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1Introduction

If you have ever gotten lost in a fiction story or were transported by a poem, you
have experienced a powerful aspect of the human language: creativity. We can
create meaning beyond what individual words can express, through combining
them in ever new and infinite ways. This allows us to communicate ideas and
events that never have or even could become reality. Take this stanza from Emily
Dickinson’s poem “Could I but ride indefinite”. By creatively combining concepts,
that by themselves are somewhat void of meaning, she is able to communicate an
elusive feeling such as a state of carefree freedom.

...
I said But just to be a Bee
Upon a Raft of Air
And row in Nowhere all Day long
And anchor off the Bar

The seemingly unbounded flexibility in our use of words is enabled by its
counterpart, namely, structure and rules. For example, sentences in a language
usually adhere to a fixed word order (e.g. subject verb object) and this word
order does not vary arbitrarily from verb to verb. We don’t say “John loves
Mary” but then say “kissed John Mary”. Such regularities exist at all levels of
language: syntax, semantics, phonology and morphology. These rules allow us to
immediately understand and use newly encountered words. For example, when I
first encountered the verb “appen” (engl.: “to app”) in the Netherlands, it took
me a second to realise it was a verbing of the messaging application “WhatsApp”.
Then, I was immediately able to use the novel verb, asking whether my roommate
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had “apped with our landlord lately” or complaining about someone “apping away
all day”. The morphosyntactic rules of verb order and inflection allowed me to do
so.

As humans, we constantly extract regularities from our environment and
in the form of “abstract” or invariant mental representations they start to shape
our behaviour (Brette 2019). One example for human behaviour revealing abstract
mental representations is our ability to recognise a spoken word across a variety
of speakers, accents, and noise conditions. Beyond speech, we extract sensory
modality-independent patterns, forming concepts and categories based on a vari-
ety of inputs (Murphy 2004). Beyond single words and concepts, we can recognise
general relations between entities in the world independent of the exact nature
of those entities. All these abstract mental representations allow us to quickly
generalise our knowledge to new situations (Lake et al. 2019) and learn fast from
limited experience (Tenenbaum et al. 2011). Therefore, humans are optimally
suited to recognise and apply linguistic regularities. In fact, language itself is likely
a manifestation of this sensitivity to structure.

Further, we can distinguish between the theoretical notion of a mental rep-
resentation on the one hand and its manifestation in the form of the brain signal,
a neural representation, on the other hand. While behavioural evidence for the
former is an underlying assumption and motivation for the work in this thesis, evi-
dence for the latter can be regarded as the distant objective. The conditions a neural
signal must meet to be termed a “neural representation” are somewhat debated
(see Box 1). The experiments presented in this thesis should be considered a first
step in establishing neural representations through identifying a correspondence
relation between neural activity and abstract dimensions of language. Beyond
correspondence, there is evidence for a causal link between those abstract dimen-
sions and human behaviour (i.e. resulting in both functional and erroneous but
rule-based behaviour), which I will briefly review below. However, whether each
neural correlate can similarly be linked to behaviour is not explicitly addressed in
this thesis. Therefore, whenever I conclude that some neural pattern “encodes” or
“represents” a property of the stimulus, this should be taken to mainly imply that
it “corresponds”.

For the language researcher, identifying which abstract dimensions modulate
brain activity, can be useful for theorising about and investigating cognitive and
neural processing theories. This is nicely exemplified by research on neural
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representations within auditory cortex (Obleser and Eisner 2009, King et al. 2018):
For example, having established neuronal tuning for both category-specific voice-
onset times, e.g. distinguishing /b/ from /p/, as well as sub-phonetic details
wtihin a category, e.g. how prototypical /b/ sounds, Fox and colleagues were
able to show which physiological mechanisms at the implementational level can
generate this pattern of representation (Fox et al. 2020). The reason why these leaps
in understanding have occurred only recently is partly due to methodological
advances such as multivariate pattern analyses (MVPA), that allow us to specify
the representational content encoded by the brain (Norman et al. 2006, Guggenmos
et al. 2018). In the past decade, there has been a surge of new studies that have
relied on MVPA to reveal neural representations beyond low-level features of the
stimulus and across all cognitive domains, e.g. visual features of objects (Cichy
et al. 2019), semantic features (Chan et al. 2011, Simanova et al. 2010, Simanova
et al. 2014, Deniz et al. 2019), event structure (Frankland and Greene 2015) as well
as abstract features of space (Bellmund et al. 2018), actions (Tucciarelli et al. 2015),
physics (Schwettmann et al. 2019), magnitude (Luyckx et al. 2019, Sheahan et al.
2021) and rule learning (Reverberi et al. 2012). In this thesis, I apply MVPA to
reveal the neural correlates underlying various abstract dimensions of language.
Before I provide a detailed description of the linguistic dimensions of interest, I will
briefly introduce the general concept of MVPA as well as the specific techniques
applied throughout this thesis.

BOX 1: Neural Representations
The term representation is used widely but inconsistently within the cogni-
tive neuroscience literature. At one extreme, researchers assume the brain
to "represent" a stimulus as soon as brain activity is reliably elicited by that
stimulus (Kriegeskorte and Diedrichsen 2019). According to this defini-
tion, any brain signal that is correlated with a given stimulus feature and
invariant to its exact physical manifestation, would constitute an abstract
neural representation. At the other extreme, researchers debate whether
abstract stimulus properties can be mapped onto neural representations
at all. (Brette 2019).
Box continues on next page ...
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No two brain responses of the same person and in response to the same
stimulus are ever exactly identical. Therefore, one fundamental issue
with this mapping is to prove a neural signal to be truly invariant given
variation in both external stimuli as well as internal brain states
Assuming, that the invariance condition can be approximately satisfied,
the minimum necessary condition for establishing a neural representa-
tion is some form of correspondence between a neural signal and some
external state or stimulus property. This notion of representation through
correspondence is purely statistical and potentially only meaningful from
the perspective of the researcher, rather than the system itself.
Furthermore, a representation does not necessarily need to be imple-
mented through sustained neuronal activity only but could rely on so
called "activity-silent" encoding, likely implemented through a multitude
of physiological processes (Stokes et al. 2015, Wasmuht et al. 2018, Fitz et al.
2020). For a correspondance to be scientifically meaningful, researchers
often argue that evidence for a causal relationship between behaviour and
neural correlate is necessary (Grootswagers et al. 2018). For example, if
a given behaviour is a function of the neural representation of the envi-
ronment, then the weaker the encoding of this representation in the brain
the more the behaviour should degrade as well. Furthermore, a neural
representation may be falsely evoked (i.e. a visual illusion) and thereby
produce erroneous behaviour. Finally, according to an even more stringent
definition, correspondance and behavioural relevance do not suffice to
license the term "neural representation". Instead, a neural representation
additionally needs to be accessible by other brain areas higher up in the
processing hierarchy (Baker et al. 2021). In other words, a neural activa-
tion pattern only constitutes a neural representation if it directly serves
as input to brain processes, rather than being a theoretical description
imposed by the researcher. This latter condition is rarely explicitly tested
within empirical reports.
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1.1 Multivariate pattern analyses
In the classical, univariate analysis approach, differences in brain activity between
conditions are estimated by treating each measurement variable (e.g. a sensor, time
point or a voxel) as an independent piece of data. MVPA, in contrast, takes into
account distributed patterns of brain activity across multiple variables. Therefore,
MVPA can leverage information from both activation strength but also signal
variability across sensors, which is not picked up by univariate approaches (Hebart
and Baker 2018). Furthermore, the MVPA approach is non-directional. Both more
and less activation within a sensor can provide information, whereas in univariate
analyses fine-grained differences in signal direction are often cancelled out during
averaging procedures. These properties of MVPA make it a suitable tool for
identifying “spatial population codes”, i.e. distributed groups of neurons that
are tuned to specific stimulus properties (Averbeck et al. 2006). Although such
neurons exist at the narrow spatial scale of cortical columns, early success of
MVPA in the domain of vision suggested that they are nonetheless detectable with
non-invasive neuroimaging techniques such as fMRI (Kamitani and Tong 2005).
This is likely possible because of random local variations in the distribution of
those tuned populations, which translate into weak biases within individual fMRI
voxels and thus can be picked up on by combining information across multiple
voxels (but see also Op de Beeck 2010). Overall the technique has proven to be able
to discriminate neural activity patterns, even in the absence of mean activation
differences (Jimura and Poldrack 2012, Fahrenfort et al. 2017, Mur et al. 2009,
Gwilliams and King 2020).

In this thesis I combine MVPA with magnetoencephalography (MEG). MEG
has been shown to be equally sensitive to spatially distributed neural codes at the
cortical column-level, likely due to random variation introduced by the irregular
folding of the cortex that translate to the signal detected at the MEG sensors(Cichy
et al. 2015). MEG is a non-invasive neuroimaging technique, that records magnetic
fields produced by electrical currents of large populations of pyramidal neurons
(approx. 50,000) activated synchronously. Because MEG allows to measure this
fast neural firing activity with high temporal resolution, it is ideally suited for
investigating fast and highly dynamic processes such as language comprehension.
Furthermore, given theoretical and anatomical constraints about how different
brain sources project to MEG sensors we can reconstruct the spatial distribution
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of neural activity at the cortex with a resolution of 2-3 mm (Hämäläinen et al.
1993).

By applying MVPA to source-reconstructed MEG data, we are able to lever-
age the multivariate nature of the neural code along both temporal and spatial
dimensions. In addition, MVPA can be applied in a searchlight approach, i.e. esti-
mating the multivariate signal based on a moving window that spans only a subset
of available source locations (Kriegeskorte et al. 2006) and time points (Su et al.
2012) at each step. This approach increases the sensitivity to focally distributed
neural codes within contiguous macroscopic brain regions and can additionally
reveal complex parallel distributed processes.

Both multivariate and univariate approaches can provide insight into ab-
stract neural representations, through the notion of discriminability or dissimilarity.
On a theoretical level, the two approaches are often contrasted in that the former
targets information content and the latter activation, which has consequences
for inferences drawn from either method (Allefeld et al. 2016, Hebart and Baker
2018). This does not mean, however, that univariate approaches cannot provide
any insight into the nature of neural representations at all. For example, neural
adaptation observed in priming paradigms has been taken to indicate underlying
representations of invariant stimulus properties that are similar across target and
prime. Event-related potentials (ERPs) such as the mismatch negativity, observed
in response to a deviant auditory event in a sequence (e.g. oddball paradigm),
have been exploited to identify which abstract features of sound stimuli are dis-
criminated within primary auditory cortex (Paavilainen 2013, Näätänen et al.
2001). In both cases, the neural signal responds to a dissimilarity relation between
two events. Throughout this thesis, I also rely on the notion of dissimilarity by
applying two MVPA techniques specifically, classification and representational
similarity analysis (RSA).

Classification of brain data involves training a supervised learning algorithm
to discriminate different experimental conditions given a multivariate neural
activation pattern. When training a classifier on MEG data, the multivariate
patterns to be discriminated may be described by a high-dimensional vector
containing the strength of the magnetic field (or a reconstructed cortical source).
An algorithm may either find a decision boundary, i.e. discriminative algorithm,
or may generate a probabilistic model of the data points, i.e. generative algorithm,
within this high-dimensional space, against which new multivariate patterns can
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be compared. Both generative (e.g. Gaussian Naive Bayes) and discriminative
algorithms (e.g. support vector machines) have been shown to successfully classify
stimuli based on brain data (Grootswagers et al. 2017, Guggenmos et al. 2018).

Whether information about the stimulus property of interest is present in
the data is usually evaluated based on the accuracy of the classification, i.e. how
many trials can be successfully labeled based on either the generative model or a
decision boundary. Importantly, for the purpose of this thesis I am not interested
in maximal accuracy of the classification. Even low accuracies can be seen as
evidence for a neural correlate as long as performance is above the assumed or
empirically estimated chance level, e.g 50% for a two-class classification problem.
Importantly, some caution is warranted when assessing classification accuracies.
Because the parameters of the learning algorithm usually outnumber the amount
of data points, there will always be some dimension of neural activity according
to which trials can be separated. We call this overfitting. In order to prevent
overfitting, classifiers are best trained in a cross-validated fashion, i.e. they are
trained on one part of the data and tested on another. Only when classification
accuracy is estimated through cross-validation can the inference be made that
classification relies on discriminable neural activity patterns that are invariant
to the exact conditions used to train the classifier. Finally, Even when training
is cross-validated, the standard error of accurate classification can be inflated in
neuroimaging studies with small sample sizes (Varoquaux 2017). Therefore, in
this thesis, accuracy will always be evaluated against the empirical chance level
estimated by classification on permuted labels.

Once a measure of neural representational content is established in terms
of discriminability (such as decoding accuracy) we can compare it against theo-
retical models of mental representation using representational similarity analysis
(RSA). When comparing against theoretical models, we usually prefer a higher-
dimensional description of the representational content. Instead of discriminating
between two classes only, we can compute the degree of dissimilarity between all
item pairs. Pairwise dissimilarity could be extracted by training multiple classi-
fiers, but a metric based on direct comparison of the neural patterns (e.g. Euclidean
distance or Pearson correlation) is usually more efficient.

It is important to note, that while multivariate approaches might allow
for more high-dimensional characterisation of representational content, valid
inferences still crucially depend on the exclusion of potentially confounding factors.
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In the same way, that univariate analyses relying on binary contrasts need to
control for orthogonal covariates, MVPA results can equally be misleading if
not properly controlled (Popov et al. 2018). The standard cautionary tale is of
a study, that reported discrimination of cognitive states during movie watching
based on simultaneously recorded fMRI data. While they achieved extremely high
accuracy in discriminating cognitive states related to the content of the movie,
their decoders relied highly on signal stemming from voxels outside the brain
which were likely related to physiological noise such as laughter-induced head
motion (Sona et al. 2007).

Finally, we can leverage multivariate information not only along the dimen-
sion of measurement channels but also along the dimension of subjects. In the
standard analysis approach, individual subject topographies are mapped onto a
common anatomical source space. When targeting abstract representation, how-
ever, we usually assume the neural activation patterns to be idiosyncratic to a
given subject. Ignoring these idiosyncrasies can reduce sensitivity to neural rep-
resentations (Haxby et al. 2020). We can use multivariate approaches to estimate
transformations of individual subject data such that they can be aligned to a com-
mon representational space instead. Such a transformation sharply increase our
sensitivity to fine-grained stimulus-specific representational content to the degree
that more explicit models of linguistic representations can be tested (Huizeling
et al. 2020). In chapter 2 we show how multivariate canonical correlation analysis
applied to MEG data can reveal abstract, word-specific fluctuations in the brain
signal.
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1.2 Abstract properties of Language

Abstraction beyond low-level perceptual features
Abstract mental representation can be described at any hierarchical level of pro-
cessing, starting at the level of low-level perception and progressing to multimodal
and eventually complex structural abstraction (Gilead et al. 2020). The most basic
form of abstraction is simply the recognition of external stimuli, invariant to their
exact physical instantiation. Such invariant recognition occurs both within and
across modalities. For example, people can recognise speech sounds beyond the
individual variation across speakers and accents. We assume this ability to rely on
abstract representations of language-specific sound categories (Maye et al. 2008),
which are learned and highly flexible, e.g. people can quickly adapt to novel
accents based on systematic phonetic transformations. We also learn abstract
rules about how sounds may be combined together (morphosyntactic rules). For
example, children at the age of 3 and beyond will produce overgeneralisations of
morphological rules leading to errors like “she falled me”(e.g. Tomasello 2000).
Beyond the level of individual speech sounds and syllables, entire words are recog-
nised in terms of abstract representations. For example, when driving a car we can
be alerted about an upcoming crossroad by either reading the word “stop” on a
stop sign or by other passengers yelling “stop”. The abstract representation of the
word “stop” and its behavioural consequences are modality-independent, since
they can equally be activated through a visual or an auditory signal. Therefore,
comparing neural activation across sensory modalities can provide insights into
processing of abstract stimulus features. For example, in the past, researchers
investigating abstract semantic information, have argued that a classifier trained
on one modality and tested on another, must pick up on abstract semantic fea-
tures, rather than physical aspects of the stimulus (Simanova et al. 2014, Deniz
et al. 2019). In Chapter 2 we characterise the spatiotemporal dynamics of sensory
modality-independent neural processing.

Abstraction of syntactic structure
Beyond the invariant recognition of sounds and words, we also form abstract
representations at the level of a sentence. For example, people tend to repeat
the phrasal structure of sentences they were recently exposed to (Bock 1986), a
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phenomenon called structural priming. This behaviour suggests that we extract the
abstract structural configurations of sentences across varying lexical and semantic
instantiations. Such structural configuration is crucial for sentence comprehension,
because it can provides cues with respect to the hierarchical relations of words:
Words can be grouped together into phrases (e.g. “the woman chases the cat”)
and phrases in turn can be nested within other phrases (e.g. [the woman [who
owns a dog] chases the cat]). Such hierarchical phrase structures can define
sentence meaning according to non-adjacent dependencies between words (e.g.
“a woman chasing”) rather than purely sequential meaning (e.g. “a dog chasing”).
To extract hierarchical phrase structure from sequential input we rely on both
semantic information but also on abstract syntactic information such as word
class (e.g. nouns and verbs) and syntactic rules (e.g. word order). We are sensitive
to these abstract syntactic regularities already from a young age. For example,
children as young as 2 years old will start to use a newly learned word in the rule-
conform word order even when first encountering it in the wrong order (Akhtar
1999).

Prior neuroimaging work has identified several brain areas, that activate
in response to structured language (e.g. sentences as opposed to word lists) and
are hence promising candidates for a locus of abstract neural representations
of sentence structure. These areas include the left inferior frontal gyrus and
left anterior and posterior temporal cortex as well as the inferior parietal cortex
(Friederici 2011, Hagoort and Indefrey 2014, Hagoort 2017, Hultén et al. 2019).
Although the exact functional role of each of these regions is still somewhat
debated, most studies show all or at least one of them to activate in a modality-
independent manner (Bemis and Pylkkänen 2013, Uddén et al. 2019), to activate
in response to both syntactic and semantic dimensions of the stimulus (Fedorenko
et al. 2012, Fedorenko et al. 2018 Matchin et al. 2019) and to increase in activation
with increasing structural demands such as more nested phrases (Pallier et al.
2011, Nelson et al. 2017, Brennan et al. 2012). Only few neuroimaging studies have
directly probed which aspects of sentence structure are represented in the brain
during sentence processing. Some evidence for abstract phrase structure comes
from studies investigating the neural effects of structural priming (Noppeney
and Price 2004 Segaert et al. 2013, Boudewyn et al. 2014). The scarcity of neural
data, however, does not sufficiently support the complete invariance to semantic
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features and information structure, which have been suggested to be confounding
factors in earlier psycholinguistic studies (Ziegler et al. 2019).

Abstraction at the syntax-semantic interface
Syntactic structure can rarely be considered independent from semantics (Jack-
endoff 2003, Goldberg 2006). In fact, semantic cues can determine the structural
interpretation of a sentence even in the absence of clear syntactic structure. This is
illustrated in sentences containing structurally ambiguous prepositional phrases,
such as “The woman saw the dog with binoculars”. The syntactic cues in the sen-
tence license two possible structural interpretations, one attaches the prepositional
phrase to the verb (“The woman with binoculars”), the other to the immediately
preceding noun (“The dog with binoculars”). Regardless of the ambiguity, most
people have a preference to interpret the “binoculars” as an instrument to the verb
“saw” based on semantic information and word knowledge.

On the other hand, syntactic dependencies (e.g. subject, object) as defined
through word order and morphology provide cues with respect to the semantic
relation between words. Given the order of words in “John loves Mary”, we
identify “John” as the lover and “Mary” as the one being loved. Such relational
assignment results in abstract representations at the syntax-semantic interface.
For example, the abstract notion of an agent generalises across several semantic
instantiations (“the one who loves”, “the one who eats”, “the one who breaks”) and
syntactic structures (the subject in active sentences “the woman ate the vegetable”
or object in passive sentences “the vegetable was eaten by the woman”). Evidence
for abstract representations of relational information comes from behaviour in
both adults and children (Rissman and Majid 2019): Young children can use the
transitive argument structure of novel verbs (e.g “the bunny is blicking the frog”)
to correctly assign agent and patient roles, i.e. pointing to a picture illustrating the
correct role assignment (Noble et al. 2011). Again, only few studies have probed
neural correlates of abstract relational roles such as agent and patient in the brain.
Some evidence for a neural instantiation comes from fMRI studies suggesting
that representations of agent and patient may be encoded in superior temporal
cortex across both language (Frankland and Greene 2020) and visual tasks (Wang
et al. 2016) and these encodings have consequence for downstream processing of
sentence meaning (Frankland and Greene 2015). In Chapter 3 and 5 we investigate
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two different types of abstract structure emerging at the syntax-semantics interface,
namely, prepositional phrase structure and thematic role assignment.

1.3 Outline of thesis
The ability to form invariant mental representations that generalise across exem-
plars is what enables humans to learn a language quickly and use it productively
and creatively. Many language behaviours (e.g. speech errors, priming in produc-
tion) provide cues about which abstract mental representations likely guide our
language learning and comprehension. Furthermore, novel multivariate analysis
approaches for neuroimaging data allow us to investigate the distributed neural
code underlying such abstract representations. While much knowledge has been
gained about neural representation of modality-specific abstraction (e.g. speech
sound categorisation), fewer research has targeted higher-level linguistic abstrac-
tion, i.e. abstraction that is independent of sensory modality and targets regu-
larities beyond the word level. In this thesis, I investigate the neural correlates
underlying different levels of linguistic abstraction and reveal their spatiotemporal
dynamics using MEG in combination with various MVPA techniques.

Chapter 2 focuses on sensory modality-independent language processing.
Previous studies have reported certain brain areas to similarly increase in activa-
tion both when words are presented in written and spoken form. Because these
studies rely on averaging, however, they only capture generic components of the
neural response. Word-specific fluctuations of the neural signal, on the other hand,
are difficult to capture due to differences in position and orientation of neuronal
sources across individual subjects. I apply multiset canonical correlation analysis
to transform individual subject’s neural data to recover word-specific signal. I
investigate the spatiotemporal dynamics of modality-independent processing by
comparing word-specific neural signals across subjects either reading or listening
to sentences.

In Chapters 3-5 I turn to abstract representations of linguistic structure at the
sentence-level. During sentence comprehension we need to not only process each
word individually, but also find meaningful combinations of all words according
to both semantic and syntactic rules.

For example, although sentences are perceived serially, their meaning is
often defined according to hierarchical dependencies of individual words and
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phrases. Whether such hierarchical sentence structure is automatically encoded
during passive tasks such as language comprehension has been debated (Frank
et al. 2012). In Chapter 3, I investigate the neural correlates underlying implicit
structural interpretation of syntactically ambiguous sentences. Specifically, we
trained classifier to distinguish whether a person was reading a verb-attached or a
noun-attached prepositional phrase based on the brain signal evoked as they read
the final, semantically disambiguating word of the phrase.

In addition to the structural interpretation of a sentence, comprehension
usually requires the computation of relational roles, i. e. who did what to whom.
As a consequence we need to represent a sentence’s meaning across multiple
dimensions, namely, a collection of multiple thematic role-filler assignments. It
is difficult, however, to construct a quantitative model of such high-dimensional
meaning. One approach that has been proven successful to quantify other high-
dimensional stimuli, such as visual scenes, is representation by similarity. In
Chapter 4 I tested whether human similarity judgments of transitive sentences
would capture combinatorial sentence meaning. For this I collected similarity
judgments from a large sample (n=200) using a multiple arrangement task. Fi-
nally, I suggest a possible use case for sentence-level similarity judgments as a
behavioural benchmark for computational models of language processing.

Having shown that people are sensitive to relational information in simple
transitive sentences, we then investigated the spatio-temporal dynamics of brain
activity underlying the abstract processing of event structure in Chapter 5. So
far, ERP data has been compatible with multiple alternative cognitive models
of sentence processing. For example, it is not clear whether combinatorial pro-
cesses, such as those establishing role-filler assignment, are reflected in the brain
signal immediately (Rabovsky et al. 2018) or only after word-level processing
has been completed (Brouwer et al. 2017). By explicitly modelling event struc-
ture of sentences and relating those models to MEG-recorded neural data using
RSA, I investigate the dynamics of combinatorial processing with high temporal
resolution.

In Chapter 6 I summarise the results of this thesis and discuss some of its
implications for future research.
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2Sensory modality-
independent activation of the
brain network for language

The meaning of a sentence can be understood, whether presented in written or
spoken form. Therefore, it is highly probable that brain processes supporting
language comprehension are at least partly independent of sensory modality.
To identify where and when in the brain language processing is independent
of sensory modality, we directly compared neuromagnetic brain signals of 200
human subjects (102 males) either reading or listening to sentences. We used
multiset canonical correlation analysis to align individual subject data in a way
that boosts those aspects of the signal that are common to all, allowing us to
capture word-by-word signal variations, consistent across subjects and at a fine
temporal scale. Quantifying this consistency in activation across both reading and
listening tasks revealed a mostly left-hemispheric cortical network. Areas showing
consistent activity patterns included not only areas previously implicated in higher-
level language processing, such as left prefrontal, superior and middle temporal
areas, and anterior temporal lobe, but also parts of the control network as well as
subcentral and more posterior temporal-parietal areas. Activity in this supramodal
sentence-processing network starts in temporal areas and rapidly spreads to the
other regions involved. The findings indicate not only the involvement of a
large network of brain areas in supramodal language processing but also that
the linguistic information contained in the unfolding sentences modulates brain
activity in a word-specific manner across subjects.
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2.1 Introduction
Language can be realized in different modalities: amongst others through writ-
ing or speech. Depending on whether the sensory input modality is visual or
auditory, different networks of brain areas are activated to derive meaning from
the stimulus. Besides different brain circuits being recruited to process low-level
sensory information, differences in linguistic features across sensory modalities
prompt a differential activation of brain areas involved in higher-order processing
as well. For instance, speech is enriched with meaningful prosodic cues, but also
requires coarticulated signals to be parsed into individual words. Written text has
the advantage of instantaneous availability of full information compared to the
temporally unfolding nature of speech. These differences are paralleled in the
brain’s response, and thus the sensory modality in which language stimuli are
presented determines the dominant spatiotemporal patterns that will be elicited
(Hagoort and Brown 2000).

Regardless of low-level differences, the same core message can be conveyed
in either modality. Therefore, language processing models of the past and present
(Geschwind 1979, Hagoort 2017, Hickok and Poeppel 2007) include not only
early sensory (up to 200ms) processing steps, but also contain late (200 - 500
ms), more abstract, and supposedly supramodal processing steps. While early
processing is largely unimodal, and supported by brain regions in the respective
primary and associative sensory areas, later processes (for instance lexical retrieval
and integration) that activate several areas within the temporo-frontal language
network are assumed to do so independent of modality.

In order to gain insight into the location and timing of brain processes repre-
senting this latter, higher order processing of the linguistic content, researchers
so far relied on carefully manipulated experimental conditions. As a result, our
current understanding of how the brain processes language across different modal-
ities reflects a large variety in tasks (semantic decision task (Chee et al. 1999), error
detection task (Carpentier et al. 2001, Constable et al. 2004), passive hearing/lis-
tening (Jobard et al. 2007), size judgment (Marinkovic et al. 2003) and stimulus
material (words (Chee et al. 1999),sentences (Bemis and Pylkkänen 2013), and
stories (Berl et al. 2010, Deniz et al. 2019, Regev et al. 2013). Despite this wealth
of experimental findings and resulting insights, an important interpretational
limitation stems from the fact that the majority of studies employ modality specific
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low-level baseline conditions (tone pairs and lines, spectrally rotated speech and
false fonts, non-words, white noise (Lindenberg and Scheef 2007) to remove the
sensory component of the processing. It is difficult to assess in how far such
baselines are comparable across auditory and visual experiments. Recent fMRI
work has demonstrated sensory-modality independent brain activity by directly
comparing the BOLD response across visual and auditory presentations (Deniz
et al. 2019, Regev et al. 2013). Yet, fMRI signals lack the temporal resolution to
allow for a temporally sufficiently fine-grained investigation of the response to
individual words.

Few studies used magnetoencephalography (MEG) to study supramodal
brain activity and all are based on event-related averaging (Marinkovic et al. 2003,
Bemis and Pylkkänen 2013, Papanicolaou et al. 2017, Vartiainen et al. 2009). Aver-
aged measures capture only generic components in the neural response. While
generic components make a large contribution to the neural activity measured
during language processing, there also exist meaningful variability in the neural
response that is stimulus-specific and robust (Ben-Yakov et al. 2012). A com-
plete analysis of the supramodal language network needs to tap into these subtle
variations as well.

Here, we overcome previous limitation by achieving a direct comparison
without relying on modality-specific baseline conditions, leveraging word-by-
word variation in the brain response. Using MEG signals from 200 subjects, we
performed a quantitative assessment of the sensory modality independent brain
activity following word onset during sentence processing. The MEG data forms
part of a large publicly available dataset (Schoffelen et al. 2019), and has been
used in other publications (Lam et al. 2016, Schoffelen et al. 2017, Hultén et al.
2019, Lam et al. 2018). We identified widespread left hemispheric involvement,
starting from 325 ms after word onset in the temporal lobe and rapidly spreading
to anterior areas. These findings provide a quantitative confirmation of earlier
findings in a large study sample. Importantly, they also indicate that supramodal
linguistic information conveyed by the individual words in sentence context leads
to subtle fluctuations in brain activation patterns that are correlated across different
subjects.
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Figure 2.1.: (A) Temporal alignment procedure. MEG signals of auditory and visual
subjects differed in length due to different presentation rates. To achieve alignment between
signals of auditory and visual subjects, auditory signals were epoched into overlapping
segments. Each segment’s first sample corresponds to the auditory word onset but each
segment’s length depends on the duration of the equivalent visual stimulus. Segments
were then concatenated in original order to recover signal for the full sentence length. This
way, the neural response to each word is fully taken into account in further comparisons,
including in the case of short words for which stimulus late processing coincided with the
next word presentation. (B) Starting point for the multi-set canonical correlation analysis
were parcel-based neural signals for all subjects, consisting of five spatial components
each. 1. Signals for all sentence trials were split into five subsets and for cross-validation
one subset of sentences was left out as test data, while the remaining four subsets served
as training data. 2. Based on the training dataset only an unmixing matrix was found,
per parcel, defining the linear combination of the five spatial components so that the
correlation across sets (subjects) and time samples were maximized. The cross-covariance
was computed between all subjects’ spatial components and across time collapsing over
sentence trials. 3. The projection was applied to the test data to compute canonical
variables for the left out sentence trials (purple outline) for all subjects. Steps 2 and 3
were repeated for all folds until each sentence subset had been left out once and the
resulting canonical variables were concatenated until the entire signal was transformed.
4. Canonical variables were epoched according to word onsets and for each time point a
subject-by-subject correlation matrix was computed across words. Correlation between
cross-modal subjects (pink outline) were interpreted as quantifying supramodal activation.
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2.2 Methods

Subjects
A total of 204 native Dutch speakers (102 males), with an age range of 18–33
years (mean of 22 years), participated in the experiment. In the current analysis,
data from 200 subjects were included. Exclusion of four subjects was due to
technical issues during acquisition, which made their datasets not suitable for
our analysis pipeline. All subjects were right-handed, had normal or corrected-
to-normal vision, and reported no history of neurological, developmental, or
language deficits. The study was approved by the local ethics committee (CMO,
the local “Committee on Research Involving Human Participants” in the Arnhem–
Nijmegen region) and followed the guidelines of the Helsinki declaration. All
subjects gave written informed consent before participation and received monetary
compensation for their participation.

Experimental Design
The subjects were seated comfortably in a magnetically shielded room and pre-
sented with Dutch sentences. From the total stimulus set of 360 sentences six
subsets of 120 sentences were created. This resulted in six different groups of sub-
jects who were presented with the same subset of stimuli although in a different
(randomized) order with some overlap of items between groups. Within each
group of subjects half of them performed the task in only the visual, the other
half in only the auditory modality. In the visual modality, words were presented
sequentially on a back-projection screen, placed in front of them (vertical refresh
rate of 60 Hz) at the center of the screen within a visual angle of 4 degrees, in
a black mono-spaced font, on a grey background. Each word was separated by
an empty screen for 300 ms and the inter-sentence interval was jittered between
3200 and 4200 ms. Mean duration of words was 351 ms (minimum 300 ms and
maximum 1400 ms), depending on word length. The median duration of whole
sentences was 8.3 s (range 6.2 - 12 s). Auditory sentences had a median duration
of 4.2 s (range 2.8 - 6.0 s) spoken in a natural pace. The duration of each visual
word was determined by the following quantities: (i) the total duration of the
audio-version of the sentence/word list (audiodur), (ii) the number of words in
the sentence (nwords), (iii) the number of letters per word (nletters), and (iv) the
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total number of letters in the sentence (sumnletters). Specifically, the duration
(in ms) of a single word was defined as: (nletters/ sumnletters) * (audiodur +
2000–150 * nwords). In the auditory task the stimuli were presented via plastic
tubes and ear pieces to both ears. Before the experiment, the hearing threshold
was determined individually and the stimuli were then presented at an intensity
of 50 dB above the hearing threshold. A female native Dutch speaker recorded
the auditory versions of the stimuli. The audio files were recorded in stereo at
44100 Hz. During the post processing the audio files were low-pass filtered at
8500 Hz and normalized so that all audio files had the same peak amplitude, and
same peak intensity. All stimuli were presented using the Presentation software
(Version 16.0, Neurobehavioral Systems, Inc). Sentences were presented in small
blocks, of five sentences each, along with blocks containing scrambled sentences,
which were not used here. See Lam et al. (Lam et al. 2016) for more details about
the stimulus material used. In order to check for compliance, 20% of the trials
were randomly followed by a yes/no question about the content of the previous
sentence/word list. Half of the questions addressed the content of the sentence
(e.g. Did grandma give a cookie to the girl?) whereas the other half, addressed one
of the main content words (e.g. Was the word ‘grandma’ mentioned?). Subjects
answered the question by pressing a button for ‘Yes’/ ‘No’ with their left index
and middle finger, respectively.

MEG Data Acquisition & Structural imaging
MEG data were collected with a 275 axial gradiometer system (CTF). The signals
were analog low-pass-filtered at 300 Hz and digitized at a sampling frequency
of 1,200 Hz. The subject’s head was registered to the MEG-sensor array using
three coils attached to the subject’s head (nasion, and left and right ear canals).
Throughout the measurement, the head position was continuously monitored
using custom software (Stolk et al. 2013). During breaks the subject was allowed
to reposition to the original position if needed. Participants were able to maintain
a head position within 5 mm of their original position. Three bipolar Ag/AgCl
electrode pairs were used to measure the horizontal and vertical electrooculogram
and the electrocardiogram.

A T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE)
pulse sequence was used for the structural images, with the following parameters:
volume TR = 2300 ms, TE = 3.03 ms, 8 degree flip-angle, 1 slab, slice-matrix size =
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256 ⇥ 256, slice thickness = 1 mm, field of view = 256 mm, isotropic voxel-size =
1.0 ⇥ 1.0 ⇥ 1.0 mm. A vitamin-E capsule was placed as fiducial behind the right
ear to allow a visual identification of left-right consistency.

Preprocessing
Data were bandpass filtered between 0.5 and 20 Hz, and epoched according to
sentence onset, each epoch varying in length, depending on the number of words
within each sentence. Samples contaminated by artifacts due to eye movements,
muscular activity, and superconducting quantum interference device jumps were
replaced by NaN before further analysis. Since all sentences had been presented
in random order, we reordered sentences for each subject to yield the same order
across subjects. Subsequently, the signals of the auditory subjects were temporally
aligned to the signals of the visual subjects, ensuring coincidence of the onset of
the individual words across modalities (Figure 2.1A). This alignment was needed
to accommodate for differences in word presentation rate. The alignment was
achieved by first epoching the auditory subject’s signals into smaller overlapping
segments. Each segment’s first sample corresponded to one of the word onsets
as annotated manually according to the audio file while each segment’s length
depended on the duration of the visual presentation of the corresponding word.
Finally, all segments were concatenated again in the original order. By defining
segments that were longer than the corresponding auditory word duration, the
neural response to each word is fully taken into account and matched to the visual
signal, even in the case of short words where the response partly coincided with
the next word presentation. MEG data were then downsampled to 120 Hz.

Source Reconstruction
We used linearly constrained minimum variance beamforming (LCMV) (Van
Veen et al. 1997) to reconstruct activity onto a parcellated cortically constrained
source model. For this, we computed the covariance matrix between all MEG-
sensor pairs, as the average covariance matrix across the cleaned single trial
covariance estimates. This covariance matrix was used in combination with
the forward model, defined on a set of 8,196 locations on the subject-specific
reconstruction of the cortical sheet to generate a set of spatial filters, one filter
per dipole location. Individual cortical sheets were generated with the Freesurfer
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package (Dale et al. 1999,version 5.1) ((surfer.nmr.mgh.harvard.edu)), coregistered
to a template with a surface-based coregistration approach, using Caret software
(Van Essen et al. 2001) (download here and here), and subsequently downsampled
to 8,196 nodes, using the MNE software (Gramfort et al. 2014) (martinos.org/

mne/stable/index.html). The forward model was computed using FieldTrip’s
singleshell method (Nolte 2003), where the required brain/skull boundary was
obtained from the subject-specific T1-weighted anatomical images. We further
reduced the dimensionality of the data to 191 parcels per hemisphere (Schoffelen
et al. 2017). For each parcel, we obtained a parcel-specific spatial filter as follows:
We concatenated the spatial filters of the dipoles comprising the parcel, and used
the concatenated spatial filter to obtain a set of time courses of the reconstructed
signal at each parcel. Next, we performed a principal component analysis and
selected for each parcel the first five spatial components explaining most of the
variance in the signal.

Multi-set Canonical Correlation Analysis
Multi-set canonical correlation analysis (MCCA) (Parra 2018), (de Cheveigné
et al. 2018) was applied to find projections of those five spatial components that
would transform the subject-specific signals so as to boost similarities between
them. Canonical correlation analysis (CCA) is a standard multivariate statistical
method often used to investigate underlying relationships between two sets of
variables. Classically, canonical variates are estimated by transforming the two
sets in a way that optimizes their correlation. We applied a generalized version
of the classical approach (MCCA) (Kettenring 1971), which extends the method
to multiple sets, here multiple subjects. In our case, we find linear combinations
of the five spatial components for each of two subjects, so that the correlation
across time between those subjects is maximized. Since we have more than two
subjects, we find for each subject its own linear combination, which maximizes the
correlation across time between all subjects from both modality groups (auditory
and visual stimulation). Following Parra we obtained the optimal projection as
the eigenvector with the largest eigenvalue of a square matrix D-1R, where R and
D are square matrices:
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Where alk are cross-covariance matrices between subject pairs and D contains
only the diagonal blocks of within subject covariances (Parra 2018). In our case
the cross-covariance matrices are of size 5-by-5 containing the cross-covariance
between all five spatial components for a given subject (pair). The cross-correlation
is computed across time points for each sentence and subsequently averaged across
sentences. It is important to note here, that the canonical variates resulting from
the optimal projection do not reflect sentence averages anymore but have the same
temporal resolution as the original source signals. CCA is prone to overfitting and
known to be unstable (Dinga et al. 2019). For reliable CCA estimates the number
of samples should be much larger than the number of features, i.a. a sample-to-
feature ratio of 20/1 is recommended (Stevens 2012). We estimated the canonical
variables over concatenated data, which included between 756 and 1453 samples
per sentence compared to only five features (spatial components) which provides
a decent sample-to-feature ratio. Further, we estimated our canonical variables
out-of sample using 5-fold cross-validation to limit overfitting. We randomly split
all sentences into five subsets, estimating projections on 96 sentences and applying
them to the 24 left out sentences (Figure 2.1 B).

Statistical Analysis
As per the study design, the subjects were assigned to one of six stimulus sets.
Different groups of subjects were presented with different sets of sentences. Since
MCCA relies on commonalities across datasets, we could only combine data from
subjects who received the exact same stimulation. We therefore applied MCCA
for each subgroup of subjects who listened to or saw the same stimuli separately.
Initially, we constrained our analysis to the first set of 33 subjects (henceforth
exploratory dataset). After applying the projection to the data we computed a
time-resolved Pearson correlation between all possible subject pairings. To this
end, we first epoched the resulting canonical components according to individual
word onsets and selected only content words (nouns, adjectives & verbs) for
subsequent steps. Before computing the correlation we subtracted the mean
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across samples. For each pair of subjects, we computed the correlation between
two sets of observations, i.e. a pair of vectors with each data point reflecting
the subject-specific neural signal for each of the individual words (lexical items),
at a given time point relative to word onset, and at a given cortical location.
Correlation coefficients of cross-modality pairings, that is correlations between
subjects reading and subjects listening to the sentences are interpreted as capturing
supramodal processing. We used a permutation test with clustering over time
and space (parcels) for family-wise error rate correction for statistical inference
(Maris and Oostenveld, 2007), using 1000 randomizations of the epoched words.
To this end, we randomised word order for the source-reconstructed parcel time
series of the auditory subjects to test for exchangeability of the exact word pairing
across sensory modalities. By destroying the one-to-one mapping of individual
lexical items, the null distribution allowed for a distinction between individual
item specific shared variance, and shared variance due to a more generic response.
We also computed modality-specific responses as a quality check of the analysis
pipeline given the well known spatiotemporal activity patterns of early sensory
brain areas. For this, we averaged correlation across either only pairs of subjects
reading or only pairs of subjects listening. These correlations were not constrained
to content words but computed across all words. For statistical inference, we
again used a permutation test with the same parameters as described earlier. This
time, however, we randomised word order for the source-reconstructed parcel
time series of both auditory and visual subjects, thereby destroying the one-to-one
mapping of individual items within both modalities.

Finally, we analysed the remaining sets of subjects (confirmatory dataset) us-
ing the analysis pipeline described earlier. We evaluated the overlap in the results
across all six subgroups using information prevalence inference (Allefeld et al.
2016). Prevalence inference allows formulation of a complex null hypothesis (i.e.,
that the prevalence of the effect is smaller than or equal to a threshold prevalence,
where the threshold can be realised by different values). For each of the six sets of
data, we obtained spatial maps of time-resolved supramodal correlations, as well
as 1000 permutation estimates after word order shuffling (see above). We used the
smallest observed average correlation across subgroups as the second-level test
statistic. We then tested the majority null hypothesis of the prevalence of the effect
being smaller than or equal to a threshold prevalence. For this, we computed
the largest threshold such that the corresponding null hypothesis could still be
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rejected at the given significance level, a. This was done after concatenating the
minimum statistic from all parcels and time points, using the maximum statistic
to correct for multiple comparisons in time and space (parcels). For each parcel,
we evaluated the highest threshold at which the prevalence null hypothesis could
be rejected at a level of a = 0.05 (see Figs. 2.6 and 2.7 for cortical maps showing
thresholds averaged and per time point).

To ensure that MCCA as a preprocessing step did not artificially increase
correlations between cross-modality subjects, we conducted an additional control
analysis on the exploratory dataset. For this, we additionally tested the observed
correlation patterns computed on all words (both function and content words)
against a null distribution obtained by permuting sentence order 500 times and,
importantly, doing this before MCCA. This permutation was not fully uncon-
strained, because we aimed at aligning sentences across modalities with the same
number of words to avoid loss of data and to preserve ordinal word position. Thus,
we did a random pairing between sentences with the same number of words after
binning the sentences according to their word count. Sentences consisting of 9, 14,
or 15 words were infrequent, with fewer than five occurrences each. After each
permutation, we performed the temporal alignment between sensory modalities
(aligning the word on-sets), followed by cross-validated MCCA and computation
of the time-resolved correlations of cross-modal subject pairs. Due to the long
computation time of the canonical variates, we created this null distribution for
the exploratory data only. Results from this additional, conservative permutation
test can be found in Figure 2.5.
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2.3 Results

Modality-specific activation
We first quantified the similarity between different subjects’ brain response within
only the exploratory dataset (33 subjects) by correlating word-by-word fluctuations
in brain activity between all possible pairs of subjects. Averaging the correlations
across those subject pairings for which subjects were stimulated either in the
same sensory modality, or each in a different modality, allowed us to evaluate
the modality-specific brain response and the supramodal response, respectively.
As displayed in Figure 2.2, early sensory cortical areas only show correlated
activity for the group of subjects receiving the stimuli in the corresponding sensory
modality, for the visual (red), and auditory (blue) modalities. We found that MCCA
is a crucial analysis step in order to reveal meaningful inter-subject correlations.
Only after MCCA does cortical activity in visual and auditory areas become
significantly correlated (cluster-based permutation test, p = 0.001 for both) across
those subjects performing the task in the visual or auditory domain respectively
(Figure 2.2A).

Supramodal activation patterns
We averaged between-subject correlations over all cross-modal subject pairings as
a metric for supramodal activity. We observed significant supramodal correlated
activation patterns in mostly left-lateralized cortical areas (Fig. 2.3; cluster-based
permutation test, p = 0.001). The effect has a large spatial and temporal extent,
becoming apparent as early as 250 ms and lasting until 700 ms after word onset.
Parcels in middle superior temporal gyrus (STG) contribute to the effect at the
earliest time points, followed by the posterior and anterior part of the STG and
about 50 ms later the anterior temporal pole. Supramodal correlated activation
in ventral temporal cortex follows a similar temporal and spatial pattern, with
supramodal correlations starting out more posterior around 292 ms and evolution
towards the middle anterior temporal lobe at 308 ms. Other areas that express
supramodal activity at relatively early time points are medial prefrontal cortex
and primary auditory cortex (250 ms), followed by subcentral parietal regions
and supramarginal gyrus at around 300 ms, and finally dorsolateral frontal cortex
(DLFC, 325 ms). By the time 375 ms have passed, the entire orbito-frontal cortex,

2.3 Results 29



anterior and DLFC as well as inferior frontal gyrus (IFG) show strong supramodal
subject correlation. Supramodal activation in the frontal lobe further extends
towards posterior regions including pre- and postcentral gyrus. At around 400 ms
supramodal subject correlation in the anterior temporal pole reaches its peak. In
addition to the lateral cortical areas, correlated activity also extends to left dorsal
and ventral anterior cingulate cortex (ACC) as well as left fusiform gyrus. The
spatio-temporal patterns of supramodal activation described so far are robust,
also when ordinal word position and MCCA overfitting were controlled for in the
statistical evaluation (Fig. 2.5; cluster-based permutation test, p = 0.002)

Prevalence Inference
Our confirmatory analysis combined over all six datasets and tested whether the
spatiotemporal patterns observed in the exploratory dataset would generalize
to the population. For those parcels at which the global null hypothesis could
be rejected, we infer that at least in one of the datasets an effect of supramodal
processing was present (Fig. 2.4). In addition, we evaluated the majority null
hypothesis of whether, in the majority of subgroups in the population, the data
contains an effect (threshold > 0.5, significant parcels under the majority null
hypothesis outlined in black in figure 2.4B).

The global null hypothesis (no information in any set of subjects in the
population) could be rejected at a level of a = 0.05 in on average 40 parcels
per time point (between 325 and 617 ms after onset, std. = 31.48). For those
parcels for which the largest bound g0 is larger than or equal to 0.5, we can infer
that in the majority of datasets, the activity patterns were similar across subjects,
independent of modality. This majority null hypothesis could be rejected (at a
level of a = 0.05) in 90% of parcels that also showed a global effect (Fig. 2.4, black
outline; see also Fig. 2.8 for results in the right medial hemisphere). For parcels
at which the global null hypothesis could be rejected, the average largest lower
bound g0 at which the prevalence null hypothesis can be rejected is shown in
Figures 2.6 and 2.7. Compared to the temporal pattern of the largest nominal
suprathreshold cluster from the cluster-based permutation test conducted on the
exploratory dataset, the effect became significant in the majority of datasets later
in time and was less long lasting (325 - 608 ms). Given this time span, the majority
null hypothesis was rejected in on average 42% of those parcels contributing most
to the largest cluster. The orbitofrontal cortex and IFG showed an involvement
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in supramodal processing in both analyses, but the effect there was much more
temporally sustained in the exploratory dataset. In addition, according to the
exploratory dataset, supramodal activation of STG occurred almost 100 ms earlier
as compared to IFG. Based on the confirmatory dataset, however, supramodal
correlated activation in IFG and STG appeared almost simultaneously. Finally, the
exploratory analysis revealed supramodal activation in primary and premotor
areas extending over the entire left dorsolateral surface, of which only the most
ventral parcels close to the Sylvian fissure were significantly supramodal in the
majority of datasets. Thus, the spatial extent of the effect was partly reduced
for prevalence inference compared to the cluster-based permutation approach
on the exploratory data. Nevertheless, widely overlapping anatomical regions
were indicated by both analyses, encompassing dorsolateral frontal gyrus and the
middle and superior parts of the temporal lobe at first, and the inferior frontal and
orbitofrontal cortex as well as anterior temporal lobe later.

2.4 Discussion
Our aim was to quantify similarities of the brain response across reading and
listening at a fine temporal scale. To this end we correlated word-by-word fluc-
tuations in the neural activity across subjects receiving either auditory or visual
stimulation. We identified a widespread left-lateralized brain network, activated
independently of modality starting 325 ms after word onset. Importantly, dividing
our large study sample into six subsets, we could directly quantify the consistency
and generalizability of these activity patterns. The spatial distribution of the
supramodal activation is in line with the known involvement of left hemispheric
areas, including parts of left temporal cortex, left inferior parietal lobe, as well
as prefrontal cortex (Vigneau et al. 2010, Chee et al. 1999, Constable et al. 2004,
Braze et al. 2011, Liuzzi et al. 2017, Lindenberg and Scheef 2007, Spitsyna et al.
2006, Homae et al. 2002). The involvement of both STG and IFG fits predictions
from the Memory, Unification and Control model (MUC), in which activity rever-
berating within a posterior-frontal network (Baggio and Hagoort 2011, Hagoort
2017) is thought to be crucial for language processing. According to the MUC
model temporal and parietal areas support the retrieval of lexical information,
while unification processes are supported by inferior frontal cortex. Bidirectional
communication (Schoffelen et al. 2017) between these areas is facilitated by white
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Figure 2.2.: Specificity of the within-modality correlated activity patterns.

(A) Time-resolved correlation values averaged across all visual subject pairings for a parcel
in left primary visual cortex (upper panel) and all auditory subject pairings for a parcel
in left primary auditory cortex (lower panel), before (dark grey line), and after MCCA
(blue and red lines). Light grey lines show recomputed correlation values for 1000 random
permutations of word order across subjects. Notably, signals of auditory subjects highly
correlate even before word onset. This is likely due to a more varied distribution of infor-
mation in the auditory signal caused by the continuous nature of auditory stimulation and
as a result differing time points at which individual words become uniquely recognizable.
The MCCA is blind to the stimulus timing and will thus find canonical variables that yield
maximal correlations at any timepoint if possible. (B) Cortical map of the spatial distribu-
tion of correlations, comparing within modality visual subject pairs (red) with auditory
subject pairs (blue). Correlation strength is expressed as the Pearson correlation coefficient
averaged over a time window from 150 to 200 ms post word-onset and normalized by the
maximum value of that window.

matter connections. We observe that temporal areas are supramodally activated
at earliest time points and sustain activation for the longest compared to other
regions. Over time, supramodal activation spreads from middle and posterior
left STG to the anterior temporal pole. This rapid progression of activity from
posterior to anterior regions mirrors previous observations (Marinkovic et al. 2003,
Vartiainen et al. 2009), adding to those findings a direct quantitative comparison
of the supramodal brain activity.
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Figure 2.3.: Supramodal correlated activity patterns.

Time-resolved spatial maps of supramodal correlated activity patterns (averaged over all
possible cross-modal subject pairings) in the left hemisphere. Medial views of the brain
surface are depicted in the first and third row, lateral views in the second and fourth row.
Color codes for strength of correlation. Colored parcels were most strongly correlated
between cross-modal subject pairs (nonparametric permutation test, corrected for multiple
comparisons).
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Figure 2.4.: Supramodal correlated activity patterns consistent across the ma- jority of

datasets.

Figure caption on next page.
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Figure 2.4.: Supramodal correlated activity patterns of word-specific activity consistent
across the majority of datasets. (A) Averaged correlation time courses (mean over all possi-
ble cross-modal subject pairings) are shown for selected parcels in inferior frontal Gyrus
(IFG, green), supramarginal Gyrus (red), Subcentral Cortex (orange), Anterior cingulate
cortex (ACC, pink), anterior middle temporal Gyrus (aMTG, purple), and middle supe-
rior temporal gyrus (mSTG, blue). Time courses are shown for each dataset individually
(light-colored lines) as well as averaged (dark lines). Grey shaded areas mark statistically
significant time points. (B) Time-resolved spatial maps of cross-modal correlations in the
left hemisphere. Medial views of the brain surface are depicted in the first, third and fifth
row, lateral views in the second, fourth and sixth row. For those parcels that were part
of the largest nominal suprathreshold cluster tested on only the exploratory dataset, the
mean correlation over all six datasets is shown. Color codes for strength of correlation.
In addition, the parcels at which the majority null hypothesis according to prevalence
inference could be rejected are outlined in black.

Beyond the core language network and the single word
level
We observed modality-independent activity in dorsal frontal cortex, in addition
to more widely reported inferior parts of the frontal cortex (Jobard et al. 2007,
Lindenberg and Scheef 2007, Constable et al. 2004, Marinkovic et al. 2003, Homae
et al. 2002, Michael et al. 2001). This could be due to us using linguistically rich
sentence material, of varying syntactic complexity, as opposed to single words
(Chee et al. 1999, Marinkovic et al. 2003, Booth et al. 2002, Liuzzi et al. 2017, Var-
tiainen et al. 2009) or short phrases (Bemis and Pylkkänen 2013, Carpentier et al.
2001, Braze et al. 2011). Indeed, discrepancies with respect to frontal lobe involve-
ment in modality-independent processing seem to mainly arise from differences
in stimulus material and task demands (Braze et al. 2011). A recent meta-analysis
has identified that more complex syntax robustly activates dorsal parts of the left
IFG (Hagoort and Indefrey 2014). Further, a previously published analysis of these
MEG data showed DLFC to be sensitive to sentence progression effects (Hultén
et al. 2019). Two previous fMRI studies using narratives (Deniz et al. 2019, Regev
et al. 2013) add to the debate. Regev et al. correlated BOLD responses evoked by
different modalities. They report supramodal activation in the left frontal lobe, ex-
tending beyond inferior frontal regions. Deniz et al. study modality-independent
brain areas by modelling semantic features of the stimulus in one modality and
used the model to predict the BOLD signal in the other modality. They report
BOLD signals in prefrontal cortex to be well predicted across modalities. In sum-
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Figure 2.5.: Significant supramodal correlated activity patterns as assessed by an addi-

tional permutation test.

In an additional significance test, we shuffled the sentence order 500 times prior to MCCA,
controlling for the possibility that MCCA as a preprocessing step may artificially increase
correlations between subjects (through overfitting). Importantly, this permutation was not
fully unconstrained, since we aimed at aligning sentences across modalities with the same
number of words, to avoid loss of data and to preserve ordinal word position. Thus, we
did a random pairing between sentences with the same number of words, after binning the
sentences according to their word count. Sentences consisting of 9, 14 or 15 words were
infrequent, with fewer than 5 occurrences each. After each permutation, we performed the
temporal alignment between sensory modalities (aligning the word onsets), followed by
cross-validated MCCA and computation of the time-resolved correlations of crossmodal
subject pairs. Due to the long computation time of the canonical variates, we created this
null distribution for the exploratory data only. In the figure, color codes for strength of
correlation. Colored parcels were most strongly correlated between cross-modal subject
pairs (corrected for multiple comparisons).
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Figure 2.6: Cortical map of max-

imum threshold g0.

For those parcels at which the
global null hypothesis could be
rejected, the mean (over time)
maximum threshold is plotted,
for which the null hypothesis can
be rejected (a = 0.05). Given the
sample size of six datasets, the
number of second-level permuta-
tions and a significance level of
a = 0.05 the maximally possible
threshold that can be reached is
0.5633.
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Figure 2.7.: Cortical map of prevalence threshold g0.

For those parcels at which the global null hypothesis could be rejected, the maximum
threshold is plotted, for which the null hypothesis can be rejected at a level of a = 0.05.
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Figure 2.8.: Time-resolved spatial maps of cross-modal correlations for the right hemi-

sphere.

The average correlation over all six datasets is shown. Color codes for strength of correlation.
In addition, the parcels at which the majority null hypothesis according to prevalence
inference could be rejected are outlined in black.
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mary, while complex stimuli consistently activate prefrontal areas beyond inferior
frontal cortex, the exact stimulus features which cause this supramodal activation
are still debated.

Some previous studies, using narratives and fMRI, report supramodal activa-
tion not to be restricted to the left hemisphere (Deniz et al. 2019, Regev et al. 2013,
Jobard et al. 2007). It could be that the previously observed bilateral involvement
is due to differences in context-based semantic processing during narratives, as
compared to the processing of isolated sentences in our experiment. Menteni and
colleagues have specifically contrasted BOLD activity in response to sentences
presented within a neutral or a local context. The authors indeed reported right
frontal cortex to be more sensitive to local discourse context as compared to its
left-hemispheric homolog (Menenti et al. 2009). Further research is needed to
determine whether this effect of presence and absence of narrative thread similarly
affects lateralisation of brain activity in MEG.

Even though mostly restricted to the left hemisphere, our results also impli-
cate extra-linguistic areas in supramodal processing. Specifically, we find bilateral
supramodal activation within ACC. The ACC is a midline structure, forming part
of a domain-general executive control network supporting language processing
(Hagoort 2017, Cattinelli et al. 2013). It is sensitive to statistical contingencies in the
language input and thus might play a role in mediating learning and adaptation
in response to predictive regularities in both local experimental as well as global
environment (Weber et al. 2016). It should be noted that deep sources are normally
poorly detectable in MEG (Hillebrand and Barnes 2002) and we thus consider any
interpretations with respect to the midline structures as tentative.

Supramodal orthography-phonology mapping
We observed supramodal activation in post-central and subcentral gyrus, as well
as supramarginal gyrus, which coincides temporally with supramodal activation
of primary auditory cortex. Activity in supramarginal gyrus has been repeatedly
elicited by cross-modal tasks (Sliwinska et al. 2012), such as rhyming judgments
to visually presented words (Booth et al. 2002), for which conversion between
orthographic and phonological representations is likely needed. At the same time,
post- and subcentral areas partly span articulatory motor and somatosensory areas
for the mouth and tongue. Together, the supramodal activation of these areas
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suggests that retrieval of phonetic and articulatory mappings is not limited to
speech perception only but also occurs during passive reading.

Leveraging word-by-word variability of the neural response
Neuroelectric brain signals exhibit strong moment-to-moment variability. While
some of this variability is related to the experimental stimulation, and therefore
associated with specific cognitive activity, some of it is unrelated, ongoing neural
activity. By applying MCCA across subjects we reduced this type of noise and
made subtle word-by-word fluctuations in the MEG signal interpretable. Com-
paring neural activity across subjects is challenging due to differing position or
orientation of neuronal sources relative to the MEG sensors. We used parcellated
MEG source reconstruction in combination with exact temporal alignment of
individual sentences across subjects. This allowed for the extraction of signal
components that are shared across subjects, thus reducing the intersubject spatial
variability, which is commonly observed in more traditional (for instance, dipole
fitting) procedures (Vartiainen et al. 2009). MCCA thus allowed us to more directly
investigate time-resolved inter-subject correlations and move beyond event-related
averages (Marinkovic et al. 2003). Importantly, our analysis approach allows us to
conclude that the identified supramodal activity is word-specific. Our findings
therefore go beyond showing a general activation of those areas as compared
to baseline but rather reveal consistent word-by-word fluctuations of activation
within the recruited areas.

Latency of supramodal processing
The temporal alignment procedure, as a necessary preparation step for the MCCA
procedure, followed by the estimation of time-resolved intersubject correlations,
focused on common signal aspects that are exactly synchronized across subjects.
The differences in sensory modality specific characteristics of the input signal
require dedicated processing with likely different processing latencies, which may
also lead to latency differences in the activation of supramodal areas. For example,
Marinkovic and colleagues report shorter reaction times during the visual task, yet
found earlier activity peaks for the auditory task in corresponding early sensory
cortex and left anterior temporal lobe (Marinkovic et al. 2003). In contrast, other
work observed earlier anterior temporal lobe activation for visual, compared to
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auditory stimulation (Bemis and Pylkkänen 2013). Our results indicate a cer-
tain degree of overlap across modalities in the temporal window within which
supramodal cortical areas are activated. It is possible, that we observed more tem-
porally extensive activation, for instance, related to unification processes, because
we used longer sentences. In addition, any overlap may have been amplified as a
necessary consequence of the MCCA procedure. Evidently, correlations between
signals from auditory subjects were boosted with less temporal specificity com-
pared to visual subjects (Figure 2.2). This observation was unexpected and may
be due to more continuous stimulation in the auditory experiment. As the sound
of a spoken word unfolds, the timing at which it becomes uniquely recognizable
will vary across word. Thus, the distribution of information in the auditory signal
is much more varied as compared to the visual. MCCA will pick up on any com-
mon relationship across subjects regardless of timing. In our specific application,
projections were estimated on concatenated data, effectively making the method
blind to word onset boundaries.

In conclusion, this study provides direct neurophysiological evidence for
sensory modality independent processes supporting language comprehension in
multiple left hemispheric brain areas. We identified a network of areas including
domain general control areas as well as phonological mapping circuits over and
above traditional higher-level language areas in frontal and temporal-parietal re-
gions, by quantifying between-subject consistency of their respective word-specific
activation patterns. These consistent activation patterns were word-specific, and
thus likely reflect more than just generic activation during language processing.
Finally, we show that alignment of individual subject data through MCCA is a
promising tool for investigating subtle word-in-context specific modulations of
brain activity in the language system.
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3MVPA does not reveal neural
representation of hierarchical
phrase structure during reading

During comprehension, the meaning extracted from serial language input can be
described by hierarchical phrase structure. Whether our brains explicitly encode
hierarchical structure during processing is, however, debated. In this study we
recorded Magnetoencephalography (MEG) during reading of structurally ambigu-
ous sentences to probe neural activity for representations of underlying phrase
structure. 10 human subjects were presented with simple sentences, each contain-
ing a prepositional phrase that was ambiguous with respect to its attachment site.
Disambiguation was possible based on semantic information. We applied multi-
variate pattern analyses (MVPA) to the MEG data using linear classifiers as well
as representational similarity analysis to probe various effects of phrase structure
building on the neural signal. Using MVPA techniques we successfully decoded
both syntactic (part-of-speech) as well as semantic information from the brain
signal. Importantly, however, we did not find any patterns in the neural signal
that differentiate between different hierarchical structures. Nor did we find neural
traces of syntactic or semantic reactivation following disambiguating sentence
material. These null findings suggest that subjects may not have processed the
sentences with respect to their underlying phrase structure. We discuss method-
ological limits of our analysis as well as cognitive theories of "shallow processing",
i.e. in how far rich semantic information can prevent thorough syntactic analysis
during processing.
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3.1 Introduction
Although we perceive language mainly in a sequential fashion (e.g. by reading
word by word) we need to take into account information beyond the sequential
order to fully comprehend its meaning. For example, in a sentence like “The
woman who owns two dogs chases the cat” we understand that the woman is the
one chasing, not the dogs. This knowledge can be expressed through hierarchical,
structured relationships between the words. Specifically, words can be grouped
into constituents (e.g. “Who owns two dogs” and “The woman chases the cat”) and
constituents in turn can be nested into higher-level phrases, as shown in 3.1. The
resulting nested phrase structure then fully describes the important conceptual
units and their relationships with each other. Thus, hierarchical phrase structure
also directly relates to thematic role assignment (the woman being assigned the
agent role of the chasing action).

3.1 [[The woman [who owns the dogs]] chases the cat]

This type of structured meaning is to a large degree determined by syntax.
As seen above, syntactic aspects like word order, function words (here: the relative
pronoun ‘who’) as well as morpho-syntactic features such as number agreement
provide cues with respect to the word-phrase relationships. Semantic information
(e.g. animacy) or even just semantic association itself can also guide how structure
should be assigned. In the above example, syntactic cues, however, override
simple semantic association between the lemmas “dog” and “chase”. In theory,
hierarchical descriptions can be applied to all linguistic levels of the stimulus
during language processing (e.g. syntactic, semantic and phonological structure)
(Jackendoff 2003).

How hierarchical phrase structure building is neurally encoded as we pro-
cess language is still an open question. In fact, some have even disputed its neural
and psychological reality during language use altogether (Frank et al. 2012). Some
recent evidence for the reality of hierarchical phrase structure building comes from
neuroimaging studies that assess its consequences on memory load (Nelson et al.
2017, Pallier et al. 2011) and production (Giglio et al. (in prep)). For example, Pal-
lier et al. varied linguistic constituent size while keeping overall sentence length
constant and identified brain regions whose activity parametrically increased
with the size of the constituents (larger constituents thought to result in higher
memory demands and stronger neural activity) (Pallier et al. 2011). Following a
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similar approach, Nelson et al. modelled neural activity according to a hierarchi-
cal phrase-structure model and found it to explain more variance when fitted to
intracranial data as compared to alternative models that were based on transition
probabilities only (Nelson et al. 2017). This is in line with behavioral evidence,
demonstrating that humans prefer a hierarchical interpretation over a linear one,
for example when interpreting ambiguous noun phrases, such as “second blue ball”
(Coopmans et al. 2021). At the same time, there are several studies demonstrating
that reading times can often be sufficiently accounted for by sequential-structure
models (Frank and Bod 2011), casting doubt on how pervasive the construction of
hierarchical structure during language processing really is.

In early psycholinguistic experiments, hierarchical structure building has
been measured through reading time behaviour for structurally ambiguous sen-
tences. One example for such ambiguity is prepositional phrase attachment.
Prepositional phrases (PPs) in sentence-final position (examples 3.2 & 3.3) are
structurally ambiguous with respect to their attachment to the main clause. For
example, a prepositional phrase can be interpreted as noun-attached as in sentence
3.2 (a cop with the revolver) or as verb-attached as in sentence 3.3, in which case
it modifies the verb (seeing with binoculars). In contrast to other structurally
ambiguous stimuli such as garden-path sentences, different prepositional phrase
attachments do not involve different word forms or function words. Hence, any
disambiguation cannot depend on syntactic information. Still, human readers are
able to assign a unique meaning to such structurally ambiguous sentences with
ease, relying on world knowledge to connect the semantic information provided
by both the prepositional phrase itself with its preceding context in the most plau-
sible way (e.g. revolvers are likely to be carried by cops and binoculars are likely
instruments for seeing.). Note that sentence-final prepositional phrases are not
rare or non-canonical. For example, in the structurally annotated TIGER corpus
(see methods for details) we found about 43% of all prepositional phrases to be
structurally ambiguous.

3.2 The spy saw the cop with the revolver.

3.3 The spy saw the cop with the binoculars.

Originally, structurally ambiguous sentences had been shown to lead to pro-
longed reading times at the disambiguating word (e.g. noun-attached PPs being
read more slowly than verb-attached PPs). Based on these findings, Frazier had
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proposed sentence comprehension to rely on an initial structural interpretation
of the sentence driven by syntactic cues only and following certain rules such as
the minimal attachment principle. According to the minimal attachment principle,
the preferred structure is always the more shallow one (i.e. the one resulting in a
minimal amount of nested dependencies). Therefore, according to minimal attach-
ment the verb-attached reading of the PP is preferred already when encountering
the preposition. In the case of a noun-attached phrase, subsequent words thus
leads to the need for post-hoc structural reanalysis and as a consequence longer
reading times (Rayner et al. 1983, Frazier and Rayner 1982). Frazier’s early theory
was quickly overturned in favour of a parallel (or cascading) processing model
(McClelland and Kawamoto 1986, Van Den Brink and Hagoort 2004, Pulvermüller
et al. 2009, Hagoort 2017) by several studies demonstrating the fast integration of
non-syntactic cues early during online processing (Spivey-Knowlton and Sedivy
1995, Altmann and Steedman 1988, Taraban and McClelland 1988, Traxler and
Tooley 2007, Mohamed and Clifton 2011). For the processing of ambiguous PPs, it
has been shown that facilitated processing of verb-attachments is modulated by
referential information imposed by the context (Altmann and Steedman 1988) as
well as semantic content of the preceding verb (Spivey-Knowlton and Sedivy 1995).
More concretely, Spivey-Knowlton et al. have shown that action verbs bias expecta-
tions towards verb-attachment while verbs referring to mental states (e.g. the spy
hoped for ..) or perception can bias towards noun-attachment (Spivey-Knowlton
and Sedivy 1995). The authors explain this by different types of verbs being as-
sociated with certain thematic roles to different degrees (e.g. action verbs occur
with an instrument more often than perception verbs). As a consequence, reading
time differences that have originally been interpreted to be a direct consequence
of hierarchical structure building, could be reflecting predictions about upcoming
semantic content instead.

In a more recent study, Boudewyn and colleagues argued against this alter-
native hypothesis of PP reading differences being caused by varying semantic
predictions. They investigated the neural activity evoked by verb- and noun-
attached prepositional phrases through event-related potentials (ERPs). In addi-
tion to the classically observed delay in reading times, their noun-attached stimuli
evoked larger positive potentials around 600 ms (P600) (as compared to their
verb-attached versions). Importantly, they showed that the amplitude of this
P600 was reduced when noun-attached targets followed noun-attached primes
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(Boudewyn et al. 2014). Boudewyn and colleagues are not the first ones to report
structural priming effects. In fact, syntactic priming has been reported already
some 35 years ago, showing that speakers are more likely to repeat a given syn-
tactic structure in their utterances than to switch between two conceptually equal
alternatives (Bock 1986). To evoke priming of hierarchical structure, researchers
explicitly vary lexical information while keeping syntactic structure stable. More
recent investigations indicate, however, that event structure (i.e. thematic roles)
as well as lexical information can to a large degree account for many priming
results and hence priming solely on the structural level has not been definitively
proven yet (Ziegler et al. 2019). Other confounding factors that can evoke priming
and are often contrasted along side syntactic structures are information structure,
syntax-animacy mapping and rhythmic priming. Boudewyn et al. argue for their
priming effect to be structural in nature based on the timing of their observed ERP
effect. Differences in ERPs have been generally interpreted as neural markers for
a difference in processing (for example more or less engagement of the underly-
ing neuronal population). The P600, specifically, has been reported most often
in the context of syntactic violations or anomalies. Hence, the authors interpret
this priming effect to reflect facilitated structural processing of an originally dis-
preferred structure. Still, ERP effects need to be interpreted with caution, since
their relationship to underlying cognitive mechanisms is unclear. For example,
recent computational cognitive models of language processing illustrate that ERP
markers can be modelled as reflecting general update or error signals, without
restricting them to any specific linguistic operation (Rabovsky et al. 2018, Fitz and
Chang 2018).

In addition, most ERP research so far reflects only a one-sided measure of
the neural code. Namely, the dominant analysis approach has been to treat ERPs
as unidimensional point-estimates. Computing signal amplitude separately for a
given channel and time point and averaged over trials, subjects and eventually
space and time. As a consequence, such analyses can only detect univariate effects
and are highly sensitive to subject-level variability. With the recent increase in
computing power and developments of multi-variate pattern analysis (MVPA)
we can now capture richer multidimensional information encoded across several
channels or source points (Guggenmos et al. 2018, Norman et al. 2006). Through
MVPA, researchers have been able to uncover additional task-relevant brain re-
gions (Jimura and Poldrack 2012) and characterise the specific computations
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needed for ambiguity resolution in more detail (Tyler et al. 2013). Furthermore,
MVPA has the potential to be sensitive to distributed neural representations of the
content whereas univariate methods have been thought to be most sensitive to the
engagement of basic processing operations (Raizada et al. 2010, Mur et al. 2009,
Okada et al. 2010). Although not every effect revealed through MVPA is neces-
sarily indicative of an underlying distributed neural code (Davis et al. 2014), the
technique has nonetheless been successfully used to reveal higher-level structure
in the neural signal for domains other than language (e.g. for hierarchical motor
sequences Yokoi and Diedrichsen 2019). MVPA might hence be better suited to
target hierarchical structure building during language processing than previous
univariate methods.

In this study, we revisit processing of structurally ambiguous PPs with the
approach of MVPA in order to more directly tap into representations of hierarchical
structure underlying language comprehension. In contrast to early psycholinguis-
tic approaches we do not assume that noun or verb-attached prepositional phrases
are processed differently from each other in the sense of one structure being more
preferred over another. Rather we ask, whether it is possible to find a neural
correlate of the hierarchical phrase structure of a sentence (i.e. neural patterns that
distinguish between verb- and noun-attached PPs), given completely ambiguous
syntactic cues.

3.2 Methods

Stimulus Material

Corpus Analysis

All stimuli were created in German. Since most of the previous literature had
looked at prepositional phrases in English, we first conducted a corpus analysis to
determine which German preposition will most likely be ambiguous with respect
to structural attachment of the prepositional phrase.

For our corpus analysis we used the TIGER corpus, a manually annotated
corpus of 40,000 German sentences (Brants et al. 2004). The corpus is available at
www.ims.uni-stuttgart.de in both xml as well as conll09 format. We used the xml
version for queries with the TIGERSearch Tool as well as the conll09 version for
quick extraction of frequency statistics using the bash shell command awk. We
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Figure 3.1.: Tiger corpus frequencies per preposition.

Total number of occurrence for the 33 most frequent prepositions based on the German
"Tiger" corpus.

extracted separate frequency information per preposition and structure (noun-
attached and verb-attached prepositional phrases) through the TIGERSearch soft-
ware (see appendix for details on the TIGERSearch queries).

Stimuli

Based on the corpus search, we selected the preposition “mit” (engl.: with) because
it occurs with high frequency (Figure 3.1) and equally often within both noun-
and verb attached phrases (Figure 3.2). We created a stimulus set of 100 sentence
pairs in German. All sentences consisted of nine words each, a subject-verb-
object structure in the main clause followed by a four word prepositional phrase
including the preposition and a determiner-adjective-noun phrase. This sentence
structure was syntactically ambiguous with respect to the attachment site of the
prepositional phrase. Within a given pair, the same prepositional phrase was
presented while the sentence context leading up to it was manipulated. Based on
the combined semantic information of the sentence context and the prepositional
phrase, the interpretation of the most plausible attachment could be disambiguated.
To steer the preferred attachment interpretation, we manipulated the sentence
context in two ways. In half of the sentence pairs we varied the main verb,
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Figure 3.2.: Tiger corpus attachment proportions per preposition.

Frequency of verb- and noun-attached phrase constructions (not restricted to sentence final
PP) for the seven most frequent prepositions in the corpus.

we call this the verb condition (examples 3.4 & 3.5). Sentence pairs in the verb
condition were constructed such that the noun in object position could potentially
be modified by the PP but did not have a particularly strong semantic association
with the PP internal noun. By presenting these sentences with a verb for which
modification through the PP internal noun was either allowed or forbidden (or
at least unlikely), a verb-attached interpretation could either be encouraged or
prevented respectively. In the other half of the sentence pairs, we exchanged agent
and patient identity across the two sentences. In the following, I will refer to this as
the role condition (examples 3.6 & 3.7). For sentence pairs in the role condition the
two nouns preceding the PP had a varying degree of semantic association to the
PP internal noun while the verb was held stable with a mild semantic association
to the PP internal noun and optional modification through a PP. This lead to a
noun-attached interpretation if the more strongly associated noun occurred in
object position (the noun immediately preceding the PP) but to a verb-attached
interpretation when it occurred in subject position. In both the role and the verb
condition, each verb was repeated exactly two times across all sentences. We
explore difference between verb and role conditions in the behavioral data but
collapse across both conditions when analysing the neural data. Finally 100 filler
sentences with varying syntactic structure were created.
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Verb condition

3.4 Die Partei besitzt eine Untergruppe mit einigen Argumenten

engl.: The party has a subgroup with questionable arguments.

3.5 Die Partei überzeugt eine Untergruppe mit einigen Argumenten engl.: The
party convinces a subgroup with questionable arguments.

Role condition

3.6 Das Kind verängstigt das Insekt mit dem giftigen Stachel

engl: the child frightens the insect with the poisonous sting

3.7 Das Insekt verängstigt das Kind mit dem giftigen Stachel

engl: the insect frightens the child with the poisonous sting

Pre-test

For the majority of the sentences, the overall semantics licensed both PP attach-
ments, even if they were constructed such that one attachment should be perceived
as more plausible. To verify that our manipulation evoked the intended sentence
interpretation we pre-tested all stimuli via an online questionnaire, created with
the survey tool Limesurvey (Limesurvey GmbH 2012). During this online ques-
tionnaire, 62 native German speakers with a mean age of 25 (range 19-33) judged
for each stimulus-sentence whether it contained a verb- or noun-attached prepo-
sitional phrase and how plausible they found the sentence (on a scale from 1 to
5). All subjects gave informed consent prior to filling in the survey and received
financial reimbursement. Based on the answers we selected 200 sentences out of
a larger set of 469 sentences according to criteria described in detail below (see
Table 3.2 and 3.3 in Appendix for the final selection of sentences as used in the
MEG experiment).

First, subjects were instructed about the difference in attachments. This was
done using unambiguous stimuli and a non-formal intuitive explanation like “In
the verb-attached case the prepositional phrase says something about the verb”.
Subjects were then asked to formulate the rule to distinguish the two attachments
in their own words and were presented with four unambiguous practice items.
Finally, they would read 80 to 100 sentences one by one and for each sentence
decide between verb- or noun attachment. Ten seconds after a sentence appeared
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on screen a pop-up window encouraged subjects to answer faster. This time limit
was chosen to force subjects to answer intuitively. However, many subjects would
need more time on certain trials. After selecting their answer they could continue
with the next item at their own pace. Half way through the questionnaire subjects
were encouraged to take a longer break if needed. The stimulus list was split up
into three parts to keep the duration of each survey to about 30 minutes. Each
subject saw one of the possible lists in a pseudo-random order, so that sentences
from the same pair were at least four items apart. Three subjects were excluded
either based on poor performance on the practice items (less than three correct),
because their average reaction time diverged extremely from the average (greater
than 1.5 times the interquartile range) or because they had less than 60% correct
answers to those sentences that were semantically completely unambiguous.

The survey results were analyzed using R version 3.6.3 and the lme4 package
for linear mixed-effects models (Bates et al. 2015). Pairs of sentences were selected
if both received at least 74% of answers consistent with the intended attachment.
With more than 74% of answers being consistent with the intended attachment
we can exclude the alternative hypothesis of random behavior at an alpha level
of 0.05 given a binomial distribution and 20 data samples per item. The selection
was made so that every verb was repeated exactly two times and there were equal
amounts of sentences in both verb and role condition.

On pre-test results for the final selection of sentences, we used a generalised
linear mixed effects model (GLMM) with a logit link function fit by maximum
likelihood to examine the relationship between accuracy (i.e. percentage of answers
in line with our expectations), reaction time, plausibility ratings (on a scale of 1 to
5), context manipulation (verb condition or role condition) and attachment type
(verb- or noun-attached). A mixed logit model appropriately accounts for binomial
response variables (Jaeger 2008), in our case hits or misses (correctly identifying
an attachment according to intended sentence meaning or not). The model thus
allowed us to test whether there were systematic differences in processing noun-
or verb-attached sentences, as well as systematic differences between our different
context manipulation conditions while controlling for between-subject variance.
We specified accuracy (hit or miss) as the dependent variable and reaction time,
plausibility rating, and context condition as fixed effects. Additionally, the model
included random-effect terms for items (intercept only) and subject (intercept and
slope). The model was fully saturated with all two-way interaction effects.
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Figure 3.3: Pre-test proportion

of correct responses averaged

across all subjects.

Accuracies are plotted sepa-
rately for verb condition (red),
role condition (blue) and for
noun-attached sentences (left-
most graphs) and verb-attached
sentences (rightmost graphs).

GLMM results indicate a significant effect of attachment type and plausibility,
with factor level contrasts revealing that subjects were more often correct for noun-
attached items (see Figure 3.3) and high plausibility ratings led to high accuracy.
There was a significant Attachment type x Plausibility interaction. Factor level
contrasts revealed that the effect of high plausibility leading to high accuracy was
stronger for verb-attached sentences than noun-attached sentences (see Figure
3.4). The context manipulation effect was not significant and only the interaction
Context Manipulation x Attachment was significant, indicating that only for
noun-attached sentences were items more often correctly interpreted in the verb
condition compared to the role condition (see Figure 3.3). Finally, the interaction
of Reaction Time x Plausibility was significant. As illustrated in Figure 3.5, high
plausibility ratings only lead to higher accuracy if reaction times were fast. In
summary, whether sentences were constructed to fit the verb or the role condition
did not lead to large differences in accuracies, although sentences in the verb
condition were slightly biased towards a noun-attached interpretation. Most of
the items used in the experiment received a plausibility rating of higher than 3 on
average with only four items with an average rating below 3 and verb-attached
sentences receiving on average slightly higher plausibility ratings.
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Figure 3.4:
Interaction between

plausibility ratings

and attachment type.

Mean Accuracy per
plausibility rating
is plotted for noun-
attached (red) and
verb-attached (blue)
items.

Figure 3.5:
Interaction between

reaction times and

plausibility ratings.

Mean Accuracy per
reaction time is plotted
for different plausibil-
ity ratings. The higher
the plausibility the
darker the color.
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Experiment
10 Native German speakers (mean age = 22 years, 3 male) were seated in a magnet-
ically shielded room and read sentences word-by-word while their neural activity
was recorded using Magnetoencephalography (MEG). All subjects gave informed
consent prior to filling in the survey and received financial reimbursement or
credits. All stimuli were presented using the Presentation software (Version 16.0,
Neurobehavioral Systems, Inc). Sentences were presented in pseudo-random
order and word-by-word in four blocks with self-paced pauses in between blocks.
In 25% of all trials a comprehension question would follow the sentence. Com-
prehension questions were either directed at identifying the agent or patient of
the sentence (“Who has the bucket” or “Who is being carried”) or they would
target the semantic dependency of the prepositional attachment (example ques-
tion following 3.5: “Who has the questionable arguments”). The question was
presented together with two answers, one on the left and one on the right side of
the screen. Subjects indicated which answer they chose by pressing a button with
their index finger corresponding to the position of the answer on the screen. The
comprehension questions were meant to ensure that subjects were engaged and
attentive during the task and that they fully parsed the presented sentences on
both a semantic as well as structural level. Prior to the main experiment subjects
received four practice trials to familiarise themselves with the pace of the presen-
tation. Words were presented sequentially on a back-projection screen, placed in
front of them (vertical refresh rate of 60 Hz) at the centre of the screen, in a white
font, on a black background. Each word was separated by an empty screen for 200
ms and the final word of each sentence was followed by a 2000 ms blank screen.
Duration of each word on screen was 392 ms on average and varied with word
length with a minimum duration of 300 ms and maximum duration of 500 ms
(formula: 300 ms + number of letters * 1000/60). The inter-sentence interval was
jittered between 500 and 1000 ms. Within two weeks after the MEG experiment,
subjects filled out a questionnaire rating each stimulus sentence as either noun-
or verb attached and as plausible on a scale from 1 to 5. This questionnaire was
the same as the one used for the pre-test but contained only those stimuli that had
been used during the MEG experiment.

MEG data were collected with a 275 axial gradiometer system (CTF). The sig-
nals were analog low-pass-filtered at 300 Hz and digitized at a sampling frequency
of 1,200 Hz. The position of the subject’s head was registered to the MEG-sensor
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array using three coils attached to the subject’s head (nasion, and left and right
ear canals). Throughout the measurement, the head position was continuously
monitored using custom software (Stolk et al. 2013). During breaks the subject
was instructed to reposition to the original position if needed. Subjects were
able to maintain a head position within 5 mm of their original position. Three
bipolar Ag/AgCl electrode pairs were used to measure the horizontal and vertical
electrooculogram and the electrocardiogram. In addition to the brain signal, we ac-
quired T1-weighted magnetic resonance (MR) images of each subject’s brain using
3 Tesla Siemens PrismaFit and Skyra scanners. All scans covered the entire brain
and had a voxel size of 1x1x1mmˆ3. Finally, we recorded the subject’s head shape
with the Polhemus for better co-registration of MEG and anatomical scans.

Preprocessing & Source reconstruction
Data were pre-processed using the Fieldtrip toolbox in MATLAB (Oostenveld
et al. 2011). For the decoding analysis the Donders machine learning toolbox
(Van Gerven et al. 2013) was used in combination with custom-made MATLAB
scripts. The data were segmented into epochs around word onset with a 200
ms pre-stimulus period. To detect muscle artifacts, data was bandpass filtered
between 110 Hz and 140 Hz and the trials with large variance were excluded
upon inspection (less than 4% of all critical trials). Data was filtered between
0.1 Hz and 40 Hz. Independent component analysis (ICA) was used to remove
artifacts stemming from the cardiac signal and eye blinks. For each subject, the
time course of the independent components was correlated with the horizontal
and vertical EOG signals as well as the ECG signal to identify and subsequently
remove contaminating components.

We used linearly constrained minimum variance beamforming (LCMV)
(Van Veen et al. 1997) to reconstruct activity onto a parcellated cortically con-
strained source model. For this, we computed the covariance matrix between all
MEG-sensor pairs as the average covariance matrix across the cleaned single trial
covariance estimates. This covariance matrix was used in combination with the
forward model, defined on a set of 7842 source locations per hemisphere on the
subject-specific reconstruction of the cortical sheet to generate a set of spatial filters,
one filter per dipole location. Individual cortical sheets were generated with the
Freesurfer package (Dale et al. 1999,version 5.1) (surfer.nmr.mgh.harvard.edu).
The forward model was computed using FieldTrip’s singleshell method (Nolte
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2003), where the required brain/skull boundary was obtained from the subject-
specific T1-weighted anatomical images. We further reduced the dimensionality
of the data, by grouping source points into 374 parcels, using a refined version
of the Conte69 atlas. These parcels were used as searchlights in the subsequent
analyses.

Multivariate decoding analysis

Gaussian Naive Bayes

We trained a Gaussian Naïve Bayes classifier (GNB) (Mitchell and Others 1997) to
identify cognitive states associated with underlying sentence structure from the
pattern of brain activity evoked by reading the final word of a prepositional phrase.
The GNB is a generative classifier that models the conditional probability P(xj|Yi)

of signal amplitude x (at a given sensor/voxel j) given that the stimulus is of a
class Yi (noun- or verb-attached prepositional phrase) using a univariate Gaussian
and assuming class conditional independence. The mean and variance of this
distribution is estimated on a subset of the trials (training set). The remaining data
(test set) is then classified as the class Yi whose posterior probability P(Yi|x) is
maximal among all classes. The corresponding classification rule is:

Y  � argmax
yj

P
�
Y = yj

�
’

j
P
�
Xj

��Y = yj
�

(3.1)

Classification results were evaluated using 20-fold cross-validation, so that
accuracy was always based on test data that were disjoint from the training set.
20 folds were chosen for a good balance between amount of training data per
fold and computational speed. Accuracy was estimated as the percentage of
correctly classified trials across all folds. Classifiers were trained using a sliding
time-window approach, where for each time-point, MEG data from all sensors and
all time-points +-50ms were concatenated into a single vector (length = vertices
x time-points). We also trained the same classifier on source-reconstructed data
using a spatial searchlight approach in addition to the sliding time-window. The
searchlight procedure followed the parcellation of the cortical sheet. For each
parcel and time-point a classifier was trained on source data of all vertices within
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that parcel, while concatenating across all time-points within a sliding window of
width 100 ms.

All parameters chosen for the classification analysis were manually opti-
mised based on accuracy of an orthogonal classification task, namely to distinguish
neural patterns evoked by either reading the main verb or the second noun (object
noun) of the sentences. Decoding which of these different word classes was being
presented robustly resulted in accuracies significantly higher than chance perfor-
mance. Within our stimulus design, word class was confounded with ordinal
word position in the sentences. Therefore, we conducted a control analysis on the
same ordinal word positions within only filler items (where sentence structure
varied and therefore nouns and verbs did not always occur at the same sentence
position). This control analysis did not yield comparably high decoding accuracies.
We compared the performance of the verb-noun classifier given different sliding
time window widths (50 ms, 100 ms or 200 ms) and feature transformations (con-
catenating vs averaging over time dimension, feature selection, orthogonalisation
and feature reduction through principal component analysis (PCA), gaussianisa-
tion).

PCA transforms the data into linearly uncorrelated components, ordered by
the amount of variance explained by each component. Using these uncorrelated
components as features can improve the decoding performance of classifiers such
as GNB, which assume no feature covariance (Grootswagers et al. 2017). Further-
more, PCA allowed our feature selection to be based on a data-driven approach by
keeping only a subset of components that explain highest variance. We observed
that both orthogonalising of features (sensor-time points) using PCA and feature
reduction by restricting training to the first 60 components only, boosted classifica-
tion accuracy. Further feature selection based on signal strength (selecting features
based on largest difference in means between classes) did not improve accuracy
beyond the the effects of feature reduction based on PCA. Gaussianisation of the
sensor-level data prior to classification analysis or broadening the training time
window did not yield large differences in performance. Based on these compar-
isons we then continued to train the classifier on the noun- vs. verb-attachments
with the optimal parameters.
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Representational similarity analysis

Prepositional phrase attachment is interpreted based on the semantic information
given the context preceding the phrase. We therefore predicted that there might
be reactivation of this semantic information (i.e. those semantic features that
most strongly influence the attachment) after the disambiguating sentence-final
word. We tested this hypothesis through representational similarity analysis
(RSA) (Kriegeskorte et al. 2008), representing semantic content by means of a
high-dimensional word-embedding vector (semantic vectors). For the word-
embeddings we relied on pre-trained models published by facebookresearch1

which had been trained on German Wikipedia using fastText (Bojanowski et al.
2017; Grave et al. 2018).

First, we ensured that the semantic information captured by the word-
embeddings is also encoded in the neural signal. We extracted all segments of
neural data time-locked to each word presented and further restricted the selection
to either content words only for this analysis or sentence-final words (as described
in detail below). We then generated pairwise similarity measures between those
words by computing the euclidean distance between their corresponding word-
embedding vectors (semantic similarity model). Repeated presentations of the
same word were treated as separate words (i.e. not averaged across). In the same
way, we computed pairwise similarity measures for the corresponding segments
in the neural signal, i.e. the pairwise neural similarity during reading of the same
words. Words that were not present in the vocabulary of the pre-trained embed-
dings were excluded from both semantic model and neural data, which left 387
trials in total. Neural similarity was computed based on a moving searchlight
by concatenating all samples within a 100 ms time-window and across source
locations within a given parcel, and this was repeated for all parcels and shifting
time-windows (between word onset and 800 ms post onset) with an 80% overlap in
time. Finally, semantic similarity and neural similarity were correlated (Spearman
correlation) at each searchlight position. This resulted in a map indicating when
and where neural activity reflected semantic information about the perceived
words.

Crucially, we then generalised this RSA to the post-sentence phase, when
subjects were reading the final, disambiguating word. For this, we re-computed the
neural similarity, this time based on neural activity evoked by the final word. For

1https://ai.facebook.com/tools/fasttext
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each Verb-attached and each Noun-attached PP instead of the word-embedding of
the final noun we assign the word-embedding vector of the preceding verb or noun
respectively (i.e. of the most plausible attachment points). We then recomputed
the euclidean distance between word-embedding vectors for all trial pairs, which
now expresses for each sentence pair the semantics similarity with respect to the
disambiguated attachment sites. Any significant correlations between the neural
similarity and the attachment site semantic similarity indicate when and where
neural patterns evoked by reading the final noun are also encoding (i.e. reactivate)
information about the preceding verb or noun respectively.

Significance testing of decoding accuracy
When evaluating significance of group-level accuracy differences between two
classifiers (GNB vs. logistic regression; part-of-speech classifier vs. word position
control) we relied on non-parametric permutation testing (Maris and Oostenveld
2007), randomly swapping observed accuracy between classifiers. For statistical
evaluation of the GNB classifier against chance level we relied on information
prevalence inference (Allefeld et al. 2016) based on subsampling of single-subject
permutations. Prevalence inference tests the significance of above-chance accuracy
in the majority of subjects given the permutation distribution at an alpha level
of 0.05. Permutation tests are preferred over traditional tests against theoreti-
cal chance level, given that the small amount of trials (typical for neuroimaging
studies) will lead to larger cross-validation errors (Varoquaux 2017). Therefore,
we computed null-distributions on randomly re-labeled data for the GNB clas-
sification task. For the binary classification task we randomly selected half of
the items per category (either attachment type of part of speech) and switched
their labels in order to maintain an equal amount of items per class. For analyses
conducted on the source-reconstructed data we used one fixed set of permutations
of the observations for each searchlight to preserve spatial correlations.The proce-
dure of generating a permutation and subsequent classification/prediction using
permuted labels/semantic vectors was repeated 100 times per subject.

To evaluate statistical significance of the correlation values resulting from
the RSA analysis, we used nonparametric permutation tests against a baseline of
zero, including cluster-based correction for multiple comparisons across time and
space.
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Figure 3.6.: Accuracy of comprehension questions for each subject per manipulation

condition.

Accuracy across subjects depicted separately for each manipulation condition: Verb con-
dition (left, red), role condition (middle, green) and filler items (right, blue). Individual
subject accuracies are plotted as dots.

Figure 3.7:
Accuracy of attachment

rating for each subject

per manipulation

condition.

Average accuracy is
plotted separately for
verb condition (left,
red) and role condition
(right, green). Individ-
ual subject accuracies
(percentage of items
correctly classified) are
plotted as black dots.
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3.3 Results

Behavioral
In the MEG experiment, all subjects had higher than chance level performance
on answering the comprehension questions. On average they gave 77% correct
answers on sentences from the verb condition, 72% correct answers for the role
condition and 88% correct answers on filler sentences. While performance on
the filler items was above chance for all subjects, some subjects performed at
chance for questions from the verb and role conditions (see Figure 3.6). Since
correct answers to target items depended on the interpretation of the prepositional
phrase attachment, this suggests, that some subject’s attachment interpretations
differed from the norm (as determined by the pre-test). Within a week after the
MEG experiment, each subject had filled in an online post-test, explicitly rating all
stimulus sentences as either noun or verb attached (following the methods from the
pre-test). Average accuracy across subjects on this post-test did not differ between
conditions (verb and role condition both 81% correct) and subjects interpreted the
sentences mostly as intended. Except for two subjects, who performed close to
chance, subjects had a minimum accuracy of 79% (see Figure 3.7).

Multivariate pattern analysis

2-way classification Noun-attached vs Verb-attached

Our main analysis of interest, the 2-way classification of different phrase structure
(Noun attachment vs. Verb attachment) did not reach above chance-level accuracy
at any time window up to 2 seconds after onset of the final word of a sentence.
We observed this null-finding both, when items were labeled according to the
general pre-tested attachments, but also when items were labeled according to
subject-specific post-tests (see red and blue graphs respectively in Figure 3.8).

2-way classification Noun vs Verb

The 2-way classification on whether the currently seen stimulus was a verb or a
noun based on sensor-level MEG data reached a maximal average accuracy (across
subjects) of 67% at 160 ms after word onset and was significantly more accurate
as compared to the word position classifier (p=0, cluster-corrected permutation
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Figure 3.8.: Attachment classification in sensor space.

Accuracy of a Gaussian Naive Bayes classifier is plotted for two-way classification of
attachment type (noun-attached vs verb-attached). Accuracy is shown for both, a classifier
trained on items labeled according to coherent interpretations of sentences during pre-
test (red) and a classifier trained on items labeled according to subject-specific post-test
interpretations (blue). Observed accuracy was tested against a baseline performance
estimate generated by repeatedly classifying data after permuting labels (grey).

tests) up until 460 ms after word onset (see Figure 3.9). Note that classification
accuracy is already significantly above chance before the onset of the noun/verb.
This is due to the fact that nouns were always preceded by a determiner and
verbs by a noun, effectively turning the baseline period into a determiner vs. noun
classification sample. PCA transformation of the data led to higher classification
accuracy as compared to training on the raw features. Additional feature selection
based on class means did not lead to further increases in accuracy (see Figure
3.10). Training the classifier on moving windows of length 100 ms not only was
more efficient in terms of computation time but also lead to higher classification
accuracies as compared to training the classifier per time point (see Figure 3.11).
Concatenating sensors of all time points mostly lead to slightly higher accuracies
as compared to averaging over time points before training.
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Besides Naive Bayes, we also tested different classification algorithms, i.e. sup-
port vector machines and logistic regression. None of these resulted in higher
classification accuracies for the classification of nouns vs verbs (see Figure 3.12) as
compared to Naive Bayes. Logistic regression performed better than Naive Bayes
for the classification of determiner vs noun.

Given that nouns and verbs have some systematic orthographical differ-
ences in German, we wanted to know whether classification success was mostly
driven by low-level visual cortex. To investigate this, we source-reconstructed
the MEG data and trained several classifiers on different regions across the cortex
(searchlight approach). While classification accuracies were overall lower than
those observed based on the sensor-level data, they were highest in occipital areas
(see Figure 3.13). However, classification was also significantly above chance in
more anterior cortical areas. With increasing time since word onset, classification
accuracy increased as well in more anterior, bilateral occipito-temporal areas (see
Figure 3.13 middle panel for Brodmann area 37). Between 340 ms and 540 ms,
higher level areas like left inferior central and inferior frontal areas contain infor-
mation about the noun-verb distinction (see Figure 3.13 lower panel for Brodmann
area 43).

Generalization over time

Concerning the hypothesis that combinatorial processes involve a reanalysis of
the to be combined parts, we tested whether after the onset of the final word of the
sentence (the word which disambiguated the structural attachment of the preposi-
tional phrase) the encoded information of the preceding noun or verb would be
reactivated in the presence of either a noun- or verb-attachment respectively. We
first investigated whether there was a reactivation of morphosyntactic information
(part of speech) by generalising the 2-way classification trained on brain data
measured during reading of noun and verbs preceding the prepositional phrase
to the period following the final word of the sentence. Even though the final word
was always a noun we hypothesised that only verb-attached prepositional phrases
would in addition lead to verb-like activity patterns following the final word.
However, contrary to our hypothesis the classifier trained on nouns and verbs in
the context did not accurately classify the post-sentence period of verb-attached
prepositional phrases as more verb-like (see Figure 3.14).
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Figure 3.9.: Part-of-speech 2-way classification in sensor space.

Accuracy is plotted for part-of-speech classification (nouns vs verbs) using Gaussian Naive
Bayes (red) and for classification of word position in filler sentences (blue, varying part-of-
speech categories). Black lines indicate when part-of-speech classification is significantly
higher as compared to classification on filler items. In addition, a chance performance
distribution generated by repeatedly classifying data after permuting labels is depicted in
grey.

RSA

For our stimuli, the interpretation of a prepositional phrase attachment was purely
driven by semantic content. Therefore, we might also expect any reactivation to
occur in the form of semantic information. We therefore tested whether at the time
of disambiguation, any of the semantic information of preceding context would be
reactivated. Specifically, we expected the semantics of the verb to be more strongly
activated at the end of a verb-attached prepositional phrase and the semantics of
the noun to be more strongly activated at the end of a noun-attached prepositional
phrase.

Our RSA revealed significant correlations between a model of the trial-by-
trial similarity derived from word embeddings and the pairwise similarity derived
from neural data evoked by the corresponding words (see Figure 3.15). Activity
patterns that correlated with semantic similarity first emerged in a window from
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380 ms to 480 ms in superior parietal cortex. Between 440 and 600 ms after word
onset, semantic information was represented more extensively across parietal,
temporal and occipital regions. Areas in which activity patterns significantly cor-
related with semantic similarity included posterior parietal cortex, somatosensory
cortex, angular gyrus, fusiform gyrus, auditory cortex and posterior parts of the
superior temporal gyrus. Late after onset, from 560ms to 720ms only areas in the
ventral occipital lobe remained significantly correlated. When we generalised the
RSA to the final word of the sentence, however, there was no significant correlation
with semantic similarity in any brain area and hence no evidence for semantic
reactivation.
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Figure 3.10.: Feature transformation for 2-way classification.

Accuracy is plotted for part-of-speech classification (nouns vs verbs) using Gaussian Naive
Bayes and different feature reduction choices. Line plots represent the mean accuracy across
all subjects and shaded areas represent its standard deviation. We first select evoked neural
data from a 100ms (moving) time window and concatenate across all sensors and time points
within that window, such that each sensor x time point equals one feature. We compare
performance of a classifier trained on either the original features (red), on a dimensionality
reduced sensor space after selecting only the first 60 components using principal component
analysis (PCA, blue) or on a reduced feature space using PCA as well as further only
selecting the 150 sensor x timepoints with the largest difference in class means (green). A
baseline performance estimate was generated by repeatedly classifying data after permuting
labels (grey). While feature space reduction through PCA improved classification accuracy,
feature selection based on class means did not yield further improvements.
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Figure 3.11.: Time dimension for 2-way classification.

Accuracy is plotted for part-of-speech classification (nouns vs verbs) using Gaussian Naive
Bayes and different options for how to treat time. Line plots represent the mean accuracy
across all subjects and shaded areas represent its standard deviation. A baseline perfor-
mance estimate was generated by repeatedly classifying data after permuting labels (grey).
Our moving window approach with window width of 100ms (red & blue) is most efficient
in terms of computational time needed. On top of that, reducing the width of the window
to 50 ms (green & purple) or even computing a separate model per time point (yellow) did
not yield better classification performance. Further, for a window width of 100ms averaging
over time points before training the classifier (blue) yielded lower accuracy as compared to
concatenating across sensors and time points (red).
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Figure 3.12.: Comparison of different classification algorithms.

Accuracy is plotted for part-of-speech classification (nouns vs verbs) using three different
linear classifier: Gaussian Naive Bayes (red), support vector machines (blue) and logistic
regression (green). Line plots represent the mean accuracy across all subjects and shaded
areas represent its standard deviation. A baseline performance estimate was generated by
repeatedly classifying data after permuting labels (grey). Significant differences in accuracy
between different classifiers is indicated by a black bar.
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Figure 3.13.: Part-of-speech 2-way classification in source space.

Panel A: Accuracy is plotted over time for part-of-speech classification (nouns vs verbs) us-
ing Gaussian Naive Bayes (red). Observed accuracy was tested for significance (prevalence
statistics, significant time points marked with black line) against a baseline performance
estimate generated by repeatedly classifying data after permuting labels (grey). The upper,
middle and lower panel display the mean accuracy over time for right occipital parcels (BA
18), left occipitotemporal parcels (BA 37) and left sub-central parcel (BA 43) respectively.
Panel B: Cortical maps show the spatial patterns of classification accuracy, masked for
significance. White contours outline the parcels for which time-courses are plotted in panel
A respectively. Cortical maps contain averaged accuracies over the time-windows defined
by the grey boxes.
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Figure 3.14.: Generalised classification accuracy for part-of-speech.

We trained a classifier to distinguish between nouns and verbs based on the neural data
evoked by reading one or the other. While training this classifier on a moving time window
starting at onset of the noun/verb, we then tested whether the learned weights would
generalise to data recorded while reading the end of the corresponding sentence. To
illustrate this on a specific stimulus example, on a sentence like 3.7 “The insect frightens
the child with the poisonous sting”, we would train the classifier on distinguishing activity
evoked by “frightens” from activity evoked by “child” but we would test the classifier on
activity evoked by “sting”. Given that this sentence contains a verb-attached preposition,
the correct label for the classifier to identify would be “verb”, regardless of the final word
always being a noun. Color codes for classification accuracy at any given training-by-testing
time tile. Generalised classification accuracy is not significantly above chance-level at any
time point.
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Figure 3.15.: Searchlight RSA analysis on semantic information as measured by word

embeddings.

Cortical maps show the spatial patterns of correlations with the semantic similarity model
(masked for significance) averaged across several time windows. Colour codes strength of
correlation.
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3.4 Discussion
In this study we applied MVPA to probe the neural signal for hierarchical structure
building during online reading of structurally ambiguous sentences. Subjects
read sentences containing verb-attached and noun-attached prepositional phrases
ambiguous with respect to their attachment. We successfully applied a Naive
Bayes classifier to classify part-of-speech information of the current stimulus from
the multidimensional evoked neural activity. We also successfully extracted neural
patterns encoding semantic information of content words as subjects were reading
them, through modelling the pairwise semantic similarity structure of all word
pairs (RSA) with corpus-extracted word-embeddings. However, none of these
measures revealed encoding of different underlying hierarchical phrase structure
for verb- vs noun-attached sentences at the end of the sentence, when attachment
information was disambiguated through combined semantic information. That is,
we did not find traces of stronger reactivation of either verb or noun in verb- or
noun-attached sentences respectively; not in terms of their part-of-speech identity
nor in terms of their semantic content. Nor were we able to directly train a
classifier to distinguish between verb- and noun-attached PPs across varying
lexical material. In the following, we will discus several potential explanations for
the absence of an effect.

Signal-to-noise ratio
Could it be that our analyses were simply not sensitive enough to reveal effects
of high-level processes such as phrase structure building? Previous literature
relying on MVPA to capture higher-level language processing does not neces-
sarily suggest high-level effects to be smaller as compared to more perception
related effects. For example, Tyler et al. used an RSA approach to investigate
the temporally unfolding syntactic computations during listening of temporarily
ambiguous sentences (Tyler et al. 2013). While their more perceptual word identity
model correlated robustly with neural activity (rho > 0.015), when probing more
abstract syntactic processing they found both small and large effects. Specifically,
their model quantifying verb sub-categorization information was only marginally
significant and correlations were much weaker (rho ⇡ 0.005) and only occurred on
the word following the verb (n+1). Their model distinguishing ambiguous from
unambiguous sentences, however, correlated even more strongly (rho > 0.020)
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with neural activity at late time points. Unfortunately, it is not straightforward
to compare these effect sizes to our study. Our approach is novel in that we tried
to directly probe neural representations of hierarchical phrase structure rather
than its consequence on ongoing processing demands (e.g. memory requirements
Nelson et al. 2017 or processing effort due to ambiguity Tyler et al. 2013). Therefore,
it is not immediately clear from those prior studies whether an MVPA approach is
powerful enough to reveal representations of phrase structure directly.

Through additional analyses, targeting orthogonal syntactic information
such as part-of-speech we tried to somewhat assess the sensitivity of our approach.
Our Naive Bayes classifier reached a maximum average accuracy of 67% when
trained to distinguish nouns from verbs. Above chance level performance was
observed robustly across all subjects. Part-of-speech although not directly in-
dicative of hierarchical structure, is a higher-level syntactic feature and hence
our classifier captured information beyond perceptual signals. It is important to
note, that within our design, the part-of-speech contrast is partly confounded by
physical attributes of the stimulus. Specifically, nouns and verbs differ in their
form as well as their syntactic function (e.g. the majority of verbs ended in the
same inflexional syllable -t signalling third person singular). We must assume that
any decoding success is partly due to stimulus form. Still, our observations that
part-of-speech information can be decoded from anterior brain regions in addition
to occipital cortex suggests that information was not solely based on the wordform
differences. Hence, while the part-of-speech classifier provides some indication to
the utility of the data with respect to higher-level features, it does not necessarily
ensure the success of decoding more higher-level phenomena such as hierarchical
structure.

Furthermore, we also set out to find semantic and syntactic reactivation of
structurally relevant context as a direct consequence of phrase structure building.
Brain data and semantic models correlated with a maximum correlation coefficient
smaller than 0.01. This coefficient describes the correlation with data evoked by
stimuli on screen and correlations can be expected to be substantially smaller
when looking at the reactivation period. It is plausible to assume that reactivated
neural patterns are harder to detect, as they are not directly evoked by a stimulus.
In the present analyses, we focused on the time window following the onset of the
final word. Content of the final word, however, was orthogonal to the supposedly
reactivated information. For example, the last word of the sentence was always a
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noun and the same nouns (same semantic information) were presented in both
verb- and noun-attached version. Nonetheless, in half of the trials (namely the
verb-attached phrases), we would expect reactivation to reflect semantic and
syntactic information of the preceding verb. The question is, whether MVPA is
sensitive to internally generated, behaviourally relevant information, even with
interfering material driving the neural response. While decoding of semantic
category membership has been shown in the absence of a stimulus on screen
(Simanova et al. 2015), this was only shown for single words. To our knowledge
there are no language studies explicitly probing reactivation in sentence context
through MVPA. Within vision research, however, it has been shown that during a
visual working memory tasks, information about stimulus orientation could be
decoded from EEG during the retention period only through perturbation using
an impulse stimulus (so called ‘ping’) but would otherwise be undetected (Wolff
et al. 2017). The authors argue that relevant information is not encoded explicitly
in a persistent activity state but through an item-specific neural response profile
that needs to be probed in order to affect ongoing neural activity. This might also
explain why previous effects of prepositional phrase attachment ambiguity were
found not directly following the disambiguating word but on subsequent words
(Taraban and McClelland 1988, Boudewyn et al. 2014). Since we did not have
a sentence continuation after the disambiguating noun, we may have been less
sensitive to alterations in response profile caused by attachment structure.

Finally, it is possible, that our sensitivity was reduced by temporal variability
in processing of the ambiguous sentences. It can be observed in the literature,
that decoding accuracies are usually largest soon after stimulus onset and then
decrease with increasing time (Cichy et al. 2014, van Es et al. 2020). We observe a
similar pattern for our part-of-speech classification performance, which peaks very
early after word onset (160 ms) but then decreases sharply until 250 ms after onset
and continues to decrease thereafter. Thus, most information seems to be already
encoded in the onset-potential or at least the neural signal might become more
salient due to onset-related synchronisation of postsynaptic potentials. Effects of
hierarchical structure building however may be less strictly time-locked events.
Specifically, the varying difficulty in resolving structural ambiguities in our stimuli
might have caused the signal to be jittered in time such that any reactivation
might be less consistently synchronised across trials and subjects. Generally, each
stimulus evokes a cascade of brain processes (both bottom-up and top-down)
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which all can vary slightly in their duration depending on context and individual
and may therefore lead to more substantial variation in later, high-level brain
processing as compared to initial bottom-up processing. Such temporal variability
might have led to lower sensitivity for finding our effect as well. Future analyses
should take temporal variability explicitly into account to not encounter the same
issue. To achieve this, probabilistic frameworks for data-driven estimation of brain
states could be used to align processing and overcome temporal variability. For
example, Vidaurre et al. have developed an analysis that not only defines multiple
representational states that dynamically encode the stimulus but also specifies
which of these states is active when in time (Vidaurre et al. 2019).

Shallow processing
Assuming that our signal to noise ratio in principle allows to capture neural rep-
resentations of hierarchical structure, we will now turn to some more cognitive
explanations for our failure to decode such structural representations. It is pos-
sible that readers do not compute phrase structure by default and at all times.
Specifically, our experiment may have discouraged any detailed syntactic pro-
cessing and subjects may have been engaged in “shallow” processing instead,
similar to what has been reported before for garden-path sentences under the term
“good-enough processing” (Ferreira and Patson 2007, Ferreira and Lowder 2016,
Traxler 2014). The idea of good-enough processing is that readers often arrive at
a semantic proposition when interpreting a sentence without conducting a full
syntactic (re)analysis. The recently established link between shallow processing
and information structure (Ferreira and Lowder 2016) further increases the plausi-
bility of prepositional phrases falling victim to this strategy as well. Specifically,
Ferreira & Lowder suggest that processing effort is usually directed towards parts
of a sentence that constitute new rather than given information. The motivation
for such a strategy is twofold. Firstly, it would maximise the success of integration
of newly received information. And secondly, since given information links to
prior discourse it is also more likely to be redundant and therefore more likely to
survive “shallow” processing. It might not be obvious why our experiment should
be affected by such shallow processing, given that we presented subjects with
unrelated sentences without any larger discourse context to drive information
structure. PPs are, however, making up the subordinate clause of the sentence,
which is standardly viewed as communicating previously known information
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(Hornby 1974) rather than new. Hence, it is possible that structurally inherent in-
formation structure in sentences with PPs causes readers to allocate less processing
resources onto the structural disambiguation of the attachment. This would also
be in line with processing accounts where hierarchical operations are not assumed
as the default (Frank et al. 2012). It is assumed that such processing strategies
can be overwritten by strong task demands. For example, previous research has
shown that syntactic task demands can reveal a P600 when there was none evoked
by a purely semantic task (Mongelli 2020). Indeed, many previous studies probing
syntactic processing make use of syntactic tasks such as grammaticality judgments
(Tyler et al. 2013). In our study, however, subjects had to respond in only 25%
of the trials and even on those trials, comprehension questions were not always
probing knowledge about the PP region. The absence of a task and the fact that
thematic role assignment could only be based on semantic cues in the first place
may have discouraged a deep analysis of phrase structure.

The good-enough processing hypothesis further implies that hierarchical
structure need not be computed at all in order to assign thematic roles. Instead, the
semantic implications of the assigned thematic roles would be the sole outcome of
successful sentence processing. Semantics of thematic roles are more complex and
numerous than their possible corresponding phrase structures. Through adopting
a strictly binary distinction of verb- and noun attachments we have intentionally
ignored this semantic variation to target only the structural differences. However,
as mentioned before, phrase structure and thematic roles are somewhat related
and hence can easily become confounded. In fact, the relationship between the-
matic roles and syntactic structure is somewhat asymmetric to begin with. While
any given thematic role is always bound to a certain syntactic structure2, this is
not a bidirectional relationship. For example an instrument role will always be
expressed in a verb-attached PP, but not every verb-attached phrase structure is
necessarily carrying information about instruments (see sentences 3.8 & 3.9 for
alternative role example).

3.8 The girl cuts the apple with a knife. (instrument role)

3.9 The girl cuts the apple with vigour. (manner role)

Taraban et al. have shown that previously reported reading time effects of
PPs can be explained largely by expectations about thematic role. Specifically, they

2Assuming that the thematic role is explicitly expressed and does not result from coercion
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showed that unexpected structural attachment (verb- or noun attachment) do not
delay reading times beyond the effect of thematic role expectations (Taraban and
McClelland 1988). The P600 effects reported by Boudewyn et al. could have also
been driven by the semantics of the associated thematic roles rather than structure
per se. In their stimulus set all verb-attached stimuli contained PPs expressing
an instrument and all noun-attached PPs expressed an attribute. Moreover, most
of their sentences contained action verbs (which bias towards expectations for
instrument roles to begin with). Their P600 could therefore just as well be a marker
for surprisal due to the unexpected thematic role in noun-attached sentences.
In our study, we had more varying verb types (almost a third of all verbs were
perception verbs) and more varying thematic roles (see table 3.1). However, the
definition of thematic roles can be murky and the less common ones are usually
poorly defined. With the exception of agent and patient role, the psychological
reality of certain thematic roles (even as prominent as the instrument role) can
be debated (Rissman and Majid 2019). It is therefore difficult to systematically
manipulate this dimension. Nonetheless, through using more varied thematic
roles and verbs we have created a more naturalistic stimulus set as compared to
previous studies, potentially weakening effects of thematic role expectations, that
likely have been driving previous findings of divergent neural activity between
noun- and verb-attached PPs.

VA
action

I The painter paints the wall with the fresh paint.
M The student writes the exam with few errors.
G The state supplies households with a power grid.

perception I/M The customer angers the waitress with her rude manners.
G

NA
action AT The politician pays the taxi driver with the annoying manners.

AC The intern wraps the bread with the organic butter.

perception AT the chef likes the salad with the local herbs.
AC The paramedic spots the sick person with a furry teddybear.

Table 3.1.: Example sentences. For each verb-attached (VA) or noun-attached (NA) PP several
thematic roles could occur within the stimuli. Possible roles are instrument role (I), manner role (M),
goal role (G), attribute role (AT) accompanying role (AC). Categorisation of thematic roles following
those in Taraban and McClelland 1988

In conclusion, with this study we could not identify a neural representation
of hierarchical structure using MVPA. We did show, however, that our MVPA
approach was in principle sensitive to both syntactic and semantic information
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encoded in the neural signal. Further, we did not find any differences between
processing verb- or noun-attached prepositional phrases unlike previous studies
have suggested. We speculate that this was partly due to our well controlled
and semantically varied sentence material. In the future, a more fine-grained
characterisation of the semantic dimensions driving attachment decisions and the
systematical manipulation of thematic roles may help to establish any differences
in processing PPs at a purely structural level.
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3.5 Appendix

TIGERSearch queries
We defined the number of ambiguous prepositional phrases (PPs) as those phrases
that dominate a preposition and directly follow a noun:

(10) [pos="NN"].#pp:[cat="PP"]& #pp > #prep:["APPR" | pos="APPRART"]$

We extracted frequency counts for all postnominal modifiers (noun-attached)
within the ambiguous PPs, excluding those cases where the PP is topicalized
(sentence-initial and therefore not ambiguous):

(2) #noun:[pos="NN"].#pp:[cat="PP"]& #phrase > #noun &

#pp > #prep:[pos="APPR" | pos="APPRART"]&

#n >MNR #pp & #phrase > @l #x & [cat="VROOT"] !>@l #x

Similarly, we extracted frequency counts for all verb modifiers (verb-attached)
within the ambiguous PPs:

(3) #noun:[pos="NN"].#pp:[cat="PP"]&

#pp > #prep:[pos="APPR" | pos="APPRART"] & #n > MO #pp
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Stimulus Material - Verb condition

Table 3.2.: Stimulus Material - Verb condition

Sentence (Attachment)

Das Amt belohnt einen Arbeiter mit einer höheren Position. (VA)

Das Amt empfiehlt einen Arbeiter mit einer höheren Position. (NA)
Der Beirat besetzt die Ämter mit den besten Arbeitern. (VA)
Der Beirat sucht die Ämter mit den besten Arbeitern. (NA)
Der Camper mag die Suppe mit der frischen Petersilie. (NA)
Der Camper würzt die Suppe mit der frischen Petersilie. (VA)
Die Chefin meidet den Mitarbeiter mit der faltbaren Karte. (NA)
Die Cousine erneuert die Reifen mit dem feinen Flickzeug. (VA)
Die Cousine verschenkt die Reifen mit dem feinen Flickzeug. (NA)
Die Diebin beneidet ihren Komplizen mit der einzigen Pistole. (NA)
Die Diebin rettet ihren Komplizen mit der einzigen Pistole. (VA)
Der Förster befördern das Holz mit der roten Markierung. (NA)
Der Förster markiert das Holz mit der roten Markierung. (VA)
Die Fotografen benötigen eine Kamera mit dem wertigen Objektiv. (NA)
Die Fotografen erweitern eine Kamera mit dem wertigen Objektiv. (VA)
Die Gärtnerin beschenkt die Dame mit den weißen Rosen. (VA)
Die Gärtnerin kennt die Dame mit den weißen Rosen. (NA)
Der Gast beschriftet die Serviette mit einer mobilen Handynummer. (VA)
Der Gast findet die Serviette mit einer mobilen Handynummer. (NA)
Der Großvater backt die Brezel mit dem groben Salz. (NA)
Der Großvater bestreut die Brezel mit dem groben Salz. (VA)
Der Ingenieur beschmiert die Kette mit dem klebrigen Öl. (VA)
Der Ingenieur verpackt die Kette mit dem klebrigen Öl. (NA)
Die Investoren besetzen die Betriebe mit einigen fleißigen Tagelöhnern. (VA)
Die Investoren suchen die Betriebe mit einigen fleißigen Tagelöhnern. (NA)
Der Junge beneidet seinen Bruder mit dem dicken Seil. (NA)
Der Junge rettet seinen Bruder mit dem dicken Seil. (VA)
Der Kellner füllt die Tasse mit dem heißen Kaffee. (VA)
Der Kellner hält die Tasse mit dem heißen Kaffee. (NA)

Continued on next page
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Table 3.2 – continued from previous page

Sentence (Attachment)

Der Koch mag den Salat mit den lokalen Kräutern. (NA)
Der Koch würzt den Salat mit den lokalen Kräutern. (VA)
Der Konditor backt den Kuchen mit den bunten Streuseln. (NA)
Der Konditor bestreut den Kuchen mit den bunten Streuseln. (VA)
Der Küchenchef füllt den Topf mit der gestrigen Suppe. (VA)
Der Küchenchef hält den Topf mit der gestrigen Suppe. (NA)
Der Kunde benötigt einen Computer mit einer modernen Tastatur. (NA)
Der Kunde erweitert einen Computer mit einer modernen Tastatur. (VA)
Die Kundin bezahlt die Kellnerin mit den unhöflichen Manieren. (NA)
Die Kundin verärgert die Kellnerin mit den unhöflichen Manieren. (VA)
Die Landwirte sperren die Wiesen mit den stacheligen Zäunen. (VA)
Die Landwirte umfahren die Wiesen mit den stacheligen Zäunen. (NA)
Die Nichte meidet die Patentante mit der riesigen Torte. (NA)
Die Partei überzeugt eine Untergruppe mit einigen fraglichen Argumenten. (VA)
Die Partei besitzt eine Untergruppe mit einigen fraglichen Argumenten. (NA)
Die Pflegerin beschenkt eine Seniorin mit ganz viel Liebe. (VA)
Die Pflegerin kennt eine Seniorin mit ganz viel Liebe. (NA)
Die Politikerin bezahlt den Taxifahrer mit der dreisten Art. (NA)
Die Politikerin verärgert den Taxifahrer mit der dreisten Art. (VA)
Der Polizist braucht seinen Kollegen mit dem anonymen Telefon. (NA)
Der Polizist verständigt seinen Kollegen mit dem anonymen Telefon. (VA)
Der Praktikant beschmiert das Brot mit der organischen Butter. (VA)
Die Praktikant verpackt das Brot mit der organischen Butter. (NA)
Der Prüfer sperrt die Zone mit dem rot-weißen Absperrband. (VA)
Der Prüfer umfährt die Zone mit dem rot-weißen Absperrband. (NA)
Die Reiterin belohnt ein Pferd mit einem neuen Sattel. (VA)
Die Reiterin empfiehlt ein Pferd mit einem neuen Sattel. (NA)
Die Schülerin schreibt die Klausur mit nur wenigen Fehlern. (VA)
Die Schülerin zeigt die Klausur mit nur wenigen Fehlern. (NA)
Der Sekretär schreibt das Protokoll mit der schönen Handschrift. (VA)
Der Sekretär zeigt das Protokoll mit der schönen Handschrift. (NA)
Der Spion beschriftet das Notizbuch mit einer wertvollen Information. (VA)

Continued on next page
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Table 3.2 – continued from previous page

Sentence (Attachment)

Der Spion findet das Notizbuch mit einer wertvollen Information. (NA)
Der Staat beliefert die Haushalte mit einem robusten Stromnetz. (VA)
Der Staat zählt die Haushalte mit einem robusten Stromnetz. (NA)
Die Trainerin schlägt den Hund mit einem langen Stock. (VA)
Die Trainerin sieht den Hund mit einem langen Stock. (NA)
Der Verbrecher besänftigt den Anwalt mit den cleveren Ausreden. (VA)
Der Verbrecher bevorzugt den Anwalt mit den cleveren Ausreden. (NA)
Der Verein überzeugt ein Komitee mit einer dynamischen Rhetorik. (VA)
Der Verein besitzt ein Komitee mit einer dynamischen Rhetorik. (NA)
Die Zentrale braucht das Flugzeug mit dem digitalen Funkgerät. (NA)
Die Zentrale verständigt das Flugzeug mit dem digitalen Funkgerät. (VA)
Die Züchterin schlägt das Tier mit der kurzen Leine. (VA)
Die Züchterin sieht das Tier mit der kurzen Leine. (NA)
Der Produzent beliefert die Fabriken mit den seltenen Teilen. (VA)
Der Produzent zählt die Fabriken mit den seltenen Teilen. (NA)
Der Unternehmer besänftigt den Geldanleger mit den klugen Sprüchen. (VA)
Der Unternehmer bevorzugt den Geldanleger mit den klugen Sprüchen. (NA)
Die Cousine erneuert den Raumduft mit einem handlichen Nachfüller. (VA)
Die Cousine verschenkt den Raumduft mit einem handlichen Nachfüller. (NA)
Der Bote befördert die Kisten mit dem gelben Etikett. (NA)
Der Bote markiert die Kisten mit dem gelben Etikett. (VA)
Die Chefin gratuliert dem Mitarbeiter mit der faltbaren Karte. (VA)
Die Nichte gratuliert der Patentante mit der riesigen Torte. (VA)
Der Maler begutachtet die Wand mit der frischen Farbe. (NA)
Der Maler bemalt die Wand mit der frischen Farbe. (VA)
Der Schamane begutachtet die Maske mit der braunen Kreide. (NA)
Der Schamane bemalt die Maske mit der braunen Kreide. (VA)
Der Arzt entdeckt den Säugling mit einem flauschigen Teddy. (NA)
Der Arzt ermuntert den Säugling mit einem flauschigen Teddy. (VA)
Der Sanitäter entdeckt den Kranken mit einem kuscheligen Bären. (NA)
Der Sanitäter ermuntert den Kranken mit einem kuscheligen Bären. (VA)
Die Blinde ertastet das Wesen mit den zarten Fingern. (VA)

Continued on next page
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Table 3.2 – continued from previous page

Sentence (Attachment)

Die Blinde verehrt das Wesen mit den zarten Fingern. (NA)
Die Kaiserin ertastet das Geschöpf mit den feinen Händen. (VA)
Die Kaiserin verehrt das Geschöpf mit den feinen Händen. (NA)
Der Junggeselle erfreut die Angebetete mit einem hübschen Kleid. (VA)
Der Junggeselle wählt die Angebetete mit einem hübschen Kleid. (NA)
Der Kandidat erfreut die Kandidatin mit einem strahlenden Lächeln. (VA)
Der Kandidat wählt die Kandidatin mit einem strahlenden Lächeln. (NA)
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Stimulus Material - Role condition

Table 3.3.: Stimulus Material - Role condition

Sentence (Attachment)

Der Wärter streichelt den Elefant mit dem grauen Rüssel. (NA)

Der Elefant streichelt den Wärter mit dem grauen Rüssel. (VA)
Der Wanderer schubst den Bock mit dem gekrümmten Horn. (NA)
Der Bock schubst den Wanderer mit dem gekrümmten Horn. (VA)
Der Hirsch trifft den Krieger mit dem klobigen Gewehr. (NA)
Der Krieger trifft den Hirsch mit dem klobigen Gewehr. (VA)
Die Robbe bespritzt die Animateurin mit dem vollen Eimer. (NA)
Die Animateurin bespritzt die Robbe mit dem vollen Eimer. (VA)
Der Papagei ärgert den Pilger mit dem spitzen Schnabel. (VA)
Der Pilger ärgert den Papagei mit dem spitzen Schnabel. (NA)
Der Schüler kitzelt den Kater mit dem weißen Schnurrhaar. (NA)
Der Kater kitzelt den Schüler mit dem weißen Schnurrhaar. (VA)
Der Doktor grüßt den Patient mit dem brandneuen Stethoskop. (VA)
Der Patient grüßt den Doktor mit dem brandneuen Stethoskop. (NA)
Der Mieter erwartet den Klempner mit der dreckigen Rohrzange. (NA)
Der Klempner erwartet den Mieter mit der dreckigen Rohrzange. (VA)
Die Zahnfee überrascht die Tochter mit dem wackeligen Zahn. (NA)
Die Tochter überrascht die Zahnfee mit dem wackeligen Zahn. (VA)
Das Maskottchen umarmt das Mädchen mit den pelzigen Armen. (VA)
Das Mädchen umarmt das Maskottchen mit den pelzigen Armen. (NA)
Der Sänger winkt dem Fan mit der akustischen Gitarre. (VA)
Der Fan winkt dem Sänger mit der akustischen Gitarre. (NA)
Der Dirigent folgt dem Musiker mit der lieblichen Geige. (NA)
Der Musiker folgt dem Dirigent mit der lieblichen Geige. (VA)
Die Betreuer geleiten die Senioren mit den klapprigen Rollatoren. (NA)
Die Senioren geleiten die Betreuer mit den klapprigen Rollatoren. (VA)
Der Sanitäter holt den Urlauber mit der faltbaren Trage. (VA)
Der Urlauber holt den Sanitäter mit der faltbaren Trage. (NA)

Continued on next page
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Table 3.3 – continued from previous page

Sentence (Attachment)

Der Reiter überholt den Biker mit dem schweren Motorrad. (NA)
Der Biker überholt den Reiter mit dem schweren Motorrad. (VA)
Die Mütter bedrängen die Obsthändler mit den sperrigen Kinderwägen. (VA)
Die Obsthändler bedrängen die Mütter mit den sperrigen Kinderwägen. (NA)
Das Kleinkind berührt das Pony mit der weichen Schnauze. (NA)
Das Pony berührt das Kleinkind mit der weichen Schnauze. (VA)
Der Kaiser erheitert den Hofnarr mit der bunten Perücke. (NA)
Der Hofnarr erheitert den Kaiser mit der bunten Perücke. (VA)
Die Erzählerin lauscht der Greisin mit dem piepsenden Hörgerät. (NA)
Die Greisin lauscht der Erzählerin mit dem piepsenden Hörgerät. (VA)
Der Milliardär begegnet dem Bauarbeiter mit dem teuren Cabrio. (VA)
Der Bauarbeiter begegnet dem Milliardär mit dem teuren Cabrio. (NA)
Der Fußballer nervt den Schiri mit der schwarzen Pfeife. (NA)
Der Schiri nervt den Fußballer mit der schwarzen Pfeife. (VA)
Der Adler verfolgt den Jäger mit der rostigen Flinte. (NA)
Der Jäger verfolgt den Adler mit der rostigen Flinte. (VA)
Der Kassierer erreicht den Käufer mit dem vollen Wagen. (NA)
Der Käufer erreicht den Kassierer mit dem vollen Wagen. (VA)
Der Specht lockt den Käfer mit dem glänzenden Panzer. (NA)
Der Käfer lockt den Specht mit dem glänzenden Panzer. (VA)
Die Soldaten bekriegen die Indianer mit den vergifteten Pfeilen. (NA)
Die Indianer bekriegen die Soldaten mit den vergifteten Pfeilen. (VA)
Der Büffel bekämpft den Tiger mit den breiten Tatzen. (NA)
Der Tiger bekämpft den Büffel mit den breiten Tatzen. (VA)
Der Hausmeister erschreckt den Greis mit dem klappernden Gebiss. (NA)
Der Greis erschreckt den Hausmeister mit dem klappernden Gebiss. (VA)
Der Kurier ohrfeigt den Butler mit dem silbernen Tablett. (NA)
Der Butler ohrfeigt den Kurier mit dem silbernen Tablett. (VA)
Das Kind verängstigt das Insekt mit dem giftigen Stachel. (NA)
Das Insekt verängstigt das Kind mit dem giftigen Stachel. (VA)
Die Kuh bedroht die Wilde mit der brennenden Fackel. (NA)

Continued on next page
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Table 3.3 – continued from previous page

Sentence (Attachment)

Die Wilde bedroht die Kuh mit der brennenden Fackel. (VA)
Das Rind attackiert das Publikum mit den spitzen Hörnern. (VA)
Das Publikum attackiert das Rind mit den spitzen Hörnern. (NA)
Das Einhorn beschützt das Fräulein mit dem leuchtenden Horn. (VA)
Das Fräulein beschützt das Einhorn mit dem leuchtenden Horn. (NA)
Der Radler behindert den Bauer mit dem dreckigen Trecker. (NA)
Der Bauer behindert den Radler mit dem dreckigen Trecker. (VA)
Der Chor animiert den Pensionär mit seinem alten Krückstock. (NA)
Der Pensionär animiert den Chor mit seinem alten Krückstock. (VA)
Der Sänger begleitet den Violinist mit seiner kostbaren Violine. (NA)
Der Violinist begleitet den Sänger mit seiner kostbaren Violine. (VA)
Der Knecht empfängt den König mit seinem prächtigen Zepter. (NA)
Der König empfängt den Knecht mit seinem prächtigen Zepter. (VA)
Der Ninja schützt den Meister mit den uralten Weisheiten. (NA)
Der Meister schützt den Ninja mit den uralten Weisheiten. (VA)
Die Schwangere verblüfft die Hebamme mit ihrer jahrelangen Erfahrung. (NA)
Die Hebamme verblüfft die Schwangere mit ihrer jahrelangen Erfahrung. (VA)
Der Fuchs verletzt den Igel mit den kleinen Stacheln. (NA)
Der Igel verletzt den Fuchs mit den kleinen Stacheln. (VA)
Das Volk vertreibt das Militär mit den grässlichen Waffen. (NA)
Das Militär vertreibt das Volk mit den grässlichen Waffen. (VA)
Die Beute reizt die Krake mit den flinken Tentakeln. (NA)
Die Krake reizt die Beute mit den flinken Tentakeln. (VA)
Der Elch rammt den Wolf mit seinem enormen Geweih. (VA)
Der Wolf rammt den Elch mit seinem enormen Geweih. (NA)
Der Samurai verwundet den Alligator mit dem antiken Schwert. (VA)
Der Alligator verwundet den Samurai mit dem antiken Schwert. (NA)
Die Muschel bezwingt die Möwe mit ihrer harten Schale. (VA)
Die Möwe bezwingt die Muschel mit ihrer harten Schale. (NA)
Die Wühlmaus befühlt die Schnecke mit den wendigen Fühlern. (NA)
Die Schnecke befühlt die Wühlmaus mit den wendigen Fühlern. (VA)
Die Bäuerin liebkost die Miezekatze mit den rosa Pfoten. (NA)
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Table 3.3 – continued from previous page

Sentence (Attachment)

Die Miezekatze liebkost die Bäuerin mit den rosa Pfoten. (VA)
Der Badegast schikaniert den Delphin mit den kräftigen Flossen. (NA)
Der Delphin schikaniert den Badegast mit den kräftigen Flossen. (VA)
Der Eigentümer erzürnt den Mechaniker mit dem schmutzigen Werkzeug. (NA)
Der Mechaniker erzürnt den Eigentümer mit dem schmutzigen Werkzeug. (VA)
Die Mücke quält die Urlauberin mit dem aggressiven Mückenspray. (NA)
Die Urlauberin quält die Mücke mit dem aggressiven Mückenspray. (VA)
Die Fliege plagt die Hündin mit dem wedelnden Schwanz. (NA)
Die Hündin plagt die Fliege mit dem wedelnden Schwanz. (VA)
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4Measuring compositional
sentence meaning through
behaviour

A sentence is more than just a collection of words. In fact, the meaning of a sentence
is defined not only by the words it contains but also by their structured relations.
Therefore, a sentence can be likened to other high-dimensional stimuli such as
visual scenes. Having quantitative models of such complex, high-dimensional
stimuli can help evaluate cognitive models of language processing. We tested,
whether the online measurements of perceived similarity can capture both seman-
tic as well as structural dimensions of simple transitive sentences. Specifically,
we collected similarity judgments of 200 subjects through an online multiple ar-
rangement task. We find that group-level averages of perceived similarity reveal a
strong bias towards the main verb of the sentence. Furthermore, we show how
non-negative matrix factorisation of similarity judgment data can reveal multiple
underlying dimensions reflecting not only semantic but also structural information.
Finally, we provide an example of how similarity judgments on sentence stimuli
can serve as benchmarks for artificial neural networks models by comparing our
behavioural data against sentence similarity extracted from three state-of-the-art
models.
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4.1 Introduction
Human language use is special due to its unbounded creativity. We can flexi-
bly produce and understand never before encountered combinations of words.
Underlying this ability, it has been theorised, must be the compositional nature
of language, i.e. that any sentence can be described as a function of its parts
(i.e. words) and the rules to combine them (i.e. grammar)(Fodor and Pylyshyn
1988). In other words, compositional language is high-dimensional in terms of not
only semantic features but also structure. For example, a bag of words (e.g. [biting,
old, dog, lady]) can be regarded as high-dimensional in meaning, to the extent
that it contains multiple elements, each defined through a set of semantic features.
In contrast to a bag of words, a compositional sentence additionally encodes
relational roles (i.e. thematic roles such as “dog as agent”) that add structural
information to the elements (e.g. “the dog bit the old lady”). Such relational roles
are a form of abstract knowledge that is extremely important in language use as it
provides the basis for the systematicity that allows us to flexibly assigning the role
of the agent to different exemplars (e.g. “the old lady bit the dog”).

There is an ongoing debate in cognitive neuroscience, as to how our brains
might learn and represent such relational roles (Rabovsky and McClelland 2020;
Puebla et al. 2021). Modelling the output of this unknown neural function for
compositional meaning formation, i.e. the resulting mental representations, could
help us better understand what neural mechanisms are at play. Representational
models have already advanced our understanding of the neurobiology of seman-
tics. For example, through explicitly modelling word semantics, researchers could
not only confirm a crucial role for the anterior temporal lobe (in line with previous
patient data) but also identify additional frontal and parietal brain areas to be
sensitive to modality-independent semantic representations (Bruffaerts et al. 2019).
Yet, when it comes to meaning beyond the single word level, it is not trivial to
quantitatively describe what makes up a compositional representation in the first
place.

In the current study, we investigated whether a behavioural measure of
perceived sentence similarity can serve as a quantitative representation of high-
dimensional compositional meaning.
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Similarity as a window into mental representations
Similarity judgments can be used as a proxy for representational content. Specif-
ically, we can ask experimental subjects to make explicit similarity judgments
in the lab under controlled conditions and those judgments presumably reflect
people’s mental representations of the judged items at that instance. Similarity
judgments therefore allow us to capture mental representations without having
to specify their exact content. For example, the underlying rules that determine
meaning composition within any given sentence might be underspecified but
we can nonetheless determine how that sentence’s meaning compares to others.
Perceived similarity across multiple sentences may then approximate represen-
tations and can be further related to the representational geometry in the brain
using multivariate analysis techniques (Kriegeskorte et al. 2008). For example, past
research has shown that similarity judgments of images can capture perceptual
representations (Hebart et al. 2020) that correlate with multivariate neural repre-
sentations and can be used to study the temporal dynamics of object recognition
in the brain Cichy et al., 2019.

Here we study, whether similarity judgments can approximate the compo-
sitional nature of linguistic representations as well as they have been shown to
capture high-dimensional mental representations of images.

Similarity of compositional meanings
The notion of similarity, that we are after, should capture the high-dimensional
nature of compositional representations according to at least two aspects. First,
it needs to account for similarity in semantic features. Hence, it should reflect
that the sentence “John loves Mary” is similar to “John likes Mary” but both
are dissimilar to “John hates Mary”. Second, given identical semantic features
it should reflect role assignment across sentences. For example, two sentences
with complete role reversal (John loves Mary vs. Mary loves John) should be
recognised as dissimilar. Previous studies on visual scene perception indicate that
relational information might indeed influence perceived similarity. For example,
participant’s judgment of scene similarity varied more strongly when the diverging
feature was structurally aligned across scenes (a change in an existing element can
be big or small) as compared to when it was not structurally aligned (adding a
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new element creates a difference independent of its exact features)(Markman and
Gentner 1996).

Finally, both semantic and relational features can interact in complex ways
in compositional sentences. For example, if sentences contain bidirectional verbs
(e.g. John greeted Mary vs. Mary greeted John), their perceived similarity under
role reversal might decrease less as opposed to sentences describing more unidi-
rectional actions. Furthermore, roles are not rigidly defined in terms of syntactic
arguments only (e.g subject, object) but carry semantic content (Holyoak 2005).
For verbs that convey a mental state, such as “to surprise” or “to notice”, the roles
of the agent and patient can be defined as the causal element of the experience
(the stimulus) and the undergoer of the experience (the experiencer) respectively.
Under this semantic definition, the mapping between syntactic subject and syntac-
tic object on the one hand and agent/stimulus and patient/experiencer roles on
the other will depend on the specific verb semantics. For example, the cat (subject)
in example 4.1 maps better onto woman (object) than deer (subject) in example 4.2
since they are both causal for the events described (Frankland and Greene 2020).

4.1 The cat surprised the man.

4.2 The deer noticed the woman.

For the current study, we are less interested in semantic modulations of
event roles but rather aim to isolate the general effects of role-filler assignment.
Therefore, we removed semantic constraint as much as possible from our stimuli.
To reduce semantic constraint of the verb, we selected only unidirectional action
verbs with consistent agent and patient roles (see details about stimuli in methods)
and relatively arbitrary verb-noun combinations (e.g. “the electrician encourages
the guitarist”, “the guitarist pushes the athlete”). As a result, the compositional
meaning of these sentences can be simply modelled through the conjunctive con-
tribution of the words’ semantics and their roles (Goldstone and Son 2005). Note,
however, that it is impossible to completely remove any effects of combinatorial
semantics whatsoever. For example, while “guitarist” may refer to roughly the
same concept (e.g. person, on a stage) independent of the role the word occurs in,
some additional features such as “aggressive” may be activated, when assigned
the agent as compared to the patient role of the action “to push”. In that sense,
the very strict theoretical account of compositionality we have described so far is
somewhat at odds with the high degree of flexibility and idiosyncracy observed in
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human language comprehension (Rabovsky and McClelland 2020). Nonetheless,
for the current study, an idealised assumption of compositionality is sufficient as a
theoretical model for studying the systematicity of relational roles.

Measuring similarity through behaviour
Perceived similarity can be measured by means of different behavioural tasks.
Earlier used methods include asking people to freely sort a set of items into piles
(free sorting), to make speeded same/different judgments (implicit measure, inter-
item confusability), to determine the odd one out of three items (triad test), to
rate the similarity of two items on a scale (pairwise judgments) or to indicate
similarity between items by placing them either close by (similar) or far apart
(dissimilar)(geometrical tasks). In the current study, we implement a geometrical
task because it provides several advantages over other methods. All of these
methods can in principle be used to collect continuous similarity measures. When-
ever binary similarity judgments are acquired, e.g in free sorting or the triad test,
continuous values can be obtained by combining data across multiple participants
or repeated presentations of the same pair. Both pairwise judgments and geo-
metrical tasks have the advantage of probing continuous valued similarity at the
single participant level. Beyond that, geometrical tasks additionally allow for
the most time-efficient sampling. This is because in a geometrical arrangement
task, participants are asked to arrange several items, randomly scattered across
a screen, within a circular 2D space, such that the distance between items is pro-
portional to each pair’s similarity. Spatial adjustment (via drag and drop) of each
individual item hence communicates multiple similarity judgments at once. The
time to acquire pairwise similarity judgments, in contrast, grows quadratically as
a function of total set size, since n(n-1)/2 judgments are necessary for a set of n
items. In practice, the pairwise similarity judgements method has been shown to
last 5 - 6 times longer as compared to a geometrical task on the same stimuli (Hout
et al. 2013). Furthermore, the similarity ratings attained through geometrical tasks
have been shown to correlate highly with pairwise similarity ratings. Therefore,
geometrical tasks are to be preferred over other methods when sampling similarity
judgments for larger sets of items as well as for more complex items such as
sentences, which by their nature will require longer processing times than pictures
or single words.
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High-dimensional representations
Since sentences contain high-dimensional meaning, an appropriate tool for quan-
tifying sentence meaning should be able to capture multiple semantic dimen-
sions simultaneously. Despite their 2D nature, geometrical tasks capture higher-
dimensional representations already through a single arrangement of a set of items,
as has been shown for both visual objects and single words (Richie et al. 2020; Hout
et al. 2013). Recent extensions of the geometric arrangement task, that go beyond
the single arrangement, have made it even more sensitive to high-dimensional
representations. Kriegeskorte and colleagues suggest to have subjects perform
multiple arrangements of subsets of items that are adaptively designed for optimal
measurement efficiency (Kriegeskorte and Mur 2012). The final representational
similarity matrix (RSM) is then computed by combining evidence across all subset
arrangements.

Past studies have successfully applied the multi-arrangement task to quan-
tify high-dimensional mental representations of naturalistic images (King et al.
2019) and visual scenes (Groen et al. 2017). To our knowledge, it has not been
shown that the multi-arrangement task is equally suitable for sentence stimuli,
which just like visual scenes include complex structural information, but unlike
scenes may be perceived as more fragmented due to separation between words.

In this study, we tested the feasibility of using a multiple arrangement tasks
to collect similarity judgments for sentences, that specify simple relational roles
on semantically varying agents and patients. We report online-acquired similarity
judgments on (1) isolated nouns and on (2) sentences containing those nouns and
evaluate the sensitivity of perceived similarity to relational roles. Additionally,
we provide an example use case of sentence similarity judgments, namely, as a
benchmark for computational models of human sentence processing.

4.2 Methods

Stimuli creation
We created a set of German sentences (n = 48) describing simple transitive events,
such that the similarity between events could be captured by a small number of
meaning dimensions. For this, we selected 36 words that belonged to six the-
matic categories, i.e. 24 nouns & 12 verbs from four profession themes and two
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Figure 4.1.: Stimulus vocabulary

action themes respectively (see figure 4.1). Across thematic categories, words were
matched (nouns and verbs separately) according to number of letters, number
of syllables and frequency. In addition, we took care that noun categories did
not systematically differ from each other in their suffixes. Importantly we chose
words that could be combined more or less arbitrarily without imposing strong
constraints with respect to meaning amongst each other. For example, whether
a surgeon is pushing or praising does not change the properties/semantic fea-
tures associated with the concept of the surgeon itself. Hence, we assume the
compositional meaning of each sentence to be a straightforward conjunction of
the individual words and their respective thematic roles within the event.

From this vocabulary of 36 words, we formed sentences by pseudoran-
domly combining nouns and verbs from this vocabulary (e.g. “This morning the
paramedic praised the electrician.”, see full stimulus set in Appendix). The ran-
domisation was generated according to six constraints: Nouns were combined,
such that each noun in agent position would be (1) paired equally often with a
patient from either the same semantic category or one of the other semantic cate-
gories (e.g. “the paramedic praised the electrician.” & “the paramedic encouraged
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Figure 4.2: Stimulus randomiza-

tion.

The diagram illustrates for all sen-
tences (rows) which elements make
up any given sentence. Elements are
colour coded to indicate the iden-
tity of the temporal adverbs (1st col-
umn), the semantic category of the
verb (2nd column), the semantic cat-
egory of the agent role (3rd column)
and the semantic category of the pa-
tient role (4th column). Given any
sequence of adverb, verb and agent,
the patient semantic category is un-
certain, since there are always to cat-
egories that occur with equal proba-
bilities.

the nurse.”) Also, each noun (2) appeared in both object and subject position
(e.g. “the paramedic praised the electrician” & “the boxer hit the paramedic”) and
(3) each noun category appeared equally often. Subsequently, noun pairs and
verbs were combined, such that (5) each noun category would occur equally often
with verbs from both action categories. Finally, in the beginning of each sentence,
we added a temporal adverb (e.g. “This morning”,“Yesterday” etc.) and then
constructed the sentence according to VSO word order. The temporal adverbs
were distributed such that (6) each adverb could precede two of the four noun
categories and either of the verb categories (see figure 4.2).

We quantified the semantic similarity between each possible pair of sentences
by counting how many words from the same semantic category occur in the same
thematic roles across two sentences (see Table 4.1 for examples).

Online Multi-arrangement Task
200 native German speakers rated the perceived similarity of our stimuli. During
the multiple arrangement task, participants were asked to arrange the sentences
on a computer screen inside a white circular arena by using computer mouse
drag and drop operations. The distance of the placed sentences indicates the
perceived similarity. Usually, participants would see the full stimulus set on the
first trial and subsequent trials consist of a subset of those stimuli. The subset
selection is based on an adaptive procedure aimed at 1) minimising uncertainty
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1 This morning the paramedic praised the electrician.
Heute Morgen lobte der Sanitäter den Elektriker

2 Today the surgeon encouraged the carpenter.
Heute ermutigte der Chirurg einen Tischler.

3 Earlier the carpenter chased the electrician away.
Vorhin verscheuchte der Zimmermann den Elektriker.

4 Yesterday the soccer player hit the boxer.
Gestern schlug der Fußballer einen Boxer.

Table 4.1.: Example sentences. Sentences are listed in English translation (original
German stimuli in italics below). 1 and 2 are considered most similar because thematic
categories of agent, patient and verb are shared. 1 and 3 are more dissimilar in comparison,
since verbs are of different thematic category, regardless of final noun identity. 1 and 4 are
most dissimilar since they do not share any semantic category.

for all possible pairs of sentences (e.g. items that initially are placed very close
to each other) and 2) better approximate the high-dimensional perceptual rep-
resentational space (Kriegeskorte and Mur 2012). Often these subsequent trials
included items that were placed close together in the initial trial. As subsequent
trials included fewer items, this allowed participants to refine their judgements
with distinctions that are more difficult to carry in the context of the whole set
and the limited arena space. As a consequence, each trial will only provide a
subset of pairwise distances (similarity judgments), however. To extract one sin-
gle estimate of all pairwise similarities, the overlapping subsets are first scaled
and then combined as weighted averages (see Kriegeskorte and Mur 2012 for de-
tails). Due to the iterative procedure, the task is very efficient at obtaining reliable
high-dimensional similarity judgments for our 48 individual sentences within 60
minutes per participant (or 24 nouns within 30 minutes). The behavioral data was
collected using the Meadows web-based platform for psychophysical experiments
(http://meadows-research.com). Online participants were recruited from the
Prolific online participant pool (http://www.prolific.co).

Half of the participants were presented with the nouns that were used to
generate sentences and the other half rated the full sentences. Subjects were
instructed to place all nouns/sentences inside the white area in a manner that
reflects the similarity between the described people/events. The instructions did
not specifically mention that people could be categorised into professions or that
verbs could be categorised into positive and negative actions. Nonetheless, the
majority of subjects mentioned those dimensions in their debrief. In addition,
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those subjects seeing the events were instructed to not place items only according
to a single word in the sentence but rather pay attention to all elements. Prior to
the main task, an example was shown for how an arrangement could look like,
using nouns/sentences that were not part of the stimulus set.

Noun similarity

For the noun similarity task, we collected arrangement data from 100 subjects
(mean age = 31, std = 9), of which 41 were female. Subjects arranged all 24 unique
nouns on the first trial and each subsequent trial contained subsets of those nouns.
Therefore, there were no unseen item pairs and we did not exclude any of the
subjects. On average, subjects completed 37 trials (std = 8) before they either
reached a minimum evidence level of 0.5 or 30 minutes had passed.

Event similarity

To our knowledge we are the first to apply this task to full sentences instead of
individual words or pictures. In order to present the sentence stimuli in a format
suitable for the task, we split each sentence into 3-4 lines such that it could be
presented within a square box. In order to minimise the influence of the verb,
sentences were broken up, such that the verb never appeared on a line on its own.
In the sentence similarity judgment task, an additional practice trial preceded
the main task. The practice was based on three sentences, of which two were
semantically synonymous and the third describing a completely different event.
The main task was complete once a subjects had reached a minimum evidence
level of 0.5 for each item pair or 60 minutes had passed. On average subjects
completed 112 trials (std = 41). Due to space limitations, participants were not
presented with all sentences in the beginning. Instead they saw only 10 sentences
during the first trial, and at least 3 items or up to a maximum of 10 on each
subsequent trial. Seven subjects were excluded because they executed too few
trials within the 60 minutes, i.e. they rated less than 50 item pairings. Two subjects
were excluded because they did not perform as expected on the practice trial. The
remaining 87 subjects (mean age = 30, std = 9; 39 female) were all German native
speakers.
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Matrix factorisation
We used non-negative matrix factorisation (NMF) Lee and Seung, 1999 to investi-
gate which underlying dimensions played a role in the sentence similarity ratings.
For this we first concatenate all individual subject RSMs into a large Matrix D
of dimensions number of subjects ⇥ number of item pairs. NMF allows us to
decompose D into two non-negative matrices, which gives a lower rank approx-
imation for D. Basically, we decompose this matrix into two matrices, such that
D = W ⇥ H, where W is the |n|⇥ k mixing matrix that contains the weights for
constructing N observed subject similarity judgments from the k components, and
H is a k⇥ |t| factorisation matrix that contains the k latent components captur-
ing underlying pattern of pairwise item similarity. Note that, by definition, all
Hi,j >= 0. We applied the NMF implementation of scikit-learn Pedregosa et al.,
2011, which finds the optimal decomposition by iteratively optimising the distance
between D and the matrix product WH using the squared Frobenius norm as the
distance function.

The NMF algorithm requires to specify the number of latent components k
to be extracted. In order to get an estimate of what the optimal k would be, we
computed the NMF repeatedly (n = 1000) with different random initialisations,
each time limiting the factorisation to an increasing amount of components (1 < k
< 20) . For each of the 1000 random initialisation we checked for each additional
component for how many subjects it would receive maximal mixing weights.
Although each additional component will further optimise the fit to the data, we
only regard it as informative, if it captures general judgment patterns, i.e. receive
maximal weights for multiple subjects, rather than individual solutions. On
average it took 7 components to capture all patterns in the data, that generalised
across at least 2 subjects. We then fixed the number of components to 7 and again
computed 1000 factorisations using different random initialisations. Based on the
resulting 7000 components, we ran agglomerative hierarchical cluster analysis to
determine which underlying components are reliably found throughout repeated
factorisations. Based on visual inspection of the within- and between-cluster
similarity we decided on a distance threshold of 0.9, such that we could define 5
clusters of components, that would reliably emerge across multiple factorisations
(at least 990 times out of 1000) and were for the most part interpretable in terms of
the underlying similarity patterns (see Figure 4.4). From each cluster, we computed
one final component, by taking the average across all cluster exemplars (centroid).
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Based on the resulting 5 components we again computed the unmixing matrix
using the same optimisation algorithm. In order to qualitatively assess the final
factorisation, we computed the Spearman rank-ordered correlation between each
of the components and the upper triangular vectors of our binary model matrices
for the verb category, the agent category and the patient category respectively.

Sentence similarity based on ANN generated embeddings
We extracted sentence embeddings from three pre-trained ANN models, GPT2
(Radford et al. 2019), BERT (Devlin et al. 2018) and SBERT (Reimers and Gurevych
2020b), and compared their pairwise similarity to our behavioural similarity
judgments. For the BERT and GPT2 architectures, embeddings were extracted
from models trained on German texts and implemented in PyTorch with the
Huggingface module. Specifically, we used the bert-base-german-cased model and
german-gpt2 (https://huggingface.co/). For BERT embeddings, we extracted
activation based on units from layer 12 and special token “[SEP]”, which marks
the end of a sentence. For the GPT2 embeddings, we extracted activation based on
units from layer 12 and the final word token, ignoring punctuation. For the SBERT
architecture, we used a pre-trained model architecture implemented in PyTorch
with the Sentence-transformers module https://www.sbert.net/. SBERT is not
available in a German-only version, so we used the multilingual model distiluse-
base-multilingual-cased, which supports a range of languages including German
Reimers and Gurevych 2020a.

4.3 Results
The multi-arrangement task provides pairwise distances (dissimilarities) for all
item pairs (e.g. pairs of nouns or pairs of sentences). These pairwise distances
for n items can be visualised as a so-called representational similarity matrix
(RSM) H = n⇥ n, such that each entry in the matrix Hi,j contains the dissimilarity
between item i and item j. For both groups of 100 subjects separately, we extracted
one continuous matrix by first normalising the individual subject RSMs by their
standard deviation, and then averaging over all subjects. Figure 4.3 depicts the
resulting group averages.
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Figure 4.3.: Mean dissimilarity for nouns and sentences.

Left: Nouns are sorted (along rows and columns) according to thematic categories (order:
medicine, manual labor, sports and music) and within each category the same order as
depicted in figure 4.1 is maintained. Right: Sentences are sorted according to the full

stimulus list (see appendix or figure 4.2), i.e. all sentences containing communicative verbs
and both agent and patient from the category "medicine" first, followed by all sentences

containing communicative verbs and agent from category "medicine" plus patient from the
category "manual labor" and so on and so forth.

Results for the noun similarity task reflect that subjects easily picked up on
the thematic categories and arranged nouns according to their professions. The
average dissimilarity within any given category was lower (mean = 1.6, std =
0.08) as compared to the average dissimilarity across categories (mean = 3.3, std
= 0.04) and the correlation with a binary, theoretical model of noun similarity,
encoding all within-category pairs with a distance of 0 and all across-category
pairs with a distance of 1, was high (rho = 0.71). In the event similarity task,
the average dissimilarities are most highly correlated with a binary theoretical
model of verb category (rho = 0.86). Based on the average it is therefore not clear
whether participants took into account all semantic dimensions of the event or
rather arranged sentences only based on the verb semantics.
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Factorising high-dimensional representations
Even though it seems as if event similarity ratings are mostly driven by the seman-
tics of the verb, subjects reported multiple strategies for solving the task. Indeed a
data-driven factorisation revealed underlying components that influenced similar-
ity judgments beyond verb semantics. We identified five components (see figure
4.5 A), which robustly resulted across 1000 factorisations with random initial
weights and together explain more than 95% of variance in the data. The first
component reflected the verb similarity (correlation with a binary verb category
model was 0.87). The second component did not reflect any of our categorical
dimensions, instead after inspection we found that it reflected sorting according to
verb identity (see figure 4.5 B left). Component three reflected sorting according to
the temporal adverb of each sentence (see figure 4.5 B right). Finally, component
five reflected sorting of sentences according to semantic similarity of both the
agent (rho = 0.58) and the patient (rho = 0.29) of the sentence. Component four
remained elusive but was negatively correlated with the model for verb semantics
(rho = - 0.36). Based on the mixing matrix (see figure 4.5 C), we observed that
similarity according to verb semantic category was weighted highest for most sub-
jects. Nonetheless, the majority of subjects took into account additional semantic
dimensions when arranging the sentences, namely the specific verb identity, the
temporal information, the semantics of the agent role and the semantics of the
patient role.

Sentence similarity based on ANNs
We evaluated the pairwise similarity based on sentence embeddings generated
by three ANN models. All models produced embeddings that captured verb,
agent and patient categories to some extent (pairwise cosine similarity between
sentence pairs was on average higher for items that shared categories than items
with different categories across all three dimensions). Nonetheless, we observed
differences in the strength with which each model captured different dimensions
of event meaning. For example, While the GPT2 model had overall a low fit to
our event model, it captured each dimension more or less equally. In contrast,
both BERT and SBERT produced embeddings that loaded more strongly on certain
dimensions. While BERT embeddings most strongly encoded the agent and the
verb dimensions, the embeddings produced by SBERT contain less information
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Figure 4.4.: Clustering of latent factors driving event similarity task results

A: Pairwise similarity between all components (1000 repetitions of factorisation into 7
components each yields 7000 components in total) is depicted. Lighter colour codes for
similarity (absolute Pearson correlation). Components are sorted according to order de-
termined by hierarchical clustering algorithm. B: Truncated dendrogram showing only
the last 10 merges across all components. On the x axis, for each cluster the label indicates
the amount of leaf nodes (components) belonging to the depicted cluster. Horizontal lines
indicate a merge of leaves into a new cluster. The height of the horizontal lines indicates
the distance between the merged sub-clusters. As can be seen some sub-clusters merge
only relatively few components (e.g. 24 in left branch of orange cluster). The threshold of
distance 0.9 for determining clusters was in part motivated to result in roughly equally sized
clusters (panel B) that seem most coherent based on their inter- & intra-cluster similarity
(panel A).
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Figure 4.5.: Latent non-negative factors.

Panel A: Each factor is visualised as a sentence-by-sentence matrix (n = 48) with sentences
in the same order as listed in the full stimulus list (see appendix or figure 4.2), i.e. all
sentences containing communicative verbs and both agent and patient from the category
"medicine" first, followed by all sentences containing communicative verbs and agent from
category "medicine" plus patient from the category "manual labor" and so on and so forth.
For each factor its Spearman correlation with the theoretical semantic category models
for verb (blue), agent role (green) and patient role (pink) is shown for those semantic
dimensions best capturing the similarity pattern expressed by the factor. Both factors 2
and 3 were poorly correlated with any of the semantic category models. Their patterns
are visualised by re-ordering sentences according to verb ID (panel B, left) and temporal
adverb identity (panel B, right) respectively. The order of the temporal adverbs was the
following: "Today"/"This morning", "Earlier","In the morning" or "Yesterday"/"Yesterday
evening". Panel C: Mixing weights are depicted per subject (rows) and factor (columns).
Darker colour indicates higher weights. Subjects are sorted according to their maximal
factor weight.
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Figure 4.6.: Representational similarity matrix for all stimulus sentences based on ANN

generated embeddings

Pairwise cosine similarity is plotted for each sentence pair ni,j (i = 1,2,...,48 and j = 1,2,...,48)
of the stimulus set and three different ANN architectures. Sentences are sorted according to
the full stimulus list (see appendix or figure 4.2), i.e. all sentences containing communica-
tive verbs and both agent and patient from the category "medicine" first, followed by all
sentences containing communicative verbs and agent from category "medicine" plus patient
from the category "manual labor" and so on and so forth. Pearson correlation coefficients for
theoretical models of either verb (blue), agent (green) or patient (pink) semantic category
are depicted below each model.

about verb semantics but instead strongly encode the patient role filler. Interest-
ingly, while SBERT is the only model optimised specifically for pairwise sentence
similarity judgments (the training goal most resembling the multiple arrangement
task), it is also producing sentence embeddings with the worst fit to our observed
human behavioural data (see figure 4.6).

4.4 Discussion
We applied a geometrical multiple arrangement task to acquire similarity judg-
ments for 24 profession nouns and 48 compositional sentences describing simple
transitive events. Similarity judgments revealed a sensitivity to the thematic
category of professions when arranging nouns. Although sentences contained
those same nouns, the thematic category of profession was less prominent in the
sentence-by-sentence similarity judgments. Instead, average sentence similarity
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judgments seemed to be highly sensitive to the semantics of the main verb. Ma-
trix factorisation, however, revealed that subjects additionally took into account
relational role information when arranging the sentences. Overall, the multi-
arrangement task is suited for efficient sampling of similarity judgments even for
complex linguistic stimuli. Importantly, it allowed us to quantify high-dimensional
mental representations of compositional meaning.

Context & salience a�ect similarity judgments
We found the semantics of the verb to be the dominant dimension according to
which subjects arranged the sentences in our study. There are multiple explana-
tions for this finding. First of all, the importance of the verb may not come as a
surprise given its special linguistic status in the sentence. It has been argued in the
past, that subtle features of verb semantics, such as subcategorisation information,
immediately affect online comprehension and can even be exploited to predict
sentence structure (Hare et al. 2004; McRae et al. 1997). Furthermore, verbs are
thought to be linked to so-called “event templates” (Tenny 1994; Jackendoff 1992;
McKoon and Macfarland 2002). Event templates formally conceptualise an event
by establishing which primitive “event kind” it belongs to and by specifying the
syntactic argument positions of its entities in a sentence. In our stimulus material,
the selected verbs can be said to instantiate the semantic primitive ACT(x,y). This
means, that the event involves entity x acting upon entity y, where x and y map
onto syntactic subject and syntactic object respectively. The exact meaning of the
verbs will further specify the event, e.g. entity x is acting upon entity y through
positive, communicative gestures for a verb like “to encourage” or through neg-
ative, physical impact for a verb like “to hit”. The verb “to break”, on the other
hand, would instantiate a very different event template, i.e. CAUSE(a,BECOME in
STATE(x)), where entity x undergoes a change of state (intact to broken) through
external force of a. The two verbs “to break” and “to hit” hence differ in the
amount of sub-events that it takes to characterise them. It has been experimen-
tally demonstrated that such event templates are implicitly taken into account as
we process sentences. For example, words that are presented in the same tem-
plate across sentences can prime each other later on (McKoon and Ratcliff 2008)
and more complex event templates will slow down reaction times during lexical
decisions (McKoon and Macfarland 2002). In the present study, both semantic
categories of verbs instantiate more or less similar event templates (one causative
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event involving two entities). Therefore it is unlikely that the perceived similarity
was affected by differences in event template complexity. Nonetheless, people may
have been naturally biased towards attending the verb of a sentence (rather than
the nouns) given that it carries crucial information about the event template.

Unfortunately, within our study we cannot distinguish an a priori verb bias
from other factors such as valence or context-specific effects such as salience. We
specifically chose contrasting verbs that could either express a positive, commu-
nicative event or a negative, physical contact event. This difference in valence
might have made the verb semantic information more salient as compared to
that of nouns. Additionally, in the context of the larger stimulus set, verbs could
be broadly divided into only two categories, whereas nouns were more varied,
stemming from four distinct thematic categories. The fact that there were fewer
semantic categories for verbs may have added to their overall salience.

Alternative models of similarity have been developed to address the effects
of salience as well as other supposed shortcoming of the geometric approach such
as the assumption of symmetry (distance(A,B) = distance(B,A)) which has been
disconfirmed in empirical data (Tversky 1977). As a solution, Tversky suggested
a set-theoretic model, within which similarity between two items is a function
of the set of their shared features and the two respective sets of their distinctive
features. This approach allows context to modulate how strongly certain features
are activated and as a consequence influence similarity, accounting for salience
effects. For example, when adding a single item to a set of items, which varies in a
specific feature, that so far had been shared by all items. The addition of the new
variance in that feature will increase perceived similarity of all original items.

It is correct that geometric models per definition impose certain assump-
tions such as symmetry onto similarity relations. Similarity judgments collected
throughout multiple arrangements, however, are not completely incompatible
with observations of asymmetry and salience effects. In fact, the repeated sam-
pling of subsets of the total stimulus set assumes the existence of a multitude
of conceptual spaces, some more and some less salient, under which similarity
can be defined. Under this assumption, distance from A to B might differ from
distance from B to A, if the order of comparison evokes different similarity spaces
(Decock and Douven 2011). When combining similarity judgments across subset
arrangements those subtle differences get lost and the principle of symmetry will
be enforced. Although the final similarity matrix cannot explicitly speak to the
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multiple underlying dimensions anymore, we have shown that they can nonethe-
less be extracted through data-driven factorisation. The same holds true for more
or less salient features within a stimulus set.

Quantifying similarity through vector space models
An alternative approach to quantify semantic representations is based on dis-
tributional semantics. Distributional semantics rely on the idea that associated
words cooccur in similar contexts. Consequently, given a large variety of contexts,
we can find a function that maps each word onto a high-dimensional numerical
vector (embedding) capturing a word’s association to all other words in the vo-
cabulary. Recently, artificial neural networks (ANNs) have become prominent
for generating word embeddings as a byproduct of unsupervised learning tasks.
ANNs are usually trained to predict a word based on its preceding or surrounding
context and require large linguistic corpus data for training. The most recent
generation of ANNs (e.g. Vaswani et al. 2017, Devlin et al. 2018, Radford et al.
2019) is able to capture contextualised word meanings, taking into account local
sentence context. For example, they will assign distinct vector representations to
the word “bank” if preceded by either “river” or “money”. This newest generation
of algorithms excels at multiple natural language processing tasks such as text
generation, translation, question answering and cloze tasks (Brown et al. 2020).

Due to their broad success at language tasks, ANNs have caught the interest
of language scientists not only as tools for natural language processing but also as
mechanistic models for the brain’s language processing. Indeed, several research
groups have shown that internal representations in ANNs, emerging during
training, predict brain activity above chance (Pereira et al. 2018, Mitchell et al. 2008,
Abnar et al. 2019, Schrimpf et al. 2020, Toneva et al. 2020). Specifically, those models
implementing attention mechanisms (Vaswani et al. 2017), like the GPT2 model,
seem to outperform other architectures (Schrimpf et al. 2020). At the same time,
several researchers have raised the criticism that ANNs cannot capture structural
relational meaning (Gershman and Tenenbaum 2015, Puebla et al. 2021). We
need focused test-sets, that explicitly probe those semantic dimensions impacting
human behaviour in order to evaluate what representations these models are
learning and how similar they are to neural representations in humans.
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We propose that similarity judgments sensitive to event structure might
provide a meaningful benchmark for evaluating ANNs as models for human
language processing. Previously, ANNs’ have been evaluated not only in terms of
their predictability for brain signals, but also with respect to human linguistic be-
haviour such as for example reading times and gaze-duration (Schrimpf et al. 2020,
Van Schijndel and Linzen 2018, Merkx and Frank 2020). Measures of perceived
similarity can provide an additional benchmark of human behaviour against
which computational models could be evaluated. This approach of evaluating
computational models based on human similarity ratings has already proven to
deliver insights with respect to ANNs trained on visual object recognition (Jozwik
et al. 2017, Peterson et al. 2017). For example, researchers are starting to iden-
tify which parameters of the model architecture (e.g. layer depth) are crucial for
learning human-like representations (Jozwik et al. 2017). We have shown that
similarity judgments collected through the multiple arrangement task capture
high-dimensional event meaning to some degree. These similarity judgments
could therefore serve as a benchmark for human perception of event structure.
As an example, we compared contextualised embeddings of our stimuli from
three state-of-the-art ANNs: GPT2, BERT and its extension, SBERT (Reimers and
Gurevych 2020b). While all ANN models seemed to capture information about
event roles to some degree, none of them reproduced the verb bias we observed
in our behavioural data. This could suggest that current ANNs might not exploit
information in the same way humans do. Whether ANNs are unable to capture
human biases needs to be further tested, however, with a larger behavioural
dataset and carefully controlled stimuli to exclude valency effects of local context.
Finally, a comparison with human behavioural data cannot speak to the predictive
performance and utility of ANNs as engineering solutions for language tasks.
Instead, similarity judgments provide a benchmark to evaluate the ANNs’ utility
as mechanistic models of human sentence processing irrespective of their highly
successful application as chatbots or for machine translation.

Conclusion and outlook
In conclusion, we evaluated the multiple arrangement task as a suitable tool
for quantifying complex semantic representations. The similarity judgments
presented here captured multiple dimensions of event meaning while also being
sensitive to biases in human sentence comprehension. Recently, it has been shown
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that the multiple arrangement task can be scaled up when combined with wide
online distribution (Hebart et al. 2020). In the future, the multiple arrangement
task could be used to collect perceived sentence similarity on a larger scale. Such
a database could provide an additional benchmark when evaluating ANNs as
models for human language processing.
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4.5 Appendix

Stimuli

Table 4.2.: Full set of sentences

Sentence

Heute Morgen bestärkte der Therapeut einen Sanitäter.
Heute ermunterte der Sanitäter den Pfleger.
Heute Morgen bejubelte der Radiologe den Internisten.
Vorhin ermutigte der Pfleger einen Chirurgen.
Vorhin tröstete der Chirurg den Radiologen.
Vorhin lobte ein Internist den Therapeuten.
Heute Morgen ermunterte der Therapeut den Handwerker.
Heute Morgen lobte der Sanitäter den Mechaniker.
Heute tröstete der Chirurg einen Tischler.
Heute Morgen ermutigte der Internist einen Zimmermann.
Vorhin bestärkte der Pfleger den Klempner.
Vorhin bejubelte der Radiologe den Elektriker.
Am Vormittag bejubelte der Bassist den Pianisten.
Am Vormittag ermutigte der Sänger den Gitarristen.
Gestern Abend ermunterte der Pianist einen Geiger.
Gestern tröstete der Geiger den Sänger.
Gestern bestärkte der Gitarrist einen Musiker.
Gestern Abend lobte der Musiker den Bassisten.
Am Vormittag bestärkte der Bassist einen Läufer.
Am Vormittag lobte der Pianist den Sportler.
Am Vormittag tröstete der Sänger einen Athleten.
Am Vormittag ermunterte der Gitarrist den Fußballer.
Gestern Abend ermutigte der Geiger den Sprinter.
Gestern Abend bejubelte der Musiker einen Boxer.
Heute Morgen schlug der Zimmermann einen Handwerker.
Heute verprügelte der Mechaniker einen Klempner.
Continued on next page
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Table 4.2 – continued from previous page

Sentence

Heute stieß der Klempner einen Tischler.
Heute Morgen verscheuchte der Tischler einen Elektriker.
Vorhin schubste der Handwerker den Mechaniker.
Vorhin schüttelte der Elektriker den Zimmermann.
Heute Morgen schubste der Klempner einen Sänger.
Heute Morgen verscheuchte der Mechaniker einen Gitarristen.
Heute stieß der Elektriker den Bassisten.
Vorhin schüttelte der Zimmermann den Pianisten.
Vorhin schlug ein Handwerker den Geiger.
Vorhin verprügelte der Tischler den Musiker.
Am Vormittag schüttelte der Sportler den Radiologen.
Am Vormittag schlug der Läufer den Chirurgen.
Am Vormittag verscheuchte der Athlet einen Internisten.
Gestern Abend schubste der Boxer einen Sanitäter.
Gestern stieß ein Sprinter einen Pfleger.
Gestern Abend verprügelte ein Fußballer einen Therapeuten.
Am Vormittag verscheuchte der Boxer einen Läufer.
Am Vormittag schubste ein Sprinter den Athleten.
Am Vormittag schlug der Fußballer einen Boxer.
Gestern Abend verprügelte der Läufer den Sportler.
Gestern stieß der Sportler den Sprinter.
Gestern Abend schüttelte der Athlet den Fußballer.
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5Neural dynamics of
combinatorial sentence
processing

Successful sentence comprehension requires not only the processing of individual
words but also their combination into higher-level meaning based on syntactic
rules. Without this combinatorial processing we would not be able to extract
relational event information such as knowing who did what to whom. Recent
cognitive computational models of sentence processing make contradicting pre-
dictions about the timing of combinatorial processing in the brain. For example, it
is debated whether incoming input can update the overall event representation
immediately (within 400 ms after onset) or only late (600 ms after onset) after
word-specific processing has been completed. We recorded magnetoencephalog-
raphy while subjects read sentences describing simple transitive events. Using
representational similarity analysis, we tracked multivariate neural correlates of
relational event information during reading. Comparing a model for relational
event information with a word-specific semantic models, we found that only event
information strongly modulated neural activation patterns in inferior frontal, ante-
rior temporal and posterior parietal brain regions. Importantly, we found those
areas to encode the event most strongly within time windows as early as 250 ms to
350 ms after sentence-final word onset. Our study provides a detailed description
of the spatio-temporal neural dynamics related to processing combinatorial event
meaning. The results support language processing accounts that assume contin-
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uously unfolding neural event representations to be immediately modulated by
any incoming information.
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5.1 Introduction
To comprehend a sentence, we need to not only understand each word’s meaning
but also integrate it into a broader event representation. Events in the world
are usually composed of entities and actions. For example, when reading a
newspaper article about an assault, full comprehension of the event consists
in an understanding of who did what to whom. Extracting this information
requires combinatorial processing of multiple aspects. One needs to activate
not only the action encoded in the verb (e.g. to beat) but also the general roles
or arguments this action requires (e.g. an agent and a patient). These general
event roles need to be assigned to the specific event participants (e.g. burglar and
grandmother) usually based on syntax. Correct role assignment is often crucial
for comprehension and, in this case, can make the difference between a tragedy
(burglar beats up grandmother) or a hero story (grandmother beats up burglar).
In the current study, we investigate the neural basis of combinatorial processing
during sentence reading using Magnetoencephalography (MEG). Specifically, we
model sentence meaning in terms of semantics and role assignments to capture
the temporal dynamics of the brain signal when processing event structure.

Past neuroscience research has identified several brain areas that underly
combinatorial processing, including angular gyrus, posterior & anterior tempo-
ral lobe as well as left inferior frontal gyrus and ventro-medial prefrontal gyrus
(Pylkkänen 2019). Widely used, but broad, experimental contrasts (e.g. sentences
vs word lists or sentences vs phrases) have provided conflicting evidence by impli-
cating varying combinations of areas to be actively involved during combinatorial
processing (e.g. Matchin et al. 2019, Hultén et al. 2019). The reason why such an
extensive and variable network of areas seems to be involved might be due to
the loose definition of the term “combinatorial processing”. It implies multiple
and potentially overlapping processing steps. Namely, combinatorial processing
may refer to verb argument structure activation and role assignment as described
above, but may also encompass simple semantic combination (e.g. red apple),
syntactic structure building or even more controlled processes such as revision
and plausibility evaluation.

Event-related potentials (ERPs) are powerful neural markers that can provide
fine-grained information about combinatorial processing, because their temporal
response profile depends on subtle stimulus manipulations. Therefore, many
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hypotheses have been raised, trying to link temporally specific ERP signatures to
cognitive processes (Bornkessel-Schlesewsky and Schlesewsky 2008, Kaan et al.
2000, Baggio and Hagoort 2011, Sassenhagen et al. 2014, Fitz and Chang 2018).
While much knowledge has been gained about which linguistic features modulate
ERPs, it is still debated in how far they reflect aspects of combinatorial processing.
In fact, ERP effects can sometimes be consistent with several alternative underlying
cognitive mechanisms. For example, the N400, a robust negative ERP peaking at
around 400 ms after word onset, has been reported to be stronger after words that
are incongruent with preceding context as compared to congruent continuations
(e.g. she likes to drink her coffee with dog vs cream). However, several decades
worth of reports on the N400 have not led to a consensus whether the effect is a
marker of pre-activation of the expected continuation (lexical level) or integration
difficulties following the incongruent word (sentence level). This is best illustrated
in the contrasting predictions stemming from two current computational models
of the N400 effect, one by Brouwer et al. (Brouwer et al. 2012, Brouwer et al. 2017),
the other by Rabovsky et al. (Rabovsky et al. 2018, Rabovsky and McClelland
2020). Both model the N400 as the update within one of the hidden layers in an
artificial neural network model. Brouwer et al. distinguish between two process-
ing steps, early non-combinatorial retrieval and subsequent late integration, with
N400 effects being linked strictly to the former. Rabovsky et al, on the other hand,
link the N400 to the update of a full probabilistic event representation and hence
implicitly assume that combinatorial information, including relational roles, is
already available within the N400 processing time window. Both computational
models successfully simulate several empirically observed N400 effects, while
holding different underlying assumptions about when in time certain combina-
torial sub-processes such as role assignment come into play. Therefore, there is
a need to complement the currently available ERP data in order to distinguish
between these alternative hypotheses.

Multi-variate analyses techniques allow us to capture rich multidimensional
information encoded across several channels or source points (Guggenmos et al.
2018) and can thus provide us with additional insights into neural processing
above and beyond univariate ERP analysis. One example for multivariate analyses
providing new insights into combinatorial processing is a study by Lyu et al. (Lyu
et al. 2019). The authors explicitly modelled both general noun semantics as well as
context-dependent noun semantics (restricted through the preceding verb). Only
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the context-dependent semantics were reflected in the neural patterns and these
appeared as early as 240 ms after noun onset. This is evidence for early combina-
torial processing and complements univariate analyses of brain data with respect
to conceptual combinations (Pylkkänen 2020). Lyu et al.’s findings, however, were
limited to semantic combination, as they specifically modulated semantic con-
straint but kept syntactic structure constant. We aim to extend those findings by
investigating combinatorial processing at the syntax-semantics interface. Specifi-
cally, we will rely on more arbitrary verb-noun combinations but additionally vary
role-filler assignments across sentences. Based on fMRI data, researchers have
put forward potential neural correlates of role assignment (Bornkessel et al. 2005)
and even achieved to localise fine-grained relational role information through
multivariate analysis (Frankland and Greene 2015). Nonetheless, there is little
data on the time-course of sentence comprehension including role assignment in
the brain. Again, some researchers have evaluated the sensitivity to relational
information expressed in ERPs, with mixed evidence for a modulation of the N400
(Frisch and Schlesewsky 2001, Paczynski and Kuperberg 2011).

In this study, we model the semantic content of sentences via item-by-item
similarity, taking into account relational roles and use MEG to track neural rep-
resentations with high temporal resolution. The temporal dynamics of encoded
event structure representations can provide evidence for or against alternative
computational hypotheses of sentence processing, which can in turn inform the
interpretation of ERP components and hence improve our understanding of com-
binatorial processing.

5.2 Methods

Subjects
18 German native speakers participated in the study. Data from two participants
was discarded due to below-average accuracy on the behavioral task or extensive
muscle activity (see details below). The remaining 16 subjects (8 female) had
an average age of 24 years (std = 4 years), were mostly right-handed (3 left-
handed), had normal or corrected-to-normal vision and reported no history of
neurological, developmental, or language deficits. The study was approved by the
local ethics committee (Central Committee on Research involving Human Subjects
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Figure 5.1: Stimulus randomiza-

tion.

The diagram illustrates for all sen-
tences (rows) which elements make
up any given sentence. Elements
are colour coded to indicate the iden-
tity of the temporal adverbs (1st col-
umn), the semantic category of the
verb (2nd column), the semantic cat-
egory of the agent role (3rd column)
and the semantic category of the pa-
tient role (4th column). Given any
sequence of adverb, verb and agent,
the patient semantic category is un-
certain, since there are always to cat-
egories that occur with equal proba-
bilities.

the local “Committee on Research Involving Human Participants” in the Arnhem–
Nijmegen region) and followed the guidelines of the Helsinki declaration. All
subjects gave written informed consent before participation and received monetary
compensation for their participation.

Sentence material

Stimuli creation

For stimuli, we used 48 German sentences, each describing a simple transitive
event between one agent and one patient. The stimulus creation is described in
detail in chapter 4. During the MEG experiment each unique event was presented
in both active and passive voice versions. Each unique sentence was presented
four times in total, two times per MEG session (384 trials in total). Importantly,
agent and patient identity was balanced across sentences, such that the agent
of one sentence would appear as the patient in another sentence. Furthermore,
the pairing of agents and patients was pseudo-randomised, such that in the
active sentences the semantic category of the final noun (the patient) could not
be predicted based on the preceding context (see figure 5.1; more details on the
randomisation in chapter 4 ).

We collected similarity judgments for both the 48 sentences (active voice)
as well as the 24 nouns that appeared as agent or patients within the sentences.
200 participants completed a multiple arrangement task, half of them rating the
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sentences and the other half the nouns (see details on the task in Chapter 4). In
addition, each person participating in the present MEG experiment completed the
multiple arrangement task on the sentences within one week after the final MEG
session.

Experimental design
All subjects participated in two MEG sessions. In each session, participants silently
read sentences and responded to comprehension questions while their brain
activity was recorded. In addition, within one week after the second MEG session,
they completed a multiple arrangement task on the same sentences. During the
MEG sessions, sentences were presented word-by-word in a rapid sequential
manner. Words were presented on a back-projection screen placed in front of the
participant (vertical refresh rate of 60 Hz) in a black monospaced font on a grey
background. The 96 unique sentences were presented in pseudo-random order
and repeated once in each MEG session (total number of trials per participant n
= 384). The order of sentence presentation was constrained, such that sentence
repetitions would be at least five trials apart and any given noun would not be
repeated for at least three consecutive sentences. The set of sentences presented
in the second MEG session was exactly the same as in the first but in a different
pseudo-random order. Due to technical difficulties, one subject saw only 75% of
sentences during the first MEG session. Those missing 25% of sentences were
added to the second MEG session instead.

Each trial started with a fixation cross. The fixation cross stayed on screen for
1 to 1.5 seconds and participants were instructed to blink during that period. Then,
each word appeared for 350 ms with a 550 ms blank period in between words.
The final word of each sentence was followed by a blank screen for 2 seconds.
Following each sentence, a questions was presented. The comprehension question
asked to specify either the agent or the patient of the previously read sentence
(e.g. Who was encouraged? or Who encourages?). Three possible responses were
presented below the question and participants chose one of the options by pressing
either the first, second or third button corresponding to the first, second and third
response on the screen from left to right. Two of the response options consisted
of the agent and patient presented in the previous sentence and the third option
was always “Niemand” (engl. No-one). In 50% of trials, the verb included in
the question was not the verb actually presented in the previous sentence, hence

5.2 Methods 123



“Niemand” was the correct answer. In these trials, when participants correctly
selected “Niemand”, a new question with the expected verb would appear and
participants could respond again. After every 48 trials, participants could take a
self-paced break before advancing to the next block.

MEG data
We recorded brain activity using Magnetoencephalography (MEG) with a 275
axial gradiometer system (CTF) while participants read the sentences. The signals
were analog low-pass filtered at 300 Hz and digitised at a sampling frequency of
1200 Hz. The subject’s head was registered to the MEG sensor array using three
coils attached to the subject’s head (nasion, and left and right ear canals). For the
second MEG session, subjects were instructed to find a comfortable position in
the scanner, that was aligned with the first MEG session head position as closely
as possible. Throughout the measurements, the head position was continuously
monitored using custom software (Stolk et al. 2013). During breaks, the subject was
allowed to reposition to the original position if needed. Subject’s gaze direction
and pupil size were continuously recorded using an SR Research Eyelink 1000
eye-tracking device (RRID: SCR_009602). We acquired T1-weighted magnetic
resonance (MR) images of each subject’s brain using 3 Tesla Siemens PrismaFit
and Skyra scanners. All scans covered the entire brain and had a voxel size of
1x1x1mm3. A vitamin E capsule was placed as a fiducial marker behind the right
ear to allow a visual identification of left–right consistency. Finally, we recorded
the subject’s head shape with the Polhemus for better co-registration of MEG and
anatomical scans.

Data were pre-processed using the Fieldtrip toolbox in MATLAB (Oosten-
veld et al. 2011). Each MEG session was preprocessed and source-reconstructed
separately. The data was filtered with a DFT filter to remove 50 Hz line noise and
its harmonics at 100 Hz and 150 Hz, with a data padding of 10 s. Subsequently,
we epoched the data based on word onset and downsampled to 600 Hz. Indepen-
dent component analysis (ICA) was used to remove artifacts stemming from the
cardiac signal and eye blinks. For each subject, the time course of the independent
components was correlated with the horizontal and vertical movement as well
as blinks as recorded by the eye-tracker. In addition, samples contaminated by
muscular activity (20 - 280 Hz) and superconducting quantum interference device
jumps were replaced by “Not a Number” before further analysis. Finally, each
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trial was de-meaned based on a 200 ms baseline window and low-pass filtered at
40 Hz.

We used minimum norm estimation (MNE, Hämäläinen and Ilmoniemi
1994) to reconstruct activity onto a parcellated cortically constrained source model.
Individual cortical sheets were generated with the Freesurfer package (Dale et al.
1999,version 5.1) (surfer.nmr.mgh.harvard.edu). The forward model was com-
puted using FieldTrip’s singleshell method (Nolte 2003), where the required
brain/skull boundary was obtained from the subject-specific T1-weighted anatom-
ical images. Each cortical sheet defined 7842 dipole locations per hemisphere. We
computed minimum norm estimates of source activity for all dipole orientations.
The current density was estimated using depth-weighting and regularisation with
the noise covariance estimated on all presented words (Dale et al. 2000). Finally,
further reduced the dimensionality of the data, by grouping dipole locations into
374 parcels, using a refined version of the Conte69 atlas. These parcels were used
as searchlights in the subsequent analyses.

Representational similarity analysis
We computed sentence-by-sentence dissimilarity estimates based on both neural
dissimilarity (neural RDM) and cognitive models (model RDMs) for both sentences
as well as sentence-final nouns. By comparing the neural RDM with each model
RDM respectively, we probed when and where in the brain the neural activity
reflected the semantic category of the noun or the event model of the entire
sentence as participants read the sentence-final noun.

For the cognitive model of noun semantics we coded sentence pairs ending
in a noun from the same thematic category with 0 and all other pairs as 1. Note
that, although we refer to this model as the noun semantics model, the model is
rather coarse and only captures semantic differences related to broad profession
categories. For the cognitive model of the full event meaning (event model), we
coded a pair of sentences as maximally similar (0) if both sentences shared their
verb, their agent and their patient role fillers from the same semantic categories
respectively. Further, we coded sentence pairs as increasingly dissimilar (1-3)
depending on how many of the fillers belonged to distinct categories across two
sentences (see Table 5.1). In addition, we created a model of lexical identity,
encoding words as identical in wordform (0) or not (1). The lexical identity
model served as a control for low-level features and was partialled out when
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computing correlations between models and neural RDM. Finally, we extracted
model RDMs based on the behavioural results from the multiple arrangement
task. These RDMs modelled the distance of a sentence pair as either (1) the
average perceived similarity between their final nouns (averaged across responses
from 100 participants not taking part in the MEG experiment), (2) the average
perceived similarity of their underlying events (averaged across responses from
100 participants not taking part in the MEG experiment) or (3) the similarity of the
underlying events as indicated by the individual MEG participant’s responses.

1 This morning the paramedic praised the electrician.
Heute Morgen lobte der Sanitäter den Elektrikern

2 Today the surgeon encouraged the carpenter.
Heute ermutigte der Chirurg einen Tischler.

3 Earlier the carpenter chased the electrician away.
Vorhin verscheuchte der Zimmermann den Elektriker.

4 Yesterday the soccer player hit the boxer.
Gestern schlug der Fußballer einen Boxer.

Table 5.1.: Example sentences. Sentences are listed in English translation (original
German stimuli in italics below). 1 and 2 are considered most similar because thematic
categories of agent, patient and verb are shared. 1 and 3 are more dissimilar in comparison,
since verbs are of different thematic category, regardless of final noun identity. 1 and 4 are
most dissimilar since they do not share any semantic category.

The neural RDM was constructed using a spatio-temporal searchlight ap-
proach. We extracted source activity time-locked to the final word of each sentence
for all vertices within a parcel and a 100 ms sliding time window (25 ms over-
lap). The source activity time-courses were averaged over repetitions of identical
sentences (4 repetitions per item) and concatenated along both vertex- and time
dimensions before calculating the pairwise euclidean distance among all possible
sentence pairings. This resulted in a 48 x 48 neural RDM centered at each time
point and parcel which was compared against the cognitive model RDMs using
Pearson correlation. The output of the comparison consisted of a time course of
model fit for each parcel. For the noun semantics model we computed partial
correlations, partialling out lexical identity. For the event similarity model we
computed two different correlations coefficients: First we correlated the event simi-
larity model while partialling out lexical identity. This partial event model was still
somewhat correlated with noun semantics (hence referring to it as event&noun
model going forward). Second we correlated the event similarity model with
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noun semantics RDM partialled out (event model). A 1-tailed 1-sample t test was
conducted at each searchlight with the fits of all participants for a given model
RDM to test whether the mean model fit is larger than 0. We performed cluster
permutation tests for multiple comparison correction, randomly flipping the sign
of individual participant model fits 1000 times (Maris and Oostenveld 2007) and
applying a parcel-wise and cluster-wise alpha threshold of p < 0.05.

5.3 Results

Behavioral
All 16 participants were able to respond to the comprehension questions correctly.
The average accuracy across sessions was 92 percent (std = 0.05) and perfor-
mance did not differ between active or passive sentences (mean difference of
0.008 percent,t-test p > 0.05) but improved slightly for the second session (mean
difference of 0.04 percent, t-test p < 0.05).

RSA analysis
To reveal the neural dynamics of combinatorial processing, we correlated the
dissimilarity captured within cognitive models with the dissimilarity based on the
corresponding brain activity. In addition to our model of interest, the event model,
we also tested a model for lexical identity, targeting purely bottom-up processing
as well as a noun semantics model, targeting word-specific semantic processing. A
large, bilaterally distributed network of areas was activated by the sentence-final
noun in an item-specific manner (Figure 5.2 A, Lexical identity; see also figure 5.6
for right hemisphere results and 5.8 and 5.9 for medial plots). When evaluating
the noun semantics model, we controlled for item-specific activation by partialling
out the lexical identity of the stimulus.

The correlations between the neural similarity patterns and the noun seman-
tics model were significantly higher than chance (cluster-corrected non-parametric
permutation test, p = 0.002). The earliest timepoints at which brain activity was
modulated by noun semantics were between 50 ms and 150 ms after final-noun
onset in both lateral and medial occipital cortex as well as superior temporal
cortex (Figure 5.2 B Noun semantics). From 130 ms after word onset onwards
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noun semantics were additionally encoded in several parietal areas, including
motor and somatosensory cortex as well as posterior parts of superior, middle and
inferior temporal gyri. Around 280 ms after onset, brain activity in angular gyrus,
triangular inferior frontal gyrus and more anterior parts of the superior temporal
cortex was modulated by noun semantics.

The event&noun model, with lexical identity partialled out, was also signifi-
cantly correlated with neural similarity (cluster-corrected non-parametric permu-
tation test, p = 0.007). Event similarity modulated neural activity in many of the
same regions as observed for the noun semantics model (Figure 5.2 C, see figure
5.9 for right hemisphere results). One caveat is that the event&noun model is
correlated with the model for final noun category (rho = 0.54). Since model fits
of the event&noun model are overall weaker as compared to the noun semantics
model, it might be that noun semantic similarity only is driving the observed
effect. We note, however, that the model including the event similarity modulated
brain activity in a couple of additional areas, not observed for the encoding of
noun semantics. Specifically, in addition to visual and superior temporal areas,
event similarity strongly modulated the brain signal extending throughout the
entire anterior temporal lobe (ATL), into posterior regions of angular gyrus and
superior parietal regions as well as more anterior regions of the inferior frontal
cortex (Brodmann area 45). In figure 5.3, we have summarised which areas belong
to the supra-threshold cluster with highest correlations for both model RDMs
separately and indicated areas for which effects differ.

In order to account for the collinearity between the noun semantics model
and the event&noun model we additionally computed partial correlations be-
tween event model and neural RDM, partialling out noun semantics. This partial
correlation was not significant at any point in space or time in our whole-brain
analysis, after correcting for multiple comparisons (see figure 5.4 & 5.7 for the
uncorrected results, p < 0.05). Nonetheless, we inspected the peak latency of the
correlations for some indication of the time-course of combinatorial processing.
We observed the highest correlations after sentence-final noun onset in a parcel
in middle temporal cortex, with two prominent peaks, one around 325 ms (rho =
0.015) and another around 550 ms (rho = 0.02, see figure 5.5). Furthermore, We
were interested in peak correlations of those areas, which we identified earlier as
being modulated by event similarity but not necessarily noun semantics in the
previous comparisons controlling for lexical identity only. These areas included
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Figure 5.2.: Spatio-temporal maps of model correlations.

Figure caption on next page.
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Figure 5.2.: Pearson correlation coefficients are plotted for each spatio-temporal searchlight.
Color codes for strength of correlation. Time labels indicate the center point of the temporal
searchlight window, which was 100 ms wide and had 25 ms overlap with neighbouring
time windows. (A) The first row shows correlation of neural RDM with the RDM for
lexical identity (i.e. wordform identity). (B) The second row shows partial correlation of
neural RDM with Noun semantics RDM, partialling out lexical identity RDM. (C) The third
row shows partial correlation of neural RDM with event similarity RDM, partialling out
lexical identity RDM. All spatio-temporal maps are masked for significance (non-parametric
permutation test with cluster-based correction, p < 0.05).

Figure 5.3.: Spatial overlap between noun semantics model and event&noun model.

Peak correlations are plotted per parcel, strength of correlation is indicated by color intensity.
In a given parcel, the color indicates, whether correlation strength was significantly higher
than 0 for the noun semantics model only (red), for the event&noun model only (blue) or
for both (purple). In red, peak correlations for the noun semantic model are plotted. In blue,
peak correlations for the event&noun model are plotted. In purple, the maximal correlation
value taken from either models is plotted.

the angular gyrus, inferior frontal gyrus and ATL. When controlling for noun
semantics, correlations in angular gyrus were no longer noteworthy. Both ATL as
well as inferior frontal gyrus, however, were still modulated by event similarity,
peaking around 300 ms (rho = 0.01) and 325 ms (rho = 0.01) after onset respectively
(p < 0.05, uncorrected).

Finally, the behavioral RDM, modelling perceived similarity of noun seman-
tics based on the multiple arrangement task was significantly correlated with
the neural data. The spatio-temporal dynamics of the correlations were largely
overlapping with the results from the theoretical model for noun semantics (see
figure 5.10 in appendix). This was to be expected, given the high correlation
between the theoretical and the behavioral model for noun semantics. Correlation
strength, however, was slightly stronger as compared to the correlation with the
theoretical model for noun semantics. The other behavioural RDMs, modelling
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Figure 5.4.: Spatio-temporal partial correlation maps for the event model.

Pearson partial correlation coefficients between neural RDM and event model are plotted
for each spatio-temporal searchlight. Color codes for strength of correlation. Results are
based on partial correlation, partialling out the noun semantics RDM. Time labels indicate
the center point of the temporal searchlight window, which was 100 ms wide and had 25
ms overlap with neighbouring time windows. Spatio-temporal maps are shown only for
those time points for which the event&noun model was significant and masked for p < 0.05
(non-parametric permutation test uncorrected). Black outlines indicate the spatial extent of
the supra-threshold cluster for the event&noun model effects.
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Figure 5.5.: Overview peak correlations for event model.

Parcel-wise peak correlations are shown for the event model. Colour codes for strength of
correlation. Blue outlines indicate areas which exhibited an effect of correlations with the
event&noun model but not the noun semantics model. For three areas of interest, middle
temporal gyrus (mTG), triangular part of the inferior frontal gyrus (IFG) and anterior
temporal lobe (ATL), the timecourse of the average correlation coefficients are plotted in
blue, green and red respectively. Shaded areas indicated the standard deviation at a given
time point. The point of maximum correlation (marked by vertical lines) appeared at 300
ms (ATL), 325 ms (IFG) and 550ms (mTG) after sentence-final noun onset.

perceived similarity of event semantics were not statistically significant after cor-
recting for multiple comparisons. When inspecting the uncorrected results, peak
activation was more spatially scattered and more fleeting as compared to the theo-
retical model results (see figure 5.11 A & B in appendix), making an interpretation
difficult.

5.4 Discussion
In this study, we investigated the spatio-temporal dynamics of brain activity
related to combinatorial processing. Specifically, we targeted comprehension of
event structure, which requires assignment of entities into common event roles
such as agent and patient. To this end, we modelled sentence similarity, taking
into account both semantic and syntactic cues. We then probed where in the brain
and how fast after the sentence-final noun this sentence similarity was reflected
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in MEG-recorded brain signals. Since we were interested in neural processing
of sentence meaning beyond the single word level, we explicitly compared the
results of the event similarity against a model of only the final noun semantics.
In direct comparison, both models have their maximal fit to neural data within
several parcels across visual cortex, inferior frontal cortex and temporal cortex.
In addition, we observed a significant effect of the event model in several areas
for which the noun semantics model was not consistently correlated, namely,
parts of the inferior IFG, ATL and angular gyrus. This finding is consistent with
prior research implicating those three areas in the processing of combinatorial
language. When controlling for noun semantics, the event model fit was still
consistently higher than zero in middle and superior temporal gyri as well as
IFG and ATL. Finally, when inspecting the time-course within those areas, we
observed maximum model fits within the first 400 ms after sentence-final noun
onset. This observation, conflicts with serial accounts of sentence processing, that
maintain a strictly non-compositional nature of early processing up to 400 ms
after word onset (Brouwer et al. 2012, Brouwer et al. 2017). Instead, it seems
that combinatorial processes occur early and presumably simultaneously with
emerging word specific activation patterns. This pattern of simultaneous activation
of both word-level and sentence-level representations is compatible with neural
processing accounts assuming continuously unfolding activity patterns that are
immediately modulated by any incoming information (Baggio and Hagoort 2011,
Rabovsky et al. 2018).

Our findings are also partly in line with a recent concurrent fMRI and MEG
study on semantic composition (Lyu et al. 2019). This study provided evidence for
early effects of semantic combination as well as early directed connectivity from
left IFG to left middle temporal gurus (LMT). Lyu et al. presented their participants
with spoken sentences, each with a verb phrase containing a direct-object noun.
They report that a model for verb and noun semantic interaction was significantly
correlated to activity patterns evoked by the direct object noun, first in ventral
IFG (BA 47) and at later time point (360 ms post onset) in lateral IFG (BA 45). In
our data, the event model was highly correlated with both anterior (B 45) and
posterior (BA 44) parts of the lateral IFG. In contrast to Lyu et al., however, we
do not find effects in the most ventral parts of the IFG (BA 47), neither in our
model for noun semantics nor for our event model. The inferior frontal gyrus has
previously been implicated in syntactic processing, specifically during integration
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of words into a sentence structure (Snijders et al. 2009, Hagoort 2017) and in the
presence of long-distance dependencies (Leiken et al. 2015) but also for effortful
or flexible semantic processing (Binder and Desai 2011). Lyu et al. proposed
activation in BA 45 to reflect control processes related to selection of contextually
relevant semantic properties. This interpretation is also supported by a large meta-
analysis of more than 80 studies, which has identified a dissociations between BA
45 and BA 44 for semantically and syntactically demanding stimuli respectively
(Hagoort and Indefrey 2014). Based on previous paradigms it was not obvious
whether either of these areas would also be sensitive to event structure, which
results from an interaction of syntactic and semantic cues. Our data indicate that
processing of event structure involves both areas, with the more anterior BA 45
reflecting event structure but not necessarily word-level semantics. The fact that,
unlike Lyu et al, we find effects of combinatorial processing in BA 44 may be
related to additional syntactic processing demands in our experiment. That is,
we varied active and passive voice across sentences such that participants had
to pay attention to syntactic cues in order to reach full comprehension of the
underlying event. Fine-grained spatial differences in activation within IFG need
to be interpreted with caution, however, given the limited spatial resolution of
MEG as well as individual variation in underlying cytoarchitectonic profiles.

There were several other areas encoding the event, including bilateral angu-
lar gyrus and left ATL, which have previously been implicated in combinatorial
processing (Pylkkänen 2019). The angular gyrus is thought to be part of a se-
mantic memory system. Specifically, it seems to be involved in representing
event concepts (Binder and Desai 2011) with a causal role in the integration of
lexical-semantic information (Price et al. 2016). In our data, we observe the peak
model correlations in left angular gyrus to be weaker in comparison to other
left-hemispheric areas and only the effect in the right hemisphere to survive when
controlling for noun semantics. Although evidence for a hemispheric dissociation
for angular gyrus regarding its role in combinatorial processing is mixed (Graves
et al. 2010, Williams et al. 2017), prior studies have mainly relied on minimal
phrases for stimuli. Our MEG data, evoked by full sentences, supports the claim
that event-relational information is mainly processed within right angular gyrus,
while lexical semantics primarily engage the left-hemisphere homolog. Concern-
ing the role of the ATL, most evidence for its role in combinatorial processing stems
from phrase-level combinations. Pylkkanen et al. have argued, based on a series
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of experiments, that the ATL is sensitive to conceptual specificity of lexical combi-
nations rather than syntactic combination (e.g. “Indian food” being more specific
than “Asian food”, Pylkkänen 2019, Zhang and Pylkkänen 2015). Furthermore, it
seems that ATL is most sensitive to highly associated phrase combinations, while
the LMT tends to respond more to combinations with low associations (Li and
Pylkkänen 2020). This might explain, why our arbitrary verb-noun combinations
were best encoded in the middle portion of the temporal gyrus. In addition, we
show an effect of event structure in left ATL with a similar temporal profile (peak
around 300 ms) as previously reported effects. Therefore, we suggest that the
ATL’s role in combinatorial processing should not be seen as restricted to basic
phrasal combination.

One potential restriction of our study, is the limited vocabulary size used for
generating our stimuli. The size was restricted by a combination of considerations:
We wanted to sample unique items repeatedly to be able to extract meaningful
underlying activity patterns. At the same time, our goal was to reduce the semantic
predictability of role-fillers. Although predictive processes play an important
role in sentence processing, the ability to combine arbitrary words into novel,
unexpected combinations, i.e. combinatorial processing, is often seen as a uniquely
human and powerful capability. Therefore, we ensured that fillers could plausibly
occur with any of the verbs and would appear equally often in both agent or
patient roles. We recorded two sessions for each subject to accommodate both the
repetitions of items as well as the fully crossed pairing of roles and fillers while
also ensuring the comfort of our subjects sitting in the scanner. Nevertheless, these
constraints limited the number of unique sentences we could present and may have
affected the temporal dynamics of neural activity in our experiment. For example,
recognition of words on the screen may have been accelerated due to fewer
competing candidates, once the participants had recognised the four dominant
thematic categories. However, during natural language processing, context often
provides a wealth of information that can equally pre-select a restricted pool of
potential themes. It remains to be seen, whether the here observed temporal
dynamics generalise to more naturalistic environments.

In conclusion, we show that combinatorial representations, including infor-
mation about event roles, can be encoded early in the brain signal, within the first
400 ms after final word onset. We find activity related to event structure within
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several left-lateralised brain areas, including the middle & superior temporal
gyrus, lateral inferior frontal gyrus, the anterior temporal lobe and potentially
angular gyrus. This study complements previous univariate approaches to probe
the neural dynamics of combinatorial processing and provides new insights into
the time-course of processing fine-grained event information. Importantly, it pro-
vides evidence against a strict temporal separation of word-specific and integrated
sentence-level processing.
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5.5 Appendix

Figure 5.6.: Right hemisphere correlation with lexical identity RDM.

Pearson correlation coefficients are plotted for each spatio-temporal searchlight. Color codes
for strength of correlation. Time labels indicate the center point of the 100ms wide temporal
searchlight window. All spatio-temporal maps are masked for significance (non-parametric
permutation test with cluster-based correction, p < 0.05).
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Figure 5.7.: Right hemisphere correlations with event similarity RDM.

Pearson correlation coefficients are plotted for each spatio-temporal searchlight. Color codes
for strength of correlation. Time labels indicate the center point of the 100ms wide temporal
searchlight window. All spatio-temporal maps are masked for significance (non-parametric
permutation test uncorrected, p < 0.05).
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Figure 5.8.: Spatio-temporal maps of model correlations - left medial brain view.

Pearson correlation coefficients are plotted for each spatio-temporal searchlight. Color
codes for strength of correlation. Time labels indicate the center point of the 100ms wide
temporal searchlight window. Correlations are shown for three different model RDMs,
namely lexical identity RDM (A), Noun semantics RDM with lexical identity partialled out
(B) and event+ RDM, with lexical identity partialle dout (C). All spatio-temporal maps are
masked for significance (non-parametric permutation test uncorrected, p < 0.05).
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Figure 5.9.: Spatio-temporal maps of model correlations - right medial brain view.

Pearson correlation coefficients are plotted for each spatio-temporal searchlight. Color
codes for strength of correlation. Time labels indicate the center point of the 100ms wide
temporal searchlight window. Correlations are shown for three different model RDMs,
namely lexical identity RDM (A), Noun semantics RDM with lexical identity partialled out
(B) and event+ RDM, with lexical identity partialle dout (C). All spatio-temporal maps are
masked for significance (non-parametric permutation test uncorrected, p < 0.05).
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Figure 5.10.: Spatio-temporal maps of behavioral model fit for noun semantics.

Average perceived similarity between sentence-final nouns (non-MEG participants):
Spatio-temporal map of Pearson correlation coefficients are masked for significance (non-
parametric permutation test with cluster-based correction, p < 0.05). Time labels indicate
the center point of the temporal searchlight window, which was 100 ms wide and had 25
ms overlap with neighbouring time windows.
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Figure 5.11.: Spatio-temporal maps of behavioral model fit for event semantics.

Results are shown for the two behavioral models. (A) Average perceived similarity of the
event semantics (non-MEG participants) and (B) individual perceived similarity of events
(MEG participants): Behavioral RDMs for event semantics were not significantly correlated.
Summary statistics are plotted in the form of peak correlation across time (rows 3 & 5,
masked for significance uncorrected p < 0.05) and duration of uncorrected significance
(rows 4 & 6, red).
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6Discussion

The goal of this thesis was to investigate the neural correlates of abstract mental
representations of language during sentence comprehension. By combining sev-
eral MVPA techniques, such as multiset canonical correlation, classification and
representational similarity analysis with MEG-recorded and source-reconstructed
neural data, I investigated both the spatial as well as the temporal dynamics
of modality-independent sentence processing in general and the processing of
sentence and event structure more specifically.

In Chapter 2, I investigated the spatiotemporal dynamics of sensory modality-
independent processing by comparing neural signals of subjects either reading or
listening to sentences. I effectively applied multiset canonical correlation analysis
to align brain signals across multiple subjects and thereby boosted aspects in the
signal that were common to all. Specifically, I demonstrated that such spatial
alignment across subjects makes it possible to capture subtle word-by-word fluc-
tuations in the neural signal. I found that modality-independent processing is
supported by a widely distributed network within the left hemisphere including
classical language areas such as left prefrontal, superior and middle temporal
areas, and anterior temporal lobe, but also parts of the control network as well
as subcentral and more posterior temporal-parietal areas. Modality-independent
sentence processing started in temporal areas but rapidly spread to the other
regions involved.

In Chapter 3, I asked whether the brain activity evoked during reading
reflects the structural interpretation of a sentence. Specifically, subjects read sen-
tences that were syntactically ambiguous with respect to the structural attachment
of a prepositional phrase. In a rating study, we confirmed that people were in-
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deed able to disambiguate the prepositional phrase attachment of these sentences
based on semantic information. Based on MEG recordings, however, we were not
able to find distinct neural activation patterns for distinct structural attachment.
We demonstrated that the MEG data carried sufficient information about word-
specific features to classify both their syntactic (part-of-speech) as well as semantic
content. This suggests that subjects may not fully parse the structure of sentences
when reading only for comprehension.

In Chapter 4, I tested in how far behavioural measures of similarity can serve
as quantitative models of combinatorial sentence meaning. To this end, I collected
similarity judgments for simple transitive sentences by means of a geometry
multiple arrangement task. I showed that the similarity judgments captured
multiple dimensions of event meaning but also reflected verb biases in human
event perception. I further demonstrated how similarity-based representational
models of sentence meaning can serve as a benchmark for current artificial neural
network models. Based on the example of three state-of-the art ANNs, I exemplify
that such models might fall short in fully capturing task-induced biases observed
in humans.

In Chapter 5, I continue to use similarity based models of simple transitive
sentences to investigate the neural correlates of combinatorial processing. Using
RSA on source-reconstructed MEG data, I show that both word-specific as well as
event meaning are represented in distributed, left-lateralised brain networks, that
overlap in middle superior temporal cortex as well as some frontal and inferior
parietal areas. Furthermore, I find that event meaning is additionally represented
in brain areas that don’t strongly code for individual noun semantics, namely,
anterior parts of the IFG, the anterior temporal lobe and the angular gyrus. Within
those areas, combinatorial event meaning is encoded early in the brain signal,
within the first 400 ms after sentence-final word onset. This pattern of simulta-
neous early activation of both word-level and sentence-level representations is
compatible with neural processing accounts assuming continuously unfolding
activity patterns that are immediately modulated by any incoming information.

6.1 Temporal variability of brain states
Our results in Chapters 2 & 5 illustrate that the neural activity in response to
invariant stimulus features is highly dynamic. Abstract neural representations
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seem to be encoded in complex spatiotemporal dynamics rather than by single
fixed transient activation pattern that is either “on or off”. This observation is
in line with dynamic coding frameworks in which information is encoded in
dynamic transitions between activation “states” (Stokes et al. 2015). Furthermore,
it has recently become possible to specifically test the temporal robustness of
neural activation patterns by generalising decoding of stimulus features over time
(“temporal generalisation method”, King and Dehaene 2014). Studies relying on
this method, confirm that abstract stimulus features are encoded through a cascade
of transient neural processes, hierarchically unfolding over time (Gwilliams and
King 2020). Therefore, taking into account the temporal dynamics of the neural
signal should increase the decodability of abstract stimulus features. This has been
nicely illustrated, for example, in the study of the olfactory system, where odours
have been shown to be best decoded from spiking neural activity when the time-
course of the response was taken into account (Mazor and Laurent 2005). Similarly,
in Chapter 3 we show that syntactic information is better decoded when classifiers
are trained on concatenated rather than averaged time points. Throughout my
thesis, I leveraged the high temporal resolution of MEG recordings and took both
temporal and spatial dimensions into consideration when probing multivariate
neuronal patterns. To this end, I applied MVPA on shifting time windows of MEG
data.

While the high temporal resolution of MEG in principle allows to capture
information encoded in dynamic transitions, trial-by-trial variability along the
temporal dimension can also pose a challenge. Specifically, by aligning shifting
time windows of activation across trials, I have assumed the neural correlates
of abstract representations to be somewhat synchronous. While onset profiles of
neural activity usually demonstrate high synchronisation for low-level sensory
information, modality-independent and higher-level processing, might be less
synchronised by external stimulation. Indeed, recent studies, that have estimated
functional brain states using data-driven approaches, report high temporal vari-
ability of those states at the range of hundreds of milliseconds (Vidaurre et al.
2019). Similarly, it has been shown that multivariate approaches to subject align-
ment improve sensitivity to trial-specific fluctuations even more when taking into
account temporal in addition to spatial variability of the MEG signal (Huizeling
et al. 2020).
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Trial-by-trial variability could potentially explain our reduced sensitivity for
event semantic effects at the group-level in Chapter 5. There, we observed clear
peaks in the model fit of individual subjects. Nonetheless, because the latencies
of those peaks were slightly jittered in time from subject to subject, effects on the
group level were rather weak. It is possible, that trial-by-trial variability of brain
states at the individual trial level, has caused those inter-individual differences. In
the future, MVPA analyses of linguistic representations will profit from estimating
functionally relevant brain states on a trial-by-trial basis and extracting neural
activity from state-aligned time windows.

6.2 Task modulation on language processing
Given how quickly children learn a language without formal instruction, it is
tempting to assume that the regularities of language are extracted effortless and
automatic. This, however, doesn’t necessarily seem to be the case. During learning,
people often seem to require explicit instruction in order to efficiently generalise
rules beyond a known context (Detterman 1993). Indeed, once explicit instructions
are provided, humans have been shown to outperform artificial neural networks
in generalising abstract rules given only few examplars (Lake and Baroni 2018,
Lake et al. 2019). Even then, however, reaction times on a single trial can take up
to a full minute (Johnson et al. 2021), a time scale that doesn’t match the rapid
process of language comprehension. Similarly, evidence from artificial grammar
learning paradigms (AGL) suggest that extraction of abstract sequential struc-
ture might actually be somewhat hard. AGL paradigms usually eliminate any
language-specific lexical information by presenting rule-generated sequences of
non-words. Although several studies have reported successful learning of under-
lying grammatical rules, it has also been argued that the more complex structures
are not necessarily learned automatically nor at an abstract level (Poletiek 2002,
Lai and Poletiek 2011, Wilson et al. 2020, Conway 2020). During natural language
comprehension specifically, it has been questioned whether people always auto-
matically extract hierarchical phrase structure when processing sentences (Frank
et al. 2012).

Redundant information in the language input may enable comprehension
without explicit representation of abstract structure. Instead of computing a full
structural parse of a sentence, people have been shown to sometimes rely on an un-
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derspecified, or “shallow” interpretation for comprehension (Ferreira and Patson
2007). Shallow processing may often be sufficient due to the high redundancy of
information in the language input. For example, often semantic and syntactic cues
enforce sentential structure equally. When reading “the dog bit the man”, both the
word order as well as the semantic world knowledge (i.e. dogs being more likely
to bite people than vice versa) reinforce the interpretation of the sentence. This
redundancy of information is also the reason why patients suffering from Broca’s
aphasia have seemingly intact comprehension abilities while being strongly im-
paired in their production of grammatical sentences (Caramazza and Zurif 1976).
By leveraging semantic information, they can somewhat compensate deficits in
syntactic processing. Beyond mere redundancy, recent research extending the
AGL paradigm, suggest that semantic information may be crucial for recognition
of categories and grounding thereof in world knowledge, which in turn allows
more generalised learning of statistical dependencies (Poletiek et al. 2021).

In light of the above observations, it seems that language processing can
occur at varying levels of depth and effort depending on the current internal goal
of the receiver. For example, when engaging in smalltalk with my neighbour on
the hallway, extracting the “gist” of what is being said, i.e. shallow processing,
might be sufficient. When completing an assessment test for a job application,
however, I will analyse each sentence more carefully. Therefore, we need to take
into account the processing goal of our subjects when investigating their neural
correlates of sentence structure in the lab. Passive comprehension of sentences
may not provoke a deep enough processing of the stimuli. Rather, in order to
elicit neural representations of sentence structure it might be necessary to apply a
behavioural task that explicitly probes structural knowledge. In the current work,
we had more success revealing sentence-level representations when applying a
behavioural tasks which emphasised the dimensionality of interest. Specifically,
in the experiment presented in Chapter 3 only 25% of trials were followed by a
general comprehension question and we did not find any evidence for neural
representations of hierarchical phrase structure. In contrast, in Chapter 5, we found
evidence for neural encoding of event semantic structure when subjects were
probed for their comprehension of event roles after every single trial. Importantly,
perceived event similarity as measured through a different behavioural task did
not model the neural code for event structure as well as a theoretical model giving
equal weights to all elements of the sentence. This was likely because the similarity
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judgment task resulted in strong focus towards the main verb, whereas the task
performed in the MEG scanner in addition emphasised the event roles. Taken
together, the experiments in this thesis thus highlight the non-uniform nature of
language comprehension. In the future it will be important to investigate in more
detail which sentence comprehension tasks can reliably elicit abstract structural
representations in the brain signal.

6.3 How domain general are abstract neural
representations?
The high-level abstract mental representations I investigated in this thesis, al-
though evoked through language stimuli, need not necessarily be language-
specific. For example, many earlier studies have compared hierarchical structure
of language and music (Zuidema et al. 2018) and thematic roles such as agent
and patient have long been assumed to map onto similar non-linguistic event
representations (Jackendoff 1990).

The current evidence for domain-general encoding of abstract representa-
tions can appear somewhat contradictory. On the one hand, thematic roles, such
as those targeted in Chapter 4and 5, are often considered domain-general notions,
that form part of the core knowledge of general - and potentially even pre-verbal
- cognition (Rissman and Majid 2019). This assumption is supported by several
behavioural findings demonstrating susceptibility to agent and patient roles in
young children. Similarly, in adults, abstract role concepts have been shown
to influence behaviour across domains. For example, an implicit hierarchy of
thematic roles determines their ordering during language production as well as
their overall salience in visual change detection tasks (Ünal et al. 2021 for review).
Furthermore, neural correlates of agent and patient roles have been consistently
found in similar brain areas across studies using either language or visual stim-
uli (Frankland and Greene 2015, Wang et al. 2016). On the other hand, recent
data from global aphasia patients suggests a dissociation between linguistic and
nonverbal role assignment (Ivanova et al. 2021). A similar discrepancy between
neuroimaging and neuropsychological data had previously been reported when
comparing structural processing across the domains of language and music (Patel
2003).
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One explanation addressing the discrepancy is that abstract representations
might be encoded in distributed working memory traces that include both domain-
specific as well as domain-general codes. Having a somewhat redundant coding
scheme for abstract stimulus features at different levels of domain-specificity could
potentially help avoid interference between sequentially presented input and lead
to more robustness after lesions (Christophel et al. 2017). Indeed, in Chapter 5 we
observe encoding of event structure in multiple cortical areas including left inferior
frontal gyrus, anterior and superior temporal cortex and right angular gyrus.
Simultaneous activation of prefrontal and temporal areas is often reported during
high-level language processing and the anatomical and function connectivity
profile between frontal and temporoparietal cortex are well documented (Hagoort
2013). Specifically, directed information flow has been shown to occur most
prominently and early from temporal regions to left IFG (Schoffelen et al. 2017,
Lyu et al. 2019). Moreover, the inferior prefrontal cortex has been shown to encode
domain-general information in cognitive domains other than language (Stokes
et al. 2013). Therefore, findings of distributed encoding of abstract representations
might reflect a “representational loop”, including both language-specific as well
as domain-general neural representations, the latter being most likely hosted in
prefrontal areas.

MVPA is a suitable technique not just for identifying neural correlates of
higher-level representational content but also comparing these representations
across different cognitive domains. For example, classifiers can be trained on
one stimulus set and tested on another (cross-decoding) to check whether the
information they pick up on, generalises across tasks or paradigms. RSA is
especially suited to allow comparisons even if the dimensionality of estimation
parameters is highly variable across domains (e.g. different amounts of time-points
or when comparing MEG sensors with MRI voxels), since it maps the multivariate
brain signal onto the abstract space of representational content. In the future, more
MVPA studies should explicitly test the cross-domain generalisability of neural
correlates underlying abstract representations during sentence comprehension.
Knowing whether such representations are encoded by the brain in a domain-
general manner is crucial for developmental theories. For example, this knowledge
might lend support for a role of domain-general generalisation principles in
language learning, eliminating the need for language-specific innate biases (Perfors
et al. 2011).
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6.4 Conclusion
In this thesis, I have identified neural representations of abstract language proper-
ties during sentence comprehension and described their spatiotemporal dynamics.
I have demonstrated that abstract language processing is supported by a number
of widely distributed and mostly left-lateralised cortical areas, potentially imply-
ing a redundant neural code for abstract properties of language. Throughout
this distributed brain network, I have provided evidence for early encoding of
both word-specific but also full sentence-level meaning. This supports the view
that incoming words are immediately processed and combined into one unified
sentence interpretation. Moreover, I have shown that task demands have im-
portant consequences for the neural representations of language. Specifically, I
have shown that certain behavioural tasks might in fact bias perception towards
individual words within a sentence and I have argued that a lack of task goal
might eliminate the need to neurally encode abstract sentence structure altogether.
This likely reflects different “modes” of language processing, with varying degrees
of depth and effort. Overall, by taking into account the multivariate nature of the
brain signal along the dimensions of space, time and even subjects, I have revealed
the neural dynamics of language processing in greater detail and begun to explore
the dimensionality of the underlying representational content.
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A.1 English summary
Language is both highly variable but also structured and full of regularities. We
are experts at extracting any regularities and abstracting across variation when
interpreting language - even if not always aware of it. For example, we are able
to recognise words fairly well, irrespective of who is speaking them, whether
the person is whispering or yelling, speaking with an accent, speaking slow or
fast. We abstract across varying physical instantiations of a word every day often
without being aware. Furthermore, the order that words appear in, is somewhat
regular within a given language. In English we may say “John loves Mary” but
not “Kissed John Mary”. At a young age, we pick up on morphosyntactic rules,
such as inflections for past tense (I walk-ed) and apply them flexibly to new words.
This skill is often only noticed, when it fails, i.e. when children overgeneralise,
applying a rule where it is not suitable (*I fall-ed). In this thesis, I set out to
find patterns in brain activity, occurring as we perceive language, that might
correspond to this abstract knowledge of linguistic regularities. Today we are in
a better position than ever to find abstract representations in patterns of brain
activity due to increased computational power and advanced techniques such
as multivariate pattern analysis (MVPA). Those techniques allow us to draw
information from activity patterns across populations of neurons, potentially
capturing spatial codes. The brain data I analysed in this work was recorded
using Magnetoencephalography (MEG), which is a non-invasive neuroimaging
technique, that records magnetic fields produced by electrical currents of large
neuronal populations. Due to its high temporal resolution, this neuroimaging
technique is ideally suited to study fast and highly dynamic brain processes such
as language comprehension.

I start out, in chapter 2, by characterising brain activity patterns that are
occurring across different physical instantiations of a word. When driving a car,
you can be alerted about an upcoming crossroad by either reading the word "stop"
on a traffic sign or by other passengers yelling “stop”. Therefore, there must
be common brain activations independent of the input modality, even though
the primary sensory brain areas initially activated by either visual or auditory
stimulation are located in different parts of the cortex. To characterise the dynamics
of modality-independent brain activity, I analysed a large-scale MEG dataset of
200 human subjects either listening to or reading varying sentences. Because word-
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specific neural signals can vary a lot from one individual to another, I first applied
a transformation to each subject’s neural data using multiset canonical correlation,
such that they became more comparable. It turns out that a large network of
left-lateralised cortical brain areas respond to words in a modality-independent
manner. This modality-independent processing was significant in temporal areas
starting around 325 ms after word onset and rapidly spread to frontal and parietal
regions. Importantly the modality-independent brain activity occurred in both
primary auditory and general language areas and was only visible when adjusting
for idiosyncrasies of individual subject data.

In chapter 3, I turn to the question whether brain activity reflects abstract
sentence structure. In a sentence, words are grouped together into phrases and
phrases in turn can be nested within other phrases (e.g.[the woman [who owns
a dog] chases the cat]). This nested relationship constrains which words are
combined in meaning (e.g. here “a dog chases” is not part of the meaning of
the sentence). We seem to pick up on structural configurations of words and
even repeat them during conversation. For example, having just heard a passive
sentence, we are more likely to express a response using a passive as well. Do
we form neural representation of sentence structure that are abstract and hence
independent of specific word meaning? To answer this question, I recorded
neural activity of people reading structurally ambiguous but semantically obvious
prepositional phrases (“the woman sees the dog with binoculars”). Prepositional
phrases (e.g. “with binoculars”) can provide subordinate information about entities
(“dog with binoculars”) or actions (“seeing with binoculars”). Through subtle
changes in the sentences, I manipulated this information structure towards one or
the other. While participants were able to disambiguate the prepositional phrases
when asked about each sentence explicitly, there was no indication of an abstract
hierarchical representation given their neural activity during reading. The neural
data did carry information about semantic content of each individual word of a
sentence, however, as well as information about the type of word (e.g. verb or
noun) being read at any given moment.

Finally, in chapters 4 & 5 I turn my focus onto abstract relational properties,
that emerge from the combined semantic and syntactic information of a sentence.
For example, Given the order of words in “John loves Mary”, we identify John as
the one who loves or the agent of the event and Mary as the one being loved or the
patient of the event. The notions of agent and patient can be applied to either John
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or Mary or any person and occur across many semantic contexts (the one who
loves, the one who eats, . . . ). Agent and patient are therefore considered abstract
relational concepts. Again, we are sensitive to this systematicity in language even
before formal education. For example, young children are able to infer agent
and patient roles correctly from unknown verbs (e.g “the bunny is blicking the
frog”).

In chapter 4, I investigated, whether asking people to judge how similar
sentences are to each other, could reveal the multitude of meaning dimensions
that make up a sentence’s meaning - such as individual word meanings or abstract
relations like agent and patient. I collected similarity judgments of several transi-
tive sentences (e.g. “the doctor encouraged the athlete”) using a geometric task,
in which similar sentences needed to be placed close to each other on a screen.
As had been shown with visual scenes before, similarity judgments of sentences
captured multiple dimensions of event meaning including relational information
such as who is the agent and who is the patient of the described event. How-
ever, those dimensions were overshadowed by the strong verb bias, where the
semantic similarity of the verbs between two events had the strongest influence on
their perceived similarity. A dimensionality reduction of the group-results using
non-negative matrix factorisation allowed to recover the additional relational
meaning dimensions. Finally, I compared the similarity judgments to sentence
similarity according to current artificial computer models of language. Although
they captured some of the same dimensions, they did not all capture the human
bias for verb semantics.

I then continue to use the similarity structure across those transitive sen-
tences in chapter 5, where I investigate the neural correlates evoked while reading
such sentences. I collected MEG data from people reading the sentences for com-
prehension and answering simple questions such as “who was doing X” or “Who
was being X’ed”? I find that across readers both semantic and relational informa-
tion are encoded in distributed, left-lateralised brain networks. These networks
included middle superior temporal cortex as well as frontal and inferior parietal
cortical areas. In addition, only relational information but not semantic informa-
tion seemed to be encoded in anterior parts of the IFG, the anterior temporal lobe
and the angular gyrus. Importantly, both types of sentence meaning are activated
simultaneously and early, within the first 400 ms after sentence-final word onset.
This suggests, that our brains integrate newly read words immediately into the
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full sentence context, instead of sequentially processing a word’s meaning first
and then its relation to other words in the sentence.

The results of this thesis demonstrate how multivariate patterns of brain
activity - as measured through MEG - can reveal neural representations of abstract
knowledge during sentence comprehension. Throughout the chapters, I have
provided several examples for how MVPA can be applied to neural data, not only
to quantify different dimensions of neural representations, but also to factor out in-
dividual subject variability. With the help of these techniques, I have characterised
the dynamics of abstract neural representations in time and space. I have focused
on different levels of abstraction, namely abstraction across physical differences in
presentation as well as abstraction of higher-level relational concepts. Both seem
to be supported by a distributed network of several left-lateralised cortical areas,
potentially implying a redundant neural code. In addition, abstract properties of
words and their relations are processed early on when read in sentence context.
I did not find evidence, however, for an abstract representation of phrase struc-
ture, possibly due to the lack of task demands. Comparing tasks across studies,
we observe clear biases in perception of sentence meaning when participants
were making explicit judgments, whereas when reading without any goal they
seem to form somewhat impoverished neural representations. By tracking neural
representations of sentence meaning over time, we can gain valuable insights
into the neural dynamics of sentence comprehension. This work provides a first
exploration of such neural dynamics and illustrates the benefits of MVPA, when
combined with suitable language tasks.
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A.2 Nederlandse samenvatting
Taal is zowel ontzettend variabel als gestructureerd en vol regelmatigheden. Door
ons vermogen om taal te interpreteren, zijn we experts in het afleiden van aller-
lei regelmatigheden en het abstraheren over veel variatie in die taal - zelfs als
we er niet eens bewust van zijn. We zijn bijvoorbeeld in staat om woorden vrij
goed te herkennen, onafhankelijk van wie ze uitspreekt, of de persoon fluistert
of roept, met een accent praat, of snel of langzaam praat. Elke dag abstraheren
we taal over verschillende fysieke instanties van een woord, vaak zonder dat
we het doorhebben. Ook is de volgorde waarin woorden voorkomen enigszins
regelmatig binnen een bepaalde taal. In het Nederlands kun je zeggen “Jan houdt
van Marieke” maar niet “Kust Jan Marieke”. Vanaf een jonge leeftijd beginnen
we morfosyntactische regels te herkennen, zoals inflectie in de verleden tijd (“ik
fiets-te”), en passen we ze flexibel toe op nieuwe woorden. Deze vaardigheid
wordt vaak pas opgemerkt als dit misgaat, zoals wanneer kinderen een regel
overgeneraliseren en toepassen als deze niet passend is (“ik val-de*“). In dit proef-
schrift is mijn doel om patronen te vinden in hersenactiviteit die ontstaan wanneer
we taal waarnemen en die kunnen overeenkomen met deze abstracte kennis van
taalkundige regelmatigheden. Tegenwoordig bevinden we ons in een betere posi-
tie dan ooit om abstracte representaties in patronen van hersenactiviteit te vinden
door toegenomen computer- en rekenkracht, en geavanceerde technieken zoals
multivariate pattern analysis (MVPA). Die technieken stellen ons in staat om in-
formatie te halen uit patronen van activiteit over neuronenpopulaties heen, die
mogelijk ruimtelijke codes bevatten. De data afkomstig van hersenen die ik in dit
werk heb geanalyseerd, was gemeten met behulp van Magnetoencephalography
(MEG). Dit is een niet-invasieve neuroimagingtechniek die magnetische velden
opvangt, geproduceerd door elektrische stromingen van grote neuronenpopu-
laties. Door haar hoge temporele resolutie is deze neuroimagingtechniek bij uitstek
geschikt voor het bestuderen van snelle en zeer dynamische hersenprocessen zoals
taalbegrip.

Ik begin, in hoofdstuk 2, met het karakteriseren van patronen van herse-
nactiviteit die voorkomen over verschillende fysieke instanties van een woord.
Als je aan het autorijden bent, kun je gewaarschuwd worden voor een kruispunt
door het woord ‘stop’ te lezen op een verkeersbord of door andere passagiers die
‘stop’ roepen. Daarom moeten er gemeenschappelijke hersenactivaties zijn die
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onafhankelijk zijn van de modaliteit van de input, zelfs als de primaire somatosen-
sorische hersengebieden die aanvankelijk geactiveerd worden door visuele of
auditieve stimulatie zich bevinden in verschillende delen van de hersenschors.
Om de dynamieken van modaliteitsonafhankelijke hersenactiviteit te karakteris-
eren heb ik een MEG-dataset van grote schaal geanalyseerd, namelijk van 200
proefpersonen die naar gevarieërde zinnen luisteren of deze lazen. Omdat neurale
signalen die woordspecifiek zijn veel kunnen variëren tussen individuen heb ik
eerst een transformatie toegepast op de neurale data van elke proefpersoon met
behulp van multiset canonical correlation om ze meer vergelijkbaar te maken.
Dit resulteerde in het gegeven dat een groot netwerk aan linksgelateraliseerde
gebieden in de hersenschors reageerden op woorden op een modaliteitsafhankeli-
jke manier. Deze modaliteitsafhankelijke manier van verwerking was significant
in temporele hersengebieden vanaf 325 ms na het horen van het begin van een
woord, en dit verspreidde snel naar frontale en parietale gebieden. Belangrijk is
dat de modaliteitsonafhankelijke hersenactiviteit plaatsvond in zowel primaire
auditieve hersengebieden als algemene hersengebieden voor taal. Ook was dit
alleen zichtbaar wanneer aangepast werd voor de idiosyncratische eigenschappen
in de data van individuele proefpersonen.

In hoofdstuk 3 focus ik me op de vraag of hersenactiviteit abstracte zin-
structuur weerspiegelt. In een zin worden woorden samen in een woordgroep
gezet en woordgroepen kunnen vervolgens ook weer in andere woordgroepen
ingebed worden (bijv.: [de vrouw [die een hond heeft] achtervolgt de kat]). Deze
inbedding beperkt welke woorden in betekenis gecombineerd worden. We li-
jken structurele configuraties te herkennen en zelfs te herhalen in conversatie.
Bijvoorbeeld, wanneer we net iemand een passieve zin hebben horen uitspreken,
zijn we meer geneigd om ook te antwoorden met een passieve zin. Vormen we
neurale representaties van zinsstructuur die abstract zijn en daarom onafhanke-
lijk van de specifieke woordbetekenis? Om deze vraag te beantwoorden heb ik
hersenactiviteit gemeten van mensen die structureel ambigue maar semantisch
duidelijke voorzetselvoorwerpen lazen (“de vrouw ziet de hond met een verreki-
jker”). Voorzetselvoorwerpen (zoals “met een verrekijker”) kunnen onderliggende
informatie geven over entiteiten (“hond met een verrekijker”) of acties (“zien met
een verrekijker”). Met behulp van subtiele veranderingen in de zinnen heb ik deze
informatiestructuur de ene of de andere kant op beïnvloed. Hoewel de proefperso-
nen de betekenis van de voorzetselvoorwerpen konden afleiden toen er expliciet
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naar elke zin gevraagd werd, was er geen indicatie van een abstracte hiërarchische
representatie gerelateerd aan hun hersenactiviteit tijdens het lezen. De hersendata
bevatte wel informatie over de semantische inhoud van elk individueel woord
van een zin naast ook informatie over het type woord (zoals een werkwoord of
zelfstandig voornaamwoord) die iemand op een gegeven moment las.

Tot slot, in hoofdstuk 4 en 5, leg ik me toe op abstracte relationele eigen-
schappen die ontstaan uit gecombineerde semantische en syntactische informatie.
Bijvoorbeeld, bij de volgorde van de woorden “Jan houdt van Marieke”, identifi-
ceren we Jan als degene die houdt van of de agens van de gebeurtenis en Marieke
als diegene van wie gehouden wordt of de patiëns van de gebeurtenis. De noties
van agens en patiëns kunnen toegepast worden op zowel Jan als Marieke als
elk ander persoon en komen over veel verschillende semantische contexten voor
(degene die houdt van, degene die eet, . . . ). Agens en patiëns worden daarom
gezien als abstracte relationele concepten. Ook voor deze systematiek in taal zijn
we gevoelig zelfs voordat we formeel onderwijs hebben gehad. Jonge kinderen
zijn bijvoorbeeld al in staat om agens- en patiënsrollen correct af te leiden van
werkwoorden die ze niet kennen (bijv. “het konijn glakt de kikker”).

In hoofdstuk 4 bestudeerde ik of het mogelijk is om, door mensen te vragen
de gelijkenis van twee zinnen te beoordelen, de vele dimensies in betekenis die de
betekenis van een zin bepalen, te onthullen, zoals individuele woordbetekenissen
of abstracte relaties zoals agens en patiëns. Ik heb beoordelingen van gelijkenis
verzameld van meerdere transitieve zinnen (bijv.: “de dokter moedigt de atleet
aan”) door middel van een geometrische taak, waarin zinnen die op elkaar leken
dichtbij elkaar geplaatst moesten worden op een scherm. Zoals eerder met visuele
scenes is aangetoond, vangen beoordelingen van gelijkenis van zinnen meerdere
dimensies van de betekenis van een gebeurtenis, inclusief relationele informatie
zoals wie de agens en wie de patiëns is van de gegeven gebeurtenis. Deze dimen-
sies werden echter overschaduwd door de sterke voorkeur voor werkwoorden,
waarbij de semantische gelijkenis van de werkwoorden tussen twee gebeurtenis-
sen een sterkte invloed had op de ervaren gelijkenis. Een dimensionaliteitsreductie
van de groepsresultaten door middel van non-negative matrix factorisation zorgde
ervoor dat de additionele relationele betekenisdimensies werden behouden. Ten
slotte vergeleek ik de gelijkenisbeoordelingen met gelijkenis van de zin bepaald
door huidige kunstmatige computermodellen van taal. Ook al vingen deze mod-
ellen sommige van dezelfde dimensies, vingen ze niet alle menselijke voorkeur
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voor werkwoordsbetekenis. Ik vervolg het gebruik van de gelijkende structuur
over deze transitieve zinnen in hoofdstuk 5. Hierin onderzoek ik de neurale
processen die worden veroorzaakt en die samenhangen met deze zinnen. Ik heb
MEG-data verzameld van mensen die zinnen lazen, probeerden te begrijpen en
vervolgens simpele vragen beantwoordden zoals “wie deed X?” of “wie werd er
geXd?”. Ik vond dat voor alle lezers zowel semantische als relationele informatie
gecodeerd werd in verspreide, linksgelateraliseerde hersennetwerken. Onder
deze netwerken vielen zowel middel superieure temporale schors als frontale en
inferieur parietale gebieden in de hersenschors. Daarnaast leek er alleen voor
relationele informatie maar niet voor semantische informatie gecodeerd te worden
in de anterieure delen van de IFG, de anterieure temporale kwab en de angulaire
gyrus. Belangrijk is dat beide typen van zinsbetekenis tegelijk en vroeg geac-
tiveerd worden, binnen de eerste 400 ms na de start van het laatste woord in
een zin. Dit suggereert dat onze hersenen pas gelezen woorden meteen integr-
eren in de context van de hele zin in plaats van achtereenvolgend. De resultaten
van dit proefschrift demonstreren hoe multivariabele patronen in hersenactiviteit
- gemeten met MEG - neurale representaties aan abstracte kennis gedurende
zinsbegrip kunnen onthullen. Door de hoofdstukken heen heb ik verschillende
voorbeelden geleverd voor hoe MVPA toegepast kan worden op neurale data,
niet alleen om verschillende dimensies aan neurale representaties te kwantificeren
maar ook om individuele subjectvariatie weg te nemen. Met behulp van deze
techniekeen heb ik de dynamieken van abstracte neurale representaties in tijd en
ruimte gekarakteriseerd. Ik heb gefocust op verschillende niveaus van abstractie,
namelijk abstractie over fysieke verschillen in presentatie en abstractie van rela-
tionele concepten van een hoger niveau. Beide lijken ondersteund te worden door
een verspreid netwerk van meerdere linksgelateraliseerde gebieden in de hersen-
schors, wat mogelijk een overbodige neurale code impliceert. Bovendien, abstracte
eigenschappen van woorden en hun relaties worden vroeg verwerkt tijdens het
lezen van zinscontext. Ik vond echter geen bewijs voor een abstracte representatie
voor woordgroepstructuur, mogelijk door het gebrek aan de vereisten van de taak.
Bij het vergelijk van taken van verschillende studies observeren we duidelijke
voorkeuren in de perceptie van zinsbetekenis wanneer proefpersonen expliciete
beoordelingen maakten, terwijl ze enigszins zwakke neurale representaties leken
te vormen bij het lezen zonder een bepaald doel. Door het tracken van neurale
representaties van zinsbetekenis over tijd kunnen we waardevolle inzichten verkri-
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jgen in de neurale dynamiek van zinsbegrip. Dit werk biedt een eerste verkenning
van zulke neurale dynamieken en illustreert de voordelen van MVPA wanneer dit
gecombineerd wordt met geschikte taaltaken.
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