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Successful spoken-word recognition relies on interplay between lexical and sublexical

processing. Previous research demonstrated that listeners readily shift between more

lexically-biased and more sublexically-biased modes of processing in response to the

situational context in which language comprehension takes place. Recognizing words in

the presence of background noise reduces the perceptual evidence for the speech signal

and e compared to the clear e results in greater uncertainty. It has been proposed that,

when dealing with greater uncertainty, listeners rely more strongly on sublexical pro-

cessing. The present study tested this proposal using behavioral and electroencephalog-

raphy (EEG) measures. We reasoned that such an adjustment would be reflected in changes

in the effects of variables predicting recognition performance with loci at lexical and

sublexical levels, respectively. We presented native speakers of Dutch with words featuring

substantial variability in (1) word frequency (locus at lexical level), (2) phonological

neighborhood density (loci at lexical and sublexical levels) and (3) phonotactic probability

(locus at sublexical level). Each participant heard each word in noise (presented at one of

three signal-to-noise ratios) and in the clear and performed a two-stage lexical decision

and transcription task while EEG was recorded. Using linear mixed-effects analyses, we

observed behavioral evidence that listeners relied more strongly on sublexical processing

when speech quality decreased. Mixed-effects modelling of the EEG signal in the clear

condition showed that sublexical effects were reflected in early modulations of ERP com-

ponents (e.g., within the first 300 msec post word onset). In noise, EEG effects occurred later

and involved multiple regions activated in parallel. Taken together, we found evidence e
intz).

rved.
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especially in the behavioral data e supporting previous accounts that the presence of

background noise induces a stronger reliance on sublexical processing.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Decades of research on spoken-word recognition have led to a

number of different theoretical and computationally imple-

mented models (e.g., Trace, McClelland & Elman, 1986;

Shortlist A, Norris, 1994; Shortlist B, Norris & McQueen, 2008;

PARSYN, Luce et al., 2000; EARSHOT, Magnuson et al., 2020;

see Weber & Scharenborg, 2012, for review). While these

models differ in important aspects, for example concerning

the directionality of the flow of activation (Magnuson et al.,

2018; McQueen et al., 2003), the majority of them agree that

word recognition involves representations corresponding to

(minimally) sublexical phonological structures, word forms

and word meanings. There is also consensus that word

recognition is cascaded, in the sense that information flows

continuously through different stages of the recognition pro-

cess, rather than consisting of serial stages where a later stage

starts only after an earlier one has finished. The canonical

view on spoken-word recognition therefore assumes a tight

interplay between sublexical and lexical processing, such that

e as speech is perceived and processed e activation flows

from sublexical levels to lexical levels of processing. At the

latter stage, multiple target candidates, consistent with the

incoming phonological information, compete for recognition

and as information accumulates, inconsistent target word

candidates are excluded until the correct target is selected.

As with the majority of language comprehension studies,

research on spoken-word recognition has been conducted pre-

dominantly in strictly controlled laboratory environments,

using high quality audio recordings presented to the partici-

pants in shielded experimental booths. However, speech

recognitionoutside the lab frequently takesplaceunder adverse

conditions (e.g., in crowded public places, in cars, trains or on

airplanes) where the speech signal is distorted by the presence

of background noise (Mattys et al. 2012, for review). Previous

research on spoken-word recognition under adverse conditions

showed that the presence of noise has profound effects on the

underlying mechanisms and the neurobiological markers

associated with these mechanisms. Building on this body of

research, the present study was concerned with the interplay

betweensublexicaland lexicalprocessing, as there isagreement

across most models that spoken-word recognition minimally

involvesprocessingat thesestages. Specifically,we investigated

whether listeners adjust their reliance on sublexical and lexical

processing in the face of signal degradation and if/how the

neurobiological markers associated with sublexical and lexical

processing change accordingly.

1.1. Processing at sublexical and lexical levels

The fundamental process that underlies speech perception is

translating continuous acoustic cues into abstract
representational units that allow access tomeaning. To achieve

this feat, listeners must map the acoustic cues they perceive

onto abstract, speech-specific sublexical representations (e.g.,

phonemes), which we summarize here as “sublexical process-

ing”. Furthermore, listeners must map these representations

onto lexical representations, andontosemantic representations

(e.g., Chen & Mirman, 2012; Hickok & Poeppel, 2007; Luce &

Pisoni, 1998; McClelland & Elman, 1986; Norris, 1994; Norris,

McQueen, & Cutler, 2000), which we summarize as “lexical

processing”.

Previous research has shown that the speed and accuracy

with which spoken words are recognized are influenced by

statistical regularities pertaining to the words’ make-up. That

is, earlier studies identified properties that listeners exploit

when recognizing spoken words and that variation in these

properties predict how quickly and accurately words are

recognized. Three important properties are word frequency,

neighborhood density and phonotactic probability. While

word frequency is assumed to affect processing at the lexical

level, phonotactic probability is assumed to affect processing

at the sublexical level. Neighborhood density is considered a

hybrid as it integrates statistical regularities pertaining to both

levels.

1.2. Word frequency

Word frequency refers to the frequency of occurrence of

whole word forms in a given language (see Brysbaert et al.,

2018, for review). Effects of lexical frequency have been re-

ported in numerous behavioral studies using for example

speeded auditory lexical decision paradigms, where partici-

pants listen to spoken items and are instructed to indicate as

fast as possible whether they heard a word of their language

or not (Taft & Hambly, 1986; Luce & Pisoni, 1998; Cleland,

Gaskell, Quinlan, & Tamminen, 2006, Ferrand et al., 2018). It

is commonly found that words with higher frequency are

recognized faster than words with lower frequency (e.g.,

Coltheart et al., 2001).

Furthermore, when presenting spoken words in the pres-

ence of background noise, research has shown that high-

frequency words are recognized more accurately than low-

frequency words (e.g., Broadbent, 1967; Howes, 1957; Morton,

1969; Pollack, Rubinstein, & Decker, 1960; Preston, 1935). The

advantage in recognition accuracy and speed of high-

frequency over low-frequency words was found to be robust

in energetic masking (e.g., speech-shaped background noise),

even across the lifespan (e.g., Van Engen et al., 2020). More-

over, a recent study found that frequency showed strong ef-

fects on listeners’ misperceptions in energetic masking, but

showed reduced or absent effects in informational masking

(e.g., degradation of the target speech by irrelevant linguistic

signals, Cooke et al., 2019).
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Effects of word frequency have been reported in many

neurocognitive studies as well using magneto- or electroen-

cephalography (M/EEG). Frequencywas found tomodulate the

N400, an M/EEG component peaking around 400 msec after

word onset with centroparietal scalp distribution in EEG or a

left temporal scalp distribution in MEG (for review see Lau

et al., 2008; Kutas & Federmeier, 2011). Typically, words with

lower frequency elicit enhanced N400 amplitudes compared

to those with higher frequency. Variations in the N400

amplitude are considered to reflect variations in the process-

ing efforts required to map phonological forms onto their

lexical meanings (Van Petten & Kutas, 1990). Moreover, some

previous studies observed ‘late N400’ effects during time re-

gions after the spoken words' offsets (Desroches et al., 2009;

Dufour et al., 2013). These frequency effects have been

assumed to reflect the ease with which the target is selected

as the best candidate, when the speech signal is no longer

compatible with other lexical candidates (Desroches et al.,

2009).

To our knowledge, no study has yet systematically inves-

tigated the neural markers of word frequency for spoken-

word recognition in noise. Presumably, this is because most

studies control for frequency rather than manipulate it.

However, given the robustness of the behavioral advantage as

reported above, it is rather likely that highly frequent words

also reduce the N400 amplitude in adverse listening

conditions.

1.3. Phonological neighborhood density

Phonological neighborhood density captures a word's
phonological similarity to other existing words. It is typically

operationalized by counting the number of words that can be

formed from a target word by deletion, addition, and substi-

tution of one phoneme (Landauer & Streeter, 1973). Like word

frequency, phonological neighborhood density is canonically

considered to have a lexical locus: Inhibitory effects for words

with large similarity values are assumed to result from

enhanced competition with similar sounding words. Howev-

er, since the measure considers phonological (i.e., sublexical)

properties of the target as well, its locus is controversial.

Previous experimental reports providedmixed results with

neighborhood density having both inhibitory (lexical locus)

and facilitatory (sublexical locus) effects. Thus, neighborhood

densitymight be best conceived as a hybridmeasure, with loci

at lexical and sublexical levels. Specifically, while the majority

of behavioral studies reported that high-density words were

recognized less accurately and more slowly compared to low-

densitywords (e.g., Goldinger, Luce,& Pisoni, 1989; Vitevitch&

Luce, 1998; Vitevitch & Luce, 1999; Ziegler, Muneaux, &

Grainger, 2003; see Vitevitch Luce, & 2016, for review), others

like Vitevitch and Rodrı́guez (2005; see also Ferrand et al., 2018

for a study in French) have found that dense phonological

neighborhoods produced a facilitatory rather than inhibitory

effect in a lexical decision task in Spanish. Vitevitch and

Rodrı́guez (2005) reasoned that differences in processing

across English (prevailing language in most experiment) and

Spanish might account for the reverse directionality of the

neighborhood density effect. For example, it is conceivable

that speakers of Spanish generally rely more strongly on
sublexical than lexical processing. In doing so, neighborhood

density effects might reverse, since words with dense

phonological neighborhoods are often made up of high-

frequency phonemes. On such an account, ‘reverse neigh-

borhood density effects’ would be phonotactic probability ef-

fects in disguise.

Relatedly, when manipulating phonological neighborhood

density in neurocognitive studies, contradictory results have

been found concerning the modulation of the P200, a positive

potential peaking approximately 200 msec after auditory

stimulus onset. The P200 component has been associatedwith

the processing of the stimulus’ physical properties (Donchin,

Ritter, & McCallum, 1978). Hence, when the P200 was found

to be increased for high-density compared to low-density

words, Dufour et al. (2013) speculated whether this was due

to a confound (i.e., high-density words exhibiting higher

phonotactic probability). In contrast, when the P200 has been

shown to be decreased for high-density compared to low-

density words, Winsler et al. (2018) associated neighborhood

density effects with co-activation of larger sublexical and

lexical networks leading to enhanced competition.

Despite the inconsistent results on the P200 component, it

has been found robustly that wordswithmore neighbors elicit

larger N400 amplitudes thanwordswith fewer neighbors. This

has been argued to reflect enhanced efforts during lexical

access due to the activation of many similar sounding words

that compete with each other (Dufour et al., 2013; Winsler

et al., 2018).

To our knowledge, only one study investigated the effects

of neighborhood density on word recognition in the presence

of background noise. As in clear speech conditions, Hunter

(2016) found that high-density words elicit larger N400 am-

plitudes than low-density words.

1.4. Phonotactic probability

Phonotactic probability refers to the frequency with which a

sublexical segment (e.g., a phoneme) or combinations of seg-

ments occur in a certain position within a word. As indicated

above, phonotactic probability is sometimes positively corre-

lated with phonological neighborhood density (Vitevitch,

Luce, Pisoni, & Auer, 1999). As for word frequency, higher

phonotactic probability during spoken-word recognition is

associated with facilitatory effectsdalbeit at the sublexical

level.

Advantages of high phonotactic probability have been re-

ported in behavioral studies with tasks encouraging phono-

logical processing, for example a same-different task when

using non-words or phonologically neighboring words, where

the increase of phonotactic probability led to faster and more

accurate responses (Vitevitch & Luce, 1998; 1999, Exp. 1 & 2;

Vitevitch et al., 1999; Hunter, 2013). However, when the task

settings encouraged lexical processing, as for example in a

lexical decision task, the effect of phonotactic probability

disappeared (Dufour et al., 2013; Pylkk€anen, Stringfellow, &

Marantz, 2002; Vitevitch & Luce, 1999, Exp. 3).

In neurocognitive studies, themanipulation of phonotactic

probability modulated the amplitude of the PMN, an early

negative component peaking around 250 msec over fronto-

central regions. The PMN is considered to reflect the

https://doi.org/10.1016/j.cortex.2022.02.011
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mismatch between expected and perceived phonological

forms (Connolly & Phillips, 1994; for review and discussion of

the PMN see; Lewendon et al., 2020). Dufour et al. (2013) found

that words with high (compared to low) phonotactic proba-

bility elicited reduced PMN amplitudes suggesting facilitated

sublexical processing. Moreover, it has been found that the

PMN peaked earlier for high compared to low phonotactic

probability words (Hunter, 2013; Exp. 1).

To our knowledge, the behavioral and neurocognitive

impact of phonotactic probability has not yet been studied in

the presence of background noise. Hence, it is unknown

whether and how themanipulation of phonotactic probability

would affect spoken word recognition in adverse listening

conditions.

1.5. Inducing modes of sublexical and lexical processing

As discussed above, previous research showed that the nature

of neighborhood density effects is variable, with neighbor-

hood density showing inhibitory and facilitatory effects in

certain situations. More globally, it appears that listeners can

adjust their reliance on sublexical and lexical processing in

response to situational and task demands. Further support for

the notion that listeners can readily shift between modes of

processing comes from a series of experiments by Vitevitch

and Luce (1998, 1999). For example, Vitevitch and Luce (1998)

presented English listeners with existing and non-existing

English words, both varying in phonological neighborhood

density, and asked participants to repeat the stimulus items

as quickly as possible. The authors reasoned that listeners

access and use lexical information when processing existing

words but must rely on sublexical processing for non-existing

words since lexical information is not available. The results

revealed that dense-neighborhood words were repeatedmore

slowly than sparse-neighborhood words, but that dense-

neighborhood non-words were repeated more quickly than

sparse neighborhood non-words. This behavior suggests that

neighborhood density had inhibitory effects on words

(reflecting stronger reliance on lexical processing) and facili-

tatory effects on non-words (reflecting stronger reliance on

sublexical processing).

Vitevitch (2003) further showed that lexical and sublexical

modes of processing are not confined to a specific type of

target stimulus (lexical: words, sublexical: non-words) but can

be induced by the situational context in which speech pro-

cessing takes place. Specifically, the author presented existing

English words varying in neighborhood density in experi-

mental contexts where these were surrounded by fillers that

were either predominantly existing or non-existing words.

When presented with mostly existing words, participants

relied on a lexical mode of processing, yielding inhibitory ef-

fects for words with dense neighborhoods. When the same

words were presented in a context where the majority of

words were non-existent, participants relied on a sublexical

mode of processing, yielding facilitatory effects forwordswith

dense neighborhoods.

More relevant to the present study is the previous work on

speech recognition under adverse conditions showing that the

presence of background influences the weighting of lexical

and sublexical processing. In an effort to dissociate energetic
from informational factors when recognizing speech under

adverse conditions, Mattys, Brooks, and Cooke (2009; see also

Mattys, White, & Melhorn, 2005; Newman, Sawusch, &

Wunnenberg, 2011) provided evidence that the presence of

background noise can also cause listeners to adjust their

processing strategies. Their study focused on word segmen-

tation and participants were presented with phrases whose

combination between lexical structure and acoustic realiza-

tion induced: (1) lexically driven segmentation (e.g., phrase

perceived as ‘mild option’), or (2) sublexically driven seg-

mentation (phrase perceived as ‘mile doption’), or (3) ambig-

uous segmentation [phrase perceived as lying in between (1)

and (2)]. Participants' task was to judge whether they had

heard ‘mild’ or ‘mile’ at the beginning of the phrase. Mattys

and colleagues showed that participants were more likely to

adopt a sublexically-driven segmentation strategy under en-

ergetic masking conditions (i.e., unintelligible background

babble of noise). Importantly, the authors highlighted that

based on the task they used, no claims about the effects of the

relative time course of energetic (or informational) masking

effects can bemade since participants were under no pressure

to make their judgments. Similarly, it is unclear whether the

stronger reliance on sublexical processing in noise generalizes

to speech comprehension tasks that (1) do not capitalize on

segmentation and that (2) do not capitalize on local acoustic-

phonetic contrasts (e.g., allophonic variation between ‘mild

option’ and ‘mile doption’). Finally, it is unclear how neural

markers associated with lexical and sublexical processing

change in the face of signal degradation.

1.6. The present study

The goal of the present study was to further investigate how

the presence of background noise influences the interplay

between lexical and sublexical processing during spoken-

word recognition. Specifically, we studied whether listeners

adjust their reliance on lexical- and sublexical-level process-

ing in response to noise-induced uncertainty about the speech

signal. To enable investigations of the time course and the

neurobiological markers of the effects of noise, we conducted

an EEG experiment. Our native Dutch participants carried out

two experimental blocks. In the first block, they were pre-

sentedwith spokenDutchwords and non-words embedded in

speech-shaped background noise. In the second block, we

presented participants with the same words and non-words

again but in the clear, which we used as a baseline condi-

tion. While the clear-speech baseline was the same for each

participant, they heard the words in noise at one of three

different SNRs. We used different SNRs to track the potential

shifts in participants’ processing strategies as the speech

signal deterioration increased. SNR was implemented as a

between-participantsmanipulation tomaintain an acceptable

balance between the number of trials needed for our ERP an-

alyses and a workable number of trials for the participants.

Note that we opted for speech-shaped background noise, a

formof energeticmasking, rather than informationalmasking

for degrading our stimuli. The reason is that in the present

study we were interested in perceptual uncertainty and its

effects on spoken-word recognition (Mattys et al., 2012).

Moreover, while there are data demonstrating how the effects

https://doi.org/10.1016/j.cortex.2022.02.011
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of word frequency change in energetic versus informational

masking (e.g., Cooke et al., 2019), such systematic in-

vestigations are missing for phonological neighborhood den-

sity and phonotactic probability. Given the more extensive

literature on these two predictors in energetic masking, we

decided to use speech-shaped background to facilitate com-

parison with earlier studies.

Our participants were instructed to listen to each stimulus

(one at a time) and carry out a two-stage task: Their first task

was to decide as quickly as possible whether the presented

stimulus was an existing Dutch word or not. In case of a yes-

response, their second task was transcription (i.e., to type in

the word they thought they heard). As has been argued else-

where, lexical decisions may be carried out based on phono-

tactic patterns and/or phonotactic probabilities, without

access to the lexicon (Balota & Chumbley, 1984, for discus-

sion). To ensure that listeners access their lexicons, we added

the transcription task, which required mapping the perceived

acoustic signal onto an existing lexical representation. Non-

word trials were excluded. For correct responses to words

(correct lexical decision and correct transcription), we extrac-

ted lexical decision times. Moreover, these trials were sub-

mitted to EEG analyses.

We modelled each of the three dependent variables (accu-

racy, RT, ERP amplitude) using word frequency, phonological

neighborhood density and phonotactic probability as pre-

dictors. In contrast to previous research, which mostly oper-

ationalized these variables in a dichotomous manner (high

versus low), we used them as continuous predictors for better

statistical power and to avoid arbitrary groupings of items.

1.7. Predictions

As outlined above and in line withmost theories, we expected

that listeners engage in sublexical and lexical processing

during spoken-word recognition in clear and in noisy listening

conditions: Incoming speech sounds are perceived and acti-

vate mental phoneme representations at sublexical levels,

which send activation to lexical levels wherewords consistent

with the incoming speech signal compete for recognition. As

explained above, all three of our predictors (word frequency,

phonological neighborhood density and phonotactic proba-

bility) are established predictors of spoken-word recognition

and are assumed to have their locus at sublexical or lexical

levels of representation (or at both).We reasoned that changes

in the effects of these predictors across clear and noise con-

ditions are most likely to reflect adjustments in listeners’

reliance on sublexical and lexical processing, respectively.

In terms of simple effects, we hypothesized that we would

replicate previous reports of lexical frequency effects across

all listening conditions, with more accurate and faster re-

sponses for words of higher compared to lower frequency

(e.g., Broadbent, 1967). Frequency effects are assumed to have

their locus at the lexical level, with, according to one account,

high-frequency word representations reaching critical acti-

vation levels faster/more accurately than low-frequency rep-

resentations due to higher baseline activation (Coltheart et al.,

2001).

Similarly, we expected to find the canonical inhibitory ef-

fects of phonological neighborhood density (predominantly
localized at the lexical level) on accuracy and reaction times in

the clear aswell as in the noise conditions (lower accuracy and

slower responses for words with dense rather than sparse

neighborhoods, Luce & Pisoni, 1998). Concerning effects of

neighborhood density in noise, a distorted speech signal is

likely to reduce the resolution of individual phonemes,

thereby increasing the set of potential target candidates. In

noise, words residing in dense phonological neighborhoods

are thus more likely to be confused with similar sounding

competitors thanwords residing in sparse neighborhoods. It is

conceivable that such effects on accuracy and RTs are

moderated by SNR such that as the speech quality decreases,

accuracy decreases and RTs increase as a function of a

widening competitor space.

It was unclear whether we would observe phonotactic

probability effects in the clear given that previous reports of

such effects were confined to specific tasks (e.g., same-

different task). However, in line with previous proposals

(Mattys et al., 2009), we predicted simple effects of phonotactic

probability in noise. Under noisy conditions, listeners are

assumed to rely more strongly on sublexical processing and

words with higher compared to lower phonotactic probability

should be recognized more accurately and faster. Specifically,

with noise reducing the resolution of individual phonemes,

we expected listeners to experience facilitation in recognizing

words in noise that are composed of frequent rather than

infrequent phoneme combinations since listenersmay exploit

statistics about the frequency of occurrence of a given

phoneme in a given position in case of noise-induced ambi-

guity. We predicted the effects of phonotactic probability to

become stronger as the speech quality became worse (SNR

decreased). In a similar vein, one may predict facilitatory ef-

fects of neighborhood density on accuracy and RTs in noise.

That is, given the positive correlation between neighborhood

density and phonotactic probability (i.e., words residing in

dense phonological neighborhoods are often composed of

frequent phoneme combinations), it is conceivable that with

noise reducing individual phoneme resolution listeners weigh

sublexical more strongly than lexical processing such that the

facilitatory effects of dense-neighborhood words’ high pho-

notactic probability at the sublexical level trump the inhibi-

tory effects of enhanced competition at the lexical level.

One unique feature of the present study concerned inves-

tigating the interactions between the three predictors. One

study that laid important ground work in that regard (per-

taining to frequency and neighborhood density), was con-

ducted by Benkı́ (2003). Benkı́ (2003) presented US American

participants with English CVC words and non-words in noise

at four different SNRs. Both words and non-words were

phonetically balanced such that the ten phonemes in the

initial position used in the stimulus set, the ten vowels and the

ten phonemes in the final position were evenly distributed.

Participants carried out a transcription task. In addition to

(phoneme) recognition accuracy, Benkı́ (2003) focused on j-

factor models for the analysis of participants' responses. j-
factor models quantify the relationship between the recogni-

tion of a whole (word/non-word) and the recognition of its

parts. Benkı́ found that participants perceived the non-words

as having three independent phonemes (j-factor of 3); words

were found to be perceived as having 2.34 independent units.

https://doi.org/10.1016/j.cortex.2022.02.011
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Among the words, high-frequency words were perceived as

having fewer independent units than low-frequency words.

That is, high-frequency words were perceived ‘more holisti-

cally’ than low-frequency words. Moreover, words with dense

phonological neighborhoodswere perceived as having .5more

independent units than words with sparse neighborhoods

(i.e., sparse-neighborhoodwordswere overall perceived ‘more

holistically’ than dense-neighborhood words).

On this account, one may conjecture that CVC-words that

are generally perceived as consisting of more independent

phonemic units (i.e., low-frequency and dense-neighborhood

words) are more susceptible to be moderated by variations in

phonotactic probability than words that are generally pro-

cessed more holistically. This might be especially so under

sub-optimal listening conditions. Against this background, we

additionally predicted interactions between phonotactic

probability and frequency (higher accuracy and faster RTs for

low-frequency words composed of common rather than un-

common phoneme sequences) and between phonotactic

probability and neighborhood density (higher accuracy and

faster RTs for dense-neighborhood words composed of com-

mon rather than uncommon phoneme sequences). The latter

prediction resonates with the notion that neighborhood den-

sity can have both inhibitory and facilitatory effects in certain

situations (cf. work by Vitevitch and collaborators).

In terms of EEG correlates, we predicted reduced N400 am-

plitudes elicited by high-compared to low-frequency words.

Moreover, in line with the canonical view, we expected words

with many compared to few neighbors to elicit larger N400

amplitudes in clear and noisy listening conditions (due to the

enhanced competition among similar sounding words).

Neighborhood density effects might also be observed on early

ERP effects, namely the P200 component. However, the direc-

tionality of such effects was uncertain (cf. Dufour et al., 2013;

Winsler et al., 2018) andwhether such effectswould emerge in

the presence of background noise. With regard to EEG effects,

phonotactic probability previously showed effects on the PMN,

we therefore predicted reducedamplitudes for high-compared

to low-probability words (reflecting facilitation). These effects

might increase with decreasing speech quality.
1 Calculated as log10(frequency per million words) þ 3.
2. Methods

The spoken stimuli used in the experiment, the raw data and

analysis code can be accessed from the Max Planck Institute

for Psycholinguistics Archive: https://hdl.handle.net/1839/

1fbdb007-96c9-40cb-8031-46af2e019fac. The study design

was not pre-registered. We report how we determined our

sample size, all data exclusions, all inclusion/exclusion

criteria, whether inclusion/exclusion criteria were established

prior to data analysis, all manipulations, and all measures in

the study. No part of the study analyses was pre-registered

prior to the research being conducted, nor were inclusion/

exclusion criteria.

2.1. Participants

Thirty-onemembers of the subject pool of Radboud University

(all students or recent alumni, twelve males, mean age ¼ 23,
SD ¼ 3, range ¼ 18e31) took part in the experiment. All were

native speakers of Dutch, right-handed, and did not report any

history of learning or language disabilities or neurological or

psychiatric disorders. The participants were given a V20-

voucher as compensation for their participation. The ethics

board of the Faculty of Arts at Radboud University approved

the study. One participant had to be excluded from the anal-

ysis due to an experimental error; the final set comprised 30

participants. The sample size was determined on the basis of

similar previous studies (e.g., Dufour et al., 2013).

2.2. Materials

We selected 160 monosyllabic Dutch words from the Subtlex-

NL database (Keuleers et al., 2010). All of them had a CVC-

structure and their recognition and uniqueness points after

the third phoneme. The words varied substantially in word

frequency, that is their frequency of occurrence per one

million words (operationalized as Zipfian frequency,1 ZipfF;

Van den Heuvel et al., 2014; M ¼ 4.18; SD ¼ 1.05;

range ¼ 2.15e7.34), and in phonological neighborhood density

(ND; M ¼ 22.23; SD ¼ 8.68; range ¼ 4e53; measured using

Clearpond; Marian et al., 2012). NDwas defined as the number

of words that can be formed from the target word by adding,

deleting, or substituting a single phoneme (Landauer &

Streeter, 1973; Luce & Pisoni, 1998). As stressed by Luce and

Pisoni (1998; see also Newman et al., 1997), it is important to

incorporate the lexical frequency of a target's neighbors. After
having determined the number of neighbors for each item, we

therefore followed Newman et al. (1997) and weighted the

neighbors by their log-transformed frequencies and summed

them to yield a frequency-weighted neighborhood density

(FWND; M ¼ 24.64, SD ¼ 11.85, range ¼ .31e69.08). Finally, the

160 CVC target words varied in phonotactic probability

(Vitevitch& Luce, 2004), which we operationalized as triphone

frequency (TriF, i.e., the sum of the positional single-phoneme

probabilities as retrieved from Clearpond, Marian et al., 2012;

M ¼ .16, SD ¼ .04; range ¼ .04e.31). Table 1 provides an over-

view of the descriptive statistics of the three variables as well

as the correlations between them.

Based on this set of 160 Dutch words, we constructed 160

non-words using the non-word generator Wuggy (Keuleers &

Brysbaert, 2010). Specifically, one segment in each original

wordwas changedwithout violating phonotactic constraints of

Dutch to yield a non-word (see Table 1). Word and non-word

stimuli were spoken by a female native speaker of Dutch at a

normal pacewith neutral intonation in a sound-shielded booth.

Recordings were made using a Sennheiser microphone sam-

pling at a frequency of 44.1 kHz (16-bit resolution). The individ-

ualwordsandnon-wordswere cutusingAudacity®version2.05

(AudacityTeam,2014).The recordingsof thespokenwordswere

onaverage447msec long (SD¼ 78msec, range¼ 270e750msec);

the recordings of the non-wordswere on average 451msec long

(SD¼ 72msec, range¼ 294e636msec), asmeasured using Praat

(Boersma, 2001).

We created three additional versions of each sound file

using Praat (Boersma, 2001) by adding speech-shaped back-

ground noise at three different SNRs to each word and non-

https://hdl.handle.net/1839/1fbdb007-96c9-40cb-8031-46af2e019fac
https://hdl.handle.net/1839/1fbdb007-96c9-40cb-8031-46af2e019fac
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Table 1 e Parameter descriptions and correlations.

Variable Original
(n ¼ 160)

Excluded
(n ¼ 23)

Included
(n ¼ 137)

Non-words
(n ¼ 160)

Correlations
(n ¼ 137)

M (SD)
Range

M (SD)
Range

M (SD)
Range

M (SD)
Range

1. ZipfF 2. FWND

1. ZipfF 4.18 (1.05) 3.38 (.78) 4.32 (1.03) e

2.15-7.34 2.20-4.73 2.15-7.34 e

2. FWND 24.64 (11.85) 22.31 (9.85) 25.03 (12.14) 17.42 (9.64) .23

.31e69.08 8.82-48.45 .31e69.08 .37e44.40 [.07, .38]

3. TriF .16 (.04) .18 (.04) .15 (.04) .17 (.06) .18 .38

.04-.31 .11-.26 .04-.31 .07-.32 [.01, .34] [.23, .52]

Note. ZipfF for Zipfian frequency, FWND for frequency-weighted neighborhood density, TriF for triphone frequency; M and SD abbreviate mean

and standard deviation, respectively. Values in square brackets indicate the 95% confidence interval for correlations (Cumming, 2014).

Descriptive statistics are reported for the full material set (n ¼ 160) and for the items used in the analysis (n ¼ 137). Twenty-three items were

excluded based on low recognition accuracy (see Item analysis section; cf. Dufour et al., 2013).
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word. To that end, recordings were down-sampled to 16 kHz

to match the sampling frequency of the to-be-added noise.

The noise was ramped up over a period of 205msec before the

onset of each lexical item and ramped down over 205 msec

after the offset of each lexical item. The ramping up was

included for participants to get accustomed to the presence of

noise before being presented with the relevant speech. Simi-

larly, ramping down ensured a more pleasant and natural

ending of the stimulus (i.e., in many cases of constant back-

ground noise in the real world, speech may stop while noise

continues).

Speech-shaped noise was added at three different SNRs: þ
10dB,þ 6dB,þ 2dB.When selecting the noise intensity level for

the between-participants manipulation, we aimed for a

pattern where the easiest noise condition (highest SNR value)

would yield a substantial decrease in word recognition accu-

racy compared to the clear condition and where the most

difficult SNR condition (lowest SNR value) would yield suffi-

cient numbers of correctly recognized trials for our EEG ana-

lyses. Moreover, performance should differ substantially

between SNRs. An earlier behavioral study conducted in our

lab, involving 44 native speakers of Dutch, using the same

materials and masker as in the present study, suggested a

linear decrease in transcription accuracy (clear: 96%, SNR þ
6dB: 75%, SNR þ 2dB: 61%, SNR-2dB: 39%, SNR-6dB: 23%, Hintz

et al., 2016; see also Scharenborg et al., 2018). We deemed 61%

(i.e., 98 of 160 trials per participant, SNRþ 2dB) sufficient as the

lower limit of the noise intensity manipulation in the present

study, leaving enough data points for the ERP analysis (Dufour

et al., 2013). Moreover, we deemed differences in recognition

accuracy ranging between 14% and 20% between SNR condi-

tions in our earlier study sufficient to detect substantial dif-

ferences between SNR conditions in the present study. We

therefore decided to operationalize SNR conditions in the

present study to decrease in increments of four, starting at þ
10dB and ending at þ 2dB. The original, noise-free sound files

were used in the clear condition and served as baseline.

2.3. Procedure

Participants were tested individually in a sound-shielded

booth. They were seated in a relaxed position in front of a
19-inch CRT screen. The experiment was implemented in

Presentation®. Participants carried out six practice trials

(three words and three non-words) before the start of the

experiment. For the first experimental block, participants

were randomly assigned to one of the three SNR conditions (þ
2dB, þ 6dB, or þ 10dB, ten per SNR). They listened to the

complete set of 320 items (160 words and 160 non-words) at a

fixed SNR. For the second experimental block, participants

were presented with the same 320 stimuli as in the first block

but without background noise (i.e., clear condition). The order

of items within noise and clear blocks was randomized for

each participant. Breaks could be taken every 80 trials (six

breaks in total). The entire session, including EEG preparation,

took about 2 h.

On each trial, a fixation cross was presented in the middle

of the screen for 300 msec followed by the playback of the

audio file. Participants were instructed to carry out a lexical

decision task (‘Is the spoken stimulus an existing Dutch

word?’). Recall that all existing words had their recognition

and uniqueness points after the third phoneme. Thus, par-

ticipants had to listen to each word in its entirety to be able to

make a decision. The left-right assignment of yes/no response

buttons was counterbalanced across participants. In case of a

yes-response, participants were asked to type-in the word

they heard. This was done to ensure that participants recog-

nized the correct word in question. Obvious typos were cor-

rected (e.g., misspellings where adjacent keys were accidently

pressed resulting in a non-word: ‘bae’ instead of ‘bar’). Accu-

racy was operationalized as the proportion of correct re-

sponses (yes-decision followed by a correct transcription).

Reaction times were recorded from the offset of each lexical

stimulus.

2.4. EEG acquisition

EEG was recorded continuously from 59 active Ag/AgCl elec-

trodesmounted in a cap according to the 10e20 system (Klem,

Lüders, Jasper,& Elger, 1999). The signal was amplified using a

Biosemi active amplifier with a bandpass filter of .016e100 Hz,

sampling at a frequency of 1000 Hz, online referenced to the

left mastoid. To monitor participants’ eye movements, elec-

trooculogram was recorded bipolar at a horizontal (left and

https://doi.org/10.1016/j.cortex.2022.02.011
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right eye corner) and a vertical (above and below left eye) line.

A fifth additional electrode, placed on the right mastoid, was

used as an extra reference, used offline during the analysis. All

electrode impedances were kept below 20 kU.

2.5. Initial item analysis

Prior to pre-processing the EEG data and prior to any infer-

ential statistics, we conducted a descriptive analysis on the

word items to assess their overall accuracy (i.e., over all par-

ticipants, based on lexical decision and transcription). In case

an item had an overall accuracy below 60% in the clear con-

dition (Dufour et al., 2013), we removed that item from further

analysis. This affected 23 of the 160 items (1380 trials in total).

The remaining dataset thus contained 8220 trials (30 partici-

pants * 137 items * 2 listening conditions). As can be seen in

Table 1, item exclusion mostly concerned low-frequency

words (cf. Hintz et al., 2016).

2.6. Behavioral analysis: accuracy

Based on the responses to the remaining 137 items, we

calculated recognition accuracy for the four listening condi-

tions (clear, SNRs þ 10dB, þ 6dB, þ 2dB, Table 2). In R (R Core

Team, 2012), mixed-effects logistic regression models were

fitted using the logistic linking function with accuracy as a

binary dependent variable (1 ¼ correct; 0 ¼ incorrect).

Continuous predictors, namely ZipfF, FWND and TriF, were

centered and scaled to minimize multicollinearity. Contin-

uous predictors and their interactions were included in the

model. For the categorical predictor (fixed factor) listening

condition, we adopted Helmert contrasts. Helmert contrast-

coding compares the mean of one level of a fixed factor to

the mean of the subsequent levels of the variable. For the

present analysis, the first Helmert contrast [SNR (H.1)]

compared the mean accuracy of SNR þ 6dB against SNR þ
10dB. The second Helmert contrast [SNR (H.2)] compared the

mean accuracy of SNR þ 2dB to the mean of SNR þ 6dB and

SNR þ 10dB. The third Helmert contrast [SNR (H.3)] compared

the mean accuracy of all clear trials to the mean of all noise

trials, i.e., including SNR þ 10dB, SNR þ 6dB and SNR þ 2dB.

While the former two contrasts enabled us to capture the

linear decrease in recognition accuracy as a function of

decreasing SNR, the latter contrast facilitated the global

comparison of clear and noise conditions. The model further

contained random factors for participants and words (both

with random intercepts). Including random slopes for listening
Table 2 e Behavioral word recognition performance.

Listening
condition

Accuracy RT

N M SD N M SD

Clear 4110 .90 .29 3572 494 225

SNR þ 10 dB 1370 .81 .40 1057 622 324

SNR þ 6 dB 1370 .73 .45 970 724 340

SNR þ 2 dB 1370 .60 .49 787 716 379

Note. RTs in milliseconds. RT means and SDs based on trials

included in the re-fitted linear mixed-effects models (extreme

values excluded).
condition (i.e., categorical variable contrasting noise with clear)

resulted in a singular fit. Using the anova()-function, we

selected the next, more parsimonious model that did not

result in a singular fit (achieved through dropping the by-

participants random slope).

2.7. Behavioral data analysis: reaction times

RTs for correct responses to word items were modelled for

clear and noise conditions separately. Visual inspection had

suggested that the overall distribution of RTs was quite

different in both conditions, most likely due to the presence

of leading and trailing noise in the noise condition, moti-

vating separate models for all clear and all noise trials. Prior

to fitting the models, we removed trials with (log-trans-

formed) RTs that were 2.5 standard deviations away from a

participant's mean (in total: n ¼ 116; 1.75%). As for the model

of the accuracy-data, each RT-model contained the contin-

uous predictors ZipfF, FWND, TriF (all scaled and centered),

and their interactions. The RTnoise-model additionally con-

tained SNR as a fixed factor. As before, we used Helmert

contrast-coding for comparing performance across the three

SNR levels. The first Helmert contrast [SNR (H.1)] compared

the mean reaction times of SNR þ 6dB against SNR þ 10dB.

The second Helmert contrast [SNR (H.2)] compared the mean

reaction times of SNR þ 2dB to the mean of SNR þ 6dB and

SNR þ 10dB. As before, random effects for participants and

words (both with random intercepts were included). Adding a

random slope for SNR by-item resulted in a singular fit; the

random slope was dropped.

After the first model fit, data points that were further away

than 2.5 standard deviations from the model's fitted values

(Baayen & Milin, 2010), were classified as outliers (noise

model: 1.54% of all trials; clearmodel: 2.14% of all trials). These

outliers were removed, and the model was refitted.

2.8. EEG data pre-processing

EEG data pre-processing for trials with correct responses to

words was done in MATLABTM using the Fieldtrip toolbox

(Oostenveld, Fries, Maris, & Schoffelen, 2011). Owing to a

technical error (trigger codes were not sent due to buffer

overflow in the EEG recording system), three trials had to be

excluded. In total, 6621 trials went into pre-processing (clear

condition: 3716 trials, SNR þ 10dB: 1097 trials, SNR þ 6dB: 993

trials, SNR þ 2dB: 815 trials). To avoid filter edge artifacts in the

time window of interest, long epochs (±3 sec around word

onset) were used for re-referencing to the average of both

mastoids and for applying a bandpass filter of .1e50 Hz. Then,

shorter epochs (including the baseline and the time window of

interest from�1 sec to 2 sec around word onset) were selected.

Next, a four-step artifact rejection process was applied.

First, an initial visual inspection was done to mark broken

channels producing artifacts over many trials. Second, by

using independent component analysis eye blinks and lateral

eyemovements were removed from the signal. In a third step,

muscle artifacts were automatically identified via Fieldtrip

routine and respective trials excluded when exceeding a

threshold of ±200 mV. In the fourth and last step, data were

visually inspected again to detect possible remaining artifacts.

https://doi.org/10.1016/j.cortex.2022.02.011
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Finally, the channels that had been marked as broken were

interpolated (concerning .93% of all trials). In total, 95 trials

(1.43% of the ingoing data) were excluded during pre-

processing.

2.9. EEG data analysis: cluster-based permutation

We started our EEG data analyses by using a data-driven

approach, namely cluster-based permutation testing as

implemented in Fieldtrip (Oostenveld et al., 2011). This

approach was necessary given the sparse literature on EEG

effects of ZipfF, FWND and TriF during spoken-word recog-

nition in clear and in noise. In doing so, we also avoided

subjective biases when selecting regions and times of interest

for our subsequent mixed-model analyses. As for RTs, we

analyzed clear and noise conditions separately, as the time

course of grand-average ERPs were substantially different for

the two listening conditions (i.e., as acoustic stimulation,

through the presence of leading noise, began about 200 msec

earlier in the noise condition, brain responses were shifted).

Furthermore, as per our hypotheses, we predicted that the

three properties (ZipfF, FWND and TriF) would play different

roles in clear and in noise environments (e.g., showing effects

at different points in time).

Single-trial time-domain EEG data were submitted to a

multi-level or ‘random effects’ statistics approach (see Strauß

et al., 2014). On the first level, i.e., for each individual sepa-

rately, massed independent samples regression coefficient t-

tests with contrast weights as independent variable (either

ZipfF, FWND or TriF) were calculated. Uncorrected regression

t-values and betas were obtained for all timeechannel bins.

On the second or group level, t-valueswere tested against zero

in a two-tailed dependent samples t-test. A Monte-Carlo non-

parametrical permutation method (1000 randomizations), as

implemented in Fieldtrip, estimated type I-error controlled

cluster significance probabilities (a ¼ .025). In total, we ran six

separate tests to search for time-channel clusters: 3 predictors

(ZipfF, FWND, TriF) x 2 listening conditions (clear, noise).

Based on these six tests, we chose regions and times of in-

terest (ROIs and TOIs), over which we averaged the EEG data

for subsequent modelling in R.

2.10. EEG data analysis: mixed-effects modeling

The cluster-based permutation testing was followed up by

further statistical evaluation using linear mixed-effects

modeling. To that end, informed by the results of the

cluster-based permutation analysis, we extracted the raw (i.e.,

not baseline corrected) single-trial data of regions and time

windows of interest and averaged them across the respective

ROI and TOI. Furthermore, we extracted a baseline

(�200 msece0 msec before word onset) for each trial in the

respective ROI to be included as a covariate in the linear

mixed-effects models (Alday, 2019). We used the lme4 pack-

age (v.1.1e23, Bates et al., 2015) in R to fit the various models.

Belowwe list the twomodel templates used for analyses of the

(1) noise and (2) clear data. As in the previous models, statis-

tical properties, included as continuous predictors, were

scaled and centered.
(1) lmer [EEG ~ BaselineEEG * SNR * WordProperty þ (1 |

Participant) þ (1 þ SNR | Word), Data¼eeg.noise]

(2) lmer (EEG ~ BaselineEEG *WordPropertyþ (1 | Participant)þ
(1 | Word), Data¼eeg.clear]

Both types of models contained random effects (both with

random intercepts) for participants andwords. Themodels for

the noise data, additionally contained SNR as a categorical

predictor, Helmert contrast-coded as for the RT analysis. The

noise models further contained random slopes for SNR.
3. Results

3.1. Behavioral performance: accuracy

Average recognition accuracy for the 137 items for the

different listening conditions is summarized in Table 2. As is

to be expected, recognition accuracy was highest for the clear

condition. Moreover, the means suggest a linear decrease in

recognition accuracy as a function of decreasing SNR. To

assess variability between participants and to screen for out-

liers, we also calculated mean recognition accuracy for each

participant. None of the participants scored below 60% in the

clear condition, indicating task compliance.

Table 3 summarizes the results of the mixed-effects model

onword recognition accuracy, whichwewill discuss following

the order of effects as listed in the table (from top to bottom).

First, in line with numerous previous studies, word recogni-

tion accuracy was found to be positively affected by lexical

frequency (ZipfF), such that words with higher lexical fre-

quency were more often identified correctly than words with

lower frequency.

Second, listening condition explained significant amounts of

variance in the accuracy data (all three contrasts, SNR [H.1],

SNR [H.2], and SNR [H.3], were significant. SNR [H.1] compared

themean accuracy of SNRþ 6 dB against SNRþ 10 dB. SNR [H.2]

compared the mean accuracy of SNR þ 2 dB to SNR þ 6 dB and

SNR þ 10 dB. SNR [H.3] compared the mean accuracy of clear

trials against all noise trials (including SNRþ 10 dB, SNRþ 6 dB

and SNR þ 2 dB). SNR [H.1] and SNR [H.2] contrasts thus

demonstrated that word recognition accuracy decreased as

SNR decreased. Moreover, the SNR [H.3] contrast showed that

word recognition was overall more accurate in clear than in

noisy listening conditions.

Third, we observed four significant interactions. The first

was between triphone frequency and Zipfian frequency

(TriF � ZipfF). In order to understand its nature, we visualized

it and the two significant three-way interactions that these

factors were also part of, TriF x ZipfF x Listening Conditions

and the TriF x ZipfF x FNWD. See Fig. 1. Fig. 1A plots accuracy

as a function of triphone frequency (TriF) split into low, me-

dium and high lexical frequency (ZipfF).2 We observed the

steepest slope (or highest gain) of increasing triphone fre-

quency when lexical frequency was low. This finding can be

further differentiated by considering the three-way interac-

tion with neighborhood density (TriF � ZipfF � FWND, Fig. 1B)
purposes only.
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Table 3 e Summary of model results on word recognition
accuracy (clear and noise conditions).

Estimate SE z p

(Intercept) 1.66 .14 11.56 .000***

ZipfF .47 .13 3.59 .000***

FWND .17 .13 1.34 .179

TriF .24 .14 1.70 .090

SNR [H.1] �.28 .10 �2.93 .003**

SNR [H.2] �.43 .06 �7.61 .000***

SNR [H.3] .34 .03 9.93 .000***

TriF � ZipfF �.37 .16 �2.36 .018*

TriF � FWND .21 .12 1.72 .085

ZipfF � FWND .14 .13 1.07 .283

TriF � SNR[H.1] .10 .09 1.13 .260

TriF � SNR[H.2] .02 .05 .44 .662

TriF � SNR[H.3] �.07 .04 �1.79 .073

ZipfF � SNR[H.1] �.05 .08 �.64 .520

ZipfF � SNR[H.2] .07 .05 1.47 .142

ZipfF � SNR[H.3] .00 .03 �.13 .893

FWND � SNR[H.1] .07 .08 .96 .335

FWND � SNR[H.2] .08 .05 1.66 .096

FWND � SNR[H.3] �.02 .03 �.58 .559

TriF � ZipfF � FWND �.42 .13 �3.17 .002**

TriF � ZipfF � SNR[H.1] �.03 .09 �.36 .716

TriF � ZipfF � SNR[H.2] �.08 .06 �1.50 .133

TriF � ZipfF � SNR[H.3] .09 .04 2.18 .030*

TriF � FWND � SNR[H.1] .11 .08 1.39 .164

TriF � FWND � SNR[H.2] .05 .05 1.01 .312

TriF � FWND � SNR[H.3] .04 .04 1.03 .302

ZipfF � FWND � SNR[H.1] .04 .08 .54 .590

ZipfF � FWND � SNR[H.2] .02 .05 .39 .699

ZipfF � FWND � SNR[H.3] �.07 .04 �1.92 .055

TriF � ZipfF � FWND � SNR[H.1] �.03 .08 �.39 .694

TriF � ZipfF � FWND � SNR[H.2] �.03 .05 �.58 .565

TriF � ZipfF � FWND � SNR[H.3] .11 .04 3.19 .001**

Note.Model formula: glmer [Accuracy~ZipfF *FWND *TriF *SNRþ (1 |

Participant) þ (1 þ Noise versus Clear | Word), family ¼ binomial,

data ¼ df, glmerControl(optimizer ¼ c(“bobyqa”)]. SNR [H.1]

compared themean accuracy of SNRþ 6dB against SNRþ 10dB, SNR

[H.2] compared the mean accuracy of SNR þ 2dB to SNR þ 6dB and

SNRþ 10dB, SNR [H.3] compared themean accuracy of all clear trials

against all noise trials, i.e., SNRþ 10dB, SNRþ 6dB and SNRþ 2dB. ***

denotes p < .001, ** denotes p < .01, * denotes p < .05.
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demonstrating that effects of TriF and ZipfF were modulated

by FWND: When lexical frequency and triphone frequency

were low, high neighborhood density exerted a strong inhib-

itory effect on recognition accuracy (left-most plot in Fig. 1B).

Interestingly, Zipfian frequency had strong effects on accu-

racy when words had low or mid-range triphone frequency

(see brownish line in left-most and middle plot of Fig. 1B).

When triphone frequencywas high (right-most plot in Fig. 1B),

accuracy was highest for low-frequency words with many

phonological neighbors.

The TriF- and ZipfF-effects summarized above were inde-

pendent of listening condition. However, both properties also

interacted with SNR (TriF � ZipfF � SNR[H.3]3). As can be seen

in Fig. 1C, the general pattern was that the poorer the signal-
3 Note that we limited our visualization and interpretation to
three-way interactions.
to-noise ratio, the more listeners benefited from triphone

frequency. In clear speech, triphone frequency did not show

effects, presumably due to close-to-ceiling performance and a

strong reliance on lexical processing. As listening became

harder, triphone frequency gained in importance, especially

for words with low Zipfian frequency (compare green lines

from left to right plots in Fig. 1C).
3.2. Behavioral performance: reaction times

We further examined the effects of the three statistical

properties on lexical decision times. We only considered cor-

rect responses and e because of their substantially distinct

distribution e modeled RTs of clear and noise conditions

separately. Descriptive statistics can be found in Table 2. As

can be seen, RTs (measured from word offset) were shortest

for the clear condition (494 msec). When words were masked

with noise at an SNR of þ 10dB, RTs were on average more

than 100msec longer (622msec). The RTs for both SNRsþ 6 dB

(724 msec) and þ 2 dB (716 msec) were on average 100 msec

longer than that of SNR þ 10. The results of the mixed-effects

models are summarized in Fig. 2 and Table 4.

For clear speech, we found a main effect of Zipfian fre-

quency: the higher word frequency, the lower RTs. Moreover,

we found a two-way interaction between ZipfF and FWND

(FWND � ZipfF), as well as a three-way interaction between

ZipfF, FWND and TriF (TriF � FWND � ZipfF). Both interactions

are visualized in Fig. 2. As can be seen in Fig. 2A, reaction times

increased for high-frequency words as FWND increased sug-

gesting an increase in lexical competition. The reverse was

found for low-frequency words: RTs decreased with

increasing FWND.

This interaction was further differentiated by the three-

way interaction as depicted in Fig. 2B. The plots highlight

the two natures of FWND, which aremost clearly visible in the

high-TriF plot, where higher FWND had an inhibitory effect for

high-frequency words and a facilitatory effect for low-

frequency words. For mid-range TriF words, this cross-over

pattern was pronounced less clearly and it was absent for

low-TriF words. Instead, words with low triphone frequency

generally displayed inhibitory effects with increasing neigh-

borhood density.

As for the clear trials, we observed a main effect of Zipfian

frequency when words were presented in noise, with faster

RTs for words with higher frequency. Next to this main effect,

we observed a two-way interaction involving Zipfian fre-

quency and SNR (ZipfF � SNR; see Fig. 3C): At an intermediate

level of signal degradation, i.e., at þ6dB, there was less benefit

of lexical frequency for RTs, relative to þ10dB or at þ2dB.

Moreover, the analysis revealed a three-way interaction be-

tween Zipfian frequency, SNR, and triphone frequency

(TriF� ZipfF� SNR). As illustrated in Fig. 3D, when words were

recognized in more difficult listening conditions (i.e., þ2dB),

recognition speed for low-frequency words profited from high

triphone frequency, suggesting a strong reliance on sublexical

features (i.e., triphone frequency). In contrast, when recog-

nizing low-frequency words at a higher, less difficult SNR (i.e.,

þ10 dB) RTs showed the reverse pattern (RTs did not benefit

from high triphone frequency and even increased). At an
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Fig. 1 e Mixed-effects model results for word recognition accuracy. For illustration purposes only, the continuous variables

ZipfF and TriF were split into low (M < ¡1 SD), medium (M ±1 SD), and high (M > þ 1 SD). Shaded areas represent the 95%

confidence interval. A. Illustration of the interaction of phonotactic probability (TriF) and lexical frequency (ZipfF). In general,

word recognition accuracy dropped when both measures were low. B. Illustration of the three-way interaction of TriF, ZipfF

and frequency-weighted neighborhood density (FWND): high FWND had inhibitory effects (i.e., led to lower word

recognition accuracy), when phonotactic probability (TriF) and lexical frequency (ZipfF) were low. C. Illustration of the three-

way interaction of phonotactic probability (TriF), lexical frequency (ZipfF), and Listening Condition (SNR): The lower the SNR,

the higher the gain of TriF in infrequent words.

Fig. 2 e Model results for reaction times in clear speech. For illustration purposes only, the continuous variables ZipfF and

TriF were split into low (M < ¡1 SD), medium (M ±1 SD), and high (M > þ1 SD). Shaded areas represent the 95% confidence

interval. A. Illustration of the interaction of lexical frequency (ZipfF) and frequency-weighted neighborhood density (FWND).

In general, higher FWND had an inhibitory effect, i.e., it led to slowed reaction times, when ZipfF was high. On the other

hand, higher FWND had a facilitatory effect, when ZipfF was low. B. Illustration of the three-way interaction of phonotactic

probability (TriF), ZipfF, and FWND: When TriF was high, the interaction of FWND and ZipfF was strongest.
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intermediate level of signal quality (i.e., þ6dB), both lexical

frequency and triphone frequency did not appear to interact.

Furthermore, we observed a two-way interaction of TriF

and FWND. While high-TriF words appeared not to be modu-

lated by FWND, RTs for mid-range and low-TriF words

increased as FWND increased. Interestingly and comparable

to the accuracy analysis (and to the RTs in clear speech),

Zipfian frequencywas found to interact with TriF and FWND in

a three-way interaction (TriF � FWND � ZipfF). As depicted in

Fig. 3B (note the similarity to Fig. 2B), the higher the triphone

frequency, the stronger the benefit of neighborhood density,

i.e., faster reaction times, for low lexical frequency items.
In sum, the behavioral data demonstrated that lexical

frequency exerted a strong influence on both recognition ac-

curacy and speed, both in the clear and in the presence of

background noise. All models revealed main effects of ZipfF

with higher accuracy and faster RTs for words of higher fre-

quency. With regard to low-frequency words, we observed

interesting patterns suggesting that sublexical features were

crucial for determining recognition accuracy and speed. That

is, we found that low-frequency words, which exhibited high

triphone frequency benefitted from a high neighborhood

density (in terms of accuracy, Fig. 1B right-hand plot). Second,

under ideal listening conditions, low-frequency words were
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Table 4 e Modeling of reaction times for speech in clear and in noise.

Predictors Clear Noise

Estimate SE CI t p Estimate SE CI t p

(Intercept) 6.12 .04 6.04e6.21 140.60 <.001*** 6.45 .05 6.36e6.54 141.06 <.001***
ZipfF �.06 .02 �.09e�.02 �3.14 .002** �.07 .02 �.11e�.04 �4.38 <.001***
FWND .01 .02 �.03e.04 .39 .695 .02 .02 �.01e.05 1.11 .266

TriF .01 .02 �.03e.05 .48 .628 �.02 .02 �.05e.02 �1.02 .310

SNR[H.1] .09 .05 �.01e.20 1.75 .080

SNR[H.2] .03 .03 �.03e.09 .87 .384

TriF x FWND �.02 .02 �.06e.01 �1.42 .156 �.03 .02 �.06e�.00 �2.15 .031*

TriF x ZipfF .01 .02 �.04e.05 .33 .740 .01 .02 �.04e.05 .26 .793

FWND x ZipfF .03 .02 �.00e.07 1.79 .074 .02 .02 �.01e.05 1.31 .191

TriF x SNR[H.1] �.02 .01 �.04e.00 �1.77 .077

TriF x SNR[H.2] �.01 .01 �.02e.00 �1.71 .088

FWND x SNR[H.1] .01 .01 �.01e.03 .88 .380

FWND x SNR[H.2] .00 .01 �.01e.01 .43 .666

ZipfF x SNR[H.1] .02 .01 .00e.04 2.45 .014*

ZipfF x SNR[H.2] �.01 .01 �.02e.01 �1.02 .306

TriF x FWND x ZipfF .04 .02 .00e.07 2.06 .039* .04 .02 .00e.07 2.06 .039*

TriF x FWND x SNR[H.1] �.01 .01 �.03e.00 �1.67 .094

TriF x FWND x SNR[H.2] �.01 .01 �.02e.00 �1.71 .088

TriF x ZipfF x SNR[H.1] .02 .01 �.01e.04 1.22 .221

TriF x ZipfF x SNR[H.2] .02 .01 .00e.03 2.24 .025*

FWND x ZipfF x SNR[H.1] �.01 .01 �.02e.01 �.70 .486

FWND x ZipfF x SNR[H.2] �.00 .01 �.01e.01 �.57 .570

TriF x FWND x ZipfF x SNR[H.1] �.00 .01 �.02e.02 �.08 .938

TriF x FWND x ZipfF x SNR[H.2] .00 .01 �.01e.01 .33 .742

Note. Model formular for clear trials: lmer[logRT ~ TriF * FWND * ZipfF þ (1 |Participant) þ (1 | Word), df.clear, REML ¼ FALSE,

control ¼ lmerControl (calc.derivs ¼ TRUE)]; Model formular for noise trials: lmer[logRT ~ TriF * FWND * ZipfF * SNR þ (1 | Participant) þ (1 |

Word), df.noise, REML ¼ FALSE, control ¼ lmerControl(calc.derivs ¼ TRUE)]. SNR [H.1] compared the mean accuracy of SNRþ6dB against

SNRþ10dB, SNR [H.2] compared the mean accuracy of SNRþ2dB to SNRþ6dB and SNRþ10dB *** denotes p < .001,** denotes p < .01, * denotes

p < .05.

Table 5 e Modeling the ZipfF-effects on ERP amplitudes for speech in noise.

Predictors Cluster 1: N400 (440e510 msec) Cluster 2: P600 (700e770 msec)

Estimate SE CI t p Estimate SE CI t p

(Intercept) �36.76 4.19 �44.97e�28.55 �8.78 <.001*** 4.58 4.18 �3.61e12.77 1.10 .273

Baseline �.06 .02 �.11e�.01 �2.46 .014* �.14 .02 �.19e�.09 �5.83 <.001***
ZipfF �3.77 1.39 �6.50e�1.04 �2.70 .007** 5.87 1.99 1.97e9.76 2.95 .003**

SNR[H.1] 2.08 5.08 �7.87e12.03 .41 .682 �6.75 4.80 �16.16e2.66 �1.41 .160

SNR[H.2] 1.06 2.96 �4.73e6.86 .36 .719 �5.56 2.81 �11.06e�.06 �1.98 .048*

Baseline x ZipfF .02 .02 �.02e.06 .92 .356 .01 .02 �.04e.05 .29 .770

Baseline x SNR[H.1] .09 .03 .03e.14 3.05 .002** .03 .03 �.03e.08 .97 .333

Baseline x SNR[H.2] �.01 .02 �.04e.03 �.44 .662 .02 .02 �.01e.06 1.40 .162

ZipfF x SNR[H.1] .02 1.56 �3.03e3.08 .02 .987 .82 1.68 �2.47e4.12 .49 .624

ZipfF x SNR[H.2] .18 .96 �1.71e2.06 .18 .856 .84 1.05 �1.21e2.89 .80 .423

Baseline x ZipfF x SNR[H.1] .01 .03 �.04e.07 .43 .668 .02 .03 �.04e.07 .61 .545

Baseline x ZipfF x SNR[H.2] .02 .02 �.01e.05 1.33 .182 .01 .02 �.02e.04 .62 .538

Note. SNR [H.1] compared the mean accuracy of SNR þ 6dB against SNR þ 10dB, SNR [H.2] compared the mean accuracy of SNR þ 2dB to SNR þ 6dB and

SNR þ 10dB *** denotes p < .001, ** denotes p < .01, * denotes p < .05.
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recognized faster when they resided in dense phonological

neighborhoods (Fig. 2A), especially when triphone frequency

was also high (Fig. 2B).

When recognizing words in the presence of background

noise, triphone frequency had variable effects:While high TriF

sped up the recognition process of infrequent words at diffi-

cult signal-to-noise ratios (þ 2 dB, Fig. 3D), it slowed down RTs

at easier SNRs (þ 10 dB, Fig. 3D).
3.3. EEG: cluster-based permutation

In order to be able to fit observer-unbiasedmixed-models to our

EEGdata,wechoseadata-drivenapproach todetermine regions

and times of interest. To this end, we ran six cluster-based

permutation tests, one for each predictor (ZipfF, FWND, TriF) in

eachof the two listening conditions (clear, noise).We found two

clusters that suggested significant differences in ERP amplitude
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Fig. 3 e Mixed-effects model of reaction times for speech in noise. For illustration purposes only, the continuous variables

ZipfF and TriF were split into low (M < ¡1 SD), medium (M ±1 SD), and high (M > þ1 SD). Shaded areas represent the 95%

confidence interval. A. Illustration of the interaction of phonotactic probability (TriF) and frequency-weighted neighborhood

density (FWND). B. Illustration of the three-way interaction of TriF, ZipfF, and FWND: When TriF was low, FWND did not

modulate RTs. When TriF was high, infrequent words profited strongly from high neighborhood density, while the inverse

was true for high-frequency words. C. Illustration of the interaction of lexical frequency (ZipfF) and signal-to-noise ratio

(SNR): Generally, higher ZipfF led to faster RTs. However, this benefit was weaker at an intermediate SNR of þ6 dB. B.

Illustration of the three-way interaction of TriF, ZipfF, and SNR. For infrequent words, high TriF slowed RTs atþ10 dB, while

at þ2 dB high TriF was beneficial.

Table 6 e Modeling the FWND-effects on ERP amplitudes for speech in noise and in the clear.

Predictors Cluster 3: N400 (510e590 msec) in noise Cluster 4: P200 (260e340 msec) in the clear

Estimate SE CI t p Estimate SE CI t p

(Intercept) �27.91 3.70 �35.16e�20.66 �7.54 <.001*** 8.94 5.20 �1.25e19.13 1.72 .086

Baseline �.09 .02 �.13e�.04 �3.79 <.001*** .09 .02 .05e.13 4.28 <.001***
FWND �5.05 1.45 �7.88e�2.21 �3.49 <.001*** 5.22 1.53 2.22e8.23 3.40 .001**

SNR[H.1] �1.18 4.50 �10.00e7.63 �.26 .793

SNR[H.2] �.44 2.68 �5.70e4.82 �.16 .869

Baseline x FWND .01 .02 �.03e.05 .47 .637 �.02 .02 �.06e.02 �1.04 .301

Baseline x SNR[H.1] .01 .03 �.04e.07 .47 .641

Baseline x SNR[H.2] .02 .02 �.01e.06 1.30 .193

FWND x SNR[H.1] 1.63 1.73 �1.77e5.02 .94 .348

FWND x SNR[H.2] �.08 1.16 �2.35e2.18 �.07 .943

Baseline x FWND x SNR[H.1] .00 .03 �.05e.05 .07 .947

Baseline x FWND x SNR[H.2] �.01 .02 �.05e.02 �.83 .407

Note. SNR [H.1] compared the mean accuracy of SNR þ 6dB against SNR þ 10dB, SNR [H.2] compared the mean accuracy of SNR þ 2dB to SNR þ 6dB and

SNR þ 10dB *** denotes p < .001, ** denotes p < .01, * denotes p < .05.

c o r t e x 1 5 1 ( 2 0 2 2 ) 7 0e8 882
due to lexical frequency (Fig. 4A1, Clusters 1 and 2) and two that

suggested significant differences due to neighborhood density

(Fig. 4B and D, Clusters 3 and 5). Furthermore, one cluster was

found that suggested a trend for triphone frequency (p ¼ .054,

Fig. 4C, Cluster 4). We included this trend-level cluster, since it

was in line with our hypotheses.

We found that in noise the N400 amplitude was negatively

correlated with ZipfF over left-parietal electrodes (Tsum-

¼�1778.6, p¼ .047; see Fig. 4A1)meaning that the higher lexical
frequency, the lower (i.e., more negative) the N400 amplitude.

Regression coefficients were lowest from 440 to 510 msec post

word onset (electrodes: C3, CP5, CP3, CP1, P5, P3, P1). Further-

more, we found that in noise the P600 amplitude was positively

correlated with ZipfF, again over left-parietal electrodes

(Tsum ¼ 2844.6, p ¼ .010; see Fig. 4A2) meaning that the higher

lexical frequency, the higher (i.e., more positive) the P600

amplitude. Regression coefficients were highest from 700 to

770 msec post word onset (electrodes: CP3, CP1, P3, P1). In sum,
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Table 7 e Modeling the TriF-effect on ERP amplitudes for
clear speech.

Predictors Cluster 5: P200 (240e340)

Estimate SE CI t p

(Intercept) 6.58 5.12 �3.45e16.62 1.29 .198

Baseline .09 .02 .06e.13 4.80 <.001***
TriF 4.04 1.43 1.23e6.84 2.82 .005**

Baseline x TriF �.04 .02 �.08e�.00 �2.17 .030*

Note. *** denotes p < .001, ** denotes p < .01, * denotes p < .05.

Fig. 4 e Summary of the cluster-based permutation tests. Grand average ERPs are shown for the respective acoustic

condition averaged over the region of interest as determined by the respective cluster. The gray shadow marks the

significant time window in the ERPs as well as in the line plot of t-values over time. The panel on the right shows the

topographies of the regression coefficients (betas) during the determined time of interest. Below the mean least squares

linear fits across subjects are plotted aligned with the probability density distribution for the independent variable (ZipfF,

FWND, or TriF). A. Two left parietal clusters were foundwhere lexical frequency (ZipfF) modulated the processing of words in

noise (but not in clear). B. One frontal cluster, within the N400 time window, was found to be modulated by neighborhood

density (FWND) in noise. C. One central cluster was found, where TriF modulated the P200 in clear speech. D. Additionally,

the same central cluster was found to be modulated by neighborhood density (FWND) in clear speech.
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the N400eP600 complex wasmodulatedmore strongly in high-

compared to low-frequency words.

FWND showed effects in both clear and noisy listening

conditions. In noise, FWND had an effect on the N400

component from 510 to 590 msec (Tsum ¼ �2208.6, p ¼ .019,

electrodes: AF3, AFZ, F1, FZ, Fig. 4B), with larger (i.e., more

negative) N400 amplitudes for words residing in dense

compared to sparse phonological neighborhoods (inhibitory

neighborhood density effect). In clear speech, FWND had an

early effect on the P200 from 260 to 340 msec (Tsum ¼ 2606.6,

p ¼ .015, electrodes: CZ, C2, CPZ, CP2; see Fig. 4D). This effect
showed the reverse (i.e., positive) directionality with larger

P200 amplitudes for words residing in dense rather than

sparse neighborhoods (facilitatory neighborhood density

effect).

Finally, in clear speech, we found an effect of TriF on the

P200 (Tsum ¼ 1793.8, p ¼ .0549, 240e340 msec, electrodes: CZ,

CPZ, CP2; see Fig. 4C). This effect showed remarkable simi-

larity to the FWND effect on the P200 in clear speech and

suggested that words with higher TriF values elicited larger

(i.e., more positive) P200 amplitudes.
3.4. EEG: linear mixed effects modelling

Following up on the cluster-based permutation tests, we

extracted the EEG data averaged over the determined times

and regions of interest. Paralleling the analyses of the

behavioral data, we conducted linearmixed-effectsmodels on

ERPs. As recommended by Alday (2019), the EEG baseline of

each trial (�200 to 0 sec before word onset) was included as a

covariate in themixed-effectsmodel. In all models, significant

main effects of baseline were observed. This is to be expected

and simply suggests that any ERP amplitude after target onset
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is contingent on (correlates with) the amplitude recorded

during the baseline period. Note that the baseline in the noise

conditions contained the ramping noise before target word

onset.We therefore expected the baseline amplitudes to differ

in response to different SNRs (reflected as a significant inter-

action between baseline and SNR).

In linewith the cluster-based analysis, we found a negative

effect of ZipfF on the N400 amplitude (b ¼ �3.77, SE ¼ 1.39,

t ¼ �2.70) and a positive effect of ZipfF on the P600 amplitude

(b ¼ 5.86, SE ¼ 1.99, t ¼ 2.95) in noise. Additionally, we found

the P600 amplitude to decrease with noise levels [SNR(H.1):

b ¼ �6.75, SE ¼ 4.80, t ¼ �1.40; SNR(H.2): b ¼ �5.56, SE ¼ 2.81,

t ¼ �1.98; see also least square fits of the second cluster in

Fig. 4A]. No interaction was found between lexical frequency

and SNR levels (for a summary of results see Table 5).

Furthermore as summarized in Table 6, we confirmed the

early FWND effect on the P200 amplitude in clear speech

(b ¼ 5.22, SE ¼ 1.53, t ¼ 3.41) and the later FWND effect on the

N400 amplitude in noise conditions (b ¼ �5.04, SE ¼ 1.45,

t ¼ �3.50). Again, no interaction was found on the N400

amplitude between FWND and SNR levels suggesting a uni-

formnegative correlation of FWNDwith the N400 amplitude in

noise.

Finally, we confirmed the positive correlation of the P200

with TriF in the clear listening condition (b ¼ 4.04, SE ¼ 1.43,

t ¼ 2.82; see Table 7). In contrast to the previous models, we

observed that baseline EEG amplitude interacted with TriF

(b ¼ �.04). This result was unexpected and suggests that the

combination of TriF and baseline modulated the amplitude of

the P200dmost likely a spurious finding. Importantly, the

presence of this effect did not affect the main effect of TriF on

the P200 amplitude.
4. Discussion

The present study investigated the interplay between lexical

and sublexical processing during spoken-word recognition in

the presence of background noise and in clear. We examined

the contributions of three predictors (i.e., word frequency,

phonological neighborhood density, and phonotactic proba-

bility). These predictors have loci at lexical and sublexical

levels.We askedwhether these predictors explain variation in

behavioral indicators of spoken-word recognition perfor-

mance in both listening conditions. Moreover, we charted the

neurobiological markers associated with these properties and

examined how listening conditions affected their realization.

We tested the hypothesis that listeners adjust their mode of

processing and rely more strongly on sublexical processing

when the speech signal is less reliable due to the presence of

background compared to when it is clear (i.e., absence of

background noise). Such a shift should be reflected in the

emergence of effects, and/or in an increase in effect size of

predictors with a sublexical locus (i.e., phonotactic probability

and phonological neighborhood density).

Behavioral findings: The dominance of word frequency

and the complementary roles of phonotactic probability and

phonological neighborhood density. In line with numerous

prior studies, we found word frequency to be the strongest

and most stable predictor of word recognition performance
(Brysbaert et al., 2018, for review). That is, we observed main

effects (better performance for high-versus low-frequency

words) of word frequency in clear and in noise for both

recognition accuracy and speed. These effects signal a

consistent reliance on lexical processing both in clear and in

noise.

Phonotactic probability and neighborhood density played a

role only in interactions with other predictors. With regard to

accuracy, we observed that irrespective of listening condition,

phonotactic probability interacted with word frequency such

that low-frequency words were recognized more accurately

when they were made up of frequent rather than infrequent

phonemes (Fig. 1A). Importantly, this benefit was further

moderated by listening condition such that as speech quality

decreased, the benefit that low-frequency words gained

through high-frequency phoneme combinations increased

(Fig. 1C). A similar pattern was found for reaction times: In the

presence of background noise at an SNR ofþ2 dB, responses to

low-frequency words were faster when composed of frequent

rather than infrequent phonemes (Fig. 3D). Importantly, this

effect had the opposite directionality in the RT pattern found

when words were masked at an SNR of þ10 dB, suggesting a

change in the contribution of phonotactic probability in

response to decreasing speech quality, that is, phonotactic

probability became less important when listening conditions

were better. Generally speaking, the interaction betweenword

frequency, phonotactic probability and listening condition

(SNR) is in line with the notion that sublexical processing is

weighted more strongly under conditions of signal degrada-

tion (Mattys et al., 2009). In fact, the present results extend the

account put forward byMattys et al. (2009) by demonstrating a

stronger weighting of sublexical processing in noise in a task

that did not capitalize on acoustic-allophonic variation. Taken

together, while lexical information (i.e., frequency) appears to

play amandatory role in spoken-word recognition (i.e., both in

clear and in noise), phonotactic probability may provide a

‘helping hand’ in cases where the speech signal is less reliable

(masked).

As discussed in the Introduction, depending on the situa-

tional context in which word recognition takes place, neigh-

borhood density has been found to yield both inhibitory (Luce

& Pisoni, 1998) and facilitatory (Vitevitch, 2003) effects. This

asymmetry has been linked to neighborhood density uniting

both lexical (i.e., number of similar soundingwords) as well as

sublexical (i.e., phoneme probability) elements, which are

often positively correlated. The results of the present experi-

ment add to the notion that neighborhood density might

indeed be best conceived of as a hybrid measure, with loci at

lexical and sublexical levels. In all three models (accuracy,

RTclear, RTnoise), we observed an interaction between neigh-

borhood density, word frequency and phonotactic probability.

For accuracy, the interaction suggested that low-frequency

words composed of low-frequency phonemes were recog-

nized less accurately when they had high rather than low

numbers of phonological neighbors (i.e., an inhibitory effect).

For RTs (both in clear and noise), we observed interesting

cross-over patterns, associated with the words’ phonotactic

probability: While low phonotactic probability resulted in the

canonical inhibitory effects (slower RTs for words with more

compared to fewer neighbors, uniform across low-, medium-
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and high-frequency words), increases in phonotactic proba-

bility affected dense- and sparse-neighborhood words differ-

ently. Specifically, when phonotactic probability was high,

low-frequency words were recognized faster when they

resided in dense rather than sparse neighborhoods (i.e., a

facilitatory effect). In contrast, when phonotactic probability

was high, high-frequency words were recognized faster when

they resided in sparse rather than dense neighborhoods (i.e.,

an inhibitory effect). These effects were not moderated by

listening condition. Unlike in previous work (e.g., Luce &

Pisoni, 1998), we also did not find main effects of neighbor-

hood density. Taken together, these behavioral results suggest

only a minor role of neighborhood density during spoken-

word recognition. Importantly, the exact nature of behav-

ioral neighborhood density effects appears to be determined

by other lexical and sublexical variables that neighborhood

density interacts with. That is, when lexical but not sublexical

information provides useful cues (i.e., high word frequency),

neighborhood density appears to have inhibitory effects.

Conversely, when sublexical but not lexical information pro-

vides useful cues (i.e., high phonotactic probability), neigh-

borhood density appears to have facilitatory effects.

In sum, the results render a picture of complex interactions

between lexical and sublexical processing subserving suc-

cessful spoken-word recognition in the clear and in noise. We

have visualized these interactions in Fig. 5. Scenarios A, B and

C in Fig. 5 embody the accuracy results of the present study.

Each panel includes phonemic (i.e., sublexical) and lexical
Fig. 5 e Schematic visualization of the mechanisms contributin

environmental settings. The larger box embodies the interactio

phonemic (i.e., sublexical) representations being connected to l

effect of lexical frequency in clear and in noisy listening conditi

lexical frequency. In scenarios B.1 and B.2, we visualize the inc

presence of background noise. Thick lines around sublexical rep

a positive effect on word recognition when lexical frequency is

connecting sublexical and lexical representations. Compared to

reflecting the interaction with SNR. Finally, scenario C visualizes

neighborhood density and lexical frequency: When phonotactic

is likely to be more successful when neighborhood density is lo
representations and the connections between them. In each

panel, we visualized hypothetical variations in sublexical and

lexical representations and how they facilitate word recogni-

tion. Scenario A represents the main effect of ZipfF and the

dominance of lexical frequency during spoken word recogni-

tion, which applied to both clear-speech and noisy-speech

processing. Similarly, scenario C represents the interaction

between lexical frequency, phonological neighborhood den-

sity and phonotactic probability, which we observed across

clear and noisy listening conditions: Recognition accuracy for

low-frequency, low-phonotactic probability targets was

highest when they resided in sparse rather than dense

phonological neighborhoods. Scenarios B.1 and B.2 highlight

the growing importance of sublexical phonotactic probability

in noisy listening conditions. That is, while we observed in-

teractions between ZipfF and TriF in clear, the interaction was

further moderated by SNR suggesting an increasing influence

of sublexical processing for words whose lexical frequency

was low.

Electrophysiological findings: Parallel processing of word

frequency and phonological neighborhood density in noise. In

noise, we observed that words with a higher frequency eli-

cited more pronounced N400 and P600 amplitudes (over

centro-parietal electrodes) than words with a lower fre-

quency. These findings are surprising since they suggest that

high-frequency words resulted in enhanced processing ef-

forts. We had predicted the opposite directionality (cf. Dufour

et al., 2013 but see Strauß et al., 2013). The EEG results are even
g to successful spoken word recognition in clear and noisy

ns between sublexical and lexical processing, with

exical representations. Scenario A visualizes the simple

ons: Thick lines around lexical representations depict high

reasing importance of phonotactic probability in the

resentations depict high phonotactic probability, which has

low. These positive effects are illustrated by thick lines

scenario B1, these lines are even thicker in scenario B2,

the three-way interaction between phonotactic probability,

probability and lexical frequency are low, word recognition

w rather than high (see Discussion for further details).

https://doi.org/10.1016/j.cortex.2022.02.011
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more surprising since e as discussed above e word frequency

had the predicted, canonical behavioral effects. As both the

N400 and the P600 components showed a reverse frequency

effect, these effects appear unlikely to be mere artefacts. We

also observed an effect of phonological neighborhood density,

which lay in between the TOIs of the N400eP600 frequency

effects (reflecting a ‘late N400’). This neighborhood density

effect showed over frontal electrodes, with ERP amplitudes

being more negative for words residing in dense compared to

sparse neighborhoods. This effect was in the same (canonical)

direction as the N400 effect reported by Dufour et al. (2013),

who interpreted it to reflect the ease of word selection,

modulated by the number of similar sounding lexical com-

petitors. We did not observe any EEG effects of phonotactic

probability in noise.

One account for the frequency and neighborhood density

EEG findings is that they relate to the three-way interaction

between ZipfF, FWND and TriF on RTs in noise (visualized in

Fig. 3B). As can be seen, high-frequency words (withmedium to

high phonotactic probability) weremost stronglymodulated by

neighborhood density: When neighborhood density was low,

high word frequency resulted in fast RTs; when neighborhood

density was high, high word frequency resulted in slow RTs.

Interestingly, the EEG effects of frequency and neighborhood

density showed up in two distinct neuronal networks working

in parallel: frequency over left temporal areas and neighbor-

hood density over frontal regions. On the account outlined

above, one would assume interactions between the ‘frequency

and neighborhood density networks’ and one may speculate

whether such interactions could have ripple effects, in such a

way that processing in one network influences processing in

the other network. Clearly, more research is needed to (1)

replicate the present pattern of EEG results and (2) to home in

on the interactions between the networks, possibly using a

different method such as magnetic resonance imaging to be

able to visualize fiber tract connections.

Electrophysiological findings: Early effects of sublexical

information and absence of lexical frequency effects in clear.

As a baseline condition, following presentation in noise, we

presented all participants with the same words again in clear.

In line with the previous literature, we found that neighbor-

hood density and phonotactic probability modulated the P200

(Dufour et al., 2013; Winsler et al., 2018), both originating from

auditory cortices as suggested by the central scalp topography

(overlapping electrodes: Cz, CPz, and CP2; see Fig. 4C,D). Both

properties were positively correlated with the P200 amplitude,

such that dense-neighborhood words and words with

frequent phoneme sequences elicited larger P200 amplitudes

compared to sparse-neighborhood words and words made up

of low-frequency phoneme sequences. In line with the notion

that the P200 is sensitive to physical properties of a stimulus

(Donchin et al., 1978), we interpret these effects as having a

sublexical nature, reflecting facilitated recognition for words

with highly probable phonemic sequences. Note that on this

account the early neighborhood density effect is a phonotactic

probability effect in disguise. Since the RT and accuracy ef-

fects in noise provided some evidence for the notion that lis-

teners relied more strongly in noise contexts on sublexical

than lexical processing, one may speculate whether the

modulations of the P200 amplitude in the clear reflect some
form of ‘carry-over’ effect from the noise block. That is, when

carrying out the clear block, participants might still be driven

towards a sublexical mode of processing (a remnant from

their recent experience on the noise trials), where they capi-

talize more on the sublexical elements contained in the

neighborhood density measure such that high neighborhood

density values turned out to have facilitatory rather than

inhibitory effects.

Surprisingly and unlike previous studies (e.g., Dufour et al.,

2013), we did not find any EEG effects of word frequency in the

clear condition. The lack of such effects is especially inter-

esting sincewe founde as in noisee evidence for a strong role

of word frequency in participants' behavior. An explanation

for this asymmetry could be that the previous exposure to the

stimulus words in the noise block could have mitigated dif-

ferences in word frequency between targets (i.e., temporarily

increased low-frequency words’ baseline activation levels,

Coltheart et al., 2001). Re-activating the same words in the

clear block was thus cognitively less effortful.
5. Conclusion

The present results confirm a simple intuition: Listening in

noise is harder than in the clear. This was reflected in both

listeners' word recognition accuracy and speed. We also

replicated earlier research showing that listeners rely on sta-

tistical properties, word frequency, phonological neighbor-

hood density, and phonotactic probability, when recognizing

spoken words. Importantly, using the present two-stage lexi-

cal decision and transcription task, we have shown that there

are complex interactions between these three variables and

that the importance andweighting of each variable varies as a

function of the listening condition within which comprehen-

sion takes place. We tested the hypothesis that listeners rely

more strongly on sublexical processing under adverse condi-

tions than in the clear. Such a shift in processing would be

reflected in the emergence of effects and/or the increase in

effect size of variables having a sublexical locus (i.e., phono-

tactic probability and neighborhood density). Indeed, our

behavioral analyses revealed some support for this claim. The

second goal of the present study was to chart the neurobio-

logical markers associatedwith the three statistical properties

and how their realization differs across clear and noise

listening conditions. We found three time windows in noise

and two in the clear-speech condition where variability in

listeners’ ERP amplitude was correlated with the three sta-

tistical properties. Although the direction of some of the EEG

effects was the opposite of what we predicted, we provided

interpretations that are in line with the notion that listeners

rely more strongly on sublexical than lexical processing in

noise compared to clear. However, since these interpretations

were conceived post-hoc, an important task for future

research is to conduct targeted replications of the present EEG

effects. In any case, the present study highlights that a com-

bination of behavioral and neurobiological techniques is

indispensable for getting to the bottom of the mechanisms

underlying spoken-word recognition in clear and in noise,

how these are implemented at the brain level and how they

play out in behavior.
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Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-
twenty electrode system of the international federation of
clinical neurophysiology. Electroencephalography and Clinical
Neurophysiology, 1999(52), 3e6.

Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting:
Finding meaning in the N400 component of the event-related
brain potential (ERP). Annual Review of Psychology, 62, 621e647.

Landauer, T. K., & Streeter, L. A. (1973). Structural differences
between common and rare words: Failure of equivalence
assumptions for theories of word recognition. Journal of Verbal
Learning and Verbal Behavior, 12(2), 119e131.

https://hdl.handle.net/1839/1fbdb007-96c9-40cb-8031-46af2e019f
https://hdl.handle.net/1839/1fbdb007-96c9-40cb-8031-46af2e019f
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref1
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref1
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref1
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref1
https://www.audacityteam.org/
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref2
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref2
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref2
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref3
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref3
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref3
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref3
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref3
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref4
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref4
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref4
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref4
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref4
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref5
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref5
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref5
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref5
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref5
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref6
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref6
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref7
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref7
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref7
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref8
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref8
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref8
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref8
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref9
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref9
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref9
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref9
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref9
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref10
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref10
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref10
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref10
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref10
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref10
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref11
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref11
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref11
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref12
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref12
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref12
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref12
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref12
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref13
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref13
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref13
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref13
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref13
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1177/0956797613504966
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref14
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref14
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref14
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref14
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref14
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref15
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref15
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref15
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref15
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref15
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref16
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref16
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref16
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref16
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref16
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref16
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref17
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref17
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref17
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref17
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref17
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref18
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref18
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref18
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref18
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref19
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref19
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref19
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref20
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref20
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref20
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref20
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref20
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref20
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref21
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref21
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref21
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref21
https://doi.org/10.1016/j.bandl.2013.09.006
https://doi.org/10.1016/j.bandl.2013.09.006
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref22
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref22
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref22
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref22
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref22
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref23
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref23
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref23
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref24
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref24
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref24
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref24
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref25
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref25
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref25
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref25
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref25
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref26
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref26
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref26
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref26
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref27
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref27
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref27
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref27
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref27
https://doi.org/10.1016/j.cortex.2022.02.011
https://doi.org/10.1016/j.cortex.2022.02.011


c o r t e x 1 5 1 ( 2 0 2 2 ) 7 0e8 888
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for
semantics:(de) constructing the N400. Nature Reviews
Neuroscience, 9(12), 920e933.

Lewendon, J., Mortimore, L., & Egan, C. (2020). The phonological
mapping (mismatch) negativity: History, inconsistency, and
future direction. Frontiers in Psychology, 11, 1967.

Luce, P. A., Goldinger, S. D., Auer, E. T., & Vitevitch, M. S. (2000).
Phonetic priming, neighborhood activation, and PARSYN.
Perception & Psychophysics, 62(3), 615e625.

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The
neighborhood activation model. Ear and Hearing, 19(1), 1e36.

Magnuson, J. S., Mirman, D., Luthra, S., Strauss, T., & Harris, H. D.
(2018). Interaction in spoken word recognition models:
Feedback helps. Frontiers in Psychology, 9, 369.

Magnuson, J. S., You, H., Luthra, S., Li, M., Nam, H., Escabi, M.,
et al. (2020). Earshot: A minimal neural network model of
incremental human speech recognition. Cognitive Science,
44(4), Article e12823.

Marian, V., Bartolotti, J., Chabal, S., & Shook, A. (2012).
CLEARPOND: Cross-linguistic easy-access resource for
phonological and orthographic neighborhood densities. Plos
One, 7(8). https://doi.org/10.1371/Fjournal.pone.0043230

Mattys, S. L., Brooks, J., & Cooke, M. (2009). Recognizing speech
under a processing load: Dissociating energetic from
informational factors. Cognitive Psychology, 59(3), 203e243.

Mattys, S. L., Davis, M. H., Bradlow, A. R., & Scott, S. K. (2012).
Speech recognition in adverse conditions: A review. Language
and Cognitive Processes, 27(7e8), 953e978.

Mattys, S. L., White, L., & Melhorn, J. F. (2005). Integration of
multiple speech segmentation cues: A hierarchical framework.
Journal of Experimental Psychology: General, 134(4), 477e500.

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech
perception. Cognitive Psychology, 18(1), 1e86.

McQueen, J. M. (2003). The ghost of christmas future: Didn't
scrooge learn to be good?: Commentary on Magnuson,
McMurray, tanenhaus, and aslin (2003). Cognitive Science, 27(5),
795e799.

Morton, J. (1969). Interaction of information in word recognition.
Psychological Review, 76(2), 165e178.

Newman, R. S., Sawusch, J. R., & Luce, P. A. (1997). Lexical
neighborhoodeffects inphoneticprocessing. JournalofExperimental
Psychology: Human Perception and Performance, 23(3), 873e889.

Newman, R. S., Sawusch, J. R., & Wunnenberg, T. (2011). Cues and
cue interactions in segmenting words in fluent speech. Journal
of Memory and Language, 64(4), 460e476.

Norris, D. (1994). Shortlist: A connectionist model of continuous
speech recognition. Cognition, 52(3), 189e234.

Norris, D., & McQueen, J. M. (2008). Shortlist B: A bayesian model
of continuous speech recognition. Psychological Review, 115(2),
357e395.

Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging
information in speech recognition: Feedback is never
necessary. Behavioral and Brain Sciences, 23(3), 299e325.

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011).
FieldTrip: Open source software for advanced analysis of MEG,
EEG, and invasive electrophysiological data. Computational
Intelligence and Neuroscience, 2011.

Pollack, I., Rubenstein, H., & Decker, L. (1960). Analysis of
incorrect responses to an unknown message set. The Journal of
the Acoustical Society of America, 32(4), 454e457.

Preston, K. A. (1935). The speed of word perception and its
relation to reading ability. The Journal of General Psychology,
13(1), 199e203.
Pylkk€anen, L., Stringfellow, A., & Marantz, A. (2002).
Neuromagnetic evidence for the timing of lexical activation:
An MEG component sensitive to phonotactic probability but
not to neighborhood density. Brain and Language, 81(1e3),
666e678.

R Core Team. (2012). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.
R-project.org/.

Scharenborg, O., Coumans, J. M., & van Hout, R. (2018). The effect
of background noise on the word activation process in
nonnative spoken-word recognition. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 44(2), 233e249.

Strauß, A., Kotz, S. A., & Obleser, J. (2013). Narrowed expectancies
under degraded speech: Revisiting the N400. Journal of
Cognitive Neuroscience, 25(8), 1383e1395.

Strauß, A., Kotz, S. A., Scharinger, M., & Obleser, J. (2014). Alpha
and theta brain oscillations index dissociable processes in
spoken word recognition. Neuroimage, 97, 387e395.

Taft, M., & Hambly, G. (1986). Exploring the cohort model of
spoken word recognition. Cognition, 22(3), 259e282.

Van Engen, K. J., Dey, A., Runge, N., Spehar, B., Sommers, M. S., &
Peelle, J. E. (2020). Effects of age, word frequency, and noise on
the time course of spoken word recognition. Collabra:
Psychology, 6(1). https://doi.org/10.1525/collabra.17247

van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert, M.
(2014). SUBTLEX-UK: A new and improved word frequency
database for British English. The Quarterly Journal of
Experimental Psychology, 67(6), 1176e1190.

Van Petten, C., & Kutas, M. (1990). Interactions between sentence
context and word frequencyinevent-related brainpotentials.
Memory & Cognition, 18(4), 380e393.

Vitevitch, M. S. (2003). The influence of sublexical and lexical
representations on the processing of spoken words in English.
Clinical Linguistics & Phonetics, 17(6), 487e499.

Vitevitch, M. S., & Luce, P. A. (1998). When words compete: Levels
of processing in perception of spoken words. Psychological
Science, 9(4), 325e329.

Vitevitch, M. S., & Luce, P. A. (1999). Probabilistic phonotactics and
neighborhood activation in spoken word recognition. Journal of
Memory and Language, 40(3), 374e408.

Vitevitch, M. S., & Luce, P. A. (2004). A web-based interface to
calculate phonotactic probability for words and nonwords in
English. Behavior Research Methods, Instruments, & Computers,
36(3), 481e487.

Vitevitch, M. S., & Luce, P. A. (2016). Phonological neighborhood
effects in spoken word perception and production. Annual
Review of Linguistics, 2, 75e94.

Vitevitch, M. S., Luce, P. A., Pisoni, D. B., & Auer, E. T. (1999).
Phonotactics, neighborhood activation, and lexical access for
spoken words. Brain and Language, 68(1e2), 306e311.

Vitevitch, M. S., & Rodrı́guez, E. (2005). Neighborhood density
effects in spoken word recognition in Spanish. Journal of
Multilingual Communication Disorders, 3(1), 64e73.

Weber, A., & Scharenborg, O. (2012). Models of spoken-word
recognition. Wiley Interdisciplinary Reviews: Cognitive Science,
3(3), 387e401.

Winsler, K., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2018). An
electrophysiological megastudy of spoken word recognition.
Language, Cognition and Neuroscience, 33(8), 1063e1082.

Ziegler, J. C., Muneaux, M., & Grainger, J. (2003). Neighborhood
effects in auditory word recognition: Phonological
competition and orthographic facilitation. Journal of Memory
and Language, 48(4), 779e793.

http://refhub.elsevier.com/S0010-9452(22)00065-X/sref28
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref28
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref28
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref28
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref29
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref29
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref29
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref30
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref30
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref30
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref30
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref30
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref31
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref31
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref31
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref32
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref32
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref32
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref33
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref33
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref33
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref33
https://doi.org/10.1371/Fjournal.pone.0043230
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref35
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref35
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref35
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref35
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref36
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref36
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref36
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref36
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref36
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref37
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref37
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref37
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref37
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref38
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref38
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref38
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref39
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref39
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref39
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref39
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref39
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref40
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref40
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref40
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref41
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref41
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref41
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref41
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref42
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref42
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref42
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref42
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref43
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref43
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref43
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref44
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref44
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref44
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref44
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref45
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref45
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref45
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref45
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref46
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref46
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref46
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref46
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref47
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref47
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref47
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref47
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref48
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref48
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref48
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref48
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref49
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref49
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref49
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref49
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref49
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref49
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref49
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref49
https://www.R-project.org/
https://www.R-project.org/
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref50
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref50
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref50
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref50
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref50
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref51
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref51
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref51
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref51
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref52
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref52
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref52
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref52
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref53
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref53
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref53
https://doi.org/10.1525/collabra.17247
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref55
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref55
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref55
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref55
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref55
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref56
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref56
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref56
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref56
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref56
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref57
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref57
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref57
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref57
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref57
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref58
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref58
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref58
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref58
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref59
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref59
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref59
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref59
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref60
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref60
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref60
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref60
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref60
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref60
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref61
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref61
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref61
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref61
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref62
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref62
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref62
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref62
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref62
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref63
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref63
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref63
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref63
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref64
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref64
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref64
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref64
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref65
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref65
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref65
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref65
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref67
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref67
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref67
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref67
http://refhub.elsevier.com/S0010-9452(22)00065-X/sref67
https://doi.org/10.1016/j.cortex.2022.02.011
https://doi.org/10.1016/j.cortex.2022.02.011

	The differential roles of lexical and sublexical processing during spoken-word recognition in clear and in noise
	1. Introduction
	1.1. Processing at sublexical and lexical levels
	1.2. Word frequency
	1.3. Phonological neighborhood density
	1.4. Phonotactic probability
	1.5. Inducing modes of sublexical and lexical processing
	1.6. The present study
	1.7. Predictions

	2. Methods
	2.1. Participants
	2.2. Materials
	2.3. Procedure
	2.4. EEG acquisition
	2.5. Initial item analysis
	2.6. Behavioral analysis: accuracy
	2.7. Behavioral data analysis: reaction times
	2.8. EEG data pre-processing
	2.9. EEG data analysis: cluster-based permutation
	2.10. EEG data analysis: mixed-effects modeling

	3. Results
	3.1. Behavioral performance: accuracy
	3.2. Behavioral performance: reaction times
	3.3. EEG: cluster-based permutation
	3.4. EEG: linear mixed effects modelling

	4. Discussion
	5. Conclusion
	Author contributions
	Open practices
	aclink2
	References


