → dgCatk with an oplax monoidal structure.

Proof. Denote by Q□c : Cat□c → dgCatk the functor defined by applying normalized cubical
chains at the level of mapping spaces. From the construction of Λ it follows that there is a
natural isomorphism of functors Λ ∼= Q□c ◦ C□c . Define AWΛ : Λ(K × L) → Λ(K) ⊗ Λ(L) as
follows. Define a dg functor

∆□ : Q□c(C□c(K × L)) → Q□c(C□c(K × L))⊗Q□c(C□c(K × L))

to be the diagonal map on objects and the Serre diagonal map applied to the cubical sets with
connections on mapping spaces (as recalled in Example 2.2). Consider the dg functor

P1 ⊗ P2 : Q□c(C□c(K × L))⊗Q□c(C□c(K × L)) → Q□c(C□c(K))⊗Q□c(C□c(L)),
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where P1 : Q□c(C□c(K × L)) → Q□c(C□c(K)) is induced by the projection K × L → K and P2

is defined similarly. Finally, define

Q□c(C□c(K × L)) → Q□c(C□c(K))⊗Q□c(C□c(L)) (6)

to be the composition P1 ⊗ P2 ◦∆□. Using the isomorphism Λ ∼= Q□c ◦ C□c , the above functor
yields a functor

AWΛ : Λ(K × L) → Λ(K)⊗ Λ(L).

This construction endows Λ with an oplax monoidal structure given by AWΛ.

Recall the following observation from [21] (Theorem 7.1) which opens up the possibility of
using algebraic techniques to study ∞-local systems as we shall see throughout this article.

Theorem 4.7. Let K be a simplicial set such that K0 = {x}. Then there is an isomorphism of
dg algebras φ : Ω(CN

∗ (K), ∂,∆)
∼=−→ Λ(K)(x, x).

The isomorphism of dg algebras φ is determined by φ[σ] = [σ] if deg(σ) > 1 and φ[σ] = [σ]−cx
if deg(σ) = 1 where cx ∈ Λ(K)(x, x) corresponds to the single bead necklace ∆1 → K which is
degenerate at x.

Remark 4.8. By Proposition 4.6 and Theorem 4.7 it follows that, for any K with K0 = {x},
AWΛ induces a coproduct on Ω(CN

∗ (K), ∂,∆) which is compatible with concatenation of mono-
mials giving rise to a dg bialgebra structure on Ω(CN

∗ (K), ∂,∆). This algebraic structure was
already discussed by Baues in [2]; we recall the explicit formula for the coproduct. Given a subset
a = {a0 < a1 < ... < ar} ⊂ {0, ..., n} we obtain an injective function ia : {0, ..., r} → {0, ..., n}
with the subset a as image. For any simplex σ ∈ Kn define σ(a) = i∗a(σ) ∈ Kr. Let
n ≥ 2 and denote by x and y the first and last vertices of σ ∈ Kn. Then the coproduct
AWΛ : Λ(K)(x, y) → Λ(K)(x, y)⊗ Λ(K)(x, y) is given by

AWΛ[σ] =
∑

a≤{0,...,n}

(−1)ϵ(a)[σ(a0, a0 + 1, ..., a1), ..., σ(ar−1, ar−1 + 1, ..., ar)]⊗ [σ(a)],

where the sum runs through all subsets a = (a0, ..., ar) ⊂ {0, ..., n} with a0 = 0 < a1 < ... < ar =

n and ϵ(a) =
∑r

i=1(i−1)(dim(σ(ai−1, ..., ai))−1). If n = 1, so deg[σ] = 0, then AWΛ[σ] = [σ]⊗[σ].
For monomials of arbitrary length this formula is extended as an algebra map. Baues discusses
how such formula may be obtained from the Serre diagonal and a cubical interpretation of the
cobar construction. Hence, we can think of AWΛ as an extension of Baues’ coproduct on the
cobar construction to a functor of dg categories.

Finally, we recall one more result from [21] (Corollary 7.9) which follows from Theorem
4.7 together with some basic results from the theory of quasi-categories. It extends a classical
theorem of Adams, the main result of [1], to path-connected spaces which are not necessarily
simply connected:

Corollary 4.9. Let (X, b) be a path-connected pointed space and C = (CN
∗ (X, b), ∂,∆) the

connected dg coalgebra of normalized singular chains with vertices at b ∈ X and Alexander-
Whitney coproduct. Then the cobar construction ΩC is weakly equivalent as a dg algebra to
C∗(ΩbX), the singular chains on the space of (Moore) loops in X based at b with product induced
by concatenation of loops.
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5. Models for the ∞-category of ∞-local systems

We introduce three quasi-categories associated to a path-connected pointed space (X, b). From
now on we assume k is a field.

5.1 As the quasi-category of functors Let Sing(X, b) ⊂ Sing(X) be the sub Kan complex
whose set of n-simplices consists of all continuous maps |∆n| → X which map the vertices of
|∆n| to b.

Definition 5.1. An ∞-local system of k-chain complexes over X is a morphism of simplicial
sets F : Sing(X, b) → NdgChk. We denote by Loc∞X the quasi-category of ∞-local systems of
k-chain complexes over X, namely

Loc∞X := Fun(Sing(X, b), NdgChk). (7)

The n-simplices of Loc∞X are given by

(Loc∞X )n = Set∆(∆
n × Sing(X, b), NdgChk) (8)

By adjunction, we have a natural isomorphism

(Loc∞X )n ∼= dgCatk(Λ(∆
n × Sing(X, b)), Chk). (9)

The simplicial set Loc∞X is a quasi-category because NdgChk is a quasi-category. The notion of
an ∞-local system was defined in [3] as a refinement of the classical notion of a local system.

5.2 As the dg category of dg modules with morphisms between bar constructions
The data of a local system F : Sing(X, b) → NdgChk determines a morphism of dg categories
F̃ : Λ(Sing(X, b)) → Chk. Note Λ(Sing(X, b)) has a single object b so F̃ determines a chain com-
plex F̃ (b) together with a right dg module structure over the dg algebra Λ(Sing(X, b))(b, b) ∼= ΩC,
where C = (CN

∗ (Sing(X, b);k), ∂,∆) is the connected dg coalgebra of normalized chains on
Sing(X, b) with Alexander-Whitney coproduct ∆ : C → C ⊗ C.

We recall certain categorical constructions associated to any dg algebra (A, dA).

Definition 5.2. Let ModA be the dg category having as objects right dg A-modules which are
bounded below and for any two such objects (M,dM ) and (N, dN ) a chain complex (ModA(M,N), δ)

of morphisms defined as follows. As a graded k-module ModA(M,N) =
⊕

p∈Z ModA(M,N)p,
where ModA(M,N)p is the k-module of degree p maps f : M → N of right A-modules. The
differential δ : ModA(M,N)∗ → ModA(M,N)∗−1 is defined by

δ(f) = dN ◦ f − (−1)|f |f ◦ dM .

Composition of morphisms is defined in the obvious way. The derived ∞-category of right dg
A-modules is the quasi-category Ndg((ModA)proj), where (ModA)proj is the full sub dg category
of ModA consisting of projective right dg A-modules.

The homotopy category of the derived ∞-category of right dg A-modules has projective
modules as objects and morphisms given by chain homotopy classes of chain maps. Thus the
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homotopy category is isomorphic to the classical derived category of right dg A-modules since
quasi-isomorphisms between projective modules are invertible up to chain homotopy [15].

We can also construct a dg category of dg right A-modules whose homotopy category consists
of A∞-module morphisms. This dg category provides another model for the derived ∞-derived
category which we will be useful for us. We now assume (A, dA) is augmented.

Definition 5.3. Let Mod∞
A be the dg category having the same objects as ModA and for any

two such objects (M,dM ) and (N, dN ) a chain complex (Mod∞
A (M,N), δ) of morphisms defined

as follows. As a graded k-module Mod∞
A (M,N) =

⊕
p∈Z Mod∞

A (M,N)p, where Mod∞
A (M,N)p

is the k-module generated by degree p BA-comodule maps

f :M ⊗BA→ N ⊗BA,

whereBA is the bar construction ofA as defined in section 2.6. The differential δ : Mod∞
A (M,N)∗ →

Mod∞
A (M,N)∗−1 is defined by

δ(f) = bN ◦ f − (−1)|f |f ◦ bM ,

where for any right dg A-module M , bM :M ⊗BA→M ⊗BA is given by

bM (m⊗ {a1|...|an}) := dMm⊗ {a1|...|an} −
n∑

i=1

m⊗ (−1)ϵi{a1|...|dAai|...|an}

+ (−1)|m|(m · a1)⊗ {a2|...|an}+
n−1∑
i=1

(−1)ϵim⊗ {a1|...|aiai+1|...|an}
(10)

for any m ∈M , {a1|...|an} ∈ BA and ϵi = |m|+ |a1|+ ...+ |ai|−i+1. Composition of morphisms
is defined in the obvious way.

Remark 5.4. Since N ⊗ BA is a free right BA-comodule, the chain complex Mod∞
A (M,N) is

equivalent to the vector space generated by linear maps

f :M ⊗BA→ N

together with differential δ̂ defined by

δ̂(f)(m⊗ {a1|...|an}) := dNf(m⊗ {a1|...|an})− (−1)|f |f(bM (m⊗ {a1|...|an}))

+ (−1)|m|+|a1|+...+|an−1|−n+1f(m⊗ {a1|...|an−1}) · an.
(11)

The 0-cycles in Mod∞
A (M,N) are, by definition, A∞-module morphisms between the dg A-

modules M and N and H0(Mod∞
A (M,N)) is the vector space of A∞-module morphisms module

chain homotopy. Recall that an A∞-module quasi-isomorpshism is invertible up to chain homo-
topy [13].

Proposition 5.5. There is a weak equivalence of quasi-categories

Ndg(Mod∞A ) ≃ Ndg((ModA)proj).

Proof. We first show that (ModA)proj and Mod∞
A are weak equivalent as dg categories. Consider

the dg functor ι : (ModA)proj → Mod∞
A which is identity on objects and for any two projective
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modules P and Q the chain map ι : (ModA)proj(P,Q) → Mod∞
A (P,Q) is given on any f : P → Q

by defining ι(f) : P ⊗BA→ Q⊗BA to be

ι(f)(p⊗ 1k) = f(p)

and
ι(f)(p⊗ {a1|...|an}) = 0

if n > 0. The dg functor ι induces an essentially surjective functor of homotopy categories
H0(ι) : H0((ModA)proj) → H0(Mod∞

A ). In fact, given a dg A module M ∈ H0(Mod∞
A ) we

may consider its bar resolution B(M,A,A) = M ⊗ BA ⊗ A ∈ H0((ModA)proj), which is quasi-
isomorphic to M as a right dg A-module. Since B(M,A,A) is A∞-quasi-isomorphic to M it
follows that B(M,A,A) are isomorphic in H0(Mod∞

A ).
The induced map H0(ι) : H0((ModA)proj(P,Q)) → H0(Mod∞

A (P,Q)) is injective since a
morphism of dg A-modules determines a unique A∞-morphism and a chain homotopy of maps of
dg A-modules determines a unique chain homotopy between the corresponding A∞-morphisms.
Moreover, H0(ι) : H0((ModA)proj(P,Q)) → H0(Mod∞

A (P,Q)) is surjective since a morphism in
H0(Mod∞

A (P,Q)) represented by a map of dg BA-comodules f : P ⊗ BA → Q ⊗ BA induces
a morphism between bar resolutions f ⊗ idA : B(P,A,A) → B(Q,A,A), which provides a
lift of f to H0((ModA)proj(P,Q)). Since, for any n ≥ 0, we have Hn((ModA)proj(P,Q)) =

H0((ModA)proj(P,Q[n])), where Q[n] denotes the graded module shifted by n, and similarly for
Hn(Mod∞

A (P,Q)), it follows that Hn(ι) is an isomorphism for all n.
Finally, since the the dg nerve functor Ndg sends weak equivalences of dg categories to weak

equivalences of quasi-categories (as explained in Proposition 1.3.1.20 of [15]), it follows that
Ndg(ι) : Ndg(Mod∞

A ) → Ndg((ModA)proj) is a weak equivalence of quasi-categories.

5.3 As the dg category of dg modules with morphisms between twisted tensor
products If A = ΩC for a conilpotent dg coalgebra C we define a new dg category Modτ

ΩC of
dg ΩC-modules by replacing the bar construction in the above discussion with a twisted tensor
product construction.

Definition 5.6. Define a dg category Modτ
ΩC as follows. The objects of Modτ

ΩC are the same
objects as in Mod∞

ΩC , i.e. right dg ΩC-modules. Given two dg ΩC-modules (M,dM ) and (N, dN )

the chain complex Modτ
ΩC(M,N) is defined as the vector space generated by graded right C-

comodule maps

f :M ⊗ C → N ⊗ C,

with differential δ : Modτ
ΩC(M,N) → Modτ

ΩC(M,N) defined by

δ(f) = ∂⊗τ ◦ f − (−1)|f |f ◦ ∂⊗τ ,

where ∂⊗τ denotes the differential of the twisted tensor product construction associated to the
universal twisting cochain τ : C → ΩC, as defined by equation 3. Composition of morphisms is
defined in the obvious way.

Since N ⊗ C is a free right C-comodule, Modτ
ΩC(M,N) is isomorphic to the chain complex

generated by graded linear maps

g :M ⊗ C → N
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with differential δ̂ defined by

δ̂(g)(m⊗ σ) := dNg(m⊗ σ)− (−1)|g|g(dMm⊗ σ)− (−1)|m|+|g|g(m⊗ ∂(σ))

+
∑
(σ)

(−1)|m|+|g|g((m · τ(σ′))⊗ σ′′) +
∑
(σ)

(−1)|g|+|m|+|σ′|g(m⊗ σ′) · τ(σ′′), (12)

where we have written ∆(σ) =
∑

(σ) σ
′ ⊗ σ′′ for the coproduct ∆ : C → C ⊗ C.

6. Equivalence of ∞-categories Loc∞X , NdgMod∞
ΩC, and NdgModτ

ΩC

In the previous sections we have introduced three quasi-categories: Loc∞X , NdgMod∞
ΩC , and

NdgModτ
ΩC . In this section we argue that all of these are weakly equivalent as quasi-categories,

i.e. equivalent as ∞-categories. We do this in the following two subsections

6.1 Equivalence between NdgMod∞
ΩC and NdgModτ

ΩC

We first show that the two dg categories Modτ
ΩC and Mod∞

ΩC are weakly equivalent.

Proposition 6.1. For any conilpotent dg coalgebra C and any right dg ΩC-module M there is
a natural quasi-isomorphism of chain complexes

ϕ : (M ⊗BΩC, bM ) → (M ⊗ C, ∂⊗τ ). (13)

Proof. Define ϕ : (M ⊗ BΩC, bM ) → (M ⊗ C, ∂⊗τ ) by setting ϕ(m ⊗ {a1|...|an}) = 0 if n > 1,
and if n = 1 with a1 = [c1|...|ck] let

ϕ(m⊗ {[c1|...|ck]}) =

{
c1, k = 1,

m · [c1|...|ck−1]⊗ ck, k > 1;

It is an easy computation to check that ϕ is a chain map. Moreover, ϕ is surjective with right
inverse given by the chain map id⊗ρC : (M ⊗C, ∂⊗τ ) → (M ⊗BΩC, bM ) where ρC : C → BΩC

is the dg coalgebra map defined by

ρC(c) = {[c]}+
∑
(c)

{[c′]|[c′′]}+
∑
(c)

{[c′]|[c′′]|[c′′′]}+ ... , (14)

and the number of prime subscripts denotes the number of iterated applications of ∆ : C → C⊗C;
namely, ((idC ⊗∆) ◦∆)(c) =

∑
(c) c

′ ⊗ c′′ ⊗ c′′′, ((idC ⊗ idC ⊗∆) ◦ (idC ⊗∆) ◦∆)(c) =
∑

(c) c
′ ⊗

c′′ ⊗ c′′′ ⊗ c′′′′, and so on. Note that ρC is well defined by the conilpotency of the coalgebra C.
We argue that (ker ϕ, bM ) is a contractible sub complex in order to conclude that ϕ is a

quasi-isomorphism. In fact, define h : ker ϕ → ker ϕ on any m ⊗ {a1|...|an} ∈ ker ϕ with
a1 = [c1|...|ck] ∈ ΩC by

h(m⊗ {[c1|...|ck]|a2|...|an}) =

{
0, k = 1,

{[c1]|[c2|...|ck]|a2|...|an} k > 1;

The conilpotency of C yields that for any x ∈ ker ϕ there exists a non-negative integer nx such
that (bM ◦ h + h ◦ bM − id)nx = 0. This last equation implies that if x ∈ ker ϕ is a cycle then
there exists some y such that x = bM (y), as desired.
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Corollary 6.2. For any conilpotent dg coalgebra C the dg categories ModτΩC and Mod∞ΩC are
weakly equivalent.

Proof. Recall that the objects of the two dg categories Modτ
ΩC and Mod∞

ΩC are the same: right
dg ΩC-modules. Consider the functor F : Mod∞

ΩC → Modτ
ΩC which is identity on objects and

on morphisms the map F : Mod∞
ΩC(M,N) → Modτ

ΩC(M,N) is defined by sending a a morphism
(f :M ⊗BΩC → N) ∈ Mod∞

ΩC(M,N) to the composition

F (f) :M ⊗ C
id⊗ρC−−−−→M ⊗BΩC

f−→ N. (15)

The map F : Mod∞
ΩC(M,N) → Modτ

ΩC(M,N) is a chain map. Moreover, F is surjective and
a right inverse is given by the chain map G : Modτ

ΩC(M,N) → Mod∞
ΩC(M,N) which sends a

morphism (g : M ⊗ C → N) ∈ Modτ
ΩC(M,N) to the map G(g) : M ⊗ BΩC → N defined by

G(g)(m⊗ {a1|...|an}) = 0 if n > 1 and if n = 1 with a1 = [c1|...|ck]

G(g)(m⊗ {[c1|...|ck]}) :=
k∑

i=0

g(m · [c1|...|ci]⊗ ci+1) · [ci+2|...|ck]. (16)

We argue that the kernel of F : Mod∞
ΩC(M,N) → Modτ

ΩC(M,N) is contractible. Note that
ker F is isomorphic to the complex generated by linear maps

f : coker(id⊗ ρC) → N

with differential induced by δ̂ as defined in 11. By Proposition 6.1 (and its proof) there is an
isomorphism coker(id⊗ ρC) ∼= ker ϕ, so we have an isomorphism of complexes

ker F ∼= (k{f : ker ϕ→ N}, δ̂), (17)

where k{f : ker ϕ → N} denotes the k-vector space generated by linear maps f : ker ϕ → N .
Define h̃ : (k{f : ker ϕ → N}, δ̂) → (k{f : ker ϕ → N}, δ̂) on any generator f by h̃(f) = f ◦ h
where h : ker ϕ → ker ϕ is defined in the proof of Proposition 6.1. For all f ∈ (k{f : ker ϕ →
N}, δ̂) there exists a non-negative integer nf such that (h̃ ◦ δ̂ + δ̂ ◦ h̃ − id)nf = 0. As in the
proof of Proposition 6.1, this implies that (k{f : ker ϕ→ N}, δ̂) is contractible. By 17, ker F is
contractible as well.

Since the dg nerve functor sends weak equivalences of dg categories to weak equivalences of
quasi-categories ( Proposition 1.3.1.20 of [15]) we may deduce directly from Corollary 6.2 the
following

Corollary 6.3. For any conilpotent dg coalgebra C the quasi-categories NdgMod∞ΩC and NdgModτΩC

are weakly equivalent.

As before, let (X, b) a pointed path-connected space and C = (CN
∗ (Sing(X, b);k), ∂,∆).

6.2 Equivalence between Loc∞X and NdgModτ
ΩC

We first construct a functor of quasi-categories

θ : Loc∞X → NdgModτ
ΩC .
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From the adjunction (Λ, Ndg), we obtain the following natural bijections for the sets of n-
simplices:

(Loc∞X )n ∼= Set∆(∆
n × Sing(X, b), NdgChk) ∼= dgCatk(Λ(∆

n × Sing(X, b)), Chk)

and
(NdgModτ

ΩC)n
∼= Set∆(∆

n, NdgModτ
ΩC)

∼= dgCatk(Λ(∆
n),Modτ

ΩC).

Hence, constructing θ is equivalent to constructing set maps

θ : dgCatk(Λ(∆
n × Sing(X, b)), Chk) → dgCatk(Λ(∆

n),Modτ
ΩC)

for all integers n ≥ 0, which are compatible with maps [n] → [m] in the ordinal category ∆.
Given any dg functor F ∈ dgCatk(Λ(∆

n × Sing(X, b)), Chk) define a dg functor θ(F ) :

Λ(∆n) → Modτ
ΩC on objects i ∈ Λ(∆n) by letting θ(F )(i) be the chain complex F (i, b) equipped

with the right dg ΩC-module given by pre-composing the map induced by F

F : Λ({i} × Sing(X, b))(b, b) → Chk(F (i, b), F (i, b))

with the isomorphism of dg algebras

ΩC
φ−→ Λ(Sing(X, b))(b, b) ∼= Λ({i} × Sing(X, b))(b, b)

given in Theorem 4.7. For simplicity, denote the right dg ΩC-module θ(F )(i) by Fi. Given any
two objects i, j ∈ Λ(∆n) we must define a chain map

θ(F ) : Λ(∆n)(i, j) → Modτ
ΩC(Fi, Fj).

First we introduce some notation. For any simplicial set S and i, j ∈ S0 let

EZ : Λ(S)(i, j)⊗ C → Λ(S × Sing(X, b))((i, b), (j, b)) (18)

be the graded linear map defined on any generator t ⊗ σ ∈ Λ(S)(i, j) ⊗ C, where (t : T →
S) ∈ Λ(S)(i, j) and (σ : ∆l → Sing(X, b)) ∈ C, by letting EZ(t ⊗ σ) be the (signed) sum of
all generators in Λ(S × Sing(X, b))((i, b), (j, b)) of degree dim(T ) + deg(σ) with beads inside the
sub-simplicial set (t × σ)(T × ∆l) ⊂ S × Sing(X, b).2 In other words, if T = ∆n1 ∨ ... ∨ ∆nk

then EZ is given by considering all top dimensional necklaces inside (∆n1 ∨ ...∨∆nk)×∆l from
vertex (αT , 0) to vertex (ωT , l) and mapping them to S × Sing(X, b) via t× σ.

We now define θ(F ) by applying the map EZ when S = ∆n as follows: for any generator t ∈
Λ(∆n)(i, j) as above let θ(F )(t) ∈ Modτ

ΩC(Fi, Fj) be the map of right C-comodules determined
by the linear map θ(F )(t) : Fi ⊗ C → Fj given by

θ(F )(t)(m⊗ σ) := (−1)|σ||m|F (EZ(t⊗ σ))(m) (19)

for any generators m ∈ Fi and σ ∈ C.

Proposition 6.4. The linear map θ(F ) : Λ(∆n)(i, j) → ModτΩC(Fi, Fj) is a chain map.
2EZ stands for Eilenberg-Zilber since it extends the classical map, C∗(X) ⊗ C∗(Y ) → C∗(X × Y ), when both
necklaces have one bead and the degree is correctly shifted.



50 Manuel Rivera and Mahmoud Zeinalian, Higher Structures 4(1):33–56, 2020.

Proof. This follows from the (Maurer-Cartan type) formula

dΛEZ(t⊗ σ) = EZ(dΛt⊗ σ) + (−1)|t|EZ(t⊗ ∂′σ)

−
∑
(σ)

[(i, σ′)|EZ(t⊗ σ′′)] +
∑
(σ)

(−1)|t||σ
′|[EZ(t⊗ σ′)|(j, σ′′)], (20)

where ∂′(σ) :=
∑|σ|−1

i=1 (−1)idi(σ), ∆(s) =
∑

(σ) σ
′⊗σ′′ ∈ C⊗C, and (i, σ′) denotes the generator

in Λ(∆n × Sing(X, b))((i, b), (i, b)) represented by the necklace with a single bead {i} × σ′, and
(j, σ′′) is defined similarly. In fact, for any m ∈ Fi, 20 implies

F (dΛ(EZ(t⊗ σ)))(m) = F (EZ(dΛt⊗ σ))(m)± F (EZ(t⊗ ∂′σ))(m)

±
∑
(σ)

F (EZ(t⊗ σ′′))(τ(σ′) ·m)±
∑
(σ)

τ(σ′′) · F (EZ(t⊗ σ′))(m) (21)

and since F : Λ(∆n × Sing(X, b))((i, b), (j, b)) → Chk(Fi, Fj) is a chain map we have

F (dΛ(EZ(t⊗ σ)))(m) = dFi(F (EZ(t⊗ σ))(m))± F (EZ(t⊗ σ))(dFim). (22)

Combining 21 and 22 we obtain δ̂(θ(F )(t)) = θ(F )(dΛt), where δ̂ is the differential as defined in
12, as desired.

Since the classical Eilenberg-Zilber map is natural with respect to simplicial set morphisms
it follows that the map EZ of 18 is natural with respect to morphisms [n] → [m] in ∆. It follows
that the maps {θ : (Loc∞X )n → (NdgModτ

ΩC)n} are compatible with morphisms in ∆ as well, so
they define a map of simplicial sets θ : Loc∞X → NdgModτ

ΩC .

We now show θ induces a homotopy equivalence of Kan complexes at the level of mapping
spaces by constructing an explicit homotopy inverse. It is enough to show that for any two
∞-local systems P,Q ∈ (Loc∞X )0 ∼= dgCatk(Λ(Sing(X, b)), Chk), the morphism θ defined in Step
1 induces a homotopy equivalence between right morphism spaces

θ : HomR
Loc∞X

(P,Q) → HomR
NdgModτ

ΩC
(θ(P ), θ(Q)). (23)

Recall that HomR
Loc∞X

(P,Q) and HomR
NdgModτ

ΩC
(θ(P ), θ(Q)) are Kan complexes with sets of sim-

plices given by

HomR
Loc∞X

(P,Q)n ∼= {f ∈ Set∆(J
n, Loc∞X ) : f(x) = P, f(y) = Q}

and

HomR
NdgModτ

ΩC
(θ(P ), θ(Q))n ∼= {g ∈ Set∆(J

n, NdgModτ
ΩC) : g(x) = θ(P ), g(y) = θ(Q)},

where Jn is the simplicial set with two vertices x and y defined in section 2.5. Using the adjunc-
tion (Λ, Ndg) once again, the sets HomR

Loc∞X
(P,Q)n and HomR

NdgModτ
ΩC

(θ(P ), θ(Q))n described
above correspond to

{F ∈ dgCatk(Λ(J
n × Sing(X, b)), Chk) : F |Λ({x}×Sing(X,b)) = P, F |Λ({y}×Sing(X,b))) = Q} (24)

and
{G ∈ dgCatk(Λ(J

n),Modτ
ΩC) : G(x) = θ(P ), G(y) = θ(Q)}, (25)
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respectively. Note that the generators of Λ(Jn)(x, y) correspond to necklaces with a single bead
so they are determined by generators in CN

∗>0(J
n) with a degree shift of −1. We use these

identifications to construct a morphism of simplicial sets

ψ : HomR
NdgModτ

ΩC
(θ(P ), θ(Q)) → HomR

Loc∞X
(P,Q) (26)

which we will show to be a homotopy inverse for θ : HomR
Loc∞X

(P,Q) → HomR
NdgModτ

ΩC
(θ(P ), θ(Q)).

Given any G ∈ dgCatk(Λ(J
n),Modτ

ΩC) such that G(x) = θ(P ) and G(y) = θ(Q) define the
dg functor ψ(G) ∈ dgCatk(Λ(J

n × Sing(X, b)), Chk) on objects by setting ψ(G)(x, b) = P (b)

and ψ(G)(y, b) = Q(b). We proceed by defining chain maps

ψ(G) : Λ(Jn × Sing(X, b))(z, z′) → Chk(ψ(G)(z), ψ(G)(z
′)). (27)

If z = z′ = (x, b) then any necklace s : T → Jn × Sing(X, b) representing a generator in
Λ(Jn×Sing(X, b))(z, z′) lies inside {x}×Sing(X, b). In this case define ψ(G) via the composition

Λ({x} × Sing(X, b)((x, b), (x, b)) ∼= Λ(Sing(X, b))(b, b) P−→ Chk(P (b), P (b)).

The case z = z′ = (y, b) is similar.
Suppose now that z = (x, b) and z′ = (y, b). Then any generator s ∈ Λ(Jn×Sing(X, b))(z, z′)

may be represented by a necklace s : ∆n1 ∨ ... ∨∆nr → Jn × Sing(X, b) such that there exists
some 1 ≤ p ≤ r for which s maps ∆n1 ∨ ... ∨ ∆np−1 into {x} × Sing(X, b), s maps the first
and last vertices of ∆np to (x, b) and (y, b) respectively, and s maps ∆np+1 ∨ ... ∨ ∆nr into
{y}×Sing(X, b). For any 1 ≤ l < k ≤ p, write sl,k for the restriction of s to ∆nl∨∆nl+1∨ ...∨∆nk

and sp for the restriction of s to the bead ∆np . Note that s1,p−1 may be considered as a
generator in Λ(Jn×Sing(X, b))((x, b), (x, b)). Similarly, sp+1,r may be considered as a generator
in Λ(Jn × Sing(X, b))((y, b), (y, b)).

For any such s ∈ Λ(Jn × Sing(X, b))(z, z′) define 27 by

ψ(G)(s) :=
∑
(sp)

ψ(G)(sp+1,r) ◦G([s′p])(_ ⊗ s′′p) ◦ ψ(G)(s1,p−1), (28)

where we have written ∆(sp) =
∑

(sp)
s′p ⊗ s′′p ∈ CN

∗ (Jn) ⊗ CN
∗ (Sing(X, b)) for the Alexander

Whitney map applied to sp : ∆np → Jn×Sing(X, b). Similar arguments to those in Step 1 verify
that the map ψ(G) : Λ(Jn × Sing(X, b))(z, z′) → Chk(ψ(G)(z), ψ(G)(z

′)) is a chain map and
that ψ(G) is natural with respect to maps [n] → [m] in ∆. Therefore, the above data defines a
morphism ψ : HomR

NdgModτ
ΩC

(θ(P ), θ(Q)) → HomR
Loc∞X

(P,Q) of simplicial sets.

Proposition 6.5. For any P,Q ∈ (Loc∞)0, the map

ψ : HomR
NdgModτΩC

(θ(P ), θ(Q)) → HomR
Loc∞X

(P,Q)

is a homotopy inverse for θ : HomR
Loc∞X

(P,Q) → HomR
NdgModτΩC

(θ(P ), θ(Q)).

Proof. Note that for anyG ∈ HomR
NdgModτ

ΩC
(θ(P ), θ(Q))n, t ∈ Λ(Jn)(x, y), σ ∈ C, andm ∈ θ(P )

we have
θ(ψ(G))(t)(m⊗ σ) =

∑
(EZ(t⊗σ))

(−1)ϵG([EZ(t⊗ σ)′])(m⊗ EZ(t⊗ σ)′′), (29)

where ϵ = |σ||m|+ |EZ(t⊗σ)′′||m|. Since
∑

(EZ(t⊗σ))EZ(t⊗σ)′⊗EZ(t⊗σ)′′ = t⊗σ it follows
that equation 29 equals G(t)(m⊗ σ). Thus, θ ◦ ψ = id.
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We now argue for the existence of a chain homotopy ψ ◦ θ ≃ id. Let F be any element of
the set HomR

Loc∞X
(P,Q)n (identified with 24) and s ∈ Λ(Jn × Sing(X, b))(z, z′) be any generator

represented by a map s : ∆n1 ∨ ... ∨ ∆nr → Jn × Sing(X, b)) which sends ∆n1 ∨ ... ∨ ∆np−1

into {x} × Sing(X, b), s sends the first and last vertices of the p-th bead ∆np to (x, b) and (y, b)

respectively, and s sends ∆np+1 ∨ ... ∨∆nr into {y} × Sing(X, b). Then we have

ψ(θ(F ))(s) =
∑
(sp)

F ([s1,p−1|EZ([s′p]⊗ s′′p)|sp+1,r]). (30)

An acyclic models argument (similar to the proof of the classical Eilenberg-Zilber theorem)
yields that the natural chain map

Λ(Jn × Sing(X, b))(z, z′) → Λ(Jn × Sing(X, b))(z, z′)

given by
s 7→

∑
(sp)

[s1,p−1|EZ([s′p]⊗ s′′p)|sp+1,r]

is chain homotopic to the identity map via a chain homotopy

H : Λ(Jn × Sing(X, b))(z, z′) → Λ(Jn × Sing(X, b))(z, z′).

We now construct a simplicial homotopy

h : HomR
Loc∞X

(P,Q)×∆1 → HomR
Loc∞X

(P,Q) (31)

yielding ψ ◦θ ≃ id. For any simplex F ∈ HomR
Loc∞X

(P,Q)n consider the prism F ×∆1 =
⋃n

i=0 S
F
i

where each SF
i ∈ (HomR

Loc∞X
(P,Q)×∆1)n+1 is the image under

F × id : ∆n ×∆1 → (HomR
Loc∞X

(P,Q)×∆1)n+1

of the i-th (n+1)-simplex Si ∈ (∆n ×∆1)n+1 in the usual subdivision of a prism into simplices.
The homotopy h is determined by defining

h(SF
i ) : Λ(J

n × Sing(X, b))(z, z′) → Chk(F (z), F (z
′)) (32)

as h(SF
i ) = 0 if i ̸= 0 and h(SF

0 ) = F ◦H, where F ◦H denotes the composition

Λ(Jn × Sing(X, b))(z, z′) H−→ Λ(Jn × Sing(X, b))(z, z′) F−→ Chk(F (z), F (z
′)).

Theorem 6.6. The functor θ : Loc∞X → NdgModτΩC is a weak equivalence of quasi-categories.

Proof. The adjunction (Λ, Ndg) implies that a right dg module over the dg algebra

ΩC ∼= Λ(Sing(X, b))(b, b)

is equivalent to a morphism of simplicial sets Sing(X, b) → NdgChk, so θ : Loc∞X → NdgModτ
ΩC

induces an essentially surjective functor of homotopy categories. It follows from Proposition 6.5
that θ : Loc∞X → NdgModτ

ΩC induces a homotopy equivalence of Kan complexes at the level of
mapping spaces.
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Remark 6.7. There are two other models for the ∞-category NdgModτΩC in the literature. In [3]
it is shown that, when X is a manifold and C is the dg coalgebra of smooth chains on X, the dg
category ModτΩC is A∞-quasi-equivalent to a dg category of smooth Z-graded vector bundles over
X with homotopy-coherently flat super connection (with certain finiteness assumptions). This
statement generalizes the classical Riemann-Hilbert correspondence. It is explained in section
8.4 of [17] that for any conilpotent dg coalgebra C there is a model structure on the category
of dg C-comodules which is Quillen equivalent to the standard model structure on the category
of dg ΩC-modules. This is a manifestation of Koszul duality. A Quillen equivalence of model
categories induces an equivalence of the associated ∞-categories. The ∞-category associated to
the model category of dg ΩC-modules is equivalent to NdgModτΩC .

7. The colimit of an ∞-local system

We use Theorem 6.6 to obtain a small model for the colimit of an ∞-local system. We recall the
definition and a criterion given in [14] for the (homotopy) colimit of β : K → C, where K is a
simplicial set, C a quasi-category, and β a map of simplicial sets. We first recall some notation.
For any two simplicial sets K and L denote by K ⋆ L the simplicial set whose set of n-simplices
is given by

(K ⋆ L)n = Kn ∪ Ln ∪
⋃

i+j=n−1

Ki × Lj

with structure maps induced by those in L and K. In particular, we call K ⋆∆0 the right cone
on K. Define Cβ/ to be the simplicial set whose set of n-simplices is

(Cβ/)n = Homβ(K ⋆∆n, C),

the set of simplicial set maps K ⋆∆n → C extending β : K → C. By Proposition 1.2.9.3 in [14],
if C is a quasi-category then so is Cβ/. An object x in a quasi-category D is called initial if the
right hom space HomR

D(x, y) is a contractible Kan complex for all objects y in D.

Definition 7.1. Given any map of simplicial sets β : K → C where C is a quasi-category, a
colimit for β is defined to be an initial object of Cβ/. Note that an object of Cβ/ can be identified
with a map β : K ⋆∆0 → C extending β. We sometimes abuse notation and refer to β(∗) ∈ C as
the colimit of β, where ∗ denotes the cone point of K ⋆∆0.

We have the following criterion (Lemma 4.2.4.3 in [14]) for detecting colimits in quasi-
categories:

Lemma 7.2. Let C be a quasi-category, K a simplicial set and β : K ⋆ ∆0 → C a map of
simplicial sets. Then the following conditions are equivalent:

• β : K ⋆∆0 → C is a colimit of β = β|K
• Let δ : C → Fun(K, C) denote the diagonal embedding, and let α : β → δ(β(∗)) denote the

natural transformation determined by β. Then, for every object Y ∈ C, composition with α
induces a homotopy equivalence

HomR
C (β(∗), Y ) → HomR

Fun(K,C)(β, δ(Y )).

We give a model for the colimit of an ∞-local system of chain complexes in terms of the twisted
tensor product construction. Let (X, b) be a path-connected pointed space and β : Sing(X, b) →
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NdgChk be an ∞-local system over X. Denote (M,dM ) = β(b) and C = (CN
∗ (Sing(X, b)), ∂,∆),

so that M is a right dg ΩC-module. Define a map β : Sing(X, b) ⋆∆0 → NdgChk which extends
β, by setting β(∗) := (M ⊗C, ∂⊗τ ), and for any simplex σ ∈ (Sing(X, b) ⋆∆0)n such that n > 0

and the first and last vertices of σ are b and ∗ respectively, let (β(σ) : (M,dM ) → (M⊗C, ∂⊗τ )) ∈
(NdgChk)n be the map of degree n− 1 defined by β(σ)(m) = m⊗ ∂n(σ), where ∂n(σ) is the last
face of σ (the face opposite to ∗, which lies inside Sing(X, b)). In particular, for any 1-simplex σ
from b to ∗, the 1-simplex β(σ) : (M,dM ) → (M ⊗ C, ∂⊗τ ) in (NdgChk)1 is the inclusion chain
map m 7→ m ⊗ σb where σb is the unique generator of C0. This yields a map of simplicial sets
β : Sing(X, b) ⋆∆0 → NdgChk.

Theorem 7.3. For any ∞-local system β : Sing(X, b) → NdgChk the map β : Sing(X, b)⋆∆0 →
NdgChk constructed above is a colimit of β.

Proof. The result follows from Lemma 7.2 with K = Sing(X, b) and C = NdgChk so that
Fun(K, C) = Loc∞X , together with the following two observations:
1) for any chain complex (Y, dY ) ∈ Chk with the trivial dg ΩC-module structure

HomR
NdgChk

((M ⊗ C, ∂⊗τ ), (Y, dY ))
∼= HomR

NdgModτΩC
((M,dM ), (Y, dY )),

and
2) by the proof of Theorem 6.6, the natural map of Kan complexes described in 26

HomR
NdgModτΩC

((M,dM ), (Y, dY )) → HomR
Loc∞X

(β, δ(Y, dY ))

is a homotopy equivalence and the composition of maps 1) and 2) above coincides with the
homotopy equivalence induced by the natural transformation α : β → δ(β(∗)) as described in
the second item of Lemma 7.2.

8. Recovering a classical result of Brown

For any fibration π : E → X over a path-connected space X, the path lifting property induces
a dg C∗(ΩbX)-module structure on C∗(F ), the singular chains on the fiber F = π−1(b). Hence,
C∗(F ) becomes dg ΩC-module where C = (CN

∗ (Sing(X, b)), ∂,∆). An explicit chain map Υ :

ΩC → C□
∗ (ΩbX) is given in [1], where C□

∗ (ΩbX) denotes the normalized singular cubical chains
on ΩbX. Adams defines Υ by constructing a collection of maps {υn : [0, 1]n−1 → P0,n|∆n|},
where P0,n|∆n| is the space of Moore paths in the topological n-simplex |∆n| from vertex 0

to vertex n. The maps {υn} satisfy a compatibility equation that relates the cubical faces of
[0, 1]n−1 to the simplicial faces and the Alexander-Whitney coproduct terms on ∆n and implies
that Υ is a chain map.

We give a more conceptual proof of the main result of [6] which says that the chains on the
total space of a fibration may be modeled as a twisted tensor product between chains on the
fiber and chains on the base.

Theorem 8.1. [6] Let π : E → X be a fibration over a path-connected space X with F = π−1(b)

for b ∈ X. Then, there is weak equivalence of chain complexes

C∗(E) ≃ (C∗(F )⊗ C, ∂⊗τ ). (33)
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Proof. Let S be the ∞-category of spaces and and S/X the ∞-category of spaces over X, both
thought of as quasi-categories. Recall that by the ∞-categorical version of the Grothendieck
construction there is a weak equivalence of quasi-categories

φ : S/X ≃ Fun(Sing(X, b),S). (34)

Hence, any fibration π : E → X gives rise to a functor of quasi-categories φπ : Sing(X, b) → S
and colim φπ ≃ E, where colim denotes the (homotopy) colimit as defined in the section 6. The
fact that colim φπ ≃ E follows from Proposition 2.1 of the exposition [16]; more details may be
found in section 3.3.4 of [14].

An explicit description of φπ may be obtained as follows: for b ∈ Sing(X, b)0 we have φπ(b) =

π−1(b) = F , for any 1-simplex γ ∈ Sing(X, b)1 the path lifting property provides a homotopy
equivalence φπ(γ) : F → F , and in general, for any σ ∈ Sing(X, b)n the path lifting property
applied to the family of paths υn : [0, 1]n−1 → P0,n|∆n| constructed by Adams provides a
continuous map φπ(σ) : F × [0, 1]n−1 → F .

After taking singular cubical chains over k, φπ gives rise to an ∞-local system βπ : Sing(X, b) →
NdgChk, for which βπ(b) = C∗(F ), and since the singular chains functor preserves (homo-
topy) colimits we obtain colim βπ ≃ C∗(E). It follows from Theorem 7.3 that C∗(E) ≃
(C∗(F )⊗ C, ∂⊗τ ), as desired.
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