
Neural Networks 164 (2023) 156–176

c
m
s
f
l
a
w
a

i
(
(

I

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2022 Special Issue

Lifelong learning on evolving graphs under the constraints of
imbalanced classes and new classes
Lukas Galke a,∗,1, Iacopo Vagliano b, Benedikt Franke c, Tobias Zielke c, Marcel Hoffmann c,
Ansgar Scherp c

a Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
b Amsterdam UMC, location University of Amsterdam, Netherlands
c University of Ulm, Germany

a r t i c l e i n f o

Article history:
Available online 24 April 2023

Dataset link: https://github.com/lgalke/lifel
ong-learning, https://doi.org/10.5281/zeno
do.3764770

Keywords:
Lifelong learning
Evolving graphs
Graph neural networks
Continual learning
Unseen class detection
Graph representation learning

a b s t r a c t

Lifelong graph learning deals with the problem of continually adapting graph neural network (GNN)
models to changes in evolving graphs. We address two critical challenges of lifelong graph learning
in this work: dealing with new classes and tackling imbalanced class distributions. The combination
of these two challenges is particularly relevant since newly emerging classes typically resemble
only a tiny fraction of the data, adding to the already skewed class distribution. We make several
contributions: First, we show that the amount of unlabeled data does not influence the results, which
is an essential prerequisite for lifelong learning on a sequence of tasks. Second, we experiment with
different label rates and show that our methods can perform well with only a tiny fraction of annotated
nodes. Third, we propose the gDOC method to detect new classes under the constraint of having an
imbalanced class distribution. The critical ingredient is a weighted binary cross-entropy loss function
to account for the class imbalance. Moreover, we demonstrate combinations of gDOC with various
base GNN models such as GraphSAGE, Simplified Graph Convolution, and Graph Attention Networks.
Lastly, our k-neighborhood time difference measure provably normalizes the temporal changes across
different graph datasets. With extensive experimentation, we find that the proposed gDOC method
is consistently better than a naive adaption of DOC to graphs. Specifically, in experiments using the
smallest history size, the out-of-distribution detection score of gDOC is 0.09 compared to 0.01 for DOC.
Furthermore, gDOC achieves an Open-F1 score, a combined measure of in-distribution classification
and out-of-distribution detection, of 0.33 compared to 0.25 of DOC (32% increase).

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Graph representation learning has gained momentum in re-
ent years (Hamilton, 2020). Significant developments have been
ade on graph neural networks (GNNs) based on the
eminal work by Scarselli, Gori, Tsoi, Hagenbuchner, and Mon-
ardini (2009) in 2009. In particular, the work on graph convo-
ution (Hamilton, Ying, & Leskovec, 2017; Kipf & Welling, 2017)
nd graph attention (Veličković et al., 2018) triggered a wave of
orks that turned GNNs from a niche topic into one of the most
ctive research fields in machine learning (Hamilton, 2020).

∗ Corresponding author.
E-mail addresses: lukas.galke@mpi.nl (L. Galke),

.vagliano@amsterdamumc.nl (I. Vagliano), benedikt.franke@uni-ulm.de
B. Franke), tobias-1.zielke@uni-ulm.de (T. Zielke), marcel.hoffmann@uni-ulm.de
M. Hoffmann), ansgar.scherp@uni-ulm.de (A. Scherp).
1 Parts of this research were carried out while L.G. was with ZBW — Leibniz

nformation Centre for Economics, Kiel, Germany.
ttps://doi.org/10.1016/j.neunet.2023.04.022
893-6080/© 2023 Elsevier Ltd. All rights reserved.
The enormous interest in graph representation learning is
motivated by the flexibility of graphs to represent virtually any
kind of real-world data and the ability to model relationships
between data points, i. e., vertices, rather than just the properties
of independent and identically distributed (i. i. d.) data points.

A common challenge in machine learning, and thus in graph
representation learning, for tasks such as vertex classification is
an imbalance in the class distribution. For example, the popular
Cora citation dataset (Sen et al., 2008) with seven classes has
a heavily skewed class distribution. The smallest class makes
about 7% of the vertices, while the largest constitutes about
30%. Citation graphs grow over time. While new publications
and citations appear over time, new classes in the form of new
scientific fields emerge. In numerous cases, real-world graph data
evolves, with new classes, vertices, and edges appearing over
time. Generally, this requires the machine learning model to deal
with changes and continually adapt the model to new tasks.
Adapting a model to new tasks is investigated under the term

of lifelong machine learning (Chen & Liu, 2018; Thrun, 1998).

https://doi.org/10.1016/j.neunet.2023.04.022
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.04.022&domain=pdf
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://github.com/lgalke/lifelong-learning
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
https://doi.org/10.5281/zenodo.3764770
mailto:lukas.galke@mpi.nl
mailto:i.vagliano@amsterdamumc.nl
mailto:benedikt.franke@uni-ulm.de
mailto:tobias-1.zielke@uni-ulm.de
mailto:marcel.hoffmann@uni-ulm.de
mailto:ansgar.scherp@uni-ulm.de
https://doi.org/10.1016/j.neunet.2023.04.022


L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

U
g
F
Z
2
2
l
t
e

C
Z
f
f
l
o
t
d
e
d
i
u
G
n
t
t
i
h
c
f
e
t
d

(
g
p
t
d
L
d
w
v
(
t
b
F
c
r
a
p
c
k
T
l
i
p

1

t
r
f
p
f

h
p
i
b
t
n
l
t
g
v
s

v
g
t
s
c
s

D
t
T
l

f
t
c
o
t
c
Y

nsurprisingly, lifelong learning on graph data is also recently
aining more and more interest (Chen, Wang, & Xie, 2021;
ebrinanto, Xia, Moore, Thapa, & Aggarwal, 2022; Galke, Franke,
ielke, & Scherp, 2021; Parisi, Kemker, Part, Kanan, & Wermter,
019; Wang, Qiu, Gao, & Scherer, 2022; Wang, Song, Wu, & Wang,
020; Zhou & Cao, 2021). Numerous applications can benefit from
ifelong graph learning, including social networks, traffic predic-
ion, recommender systems, and anomaly detection (Febrinanto
t al., 2022).
Existing works on lifelong graph learning (Cai et al., 2022;

hen et al., 2021; Galke et al., 2021; Wang et al., 2022, 2020;
hou & Cao, 2021) were mainly concerned with catastrophic
orgetting, i. e., how to adapt a model to new data without
orgetting what it had learned before. For a recent survey on
ifelong graph learning, we refer to Febrinanto et al. (2022). In
ur prior work, we developed an incremental training procedure
o continuously maintain graph representation learning models
uring the evolution of a graph (Galke et al., 2021). However, the
xisting body of works, including our own, does not yet address
etection of new classes in the lifelong graph learning scenario,
. e., dealing with the adaptation of the graph representation
nder the emergence of new classes while the graph evolves.
enerally, when a graph evolves, and new classes emerge, these
ew classes are relatively rare compared to the number of ver-
ices of already-known classes. Having only a few examples for
hese new classes further exacerbates the challenge of imbalance
n the class distribution because the i. i. d. assumption does not
old for graphs (Hamilton, 2020), particularly when the model
ontinually adapts to changing data. Instead, different influential
actors define a vertex label induced by vertex features and the
dges between the vertices. Thus, it is exciting to investigate
he combination of the two challenges of the imbalanced class
istribution and the detection of new classes.
We extend our lifelong training procedure for evolving graphs

Galke et al., 2021) with a new open-world learning module,
DOC, to detect the appearance of new classes in the graph. In
articular, we design our gDOC method for detecting new classes
o handle imbalanced classes in graph data. It extends the class
etection method Deep Open Classification (DOC) (Shu, Xu, &
iu, 2017) from textual data to graph data. We experimentally
emonstrate that gDOC can detect new classes in graph data
hile maintaining high accuracy for classifying in-distribution
ertices. The overall performance of gDOC for out-of-distribution
OOD) detection plus vertex classification is consistently higher
han a plain DOC. The key to the success of gDOC is weighting the
inary cross-entropy loss to counter the imbalanced graph data.
urthermore, we show how to train and retrain graph models to
ope with changes, newly emerging classes, and different label
ates. We demonstrate that inductively pre-trained graph models
re robust to adding unlabeled data. This insight is an essential
rerequisite for successful lifelong learning on graph data. For
omparability of different temporal datasets, we introduced the
-neighborhood time differences measure (Galke et al., 2021).
he measure enables a selection of history sizes in lifelong graph
earning that accounts for of the dataset’s temporal granular-
ty. We prove that our measure fulfills this critical equivariance
roperty.

.1. Problem formalization: Lifelong learning on graphs

The critical question in lifelong learning is whether it is helpful
o maintain a single model throughout a sequence of tasks versus
etraining a new model from scratch for the next task. We call the
ormer case ‘‘warm restarts’’, which means that the initial model
arameters for the current task come from the final parameters
rom the previous task. This reuse of parameter values from the
157
Table 1
Summary of our Notation.
X A matrix holding the vertex features of each vertex as rows
y A vector holding the label of each vertex as its entries
Yt The set of classes at time t
T A task composed of the graph G along with vertex features X

and vertex labels y
Tt Task t within a sequence of tasks
Gt State of the graph at time t with vertices Vt and edges Et
c The history size used for training the GNN
c(V , E, t) A function to determine a history size depending on a set of

vertices V and edges E with time information t
G̃t The trimmed graph with respect to the history size c , i.

e., older vertices and edges are removed
X̃ A matrix holding vertex features, but with rows removed that

correspond to vertices removed in G̃t .
ỹ A vector holding vertex labels, but with entries removed that

correspond to vertices removed in G̃t .

current task to the next task is called internal knowledge. The
latter case is the ‘‘cold restarts’’ scenario, in which we train a new
model from random initialization for each task.

Lifelong learning, i. e., maintaining a single model over time
(Thrun, 1998; Thrun & Mitchell, 1995), is only beneficial when
warm restarts are at least as good as cold starts under compara-
ble training budgets. In contrast to internal knowledge, there is
also external knowledge, which is the data used for incremental
training. The amount of external knowledge available, i. e., the
past graph data, is determined by a history size. Note that this
istory is not separate from the actual data. If the label of a
ast vertex changes, this change will be reflected in the next
ncremental training step. The history size is, in turn, determined
ased on the temporal granularity of the considered graph and
he time differences within the receptive field of the GNN. The
umber of GNN layers defines the receptive field of a GNN. Each
ayer corresponds to one hop. Thus, the receptive field comprises
he k-hop neighborhood of each vertex. Combined, the temporal
ranularity of the graph and the receptive field allow one to pro-
ide comparable results across datasets with different evolution
peeds.
We define the problem of new class detection of a graph’s

ertices in an evolving graph as a form of open-world lifelong
raph learning (Chen & Liu, 2018; Galke et al., 2021). We employ
his understanding of lifelong graph learning in four different
ettings. We introduce the four settings below and refer to the
orresponding sections for experimental details. Our notation is
ummarized in Table 1.

efinition 1 (Lifelong Learning (Chen & Liu, 2018)). A learner has
o perform a possibly open-ended sequence of learning tasks
1, T2, . . . , TT . At each time t , the learner is faced with a new
earning task Tt , for which it may use the (internal and external)
knowledge K that it has been provided with and accumulated in
the previous tasks T1, T2, . . . , Tt−1.

We cast this definition into a lifelong graph learning problem
by considering each task Tt := (Gt ,X (t), y(t)) to be a vertex
classification task with graph Gt = (Vt , Et ), corresponding vertex
eatures X (t)

∈ R|Vt |×D, and vertex labels y(t)
∈ N|Vt |. We denote

he set of all classes available at time t as Yt . We assume that the
lass distribution Yt is skewed and that this distribution changes
ver time, e. g.,by adding new classes. Thus, any of the vertices
hat appeared with the graph Gt may have new, so-far unseen
lasses. This means that Yt may contain classes that were not in
t−1.
To ensure that past knowledge is helpful to perform the task

Tt , we impose Gt−1 ∩ Gt ̸= ∅. This means there is at least some

overlap in the two graphs Gt−1 and Gt of two consecutive tasks.



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

w
c
u
s
k
t

W
a
i

e

Fig. 1. Illustration of the problem of lifelong graph learning (Galke et al., 2021)
ith class imbalance and new classes. At each time t , the learner has to
lassify new vertices of task Tt (red). Any task might come with previously
nseen classes. For example, the class ‘‘c ’’ emerged only at task t − 2 and was
ubsequently added to the class set. The learner may use internal and external
nowledge from previous tasks to adapt to the current task. After evaluating
ask Tt , we continue with task Tt+1 .

e assume that the vertices’ features and labels do not change
fter they have appeared, i. e., it holds X (t−1)

u = X (t)
u , y(t−1)

u = y(t)
u

f u ∈ Vt−1 ∩ Vt .
In order to control, i. e., limit the amount, of explicit knowl-

dge available for a task Tt , we introduce the history size c. We
set T̃t := (G̃t , X̃

(t)
, ỹ(t)) with G̃t := Gt \ (G1 ∪ G2 ∪ · · · ∪ Gt−c−1),

i. e., we remove vertices (with their features and labels) and
edges connecting these vertices that are ‘‘older’’ than t − c− 1 to
construct X̃ t and ỹt . Still, the model may use implicit knowledge
acquired by the model parameters through warm restarts in
earlier tasks for the task T̃t .

Based on this formalization, we consider four settings for life-
long learning on graphs: We briefly describe each experimental
setting below and refer to the corresponding sections for the
details.

Two-task setting. The two-task setting is a simplified setting of
lifelong graph learning where we only consider two tasks T1 and
T2 without new classes, i. e., Y1 = Y2. This setting is suitable for
applying our approach to any (non-temporal) standard dataset by
defining T1 as the training graph and T2 as the test graph. We
use this setup to compare transductive and inductive learning on
graphs in Section 6. The goal is to test the effect of including
unlabeled test data during training, which is relevant for the
following settings.

Task-sequence setting. In this setting, one is provided with a
sequence of tasks T̃1, T̃2, . . . , T̃T , each with a limited history size.
We assume that new classes appear over time, i. e., Yt not
necessarily equals Yt−1. Although new classes are present in the
task T̃t ’s data in this setting, no methods are employed to detect
the new classes. Furthermore, the ground-truth labels y(t−1) to
y(t−1−c) are available, when training for the next task T̃t . This
setting is investigated in the experiments of Section 7.

Task-sequence setting with limited labeled data. This setting is
the same as the previous one with the difference that we relax
the assumption that all past labels ỹ are available. Here, only a
fraction of labels becomes available when training for the next
task T̃t instead of the labels of all vertices in the history. This
setting is reflected in the experiments of Section 8.

Task-sequence setting with unseen class detection. In the final vari-
ant, we analyze the capabilities of the GNN models to detect new
classes. In addition to lifelong vertex classification as in previous
task-sequence settings, the models now need to emit a binary
158
decision per vertex whether it belongs to a previously known
class in Yt−1 (in-distribution), or belongs to a new, unseen class
Yt \ Yt−1 (out-of-distribution). This setting is reflected in the
experiments of Section 9.

1.2. Key contributions

We analyze different aspects of lifelong graph learning, de-
tecting new classes and training graph models with skewed class
distributions. This research is based on and significantly extends a
training procedure and framework for lifelong learning published
in our work (Galke et al., 2021; Galke, Vagliano, & Scherp, 2019).
The main findings of our prior work are that warm restarts in
lifelong learning enable one to use fewer training data, i. e., using
a smaller history size. Only a small amount of historical data
is necessary to achieve a performance comparable to retraining,
i. e., cold start on the entire graph. The key contributions of
this work that expand on our previous findings are summarized
below.

Method for detecting new classes in lifelong graph learning. We
extend our previous lifelong graph learning framework (Galke
et al., 2021) with a generic module to detect new classes. For
this module, we compare a naive adaption of DOC from text to
graphs with a proposed extension, gDOC, that takes into account
class imbalance. We find that gDOC outperforms DOC in all cases.
Specifically, in the lowest history size setting, gDOC achieves an
F1 score of 0.33 compared to 0.25 for DOC (32% increase), and the
OOD detection score rises from 0.01 for DOC to 0.09 for gDOC.

Influence of the availability of labels on the performance. We inves-
tigate different settings of varying availability of labels in lifelong
graph learning: First, we add unlabeled data to the graph after
training on the labeled subgraph. We show that adding unlabeled
data does not further increase the performance (Galke et al.,
2019). In the context of lifelong graph learning, this insight shows
that graph models only need to be retrained when new labeled
becomes available. Second, we vary the label rate between 10%
and 90% in a task-sequence lifelong learning setting. We observe a
trend that parameter reuse (warm restarts) is generally preferred
over cold starts and becomes even more relevant with lower label
rates.

The k-neighborhood time difference measure is equivariant to the
temporal granularity of evolving graphs. Our k-neighborhood time
difference measure tdiffk(G) (Galke et al., 2021) captures the tem-
poral differences between connected vertices in evolving graphs.
It can be reused independently from the other methods proposed
in this work. We use the tdiffk(G) measure to determine history
sizes comparable between different temporal graphs with differ-
ing change behavior (fast versus slow changes). Here, we prove
that tdiffk(G) is equivariant to temporal granularity, such as when
having monthly versus yearly time information.

1.3. Organization of the article

Subsequently, we provide an overview of related work. The ex-
tended incremental training algorithm for lifelong graph learning,
as well as our new class detection method gDOC, are described
in Section 3. In Section 4, we describe the k-neighborhood time
differences measure, which we use to determine comparable
history sizes across datasets and provide proof that the measure
is invariant to different temporal granularities. The datasets used
in our experiments are described and analyzed in Section 5. In
Sections 6 to 9, we describe the experimental procedure and re-
port the results of our four experiments. We perform experiments
for each of the four lifelong graph learning settings introduced in



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

S
t
u
t
t
t
m
a
p
a
c
S

2

n

n
i
m
G
m
l
a
I
c
o
p
a

2

c
(
s
h

w
B
t
i
c
S
v
o
n
a
n

I
t
G
2
J
2
t
b
c
t
t
v

a
i

S
h
T
b
j
e
&
Z
P

a
t
w
S
i
s
(
T
i
b

ection 1.1. First, in Section 6, we analyze the difference between
ransductive vs. inductive learning, i. e., the influence of adding
nlabeled data, on standard (static) datasets, pre-processed in ei-
her many-few or few-many train/test splits. Second, we analyze
he case of continually adding labeled data during a sequence of
asks in Section 7. Third, in Section 8, we take the most powerful
ethods and the hardest dataset of the previous experiment to
nalyze the influence of different label rates. Lastly, in the ex-
eriments reported in Section 9, we employ our gDOC method to
utomatically detect new classes while still being able to correctly
lassify the vertices of known classes. The results are discussed in
ection 10 before we conclude.

. Related work and selection of models for experiments

Our work connects with various research areas: graph neural
etworks, lifelong learning, and out-of-distribution detection.
In Section 2.1, we relate our work to the literature on graph

eural networks (Hamilton, 2020). Since our aim is that our
ncremental training algorithm applies to a wide range of GNN
odels, we seek to obtain high coverage among different types of
NN models in our experiments and select a representative GNN
odel for each type. In Section 2.2, we relate our work to the

ifelong learning literature (Chen & Liu, 2018) concerning general
pproaches for non-graph data and approaches for graph data.
n Section 2.3, we relate our work to the literature on unseen
lass detection and approaches to the more general problem of
ut-of-distribution detection while differentiating between su-
ervised and unsupervised, as well as between crisp and scoring
pproaches.

.1. Graph neural networks

The success of graph convolution (Kipf & Welling, 2017) has
aused a resurgence of interest in graph neural networks
Scarselli et al., 2009). In a generic formulation, the hidden repre-
entation of vertex i in layer l is defined as:
(l+1)
i = σ

(∑
j∈N (i)

1
cij
W (l)h(l)

j

)
, where N (·) refers to the set of

adjacent vertices and σ is a nonlinear activation function. The
normalization factor cij depends on the respective model: the
original Graph Convolutional Networks (GCN) (Kipf & Welling,
2017) use cij =

√
| N (i) | ·

√
| N (j) |.

To categorize the vast literature on graph neural networks,
e adopt the distinction of Dwivedi, Joshi, Laurent, Bengio, and
resson (2020) between isotropic and anisotropic GNN archi-
ectures. In isotropic GNNs, all edges are treated equally, while
n anisotropic GNNs, the weights for the edges are dynamically
alculated, e. g.,based on the features of the involved vertices.
imilarly, we differentiate between standard GNN approaches
ersus scalable approaches that rely on either subgraph sampling
r decoupling the neighborhood aggregation from the neural
etwork component. Our goal is to understand how different
pproaches of GNNs react to situations of evolving graphs and
ew classes with an imbalanced distribution.

sotropic graph neural networks. In addition to graph convolu-
ional networks (Kipf & Welling, 2017), examples of isotropic
NNs are GraphSAGE with mean aggregation (Hamilton et al.,
017), DiffPool (Ying et al., 2018), and GIN (Xu, Hu, Leskovec, &
egelka, 2019). We consider GraphSAGE-Mean (Hamilton et al.,
017) as a representative for isotropic GNNs because its special
reatment of the vertices self-connections has been shown to
e beneficial (Dwivedi et al., 2020). The representations of self-
onnections are concatenated with averaged neighbors’ represen-
ations before multiplying the parameters. In GraphSAGE-Mean,
he procedure for obtaining representations on layer l + 1 for
ertex i is given by the equations: ĥ

l+1
i = hl

i ||
1

degi

∑
j∈N (i) h

l
j

and hl+1
= σ (U lĥ

l+1
).
i i

159
Anisotropic graph neural networks. Examples of anisotropic GNNs
include graph attention networks (Veličković et al., 2018), Gat-
edGCN (Bresson & Laurent, 2017), and MoNet (Monti et al., 2017).
We consider Graph Attention Networks (GATs) (Veličković et al.,
2018) to be representative of the class of anisotropic GNNs. In
GATs, the representations in layer l+1 for vertex i are computed
as follows: ĥ

l+1
i = αl

iih
l
i +

∑
j∈N (i) α

l
ijh

l
j and hl+1

i = σ (U lĥ
l+1
i ),

where N (i) is the set of adjacent vertices to vertex i, U l are
learnable parameters, and σ is a non-linearity. The edge weights
αij are calculated using a self-attention mechanism based on hi
nd hj, i. e., the softmax of a(U lhi || U lhj) on the edges, where a
s an MLP and · || · is the concatenation operation.

calable graph neural networks. There are further approaches that
ave been specifically proposed to scale GNNs to large graphs.
hese approaches fall into two categories: decoupling neigh-
orhood aggregation from the neural network component (Bo-
chevski et al., 2020; He et al., 2020; Hu et al., 2021; Rossi, Frasca,
t al., 2020; Wu et al., 2019) and subgraph sampling (Chen, Ma,
Xiao, 2018; Chiang et al., 2019; Hamilton et al., 2017; Huang,

hang, Rong, & Huang, 2018; Zeng, Zhou, Srivastava, Kannan, &
rasanna, 2020).
In simplified GCN (SGC) (Wu et al., 2019), the neighborhood

ggregation of GNNs is decoupled from the feature transforma-
ion. In SGC, any non-linearities are removed, and consecutive
eight matrices are collapsed into a single one. In more detail,
GC can be described by equation ŶSGC = softmax(SKXΘ),where S
s the normalized adjacency matrix andΘ is the weight matrix. As
uch, SGC is a scalable variant of Graph Convolutional Networks
Kipf & Welling, 2017) that admits regular minibatch sampling.
he hyperparameter K has a similar effect as the number of layers
n regular GCNs. Instead of using multiple layers, the k-hop neigh-
orhood is computed by SK , so that SKX can be precomputed. This

makes SGC efficient, while, surprisingly, it does not necessarily
harm performance (Wu et al., 2019). LightGCN (He et al., 2020)
is an approach designed for collaborative filtering that entirely
removes the feature transformation and nonlinear activation and
only builds upon the neighborhood aggregation of GCNs. Since
LightGCN is tailored towards collaborative filtering recommender
systems, we opt for SGC in our experiments.

GraphSAINT (Zeng et al., 2020) is a state-of-the-art subgraph
sampling technique. In GraphSAINT, entire subgraphs are sam-
pled for training GNNs. Subgraph sampling introduces a bias that
is counteracted by normalization coefficients for the loss function.
We used the best-performing random-walk sampling for our ex-
periments. The underlying GNN is exchangeable, but the authors
suggest using Jumping Knowledge Networks (JKNets) (Xu et al.,
2018). JKNets introduce skip connections, or residual connections,
to GNNs: Each hidden layer has a direct connection to the output
layer, in which the representations are aggregated, for example,
by concatenation. FastGCN (Chen, Ma, & Xiao, 2018) is another
sampling-based approach, which proposes importance sampling
for the assembly of rooted subtree batches. However, GraphSAINT
reports a favorable comparison against FastGCN. Thus, we chose
GraphSAINT for our experiments.

Dynamic graph methods. Different GNN methods have been pro-
posed for dynamic graphs. An important distinction here is that,
in contrast to our problem statement, these methods focus on
dealing with varying vertex features and labels over time, e.
g.,a user becomes banned from a social network at a specific
time (Rossi, Chamberlain, et al., 2020).

This body of work includes dynamic embedding methods (Lee
et al., 2021; Nguyen et al., 2018), autoencoder-based methods
(Goyal, Chhetri, & Canedo, 2020; Goyal, Kamra, He, & Liu,

2018), GNNs for graphs with a fixed vertex set (Kumar, Zhang,



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

&
C
S
W
a
v
e
T
‘
t
v
t
m
u

S
e
t
c
v
g
t
f
v
s
i
r
e
b

2

b

L
u
m
Y
o
i
d
w
a
a
l
a
a
l
a
d
e
t
i

p
i
o
i
t
o
c
&
a
d
g
f
l
a

Leskovec, 2018; Manessi, Rozza, & Manzo, 2020; Rossi,
hamberlain, et al., 2020; Sankar, Wu, Gou, Zhang, & Yang, 2020;
eo, Defferrard, Vandergheynst, & Bresson, 2018; Trivedi, Dai,
ang, & Song, 2017; Trivedi, Farajtabar, Biswal, & Zha, 2019),

nd inductive GNN methods that can deal with previously unseen
ertices (Da, Chuanwei, Evren, Sushant, & Kannan, 2020; Pareja
t al., 2020). These methods focus on the case of dynamic outputs.
his means that a vertex can be in class ‘‘a’’ at time t and in class
‘b’’ at time t+1. In our case, the vertex features and labels remain
he same over time, but the graph itself is evolving with new
ertices, edges, and classes appearing over time. On the contrary,
he related approaches assume a static set of vertices, which
akes them inapplicable to the problem of lifelong learning with
nseen class detection that we investigate in this paper.

election of representative base models. For our lifelong learning
xperiments, we systematically select representative GNN archi-
ectures and scalable GNN techniques. From each of these four
ategories (anisotropic versus isotropic GNNs, and preprocessing
ersus sampling), we select one representative for our lifelong
raph learning experiments. We chose GraphSAGE as a represen-
ative for the class of isotropic GNNs, GAT as a representative
or anisotropic GNNs, SGC as a representative for the scaling-
ia-decoupling approach, and GraphSAINT for the scaling-via-
ampling approach. Moreover, we also include JKNets because it
s recommended as a base model for GraphSAINT and because its
esidual connections have been shown to be beneficial (Dwivedi
t al., 2020). Lastly, we also include an MLP as a graph-agnostic
aseline in all of our experiments.

.2. Lifelong learning

We first summarize the general literature on lifelong learning,
efore describing the related work on lifelong learning on graphs.

ifelong learning on non-graph data. Lifelong learning, or contin-
al learning (Lopez-Paz & Ranzato, 2017), has been present in
achine learning research since the mid 1990s (Liu, 2017; Silver,
ang, & Li, 2013; Thrun, 1998; Thrun & Mitchell, 1995). The goal
f lifelong learning is to develop approaches that can adapt exist-
ng models to new tasks. Although similar on a superficial level, it
iffers from online learning (Herbster, Pontil, & Wainer, 2005), in
hich the focus is on processing a data stream efficiently. Ruvolo
nd Eaton (Ruvolo & Eaton, 2013) introduced a lifelong learning
lgorithm with convergence guarantees that employs multitask
earning so that later tasks can improve earlier tasks. Fei, Wang,
nd Liu (2016) analyzed SVMs in a lifelong learning environment
nd introduced cumulative learning. Cumulative learning is re-
ated to our approach since we consider that some data are shared
mong the tasks. Lopez-Paz and Ranzato (2017) introduced a gra-
ient episodic memory framework for the image domain, where
xamples can be processed independently, and address the catas-
rophic forgetting problem, i. e., the loss of previously learned
nformation when new information is learned (Robins, 1995).

Similarly to our work, Wang, Chen, Li, and Chen (2021) decom-
ose lifelong learning into the subproblems of rejecting unknown
nstances, classifying accepted instances, and reducing the cost
f learning. However, the work of Wang et al. is on image data,
n which the examples are independent of each other, and thus
he challenges of dealing with graph data are not reflected. An-
ther promising approach to lifelong learning, and in particular
lass-incremental learning, is iCaRL (Rebuffi, Kolesnikov, Sperl,
Lampert, 2017), in which prototype vectors of known classes

re stored and classification is carried out by taking the nearest
istance to these prototypes. However, applying this method to
raph data is nontrivial because the vertices are not independent
rom each other, but connected via edges. For an overview of
ifelong learning in general (not specific to graphs), we refer to
recent textbook (Chen & Liu, 2018).
160
Lifelong learning on evolving graphs. We now focus on the related
work on lifelong learning on graphs. The challenge of dealing with
graph data is a special challenge for lifelong learning approaches.
That is because in graphs the nodes are not independent of each
other because they are connected through edges. Related work
on lifelong learning on graphs is still rather limited. We refer
to Febrinanto et al. (2022) for a recent survey that covers five
recent works on graph lifelong learning.

The most similar approach to ours is Experience Replay GNN
(Zhou & Cao, 2021), which proposed to overcome catastrophic
forgetting (French, 1999), i. e., the problem of previous knowledge
being quickly forgotten when models are adjusted to new tasks.
The Replay GNN adapts to new tasks with the help of an experi-
ence replay buffer. The buffer holds a subset of the graph that is
determined on the basis of different selection strategies: mean of
features, coverage maximization, or influence maximization. This
work is conceptually similar to our work. However, we use the
time information from the nodes in conjunction with a history
size to determine which part of the graph is kept in memory.

Wang et al. (2022) proposed a very different strategy to tackle
lifelong learning on graphs. Their main goal was again to alleviate
catastrophic forgetting. The authors explored a preprocessing
step that transforms the vertex classification task into a graph
classification task, i. e., each vertex is converted into a feature
graph. Therefore, vertices become independent so that they can
follow the lifelong learning approach from Lopez-Paz and Ranzato
(2017) (see above).

Continual-GNN (Wang et al., 2020) addressed the issue of
catastrophic forgetting with a regularization approach. The au-
thors detected new patterns in the data (but not involving any
new classes) with an information propagation method. Then they
used a combination of experience replay and model regulariza-
tion to avoid catastrophic forgetting. The result was that their
approach leads to performance comparable to model retraining.
In relation to this work, we also compare our lifelong-learned
models against models retrained from scratch for each task (cold
restart) but additionally consider other conditions such as the
history size.

Another recent approach (Cai et al., 2022) uses neural architec-
ture search to find a suitable model architecture for lifelong learn-
ing on graphs. In particular, the proposed approach focuses on
multimodal inputs, such as features extracted via BERT (Devlin,
Chang, Lee, & Toutanova, 2019) and vision transformers (Dosovit-
skiy et al., 2021), rather than dealing with new classes and how
to detect them.

Liu, Yang, and Wang (2021) decompose the lifelong learning
problem into incremental training over separate tasks, where the
class labels are disjunct between tasks (class-incremental). The
primary aim is to alleviate catastrophic forgetting. In contrast,
we focus on forward transfer, i. e., understanding if previously
acquired knowledge is helpful for future tasks given that there
is some overlap between classes in the tasks. In addition, we
consider the detection of new classes as part of the problem
statement.

Tan, Ding, Guo, and Liu (2022) formulate a few-shot class-
incremental version of the lifelong learning problem statement
and a hierarchical attention-based graph meta-learning approach.
The work introduces a regularization objective that aims to avoid
overfitting to both, the known classes and new class(es). Their
version of the problem statement assumes that some of the new
classes’ vertices are annotated with a label. In contrast, there are
no annotations for the new classes in our problem statement. In
other words, we seek to detect vertices that do not belong to any
of the known classes, while Tan et al. assume that some labeled
information is present such that the few-shot learning setting

applies. Both versions have their merits, yet they differ in their



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

p
f
a

c
t
m
d
p
c
i
h
l

2

a
g
r

U
s
l
d
L
L
d
t
w
p
p
w

S
e
t
M
c
i
o
f
t
m
H

C
i
c
t
u
F
F
g
T
o

t
t
a
m
d
t
i
2

l
w

s
c
D
b
m
a
a

i
t
i
e
c
a

2

t
l
o
f
k
d
w
w
r
e
t
t
g
w

3

g
a
i
e
i
2
c

3

A
a
t
a
w
b
p
n
r
c
n
h
|

ossible use cases: Tan et al. aim to integrate new classes with as
ew labeled data as possible, while we focus on the problem of
utomatically detecting new classes.
So far, none of the related works on lifelong learning in graphs

onsidered the problem of detecting unseen classes and rejecting
he classification of the respective vertices. Knowing when a
odel is likely to make mispredictions is a crucial property for
eploying reliable systems in practice, which motivates us to ex-
lore the combination of lifelong learning on graphs and unseen
lass detection. Moreover, labeled data is often not fully available
n real-world conditions, which we investigate here because it
as not yet been considered in previous work on lifelong graph
earning.

.3. Out-of-distribution and unseen class detection

Unseen class detection, or open-world learning, is considered
subcategory of lifelong learning (Chen & Liu, 2018). Still, more
eneral methods for out-of-distribution (OOD) detection are also
elated to the problem of detecting unseen classes.

nsupervised out-of-distribution detection. A key challenge is that
oftmax activation, often used as the final layer of classification,
eads to highly confident mispredictions even when the input
ata are far from the training distribution. To address this, Liang,
i, and Srikant (2018) resorted to temperature scaling, while
ee, Lee, Lee, and Shin (2018) proposed using the Mahalanobis
istance. Macêdo and Ludermir (2021), Macêdo, Ren, Zanchet-
in, Oliveira, and Ludermir (2021) replaced softmax activation
ith IsoMax activation based on entropy. However, all these ap-
roaches only produce an OOD score and neglect the thresholding
roblem; i. e., they cannot produce crisp decisions for each vertex
hether it belongs to a new class or not.

upervised out-of-distribution detection. Other approaches rely on
xplicit outlier data that can be used for supervised training of
he outlier module (Dhamija, Günther, & Boult, 2018; Hendrycks,
azeika, & Dietterich, 2019). This is difficult to apply here be-
ause we do not distinguish between out-of-distribution and
n-distribution but between previously seen classes and previ-
usly unseen classes. When we had appropriate training data
or the unseen classes, we could train directly on them rather
han considering them as OOD. For a detailed discussion of OOD
ethods, we refer to recent surveys (Pang, Shen, Cao, & van den
engel, 2021; Yang, Zhou, Li, & Liu, 2021).

risp and unsupervised unseen class detection. We are particularly
nterested in methods that emit a crisp decision on whether the
lassification of an instance (a new vertex) should be rejected. In
his regard, there are several approaches to detect new classes
sing classic machine learning methods (Bendale & Boult, 2016;
ei et al., 2016; Masud, Gao, Khan, Han, & Thuraisingham, 2011).
or example, Wu, Pan, and Zhu (2020) have used variational
raph autoencoders for uncertain vertex representation learning.
hey generate multiple versions of features and test the certainty
f a vertex belonging to a known class.
In Deep Open Classification (DOC) (Shu et al., 2017), the au-

hors proposed a method for the detection of new classes in
ext categorization. To perform the detection, the final softmax
ctivation of a neural network is replaced by elementwise sig-
oid activation. Then, they derived a threshold for unseen class
etection by measuring the logits’ standard deviation across the
raining set. Their experiments on datasets with balanced classes
ndicated that DOC is preferable to OpenMax (Bendale & Boult,
016) and cbsSVM (Fei et al., 2016).
Xu, Liu, Shu, and Yu (2019) propose L2AC for open-world

earning in product classification with text data. The L2AC frame-
ork is composed of a ranker and a meta-classifier. The ranker
161
retrieves examples from seen classes, which are fed into the
meta-classifier to classify the current example or reject its clas-
sification. The meta-classifier consists of a matching layer and an
aggregation layer. The one-vs-many matching layer determines
the similarity to each known class via the top-k known exam-
ples. The aggregation layer, a many-to-one BiLSTM, merges the k
imilarity values into an OOD score per class. After a final fully-
onnected layer, the classification rule is similar to the one of
eep Open Classification: reject if the score of all classes falls
elow a threshold of 0.5, or else assign the class label with the
aximum logit. Thus, the class detection of L2AC corresponds to
special case of both DOC and gDOC with a fixed threshold of 0.5
nd without risk reduction.
Reusing existing OOD detection methods for graphs with

nterconnected nodes (non-i.i.d.) and imbalanced class distribu-
ions is not straightforward. While technically possible, combin-
ng graph neural networks with standard OOD methods is rarely
valuated. Here, we transfer the most promising method that is
apable of crisp new class detection, DOC, from text to graphs,
long with an extension to account for class imbalance.

.4. Summary

To summarize, lifelong learning on graphs is a new research
opic with only a few previous works. The previous works on life-
ong graph learning mainly tackle catastrophic forgetting in class-
r data-incremental settings on standard datasets. In contrast, we
ocus on forward transfer, i. e., whether and how much previous
nowledge is helpful for future tasks, and use evolving graph
atasets close to assumed applications None of the discussed
orks analyzes the problem of new class detection on graph data
e tackle in this work. Moreover, we analyze the effects of label
ate, history size, and parameter reuse in incremental learning on
volving graphs with selected representative GNN base models
o obtain a complete picture. Although OOD methods are related
o new class detection, dealing with interconnected vertices in
raphs with imbalanced class distributions is a new challenge,
hich we tackle in this work.

. Lifelong and open-world graph learning

We explore the combination of lifelong learning on evolving
raphs and new class detection on evolving graphs with imbal-
nced class distributions. In the following, we recapitulate the
ncremental training algorithm (Galke et al., 2021), which we
xtend by a generic module for unseen class detection. Then, we
ntroduce our gDOC method, an extension of DOC (Shu et al.,
017) for unseen class detection, and show how it can be used in
onjunction with incrementally trained graph neural networks.

.1. Training procedure for lifelong graph learning

Our incremental training algorithm for GNNs is shown in
lgorithm 1. We assume to have a sequence of T tasks T1, . . . , TT
nd a model f with parameters θ . Throughout the sequence of
asks, the graph changes in the sense that vertices and edges
re inserted and deleted. Crucially, the new vertices can come
ith new classes that have not been part of the training data
efore. To address these changes, we use the incremental training
rocedure from our prior work (Galke et al., 2019) for adapting
eural networks to new tasks. As a preparation for task Tt , we
etrain f on the labels of Tt−1 to obtain θ (t). Whenever l new
lasses appear in the training data, we add the corresponding
umber of parameters to the output layer of f (t). Therefore, we
ave |θ (t)

output weights| = |θ
(t−1)
output weights| + l · dh and |θ (t)

output bias| =

θ
(t−1)

| + l, where d is the output layer size.
output bias h



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

d
e

s
a
d
l
O
b
d

t
g
W
n
f
t

s
A
w
d

F

These parameters that model the new classes are randomly
initialized. For the other parameters, we consider two options
in our incremental training procedure: warm restarts and cold
restarts. With cold restarts, we reinitialize θ (t) and retrain from
scratch. On the contrary, when using warm restarts, we initialize
the parameters for training on task Tt with the final parame-
ters of the previous task θ (t−1). Furthermore, we incorporate a
generic module (lines 12–14) for unseen class detection in the
incremental training algorithm. This operates on the logits of the
final output layer and determines whether the classification of a
particular vertex should be rejected because it belongs to a class
that was not part of the training data.

Algorithm 1 Incremental training for lifelong graph learning un-
er cold-start vs. warm-start condition (extended from (Galke
t al., 2021)) .

Require: Sequence of tasks T̃0, · · · , T̃T , model f with parameters
θ , flag for cold or warm restarts Output: Predicted labels
for new vertices of each task along with decision whether it
belongs to a previously known class

1: known_classes← ∅
2: θ ← initialize_parameters()
3: for t ← 1 to T do ▷ Iterate through task indices
4: new_classes← set(ỹ(t−1)) \ known_classes
5: if new_classes ̸= ∅ then
6: θ ′ ← expand_output_layer(θ , |new_classes|)
7: end if
8: θ ′ ← initialize_parameters()
9: if t > 1 and do_warm_restart = TRUE then

10: θ ′ ← copy_existing_parameters(θ ) ▷ Reuse prev.
model

11: end if
12: θ ′ ← train(θ ′, G̃t−1, X̃

(t−1)
, ỹ(t−1)) ▷ Train model on prev.

task
13: ŷ(t)

logits ← predict(θ ′, G̃t , X̃
(t)
) for Vt \ Vt−1 ▷ Predict on

new nodes
14: mood(t)

= unseen_class_detection(ŷ(t)
logits) ▷

OOD-Detection

15: ŷ(t)
pred,i =

{
OOD ifmood, i(t) = TRUE
argmax(ŷ logits(t),i), otherwise

16: known_classes← known_classes ∪ new_classes
17: θ ← θ ′

18: end for

3.2. Self-detection of new classes using our gDOC method

A successful model for lifelong learning would not only clas-
ify new data into known classes but would also detect when
n instance belongs to a previously unseen class. We seek to
evelop a generic method that is not specific to any particu-
ar GNN architecture. Thus, we take inspiration from the Deep
pen Classification (DOC) (Shu et al., 2017) approach that has
een proposed for text classification and transfer it to the graph
omain.
The key challenges of transferring the DOC method from text

o lifelong learning on graphs are how to deal with non-i.i.d.
raph data and how to deal with an imbalanced class distribution.
e tackle these challenges by combining DOC with a graph
eural network and by weighting the binary cross-entropy loss
unction with the proportions of the class labels seen during
raining.

Fig. 2 visualizes how we integrate an OOD detection module,
uch as DOC, into our lifelong node classification framework.
standard graph neural network emits logits for each vertex,
hile the OOD detection module predicts whether a vertex is in-
istribution (ID) or OOD. If the OOD detector emits OOD, we reject
162
to classify the respective vertex with any of the known classes
and assume that a new class has been observed. If the vertex is
considered ID, the class label is assigned that corresponds to the
maximum logit value.

To facilitate OOD detection, the key idea of DOC is to re-
place the final softmax activation with element-wise sigmoid
activation. Hence, the training objective becomes binary cross-
entropy rather than categorical cross-entropy. Then, thresholds
on the logit distribution over all known classes are used to de-
termine whether the new example belongs to an already known
class or not. Below, we briefly summarize the key risk reduction
technique proposed in the original DOC, before we describe our
extensions.

Thresholds and risk reduction in DOC. To make a clear decision,
a threshold is necessary to determine whether a vertex is con-
sidered out of distribution (OOD) at the test time. When the
output for all classes falls below the threshold, the classification
of that vertex is rejected, i. e., the vertex is considered OOD.
Such thresholds can be global or class-specific. A natural choice
for a global threshold τ is the inflection point of the sigmoid
function, i. e., setting τ = 0.5. However, estimating class-specific
thresholds can further reduce the risk of incorrectly rejecting the
classification of a known class. A strategy for estimating class-
specific thresholds is to consult the standard deviation of logits
in the training data (Shu et al., 2017). To determine a threshold
τi for class i, the risk reduction technique proposed in DOC (Shu
et al., 2017) collects all model outputs for instances of class i.
or all these outputs ŷ ∈ [0, 1], a mirror point 1 + (1 − ŷ) is

created, assuming a Gaussian distribution with mean 1. On this
distribution, the standard deviation SDi is calculated to assign
the class-specific threshold τi := max{τmin, 1 − α · SDi}, where
α is a scaling factor for the standard deviation and τmin is the
minimum threshold. For α, the original work suggests a value of
3. The authors use a fixed τmin = 0.5.

Extension to deal with class imbalance (gDOC). Here, we transfer
the DOC method to the graph domain. This comprises changing
the base model from a 1D-CNN on text to a GNN operating on
graphs, as well as changing the loss function for node classi-
fication from categorical cross-entropy to binary cross-entropy.
In this way, we can employ the same strategy as the original
work on DOC for detecting new classes. Throughout this work,
we denote this adaptation from text to graph data as ‘‘DOC’’.

We propose an extension, which we denote as gDOC, to make
DOC more suitable for lifelong learning on graphs, where we have
to deal with a highly imbalanced class distribution. We use a GNN
model to emit the logits and adjust the loss scaling of binary
cross-entropy to account for class imbalance, which is inevitable
in real-world graph data. This is particularly important for unseen
class detection because here the magnitude of all outputs is
relevant for the final decision, rather than only their maximum
value. In detail, if class i appears n+ times in the training data, we
multiply the loss of output i by the factor n−n+

n+ . This is a standard
weighting procedure for binary cross-entropy that increases the
loss according to the fraction of positive versus negative examples
within the training data (cf. (Aurelio, de Almeida, Castro, & de
Pádua Braga, 2019)). We denote this variant as gDOC. Further-
more, our experiments will carefully investigate different values
for τmin, while the original DOC (Shu et al., 2017) used a fixed
minimum threshold of τmin = 0.5. Similarly, we also closely
investigate the effect of the risk reduction factor α.

3.3. Summary

We have extended the incremental training algorithm with
a generic unseen class detection module. As an unseen class



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

g
s
t
b
a
c
t
t
a
t

I
c
t
i
m
t

4

a
c
w
t
o
v

(
t

Fig. 2. Procedure of node classification and OOD detection during the execution of a task in lifelong learning. The output logits of the graph neural network are
used in two ways. Once to determine the most likely in-distribution class and once to determine whether the example is in-distribution (belongs to a known class)
or out-of-distribution. When an example is detected as in-distribution, we return the argmax of the logits. Otherwise, the example is marked as out-of-distribution.
n
t
t
c
k
t

m

detection module, we introduce gDOC as an extension of the
DOC method from text to the challenges of lifelong learning with
graph neural networks. Note that both our adaptation of the
original DOC to graphs (abbreviated simply as DOC) as well as our
extended version (gDOC) can be employed in conjunction with
arbitrary GNN base models.

4. Measure of k-neighborhood time differences

Real-world graphs grow and change at different speeds (Ag-
arwal & Subbian, 2014). Some graphs change quickly, such as
ocial networks, while others evolve rather slowly, such as ci-
ation networks. Furthermore, the graphs show different change
ehavior, i. e., different patterns in how vertices and edges are
dded and removed over time. Therefore, depending on the spe-
ific graph data, a different history of the data must be used for
raining to take these factors into account. To obtain absolute his-
ory sizes that are comparable across different temporal graphs,
measure is needed that provides a history size that is agnostic
o the specific change dynamics of the graph (slow vs. fast).

Below, we first introduce such a measure, which we call tdiffk.
n the experiments, we will use the tdiffk measure to derive
andidate history sizes as percentiles of the time differences in
he data. Applying the measure can be regarded as a preprocess-
ng step. Subsequently, we show that the history sizes that our
easure produces are equivariant to the temporal granularity of

he graph.

.1. Formal definition of the tdiffk measure

The k-neighborhood Time Difference Distribution measure
tdiffk (Galke et al., 2021) enumerates the distribution of time
differences within the k-hop neighborhood of each vertex. This
corresponds to the receptive field (Chen, Zhu, & Song, 2018) of
GNN with k-many graph convolutional layers. Intuitively, we
ollect the time differences between all pairs of vertices v and w,
hich are reachable within at most k edges. We aggregate these
ime differences based on frequency, i. e., we obtain the number
f times a certain time difference has been observed between
and w in the dataset. On this distribution of time differences

represented as a multiset), we compute the percentiles and use
hem as candidate history sizes.
163
Fig. 3. Example of time differences tdiff2(G) for hops at distance of up to 2
from each vertex. Solid lines are edges. Dashed lines indicate paths of length
two. Annotations show the time difference between the endpoints of the path.
The multiset tdiff2(G) holds the resulting time differences. Note that zeros are
counted in both directions as both fulfill the time(u) ≤ time(v) condition.

Definition 2 (k-Neighborhood Time Difference Distribution). Given
a graph G = (V , E) and let N k(u) be the k-hop neighborhood
of vertex u ∈ V with respect to E, i. e., the set of vertices that
are reachable from u by traversing at most k edges. Let time :
V → N be a function that returns the time information for each
vertex v (timestamp metadata), e. g.,the year of publication when
considering a citation graph. We define tdiffk(G) as multiset of
time differences, computed over all vertices u ∈ V to their up
to k-distant neighboring vertices v ∈ N k(u) that occurred before
vertex u.

tdiffk(G) := {time(u)− time(v) | ∀u ∈ V ∀v ∈ N k(u)
with time(v) ≤ time(u)}

The multiset tdiffk maps each time difference to the respective
umber of occurrences and is interpreted as a distribution over
ime differences. It is used to analyze the temporal distribution of
he vertices in a dataset (using percentiles) and to make datasets
omparable. Fig. 3 presents an exemplary computation of the
-neighborhood time differences tdiff2 on a graph with five ver-
ices and five edges. In this example, the 25th percentile of tdiff2
is 0, the 50th is 1 (also known as median), and the 75th is also 1.

The tdiffk measure is used in our experiments to compare
odels trained with a limited history size against models trained

with the full history. Thus, we calculate the 25th, 50th, and 75th



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

p
a
o

4

c

a

t

t
s
s
(
c
g

e
a
t
f
s
b
r
|

i
s

P

ercentiles of the tdiffk distribution, which we then compare
gainst the full graph (100th percentile) to analyze the influence
f explicit knowledge.

.2. Equivariance to temporal granularity

Any good measure to determine the discrete history sizes
: (V , E, t) ↦→ N in evolving graphs should be equivariant to

granularity to ensure comparability between different datasets
and different granularities. This means that if we change the
perspective, for instance, from years to months, we should get
history sizes that are about 12 times larger (on the same data).

More formally, consider two different time measurement func-
tions t, t ′ : V → N>0 whose values differ by a constant factor
a ∈ R+ such that t(u) = ⌊ t

′(u)
a ⌋ for all u ∈ V . For example,

= 12 when comparing the granularities of months t ′ and years
t . In fact, two arbitrary discrete time measurement functions
differ by a constant factor with one being coarser-grained (larger
denominator) than the other or both being equal (a = 1). Then,
the derived history sizes should not differ by more than the
ratio between the granularity values, i. e., for the measure c
o determine the history sizes it should hold that c(V , E, t ′) ∈
[a · c(V , E, t) − a; a · c(V , E, t) + a] where t ′ ∈ [a · t − a; a ·
+ a] for all u ∈ V . In the example above, a good measure c
hould return a history size times 12 plus/minus 12 when we
witch the perspective from the year level t to the month level t ′
ratio: a = 12) on the same data. This property is also crucial for
omparable history sizes across datasets with different temporal
ranularities.
Here, we briefly show that our k-neighborhood time differ-

nce measure tdiffk is equivariant to temporal granularity: We
ssume without loss of generality that t ′ is more fine-grained
han t , i. e., a > 1. Because tdiffk is a multiset of time dif-
erences from which we take percentiles to determine history
izes, it is sufficient to show that the time difference t(u) − t(v)
etween two vertices u, v ∈ V is equivariant to the tempo-
al granularity factor a, or more precisely: ∀u, v ∈ V : a ·
t(u)− t(v)| ∈

]
|t ′(u)− t ′(v)| − a; |t ′(u)− t ′(v)| + a

[
, where ]·, ·[

indicates an open interval.

Prerequisite (PRE). With t(u) =
⌊

t ′(u)
a

⌋
we have t ′(u)

a ≤ t(u) <

t ′(u)+a
a ⇒ t ′(u) ≤ a · t(u) < t ′(u)+ a. Note that the left-hand side

s less than or equal due to rounding down, while the right-hand
ide adds a time step a, which makes it a true inequality.

roof. Using the prerequisite, we now show that

(i) a · |t(u)− t(v)| > |t ′(u)− t ′(v)| − a, and
(ii) a · |t(u)− t(v)| < |t ′(u)− t ′(v)| + a

via case differentiation.
Case (i–a): t(u) = t(v) The left-hand side of inequality (i)

becomes zero and it remains to show that |t ′(u) − t ′(v)| < a.
We apply (PRE) to find the highest possible value for the term
|t ′(u)− t ′(v)| with respect to t such that the term is still smaller
than a. The highest possible value for t ′(u), expressed in terms of
t , is a · t(u) + ϵ with 0 < ϵ < a. This is because a · t(u) is the
upper bound of t ′(u) in the inequality of the prerequisite (PRE)
and we insert a small but positive ϵ to account for ‘‘truly lesser’’.
The smallest possible value for t ′(v) is a · t(u). Again, we take this
value a · t(u) from the prerequisite, where it is the lower bound
for t(u). Then, we have |a · t(u) + a − ϵ − a · t(v)| < a. Now, as
t(u) = t(v), we obtain |a− ϵ| < a.

Case (i–b): t(u) ̸= t(v) We transform the left-hand side of (i)
to |a · t(u)−a · t(v)|, while recalling that t ∈ N>0. We use (PRE) to
obtain |t ′(u)−t ′(v)| as the smallest possible value on the left-hand
164
side. Now, the left and right sides are the same except for −a on
the right. As a > 1 (is positive), inequality (i) is valid.

Case (ii–a): t(u) = t(v) The left-hand side of (ii) becomes zero
and it remains to show that 0 < |t ′(u)− t ′(v)| + a, which is true
because a > 1.

Case (ii–b): t(u) ̸= t(v) Again, we transform the left-hand
side of (ii) to |a · t(u) − a · t(v)|. This time, we are interested
in the highest possible value with respect to (PRE), which is
|t ′(u) + a − ϵ − t ′(v)| with 0 < ϵ < a. This is because the
highest possible difference is between the upper bound t ′+a− ϵ

and the lower bound t ′. With the triangle inequality, we obtain
|t ′(u)+a− ϵ− t ′(v)| ≤ |t ′(u)− t ′(v)|+ |a− ϵ| < |t ′(u)− t ′(v)|+a,
which holds because |a− ϵ| < a. This concludes the proof. □

4.3. Summary

The k-neighborhood Time Difference Distribution tdiffk mea-
sures the granularity and temporal connectivity patterns of the
given graph dataset with vertex-level time information. In gen-
eral, we can hardly assume that any absolute history size on
dataset A would be comparable to the same history size on
dataset B. But if we derive the history size from tdiffk, e. g.,the
median of tdiff2, we have a strategy to find comparable history
sizes across datasets, even if they come from different domains,
e. g.,social graphs with postings at the minute level versus citation
graphs with data on, at least, daily level. This is because our tdiffk
measure is equivariant to granularity and is based solely on time
differences between the connected vertices.

5. Datasets and analyses

Adapting models to new data is an important problem when-
ever machine learning models are deployed in production. How-
ever, many graph benchmark datasets are stripped of any
temporal data, which is needed to divide the data into realistic
partitions for lifelong learning, i. e., a sequence of tasks. To
build a lifelong vertex classification dataset with new classes, the
following criteria need to be fulfilled:

• attributed vertices,
• vertex labels,
• time information on the vertices,
• evolving set of vertices (and thus also edges) over time,
• evolving set of classes over time, especially the occurrence

of new classes.

We scan the literature (e. g., (Da et al., 2020; Dwivedi et al.,
2020; Pareja et al., 2020)) and common dataset collections (Open-
GraphBenchmark (Hu et al., 2020), KONECT,2 and PyTorch Geo-
metric Temporal3) for datasets that met the criteria above.

Surprisingly, preprocessed graph datasets that meet these cri-
teria are rare, even though the raw origin of these datasets (social
media data, publication metadata) would meet the requirements.
In those datasets, in which time information is available, either
the graph is static, i. e., it is not an evolving graph, or the set
of classes is static, i. e., there are no newly appearing classes
over time. Concurrent work on lifelong learning composes the
sequence of tasks by synthesizing an ordering of the vertices in
static graph datasets (Wang et al., 2022), i. e., data-incremental
or class-incremental experimental setups.

In this work, we seek to understand how our methods deal
with real-world datasets, i. e., we simulate the evolution of the

2 http://konect.cc/
3 https://pytorch-geometric-temporal.readthedocs.io/

http://konect.cc/
https://pytorch-geometric-temporal.readthedocs.io/


L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

w
c
l

5

t
f
v
t
f
T
m
&
d

o
u
s
t
c
m
i
t
S
a
f
a
S
a
d
S

5

e
t
h
w

a
t

Table 2
Statistics for train–test splits: few-many (A) and many-few (B) settings on the
citation networks datasets: Cora, Citeseer, and Pubmed. The unseen vertices and
edges are available only after the training epochs. The test samples for measuring
accuracy are a subset of the unseen vertices. The label rate is the percentage of
labeled vertices for training.
Dataset Cora Citeseer Pubmed

Classes 7 6 3
Features 1,433 3,703 500
Vertices 2,708 3,327 19,717
Edges 5,278 4,552 44,324
Avg. Degree 3.90 2.77 4.50

Setting A B A B A B

Train Vertices 440 2,268 620 2,707 560 19,157
Train Edges 342 3,582 139 2,939 34 41,858
Unseen Vertices 2,268 440 2,707 620 19,157 560
Unseen Edges 4,936 1,696 4,413 1,613 44,290 2,466
Test Samples 1,000 440 1,000 620 1,000 560
Label Rate 16.2% 83.8% 18.6% 81.4% 2.8% 97.2%

graph along the time axis and add new vertices and edges accord-
ing to the time stamps of the vertices. For our first experiment, we
used two different splits on standard benchmark datasets with
static graphs, which are described next. We can use these datasets
to simulate two steps of a temporal graph, where the training
data is step one and the unlabeled test data is step two. Thereafter,
e describe our own temporal datasets that we contribute to the
ommunity and use for the other three experiments on lifelong
earning.

.1. Static graph datasets

Cora, Citeseer, and PubMed are standard datasets for the ver-
ex classification task (Sen et al., 2008), which we use for our
irst experiments on transductive versus inductive learning. The
ertices of the graph are research articles represented by tex-
ual features and annotated with a class label. Edges are de-
ined by citation relationships but are considered bidirectional.
hese datasets are often used in transductive learning environ-
ents (Kipf & Welling, 2017; Veličković et al., 2018; Yang, Cohen,
Salakhutdinov, 2016). In our experimental setup, we use these
atasets to compare inductive vs. transductive learning.
We prepare the static graph datasets in two ways: either a lot

f training data and a few test data, or vice versa. Specifically, we
sed two different train–test splits for each dataset, which we call
etting A and setting B. The setting A is derived from the original
rain–test split for transductive tasks (Kipf & Welling, 2017). It
onsists of a few labeled vertices that induce our training set and
any unlabeled vertices. Setting B instead comprises many train-

ng vertices and few test vertices. We set it up by inverting the
rain–test mask of Setting A and assigning the edges accordingly.
etting B is motivated by applications, in which a large graph is
lready known and incremental changes occur over time, such as
or citation recommendations, link prediction in social networks,
nd others (Aggarwal & Subbian, 2014; Galke, Mai, Vagliano, &
cherp, 2018). We refer to Table 2 for the details of the datasets
nd the two settings. We used these three datasets with two
ifferent train–test splits in our first experiment described in
ection 6.

.2. Evolving graph datasets

We published three graph datasets for lifelong learning (Galke
t al., 2021): one co-authorship graph dataset (PharmaBio) and
wo DBLP-based citation graph datasets (DBLP-easy and DBLP-
ard). For PharmaBio, the classes are journal categories. For DBLP,
e use conferences and journals of published papers as classes.
 s

165
Table 3
Global dataset characteristics: total number of vertices |V |, edges |E|, features D,
nd classes |Y| along with number of newly appearing classes (in braces) within
he T evaluation tasks.
Dataset |V | |E| D |Y| T

DBLP-easy 45,407 112,131 2,278 12 (4 new) 12
DBLP-hard 198,675 643,734 4,043 73 (23 new) 12
PharmaBio 68,068 2,1M 4,829 7 (0 new) 18

Since we select those venues with the most publications, this
serves as a proxy for a broad categorization. When new confer-
ences and journals emerge, as they do in computer science, new
classes appear in the data.

The datasets were generated by imposing a minimum thresh-
old of publications per class per year: 100 for DBLP-easy, 45 for
DBLP-hard, and 20 for PharmaBio. For the co-authorship graph
PharmaBio, we additionally require a minimum of two publi-
cations per author per year. In all datasets, vertex features are
normalized TF–IDF representations of the publication title.

5.2.1. Basic characteristics
Table 3 summarizes the basic characteristics of the datasets.

DBLP-easy and DBLP-hard are organized into 12 annual snap-
shots, while PharmaBio has 18 annual snapshots. DBLP-easy has
45k vertices, 112k edges, and a feature dimension of 2,278. The
vertices are assigned to one of 12 classes, of which four only
appear during the sequence of snapshots, i. e., they are not
present in the first snapshots. DBLP-hard has 199k vertices, 644k
edges, and a feature dimension of 4,043 (because the word vocab-
ulary is set up based on occurrences within documents). Twenty-
three of the 73 classes appear only during subsequent snapshots.
PharmaBio comes with 68k vertices, 2.1M edges, feature dimen-
sion 4,829, 7 classes, and 18 snapshots. The number of edges
is much higher than in the DBLP variants because PharmaBio is
a coauthorship graph, which is denser than the citation graphs.
Note that DBLP-easy is a subset of DBLP-hard as both were
generated by applying a minimum threshold on the number of
publications per class.

We report the label distribution of the datasets, the degree
distribution, and the distribution over time in Fig. 4. The annual
number of publications grows over time. Only in PharmaBio,
there is a higher amount of vertices between 1991–1997 than
between 1998 and 2003. The global degree distributions of DBLP-
easy and DBLP-hard seem to follow a power-law distribution
(Newman, 2005) as the degree distribution is almost a straight
line except for the blurry tail. For PharmaBio, the degree distri-
bution is more blurry, while a trend line can still be identified.
Furthermore, we observe that the number of examples per class is
imbalanced in all three datasets. Although the three datasets have
different numbers of classes, the shape of the label distributions
is similar.

5.2.2. Changes in the class set and distribution shift
Regarding changes in the set of classes, DBLP-easy has 12

venues in total, including one biannual conference and four
venues, which appear in 2005, 2006, 2007, and 2012. DBLP-hard
has 73 venues, including one discontinued, nine biannual, six
irregular venues, and 23 new venues. To quantify the changes in
the class set, we calculate the magnitude of the class drift as the
total variation distance (Webb, Hyde, Cao, Nguyen, & Petitjean,
2016; Webb, Lee, Goethals, & Petitjean, 2018):

σt−1,t =
1
2

∑
y∈Yt−1∪Yt

|Pt−1(y)− Pt (y)|

where Pt (y) is the observed class probability at time t . We vi-
ualize the drift magnitudes per dataset in Fig. 5. An IID dataset



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

D

d
I

w
t
t
P
i

5

Fig. 4. Distribution of vertices per year on log scale (left column), degree distributions (middle column), label distributions (right column), for our new datasets:
BLP-easy (top row), DBLP-hard (middle row), PharmaBio (bottom row).
Fig. 5. Magnitude of the class drift per dataset. The drift within the PharmaBio
ataset (no new classes) is lower than the drift of both DBLP variants.
ndependent and identically distributed data would have drift magnitude zero.

ould have a drift magnitude of zero by definition. As expected,
he drift magnitude is high (between 0.12 and 0.16) for the
wo datasets with new classes: DBLP-easy and DBLP-hard. On
harmaBio, which does not have new classes, the drift magnitude
s consistently lower than 0.07.

.2.3. Analyzing time differences using tdiffk
We analyze each dataset using our k-neighborhood time dif-

ferences tdiffk introduced in Section 4. In Fig. 6, we show the
distributions for three different values of k = 1, 2, 3. As expected,
the time differences increase if we allow a longer maximum path
166
length k. For our experiments, we will use GNN models with 2
layers, i. e., which take into account the two-hop neighborhood
of each vertex. Thus, we use tdiff2 to derive candidate history
sizes, which we will compare to each other in the experiments.
Following the distributions for k = 2 depicted in Fig. 6, we select
1, 3, 6, and 25 as history sizes for DBLP-{easy,hard} and 1, 4, 8,
and 21 as history sizes for PharmaBio according to the 25th, 50th,
75th, and 100th percentiles of tdiff2.

5.2.4. Dataset preprocessing
For each dynamic dataset, we construct the sequence of tasks

T̃1, . . . , T̃T based on the publication year along with a history size
c. For each task T̃t , we construct a graph with publications of time
[t − c, t], where publications of time t are the test vertices, and
t < c training vertices (transductive). We also use it for inductive
training, where we train exclusively on T̃t−1, but still evaluate the
test vertices of T̃t

We set the first evaluation task T̃1 to the time, at which 25%
of the total number of publications are available. Therefore, by
mapping the datasets to our problem statement (see Fig. 1), our
first evaluation task t = 1 corresponds to the year 1999 in
PharmaBio (1985–2016) and 2004 in DBLP-{easy,hard} (1990–
2015). We continue to iterate over the next years for subsequent
tasks, i. e., from 2000 to 2016 for PharmaBio and from 2005 to
2015 for DBLP.

5.3. Summary

We have three static graph datasets (Cora, Citeseer, and
Pubmed) and three dynamic graph datasets (PharmaBio, DBLP-

easy, and DBLP-hard). All datasets have scientific publications



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176
Fig. 6. Distributions of time differences tdiffk (y-axis) for DBLP-easy (left), DBLP-hard (center) and PharmaBio (right) within the k-hop neighborhood for k = {1, 2, 3}
(x-axis).
as vertices. All datasets use citations to set up the edges of the
graph, except PharmaBio, where the edges are determined by
coauthorships. All graph datasets have a highly imbalanced label
distribution (see Fig. 4). Two of the dynamic graph datasets come
with new classes: DBLP-easy and DBLP-hard, which is reflected
in a high class drift over time (see Fig. 5).

We will use the static graph datasets in the first experiments
described in Section 6. We will use the dynamic graph datasets
in the experiments described in Sections Section 7, 8, and 9.

6. Experiment 1: Transductive versus inductive learning

In the first experiment, our objective is to learn whether
accuracy increases when we add unlabeled data to the graph after
having trained a model only on the portion of the graph that has
labeled vertices. This is important for later experiments because it
affects how we move from task t to task t+1. We answer whether
we need to retrain a model with unlabeled data from the graph at
t+1, or is it sufficient to wait until the new labeled data become
part of the training set. This research question can be very well
investigated with the static graph datasets that we introduced in
Section 5.1. We use the training set of the static graphs as step
one and the unlabeled part of the test set as step two. In order to
obtain generalizable results, we consider two different train–test
splits for each dataset, which we call setting A (few training, many
test examples) and setting B (many training, few test examples),
as described in more detail in Section 5.1.

In the context of lifelong learning, settings A and B correspond
to different stages of the incremental training procedure. At the
very beginning, we start with a few labeled data. After a few tasks,
the number of labeled vertices increases, and, then, any new data
added to the training set will make only a smaller fraction of the
already known labeled data.

In the following, we describe the procedure, hyperparame-
ter, and metrics of our experiments to analyze transductive vs.
inductive learning on standard benchmark datasets with two
complementary train–test splits. The aim is to analyze the effect
of adding unlabeled data after (pre-)training and comparing in-
ductively pre-trained models to models that have been trained
transductively including the unlabeled test data. We will show
that the addition of unlabeled data does not further improve the
performance of the inductively pre-trained models.

6.1. Procedure

We construct a dedicated experimental setup to assess the
inference capabilities of graph neural networks. We include edges
in the training set if and only if its source and destination vertex
are both in the training set. The training process is then divided
into two steps. First, we pre-train the model on the labeled
training set. Then we insert the previously unseen vertices and
167
edges into the graph and continue training for a limited number
of inference epochs. The unseen vertices do not introduce any
new labels. Instead, the unseen vertices provide features and may
be connected to known labeled vertices. We evaluate the accuracy
on the test vertices, which form a subset of the unseen vertices,
before the first and after each inference epoch. We consider the
graph neural networks GCN, GAT, GraphSAGE, as discussed in
Section 2, along with a baseline model MLP. For each model, we
compare 200 pre-training epochs versus no pre-training. In the
latter case, training begins during inference, which is equivalent
to retraining from scratch whenever new vertices and edges are
inserted. This allows us to assess whether pre-training is helpful
for applying graph neural networks on dynamic graphs.

6.2. Hyperparameters

All employed graph neural networks use two graph convolu-
tion layers that aggregate neighbor representations. The output
dimension of the second layer corresponds to the number of
classes. Thus, the features within the two-hop neighborhood of
each labeled vertex are taken into account for its prediction.
We adopt the same hyperparameter values as proposed in the
respective original work. For GCN, we use 16 or 64 hidden units
(denoted GCN-64) per layer, ReLU activation, 0.5 dropout rate,
along with an (initial) learning rate of 0.005 and weight decay
5 · 10−4 (Kipf & Welling, 2017). For GAT, we use 8 hidden units
per layer and 8 attention heads in the first layer. The second
layer has 1 attention head (8 on Pubmed). We set the learning
rate to 0.005 (0.01 on Pubmed) with weight decay 0.0005 (0.001
on Pubmed) (Veličković et al., 2018). For GraphSAGE, we use 64
hidden units per layer with mean aggregation, ReLU activation,
and a dropout rate of 0.5. We set the learning rate to 0.01 with
weight decay 5·10−4 (Hamilton et al., 2017). Our MLP baseline has
one hidden layer with 64 hidden units, ReLU activation, a dropout
rate of 0.5, a learning rate of 0.005 and a weight decay of 5 ·10−4.
In all cases, we use Glorot initialization (Glorot & Bengio, 2010)
and Adam (Kingma & Ba, 2015) to optimize cross-entropy. We
initialize the optimizer at the beginning of the inference epochs.

6.3. Measures

Accuracy. We train each model for 35 epochs and repeat the
training 100 times with different seeds. The plot shows the mean
accuracy plus the standard deviation of the models at each of
these training epochs.

Jenson–Shannon divergence. We further compute the Jenson–
Shannon divergence (Lin, 1991) on the accuracy distributions to
quantify the similarity of the distributions in the two different
pre-training configurations (with or without) and in the two
different settings (A and B). Since the two distributions are of the
same kind, we use a symmetric measure to compare them.



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

l
r

i
d

D

Fig. 7. Test accuracy after each inference epoch for the many-few settings A Top and few-many setting B Bottom on the datasets Cora, Citeseer, and Pubmed. Each
ine resembles the mean of 100 runs and its region shows the standard deviation. The dashed lines show the results with 200 pre-training. The solid lines are the
esults without pre-training.
The Jenson–Shannon divergence (DJS) is such a symmetric
measure. It compares two distributions P and Q by calculat-
ng the (asymmetric) Kullback–Leibler divergence (DKL) in both
irections:

JS(P ∥ Q ) =
1
2
DKL(P ∥ Q )+

1
2
DKL(Q ∥ P)

As DJS is a divergence measure, lower values indicate more similar
distributions.

6.4. Results

Fig. 7 shows the results of the GNN models and the MLP
on the three datasets: Cora, Citeseer, and Pubmed. The scores
of the many-few setting B are higher than those of the few-
many setting A by a constant margin. Pre-trained models score
consistently higher than non-pre-trained models while having
less variance. The accuracy of the pre-trained models plateaus
after a few inference epochs (up to 10 on Cora-A, i. e., the Cora
dataset investigated in setting A, and Pubmed-B, i. e., setting B
applied on the Pubmed dataset). Without any pre-training, GAT
shows the fastest learning process. The absolute scores of pre-
trained graph neural networks are higher than the ones of MLP.
From a broad perspective, the scores of pre-trained graph neural
networks are all on the same level. While GCN falls behind the
others on Cora-B, GAT falls behind the others on Pubmed in both
settings.

We compare the results of setting A and B by measuring
the Jensen–Shannon divergence between the accuracy distribu-
tions. The Jenson–Shannon divergence between the two settings
is lower with pre-training (between 0.0057 for GAT and 0.0115
for MLP) than it is without pre-training (between 0.0666 for
GraphSAGE and 0.1013 for GCN). This shows that the accuracy

distributions are similar in both train–test splits.

168
6.5. Summary

Our results show that inductive graph neural networks per-
form well even though we insert new unlabeled vertices and
edges after training. For all three datasets, the accuracy plateaus
after very few inference epochs. This observation holds for both
train–test split settings A and B, i. e., many-few and few-many
data for training and testing, respectively. In different terms,
we have not observed any gain from up-training an inductive
model on extra unlabeled data. This motivates us to use the
warm restart strategy, i. e., reusing previous parameters, in the
following experiments on lifelong learning.

7. Experiment 2: Lifelong learning on graphs

From the previous experiment, we know that inductively
trained models are stable when adding unlabeled data after
training. Now, we focus on the case in which we continually
add more labeled data to the graph, even including new classes
in addition to new vertices and edges. The aim is to determine
whether parameter reuse is helpful. We consider this question
in the context of whether and how many old vertices (and their
edges) can be discarded when dealing with evolving graphs.

The challenge in this experiment is that the GNN models
have to sequentially adapt to new tasks with new labeled data
including unseen classes. We apply the GNNs GraphSAGE, GAT,
SGC, GraphSAINT, JKNet, and the baseline MLP on our evolving
graph datasets, which we described in Section 5.2. As we know
from our analyses of Section 5, the dynamic datasets are naturally
heavily imbalanced. The datasets also feature new classes that
appear over time. The first appearance of a new class is always at
test time, and, only afterward, the vertices with new classes are
only added to the training data. In summary, we find interactions



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

b
t
a

7

s
a
S
M
b

r
p
r

p

a
W
t

f
c
i
T

Fig. 8. Results of the ablation study: Accuracy scores of once-trained, static models (solid lines) are lower than incrementally trained models (dashed lines).
F
f
t
b

F

s
s

7

s
1
m
r
d
o
w
e

e
a
g
w
f
r
c
7
9

etween implicit and explicit knowledge: Reusing past parame-
ers (warm restart) enables using smaller history sizes with only
small decrease in performance.

.1. Procedure

The evolving graph is divided into tasks according to the time
lices in years (see Section 5.2). We apply the incremental training
lgorithm of Section 3.1 to each of the considered models, Graph-
AGE, GAT, SGC, GraphSAINT, JKNet, along with a graph-agnostic
LP baseline. The rationale for the selection of these particular
ase GNN models is provided in Section 2.1.
For each model, we distinguish between warm restart and cold

estart configurations, which determines whether the previous
arameters are reused as initialization for the next task (warm
estart) or not (cold restart).

Furthermore, we consider the history size as a controlled
arameter and vary it according to the percentiles of tdiffk, as

determined in our analyses of the datasets in Section 5.2. Corre-
sponding to two layers of graph convolution, which our models
use, the quartiles consider 25%, 50%, and 75% of the tdiff2 dis-
tribution and are in terms of history sizes c = 1, 3, and 6 for
both DBLP datasets, and 1, 4, and 8 for the PharmaBio dataset. We
compare these limited-history settings with full-graph training,
which corresponds to keeping an unlimited history of the entire
timeline of the graph.

All methods are trained in a transductive fashion, except for
GraphSAINT, which needed to use the inductive setting. How-
ever, we have ensured that the evaluation is fair (see Section 5)
and we have confirmed in Experiment 1 (see Section 6) that
the difference between inductive and transductive training is
negligible.

7.2. Hyperparameters

We constrain all models to two graph convolutional layers, a
comparable penultimate hidden dimension (2 × 32 GraphSAGE,
4 × 8 GAT, 2 × 2 × 16 JKNet, 64 MLP), and a dropout rate of 0.5.
We fix an update step budget of 200 per task and use Kingma
and Ba (2015) to optimize cross-entropy. We implemented GAT,
GraphSAGE-mean, SGC, and JKNet with dgl (Wang et al., 2019)
nd use torch-geometric (Fey & Lenssen, 2019) for GraphSAINT.
e had to disable GraphSAINT’s norm recomputation for each

ask so that our experiments could finish in a reasonable time.
For each combination of a GNN, history size, and restart con-

iguration, we tune the learning rate on DBLP-easy. Thus, we
onsider DBLP-easy as our development dataset to tune the learn-
ng rate, which we then apply to DBLP-hard and PharmaBio.

he search space for the learning rate is {0.1, 0.05, 0.01, 0.005, s

169
0.001, 0.0005}. We also optimized the weight decay, whose effect
was negligible.

For the sake of a fair comparison, we have optimized the
hyperparameters separately for each possible history size and
restart configuration.

7.3. Measures

Our primary evaluation measure for lifelong vertex classifi-
cation f is accuracy. With acct (f (t)), we denote the accuracy of
model f (t) on task Tt . We aggregate the accuracy scores over
the sequence of tasks T1, . . . , TT by using their unweighted av-
erage (Lopez-Paz & Ranzato, 2017):

acc(f ) =
1
T

∑
t∈1,...,T

acct (f (t))

ollowing Lopez-Paz and Ranzato (2017), we use Forward Trans-
er (FWT) to quantify the effect of reusing previous parame-
ers. This is reflected in the accumulated differences in accuracy
etween the fwarm and fcold models, defined below:

WT(fwarm, fcold) =
1

T − 1

∑
t∈2,...,T

acct (f (t)warm)− acct (f
(t)
cold)

Experiments are repeated 10 times with different random
eeds. We report the mean accuracy plus/minus 1.96 times the
tandard error of the mean.

.4. Results

Table 4 shows the aggregated results of 20,160 evaluation
teps (48 configurations with 10 repetitions on two datasets with
2 tasks each and one dataset with 18 tasks). We consider the
ethod A to be better than the method B when the mean accu-

acy of A is higher than that of B and the 95% confidence intervals
o not overlap (Goodfellow, Bengio, & Courville, 2016). In terms
f the absolute best methods per setting (=dataset× history size),
e find that GraphSAGE consistently gives the highest scores
xcept for DBLP-hard, where it is challenged by SGC.
Regarding the comparison of history sizes (i. e., explicit knowl-

dge, see Section 1), the highest scores are achieved in almost
ll cases by using an unlimited history size, i. e., using the full
raph’s history. However, in all datasets, the scores for training
ith limited window sizes larger than 1 are close to those for

ull-graph training. With history sizes that cover 50% of the GNN’s
eceptive field, all methods achieve at least 95% relative accuracy
ompared to the same model under full-history training. When
5% of the receptive field is covered, the models produce at least
9% relative accuracy. To compute these percentages, we have
elected the best of both cold and warm restarts for each method.



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176
Table 4
Accuracy (with 95% confidence intervals through 1.96 standard error of the mean) and Forward Transfer (averaged difference of warm and cold restarts) in our
datasets with different history sizes (column c). The best method per case (= per one dataset and one history size) is marked in bold, along with the methods where
the 95% CI overlaps.
Dataset c GAT GraphSAGE-Mean MLP (Baseline)

Avg. accuracy FWT Avg. accuracy FWT Avg. accuracy FWT

cold warm cold warm cold warm

DBLP-easy

1 60.8± 0.5 64.9± 0.4 +4.5 60.4± 0.5 65.1± 0.4 +5.2 56.1± 0.4 62.2± 0.5 +6.6
3 68.9± 0.3 69.3± 0.3 +0.2 68.7± 0.3 69.3± 0.3 +0.7 61.0± 0.5 62.9± 0.4 +2.0
6 70.3± 0.4 70.2± 0.4 −0.1 71.1± 0.4 70.9± 0.4 −0.3 62.7± 0.3 62.7± 0.4 −0.2
full 70.2± 0.4 70.2± 0.4 +0.1 71.6± 0.4 71.4± 0.3 −0.2 63.4± 0.3 61.9± 0.4 −1.2

DBLP-hard

1 39.4± 0.2 39.1± 0.2 −0.1 34.5± 0.4 40.0± 0.2 +5.9 31.6± 0.3 38.3± 0.3 +7.4
3 44.0± 0.2 43.7± 0.2 −0.4 44.3± 0.2 45.1± 0.2 +0.8 33.7± 0.3 38.9± 0.2 +5.6
6 45.1± 0.3 45.3± 0.3 +0.2 46.5± 0.3 46.7± 0.3 +0.2 39.2± 0.2 38.3± 0.2 −0.7
full 45.6± 0.3 45.6± 0.3 −0.1 46.8± 0.2 47.1± 0.3 +0.4 38.2± 0.2 36.7± 0.2 −1.1

PharmaBio

1 61.6± 0.9 65.4± 0.9 +3.8 65.4± 0.9 68.6± 1.0 +3.3 62.7± 0.9 66.3± 0.9 +3.9
4 64.5± 0.8 65.3± 0.9 +0.9 68.0± 0.8 69.0± 0.8 +1.1 66.3± 0.7 65.7± 0.8 −0.7
8 65.1± 0.8 65.4± 0.8 +0.3 68.8± 0.7 69.0± 0.8 +0.2 64.2± 0.8 65.3± 0.7 +0.9
full 64.3± 0.8 65.4± 0.8 +0.2 69.0± 0.7 68.4± 0.7 −0.7 65.4± 0.8 64.4± 0.6 −1.1

SGC GraphSAINT Jumping Knowledge

Avg. accuracy FWT Avg. accuracy FWT Avg. accuracy FWT

cold warm cold warm cold warm

DBLP-easy

1 57.1± 0.4 63.7± 0.4 +7.2 62.1± 0.3 63.2± 0.4 +1.2 56.2± 0.5 61.4± 0.5 +5.6
3 66.4± 0.3 67.4± 0.3 +1.2 66.4± 0.4 65.3± 0.5 −0.9 65.2± 0.3 65.9± 0.5 +1.0
6 69.3± 0.4 69.3± 0.4 +0.1 68.1± 0.4 65.5± 0.7 −2.1 68.0± 0.4 66.9± 0.6 −0.7
full 71.0± 0.4 70.0± 0.4 −1.0 68.4± 0.5 65.7± 0.5 −2.8 68.7± 0.4 66.3± 0.4 −2.5

DBLP-hard

1 34.5± 0.3 41.0± 0.3 +7.0 35.9± 0.3 35.6± 0.4 +0.5 33.0± 0.2 35.3± 0.3 +2.9
3 44.1± 0.2 44.8± 0.3 +0.8 39.3± 0.3 38.1± 0.5 −0.6 39.1± 0.3 38.8± 0.4 +0.3
6 46.9± 0.3 46.2± 0.3 −0.4 40.6± 0.3 38.8± 0.6 −1.2 41.0± 0.3 40.1± 0.5 −0.3
full 48.8± 0.4 47.5± 0.3 −1.2 41.0± 0.4 40.7± 0.4 −0.3 41.6± 0.3 40.8± 0.2 −0.9

PharmaBio

1 62.3± 0.9 64.5± 0.8 +2.3 65.7± 0.8 68.6± 0.8 +3.0 64.1± 0.9 68.3± 0.9 +4.3
4 64.4± 0.8 64.4± 0.8 −0.0 67.3± 0.8 68.4± 0.7 +1.0 67.1± 0.8 68.2± 0.8 +1.1
8 65.3± 0.8 64.0± 0.7 −1.4 68.1± 0.8 68.0± 0.7 −0.1 67.8± 0.8 67.7± 0.7 −0.3
full 62.4± 0.8 61.7± 0.6 −0.8 68.2± 0.8 66.1± 0.8 −2.2 66.8± 0.8 64.5± 0.7 −2.6
Regarding the influence of implicit knowledge, we find that
reusing parameters (warm restarts) leads to notably higher scores
than retraining from scratch when the history size is one (see
column FWT with history size c = 1). The average Forward
Transfer across all models and datasets with history size c = 1 is
five accuracy points.

Regarding isotropic vs. anisotropic GNNs, we find that GAT
and GraphSAGE perform similarly well on DBLP-easy (on which
the learning rate was tuned). However, GraphSAGE-mean yields
higher scores on DBLP-hard and PharmaBio, which could indicate
that GraphSAGE-mean is more robust to hyperparameters than
GAT.

Regarding memory-efficient methods, we observe that the
scores of SGC are among the highest of all methods on DBLP-
hard. To understand this result, we recall that SGC uses only
one single weight matrix of shape nfeatures × noutputs, which leads
to 300,000 learnable parameters on DBLP-hard, but only 27,000
and 34,000 on DBLP-easy and PharmaBio, respectively. SGC maps
input features directly to classes, which results in a very high
number of parameters on DBLP-Hard because this dataset has a
high number of classes. For comparison, GraphSAGE has 146,000
learnable parameters on DBLP-easy, 264,000 on DBLP-hard, and
310,000 on PharmaBio. On the other hand, GraphSAINT yields
scores on PharmaBio comparable to GraphSAGE, but lower scores
on both DBLP datasets.

7.5. Ablation study: Incrementally-trained vs. once-trained models

In contrast to retraining with different history sizes, one may
also wonder how long a once-trained model generalizes. Thus, we
have analyzed how long a model, which is trained only once at
a specific point in time, will generalize well over a sequence of
tasks over time. We isolate the effect of incremental training and
170
compare once-trained trained models (static) with incrementally
trained models (incremental). Static models are trained for 400
epochs on the data before the first evaluation time step, which
comprises 25% of the total vertices. Incrementally trained models
are trained for 200 epochs with history sizes of 3 timesteps (4 on
the PharmaBio dataset) before evaluating each task. We repeat
each experiment 10 times with different random seeds. In Fig. 8,
we see that the accuracy of the static models decreases with time
on DBLP-easy and DBLP-hard, where new classes appear over
time. On PharmaBio (fixed class set), the accuracy of the static
models plateaus, whereas the accuracy of incrementally trained
models increases. We see that incremental training is not only
necessary to adapt to new classes, but also helpful to make use
of an increased amount of training data.

7.6. Summary

This experiment shows that in the three analyzed datasets,
with only history sizes of 3 or 4 (corresponding to 50% coverage
of the receptive field of a 2-layer GCN), almost all methods obtain
95% accuracy compared to the same model under full-history
training. Moreover, with very small history sizes, such as using
only one past task, using warm restarts is important to maintain
a high level of accuracy. Furthermore, we have confirmed in an
ablation study that incremental training is necessary to account
for changes of the graph.

8. Experiment 3: Lifelong learning with limited labeled data

Until now, we have assumed that the true labels of vertices
become part of the training data for subsequent tasks. Now we
relax this assumption and release only a portion of the labeled



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

d
s
a
t
t
b

8

l
t
a

m
p
e
r
D
t
c

8

p
D
T

o
d
t
v
i
u
a

ata in task t for training in the subsequent task t + 1. This re-
embles real-world applications, such as the indexing of scientific
rticles in libraries (Mai, Galke, & Scherp, 2018). The motivation is
hat labeled data is expensive to ‘‘produce’’. Again, we work with
he most challenging dataset, DBLP-hard, for this experiment,
ecause it has the highest number of new classes.

.1. Procedure

To implement the idea of learning with only a fraction of
abeled data, we randomly sample a subset of vertices, for which
rue class labels are available for training. We denote this fraction
s label rate. For the experiments, it is important to sample

globally rather than on a per-task basis to avoid nodes toggling
between being labeled and unlabeled. Therefore, we sample the
entire dataset before splitting it into tasks. In this way, the subset
of vertices that comes with classes is fixed for the entire duration
of the experiments. Furthermore, we used the same subset of
classes with all different configurations and all repetitions of
the experiment. We sample uniformly at random on the vertex
level without any stratification between classes. Note that this
problem statement of testing different label rates is similar to the
difference between settings A and B in Experiment 1 of Section 6.
However, here we test the influence of the label rate in the
context of a task sequence (instead of comparing only two tasks)
and systematically change the label rates ranging from 0.1 to 0.9
(instead of only one ‘‘split’’).

For this experiment, we use GraphSAGE-Mean as the GNN
odel because it achieved the best results in the previous ex-
eriment, where the label rate was not restricted. As above, we
xperiment with different history sizes 1, 3, and 6 and both
estart configurations warm and cold. As the dataset, we use
BLP-hard because it has the highest number of classes both in
otal and new classes that appear over time, and thus is the most
hallenging.

.2. Hyperparameters

Again, as in the previous experiment, the optimal hyper-
arameters were determined on DBLP-easy, the sub-dataset of
BLP-hard that we consistently use to tune hyperparameters.
he search space for the learning rate is again {0.1, 0.05, 0.01,

0.005, 0.001, 0.0005}. We have not tuned the hyperparameters
separately for each label rate, but we reuse the optimal hyperpa-
rameters from training with a 100% label rate.

8.3. Measures

As in the previous experiment, we use the average accuracy
across tasks as the evaluation metric.

8.4. Results

In Fig. 9, we plot the average accuracy between tasks as a
function of the label rate. As expected, the absolute accuracy
values decrease as the label rate decreases. However, we made
a similar observation as in previous experiments with respect
to warm/cold restarts. Using warm restarts consistently leads to
higher scores than cold restarts. The effect is more prolonged
when the history size is small.

When comparing history sizes, we again observe that a larger
history size leads to better results. In particular, using the entire
history gives the best results, closely followed by a history size of
6. Still, when the label rate is decreased, the difference between
the history sizes remains constant.
171
Fig. 9. Average accuracy of GraphSAGE with warm restarts across tasks on
DBLP-hard under varying label rate.

With very low label rates (in the range between 10% and
30%), the accuracy of the cold restart strategy drops faster than
the accuracy of warm restarts. In other words, the use of warm
restarts leads to more stable models when dealing with lower
label rates.

8.5. Summary

This experiment shows that the effect of varying the label
rate is as expected: the performance degrades with fewer labeled
training data. We confirm the finding from previous experiments
that warm restarts consistently lead to higher performance than
cold restarts when the history size is small. Furthermore, we
observe that warm restarts become even more important when
the label rate is low.

9. Experiment 4: Detection of unseen classes

In our evolving graphs, we have to deal with previously un-
seen classes. In previous experiments on lifelong learning, these
unseen classes (and the vertices that have these classes) were
already part of the test data. However, the models did not have
the opportunity to actually predict those classes, as no dedi-
cated technique has been used to detect vertices from unseen
classes. Here, we evaluate our adaptation of the unseen class
detection method DOC to graph data, called gDOC, as introduced
in Section 3.2. The experiments comprise a crisp unsupervised
detection of instances of unseen classes. At the same time, the
models need to make predictions as usual for the known classes.

9.1. Procedure

In previous experiments, unseen classes were part of the test
data, while there was no active treatment of having them de-
tected automatically. In this experiment, we seek to evaluate the
performance of the gDOC method to detect unseen classes. As
before, we train on task t − 1 and evaluate on t over a sequence
f T tasks. However, for each vertex, we use our unseen class
etection module gDOC to predict whether this vertex belongs
o a previously known class or not. If the prediction is that the
ertex does not belong to any previously known class, we reject
ts classification and assign a special virtual class (‘‘unseen’’). As
nseen class detection modules, we compare the original DOC as
baseline with our proposed gDOC method.



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

a
h
d
c
a
d
a
e
c

9

p
t
c
b
D

d
o
f
w

9

t
c
M
a
c
w

O

w
t
a

9

f
o
o
D
s
g

a
h
s
d

s

Fig. 10. Number of vertices with unseen classes per task on DBLP-hard.

We used the DBLP-hard dataset, which has 23 new classes. In
ddition to the dataset analysis in Section 5.2, we show in Fig. 10
ow many vertices belong to unseen classes in the DBLP-hard
ataset. We also experiment with DBLP-easy, which has 4 new
lasses. We use the best-performing model GraphSAGE-mean
long with gDOC for unseen class detection that we have intro-
uced in Section 3.2. Our baseline is the original DOC method, also
pplied to the outputs of GraphSAGE-mean. We observe that in
very task except for the last one, there are vertices with unseen
lasses.

.2. Hyperparameters

As in the previous experiments, we optimize the model hy-
erparameters in our development dataset DBLP-easy. We repeat
he hyperparameter optimization because the loss function has
hanged from categorical to binary cross-entropy. As before, the
est learning rate is selected based on the best accuracy on
BLP-easy and transferred to DBLP-hard.
Note that we did not tune the learning rate for unseen class

etection performance, but for the best accuracy, as in previ-
us experiments. We then compare DOC with gDOC, where the
ormer is our baseline and the latter uses our proposed class
eighting loss function for lifelong learning.

.3. Measures

We evaluate how well the models detect unseen classes. For
his purpose, we use two measures: Macro-F1 with a special
lass for instances of unseen classes (Shu et al., 2017) and the
atthews correlation coefficient (MCC). Note that Macro-F1 aver-
ges the F1 scores over classes such that the effect of the ‘unseen’
lass is taken into account as any of the known classes. In detail,
e compute this Open Macro-F1 as

pen Macro-F1 :=
1
T

T∑
t=1

Macro-F1(y ′(t), y ′pred(t))

with

y ′pred,i :=
{
‘unseen’, if example i is detected as OOD
ypred,i, otherwise

y ′i :=
{
y i if class y i is known
‘unseen’, otherwise

where y i are the true labels and ypred are the predicted class
labels. The argmax of the output is replaced by a special sym-
bol when the method has emitted an ‘unseen’ decision for that
172
Fig. 11. MCC score of gDOC with GraphSAGE-mean as GNN model (history size
3, warm restart setting) as a function of the risk reduction factor α and varying
minimum threshold values. We observe that the more risk reduction does not
improve the results.

instance. The true labels y are preprocessed similarly so that
instances of previously unseen classes receive a special class
symbol.

In pre-experiments, we found that the best Open F1-Macro
scores are achieved when the thresholds are high. This is because
we have a high number of classes and the special class contributes
only very little to the overall F1 Macro score. Thus, a large number
of false rejects, i. e., a reject despite the class being known,
diminishes the overall performance in terms of F1-Macro.

The F1-Macro score is limited in its expressiveness with re-
spect to the detection of unseen classes since there are only a
few vertices of that unseen class. Thus, we report a further score,
the Matthews correlation coefficient (MCC) of the ‘unseen’ class
vs. all other classes (i. e., the set of known classes). MCC is a
popular measure for evaluating binary classification that accounts
for the class imbalance (Chicco & Jurman, 2020). Dealing with this
class imbalance is important as the number of vertices from the
known classes is much larger than the number of vertices from
the unseen class. It ranges from −1 to 1, where zero corresponds
to a random prediction. In more detail, the MCC is computed as:

MCC =
TP · TN− FP · FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

here TP are true positives or correctly rejected instances, TN
rue negatives, FP false positives, and FN false negatives. We
ccumulate those numbers over the entire sequence of tasks.

.4. Results

The results for DBLP-easy are shown in Table 5 and the results
or DBLP-hard in Table 6. For both DBLP-easy and DBLP-hard, we
bserve that the MCC scores, which measure the correct detection
f new classes, are consistently higher for gDOC than for plain
OC. The same holds for the Open F1 Macro scores, which mea-
ure the overall performance of OOD detection + classification:
DOC is consistently better than plain DOC.
When comparing DBLP-easy and DBLP-hard, we see that the

bsolute F1 score and the MCC score attained on DBLP-easy are
igher than the absolute scores on DBLP-hard, which is expected
ince DBLP-hard has more classes and DBLP-easy is the subset of
ata on which hyperparameters were tuned.
On DBLP-hard, the F1 score of plain DOC with a limited history

ize is very low: between 0.01 for history size 1 and 0.12 for



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

(
r
n

(
r
n

i
b
h
w
h

t
d

o

t
S
i
t

9

G
a
p
w
s
p
s
c
t

e
t
b
a
f
b
w
a
c
w

9

c
c
2
t
h
t
b

Table 5
Results for unseen class detection on DBLP-easy with GraphSAGE as base model
average of 5 repetitions). α indicates that risk reduction is used with the
espective factor for the standard deviation, τ is the minimum threshold. Runs
amed gDOC are trained with weighted cross entropy. DOC is our baseline.
c Open Learning Method MCC Open F1 Macro

cold warm cold warm

1 DOC (τ = 0.50) .05 .07 .25 .25
DOC (τ = 0.50, α = 3.0) .05 .07 .25 .25
gDOC (τ = 0.50) .04 .08 .30 .33
gDOC (τ = 0.50, α = 3.0) .04 .05 .30 .32
gDOC (τ = 0.75) .04 .07 .30 .30

3 DOC (τ = 0.50) .05 .05 .28 .30
DOC (τ = 0.50, α = 3.0) .05 .05 .28 .30
gDOC (τ = 0.50) .05 .08 .34 .34
gDOC (τ = 0.50, α = 3.0) .06 .08 .34 .34
gDOC (τ = 0.75) .07 .09 .34 .34

6 DOC (τ = 0.50) .06 .06 .31 .32
DOC (τ = 0.50, α = 3.0) .06 .06 .31 .32
gDOC (τ = 0.50) .07 .07 .35 .35
gDOC (τ = 0.50, α = 3.0) .07 .07 .35 .35
gDOC (τ = 0.75) .09 .10 .35 .35

full DOC (τ = 0.50) .07 .07 .32 .33
DOC (τ = 0.50, α = 3.0) .07 .07 .32 .33
gDOC (τ = 0.50) .06 .06 .35 .35
gDOC (τ = 0.50, α = 3.0) .06 .06 .35 .35
gDOC (τ = 0.75) .08 .10 .35 .35

Table 6
Results for unseen class detection on DBLP-hard with GraphSAGE as base model
average of 5 repetitions). α indicates that risk reduction is used with the
espective factor for the standard deviation, τ is the minimum threshold. Runs
amed gDOC are trained with weighted cross entropy. DOC is our baseline.
c Open Learning Method MCC Open F1 Macro

cold warm cold warm

1 DOC (τ = 0.50) .01 .04 .01 .01
DOC (τ = 0.50, α = 3.0) .01 .02 .01 .01
gDOC (τ = 0.50) .04 .05 .13 .13
gDOC (τ = 0.50, α = 3.0) .04 .05 .13 .13
gDOC (τ = 0.75) .04 .09 .13 .13

3 DOC (τ = 0.50) .02 .03 .02 .05
DOC (τ = 0.50, α = 3.0) .02 .03 .02 .05
gDOC (τ = 0.50) .05 .06 .15 .15
gDOC (τ = 0.50, α = 3.0) .05 .06 .15 .15
gDOC (τ = 0.75) .05 .08 .15 .15

6 DOC (τ = 0.50) .02 .03 .05 .08
DOC (τ = 0.50, α = 3.0) .02 .03 .05 .08
gDOC (τ = 0.50) .05 .06 .16 .16
gDOC (τ = 0.50, α = 3.0) .05 .06 .16 .16
gDOC (τ = 0.75) .05 .07 .16 .16

full DOC (τ = 0.50) .02 .04 .08 .12
DOC (τ = 0.50, α = 3.0) .02 .04 .08 .12
gDOC (τ = 0.50) .04 .05 .16 .16
gDOC (τ = 0.50, α = 3.0) .05 .05 .16 .16
gDOC (τ = 0.75) .05 .07 .16 .16

unlimited history size. In the same setting, gDOC achieves much
higher scores: already 0.13 with a history size of 1 and 0.16 with
at least a history size of 6. This shows that the class-weighted
binary cross-entropy in gDOC is necessary to achieve reasonable
F1 scores.

For thresholds, the results indicate that a high threshold (0.75)
s preferable to lower thresholds. We further note that the com-
ination of warm restarts and a small history size leads to the
ighest MCC score (0.09) on DBLP-hard, while on DBLP-easy, on
hich the hyperparameters have been tuned, the MCC score is
igher for larger history sizes.
In Fig. 11, we show that risk reduction, i. e., lowering the de-

ection threshold based on the class-specific standard deviation,
oes not help to increase performance. With a low minimum
173
Table 7
Comparison of gDOC combined with different base models on DBLP-hard. The
gDOC threshold is set to the 0.75 and no risk reduction is applied.
c Method ID accuracy OOD MCC Open F1

cold warm cold warm cold warm

1 GS+gDOC 36.4 37.6 .04 .09 .13 .13
SGC+gDOC 35.0 38.4 .05 .10 .12 .14
GAT+gDOC 34.0 38.0 .04 .08 .10 .13

3 GS+gDOC 40.9 40.7 .05 .08 .15 .15
SGC+gDOC 41.6 41.9 .05 .07 .15 .16
GAT+gDOC 40.3 40.3 .04 .07 .13 .13

6 GS+gDOC 42.5 42.2 .05 .07 .16 .16
SGC+gDOC 43.7 43.4 .04 .07 .16 .16
GAT+gDOC 43.7 43.4 .04 .07 .16 .16

full GS+gDOC 43.6 43.5 .05 .07 .16 .16
SGC+gDOC out of GPU memory
GAT+gDOC 43.9 43.5 .04 .05 .16 .16

threshold (e. g.,0), we see the pure performance of the risk reduc-
tion technique, which peaks at α = 1 before it decreases. When
using a high minimum threshold (0.5, 0.75, 1.0), applying risk
reduction only decreases the OOD performance. In other words,
the absolute best OOD detection performance is achieved when
the minimum threshold τ is set to 0.75, regardless of the risk
reduction factor α. Therefore, the usefulness of risk reduction for
ur heavily imbalanced datasets is questionable.
To understand this result, we recall that risk reduction is a

echnique for calculating class-specific thresholds τi (see
ection 3.2). However, this is only possible up to the global min-
mum threshold τ . Thus, even with risk reduction, class-specific
hresholds cannot go below τ .

.5. Combining gDOC with different GNN base models

The gDOC module can be used in conjunction with arbitrary
NN base models. We compare GraphSAGE, GAT, and SGC as
base model for gDOC. We chose SGC because of its strong
erformance on the DBLP-hard dataset in Experiment 2, along
ith GAT as the most popular anisotropic model and GraphSAGE
ince it is one of the most popular isotropic models. As in the
revious experiments, the learning rate was tuned for ID clas-
ification on DBLP-easy. Each configuration of history size and
old/warm restarts is independently optimized with respect to
he hyperparameters.

The results are shown in Table 7. The ranking of the base mod-
ls is similar to the results obtained in Experiment 2, which shows
hat adding the gDOC module has no unexpected effects on the
ase models. In particular, using SGC leads to similar performance
s GraphSAGE. However, SGC exceeds 30GB GPU memory on the
ull-history configuration and runs out of memory. GAT performs
elow GraphSAGE and SGC under smaller history size conditions,
hile it tends to catch up in terms of in-distribution accuracy
nd Macro-F1 when more history is available. In conclusion, this
omparison confirms that gDOC can be successfully combined
ith various GNN base models.

.6. Trade-off between in-distribution accuracy and OOD detection

We assess how in-distribution accuracy is affected by new
lass detection capabilities. Therefore, we report the average ac-
uracy across tasks, calculated in the same way as in Experiment
from Section 7. The results are reported in Table 8 and show

hat, as expected, a plain GraphSAGE without OOD capabilities
as a higher in-distribution accuracy than training with OOD de-
ection capabilities (GraphSAGE+gDOC). This difference is caused
y training with binary cross-entropy instead of the standard



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

l
m
b
w
p
g
t
(

1

1

s
w
i
u

t
a
o
a
W
G
G
T

W
u

w
c
h

1

b
a
d
c
i
a
s
e
t

v
s
t
o
W
t

Table 8
Trade-off between in-distribution classification accuracy and out-of-distribution
detection performance on DBLP-hard. GraphSAGE (without an OOD detection
module) is trained with categorical cross-entropy, while the methods capable of
OOD detection are trained with binary cross-entropy. For ID accuracy, we always
select the class with the maximum logit, regardless of any OOD threshold. NA
marks no OOD detection capabilities.
c Method ID accuracy OOD MCC

cold warm cold warm

1 GraphSAGE+gDOC(τ = 0.75) 36.4 37.6 .04 .09
GraphSAGE+DOC(τ = 0.5, α = 3.0) 35.2 28.7 .01 .02
GraphSAGE 34.5 40.0 NA NA

3 GraphSAGE+gDOC(τ = 0.75) 40.9 40.7 .05 .08
GraphSAGE+DOC(τ = 0.5, α = 3.0) 39.4 43.1 .02 .03
GraphSAGE 44.3 45.1 NA NA

6 GraphSAGE+gDOC(τ = 0.75) 42.5 42.2 .05 .07
GraphSAGE+DOC(τ = 0.5, α = 3.0) 43.6 44.1 .02 .03
GraphSAGE 46.5 46.7 NA NA

full GraphSAGE+gDOC(τ = 0.75) 43.6 43.5 .05 .07
GraphSAGE+DOC(τ = 0.5, α = 3.0) 42.9 45.1 .02 .04
GraphSAGE 46.8 47.1 NA NA

categorical cross-entropy. An interesting exception is that Graph-
SAGE+gDOC is better than GraphSAGE on the smallest history size
configuration (c = 1). We assume that this difference is caused
by GraphSAGE overfitting to the little data from a single graph
snapshot, whereas the weighted cross-entropy of gDOC seems to
alleviate this problem.

9.7. Summary

Our experiments have shown that weighting the binary cross-
entropy loss function in gDOC is essential for unseen class de-
tection in imbalanced graph data. We also learned that the risk
reduction technique (as proposed in DOC (Shu et al., 2017)) is
not helpful on our imbalanced graph datasets. That is because
the variance among predictions in the unbalanced case is so high
that the (minimum) threshold effectively never changed. The only
exceptions are tiny factors of standard deviation (<1). Neverthe-
ess, this only decreases the unseen class detection performance
easured by MCC. We recommend using gDOC with weighted
inary cross-entropy to account for class imbalance. However,
e could not find any benefits of the risk reduction technique
roposed in the original DOC. We have successfully combined
DOC with different base models (see Section 9.5) and analyzed
he trade-off between ID accuracy and OOD detection capabilities
see Section 9.6).

0. General discussion

0.1. Main findings

Our experiments show several key results. First, we have
hown in Section 6 that it is not necessary to up-train GNNs
hen new unlabeled data arrives. Instead, the performance of

nductively pre-trained GNNs remains stable, even when new
nlabeled data are added to the graph.
From the incremental training experiments with limited his-

ory sizes in Section 7, we obtain results that are almost as good
s when using the entire history of the graph: With window sizes
f 3 or 4 (50% receptive field coverage), GNNs achieve at least 95%
ccuracy compared to using all past data for incremental training.
ith window sizes of 6 or 8 (75% receptive field coverage), the
NN retains at least 99% accuracy. This result holds for standard
NN architectures and scalable and sampling-based approaches.

his result directly impacts lifelong learning of GNNs in evolving

174
graphs, as the setting closely resembles real-world applications.
We have investigated whether to reuse parameters from previous
tasks (warm restarts). We find that reusing an ‘‘old’’ model is
a viable strategy, even though new classes appear during the
sequence of tasks and the history size is limited. We have shown
that reusing parameters from previous tasks becomes critical
when the history sizes are small because less explicit knowledge
is available.

We have shown in Section 8 that the methods work well,
even when the labeled data are limited, which is essential for
real-world applications because data annotation is expensive.

With the introduction of gDOC, we have made the first step
to introduce new class detection in lifelong graph learning in
Section 9, by combining graph neural networks with the DOC (Shu
et al., 2017) module and extending it to take into account class
imbalance. Our experiments on new class detection show that
it is necessary to adjust the weights of binary cross-entropy
training in gDOC to account for the imbalanced label distribution.
Contrary to the original DOC, we have not observed any im-
provements with risk reduction through the standard deviation of
logits. Instead, the best results were achieved with an appropriate
threshold (τ = 0.75) regardless of the risk reduction factor α.

e acknowledge that emitting a crisp decision in unsupervised
nseen class detection is a highly challenging problem.
Another interesting result is that combining warm restarts

ith small history sizes has increased MCC scores on the most
hallenging DBLP-hard dataset. It seems that omitting old data
elps to detect out-of-distribution examples better.

0.2. Generalizability

We have shown that our incremental training approach can
e applied to various GNN models and is orthogonal to sampling
nd preprocessing approaches. Our incremental training proce-
ure can generally be applied to any GNN architecture with few
aveats. If the GNN architecture depends on transductive learn-
ng, this constraint carries over to incremental training. Similarly,
ny pre-computation steps, such as computing normalizing con-
tants such as in GCN (Kipf & Welling, 2017) or GraphSAINT (Zeng
t al., 2020), must be performed again when adapting the model
o a new task.

We assume in this work that old data do not change, e. g.,the
ertices’ labels remain the same over time. This is a reasonable as-
umption for citation and collaboration graphs. However, changes
o old data may happen when generalizing the framework to
ther domains. This is addressed by the framework as follows:
e use a certain history of the data for training defined by

he history size c. Any change on older vertices like a label
being changed would be immediately reflected in the following
training iterations, i. e., the next tasks. In the cold start setting,
the next trained model would be immediately be trained on the
new correct ground truth data (up to history size). In the warm
restart setting, the old parameters could still encode the impure
knowledge. But ultimately it would also receive the up-to-date
ground truth label as the training data for the next tasks.

To reflect our work in the broader context of lifelong or
continual learning, we reconsider the gradient episodic mem-
ory framework (Lopez-Paz & Ranzato, 2017) for image data, in
which the examples are independent. Specific pre-processing
steps are required to cast graph data into independent examples
for vertex classification, such as transforming each vertex into a
graph (Wang et al., 2022). This increases the number of inference
steps by O(|V |) compared to our approach.



L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

1

g
e
i
t
n
t
a
a
s
a
m
l
p
o
o
a
c
f
d
u

A

B

B

C

C

C

C

C

C

C

D

D

D

D

D

F

F

F

F

G

G

G

G

G

G

G

H

H

1. Conclusion and future work

We have conducted extensive experiments to investigate how
raph neural networks behave in a lifelong learning setting on
volving graph data in which the class distribution is highly
mbalanced and the models need to adapt to new classes over
ime. In the first experiment, we have shown that it is not
ecessary to up-train GNNs on new unlabeled data. Based on
his result, we have explored in a second experiment the case of
n evolving graph in which new labeled vertices are continually
dded, including new classes over a sequence of tasks. The results
how that parameter reuse allows us to retain a high level of
ccuracy, even with a limited history size. In the third experi-
ent, we continued in this setup and tested the sensitivity to the

abel rate in the evolving graph setup, where we confirmed our
revious finding. Lastly, in the fourth experiment, we compared
ur newly proposed gDOC extension against the simple adaption
f DOC to graphs, showing that taking the class imbalance into
ccount during training is crucial. We have shown that gDOC
an be successfully combined with different GNN models. To
acilitate our analyses, we have shown that the tdiffk measure to
erive the history sizes is equivariant to different temporal gran-
larities. The measure tdiffk quantifies the temporal differences

along the edges in a temporal graph and is suitable to be reused
independently from the other methods presented in this work.
These results show a rich picture covering numerous challenges
of applying graph neural networks in practical settings without
retraining the model from scratch as soon as new data arrive.

As future work, we intend to explore and adapt more out-of-
distribution approaches to graphs, e. g.,by using the IsoMax loss
function (Macêdo & Ludermir, 2021). Another promising direction
of future work would adapt ideas from the L2AC framework to
graphs, i. e.,integrating explicit retrieval and similarity compo-
nents. For the scope of this work, we have limited ourselves to
techniques that provide a crisp decision rather than an OOD score
because an OOD score requires validation data to tune the thresh-
olds. Instead, the crisp unseen class detection methods presented
here will apply directly to real-world applications. Next, it will
be interesting to analyze why omitting old training data helps
detect out-of-distribution examples. Although we have removed
old data solely based on the vertex’s time, future work might
want to analyze different approaches to determine which vertices
to keep and which to remove, given a limited ‘‘memory’’ budget.
For example, keeping vertices with a high degree or page rank
could be beneficial. Another direction of future work would be
to explore when it is safe to actively shrink the output layer
of the GNNs, e. g.,by looking at the final layer’s weights. We
envision that the results of this work will spur the development
of new specialized techniques for lifelong open-world learning in
evolving graphs.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Code is available at https://github.com/lgalke/lifelong-learning.
Datasets are available at https://doi.org/10.5281/zenodo.3764770.
175
References

Aggarwal, C., & Subbian, K. (2014). Evolutionary network analysis: A survey. ACM
Computing Surveys, 47(1), http://dx.doi.org/10.1145/2601412.

urelio, Y. S., de Almeida, G. M., Castro, C. L., & de Pádua Braga, A. (2019). Learn-
ing from imbalanced data sets with weighted cross-entropy function. Neural
Processing Letters, 50(2), 1937–1949. http://dx.doi.org/10.1007/s11063-018-
09977-1.

Bendale, A., & Boult, T. E. (2016). Towards open set deep networks. In CVPR
(pp. 1563–1572). IEEE, http://dx.doi.org/10.1109/CVPR.2016.173.

ojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais, M., Rózemberczki, B.,
et al. (2020). Scaling graph neural networks with approximate PageRank. In
KDD (pp. 2464–2473). ACM.

resson, X., & Laurent, T. (2017). Residual gated graph ConvNets. arXiv:1711.
07553.

ai, J., Wang, X., Guan, C., Tang, Y., Xu, J., Zhong, B., et al. (2022). Multi-
modal continual graph learning with neural architecture search. In WWW
(pp. 1292–1300). ACM, http://dx.doi.org/10.1145/3485447.3512176.

hen, Z., & Liu, B. (2018). Synthesis lectures on artificial intelligence and machine
learning, Lifelong machine learning (2nd ed.). Morgan & Claypool Publishers,
http://dx.doi.org/10.2200/S00832ED1V01Y201802AIM037.

hen, J., Ma, T., & Xiao, C. (2018). FastGCN: Fast learning with graph
convolutional networks via importance sampling. In ICLR. OpenReview.net.

hen, X., Wang, J., & Xie, K. (2021). TrafficStream: A streaming traffic flow fore-
casting framework based on graph neural networks and continual learning.
arXiv:2106.06273.

hen, J., Zhu, J., & Song, L. (2018). Stochastic training of graph convolutional
networks with variance reduction. In ICML.

hiang, W., Liu, X., Si, S., Li, Y., Bengio, S., & Hsieh, C. (2019). Cluster-GCN: An
efficient algorithm for training deep and large graph convolutional networks.
In KDD (pp. 257–266). ACM.

hicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation co-
efficient (MCC) over F1 score and accuracy in binary classification evaluation.
BMC Genomics, 21(1), 1–13.

a, X., Chuanwei, R., Evren, K., Sushant, K., & Kannan, A. (2020). Inductive
representation learning on temporal graphs. In ICLR. OpenReview.net.

evlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: pre-training of
deep bidirectional transformers for language understanding. In NAACL-HLT.
Association for Computational Linguistics.

hamija, A. R., Günther, M., & Boult, T. E. (2018). Reducing network
agnostophobia. In NeurIPS (pp. 9175–9186).

osovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2021). An image is worth 16 × 16 words: Transformers for image
recognition at scale. In ICLR. OpenReview.net.

wivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., & Bresson, X. (2020).
Benchmarking graph neural networks. arXiv:2003.00982.

ebrinanto, F. G., Xia, F., Moore, K., Thapa, C., & Aggarwal, C. (2022). Graph
lifelong learning: A survey. arXiv:2202.10688.

ei, G., Wang, S., & Liu, B. (2016). Learning cumulatively to become more
knowledgeable. In KDD (pp. 1565–1574). ACM.

ey, M., & Lenssen, J. E. (2019). Fast graph representation learning with
PyTorch Geometric. In ICLR workshop on representation learning on graphs
and manifolds.

rench, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in
Cognitive Sciences, 3(4), 128–135. http://dx.doi.org/10.1016/S1364-6613(99)
01294-2.

alke, L., Franke, B., Zielke, T., & Scherp, A. (2021). Lifelong learning of graph
neural networks for open-world node classification. In IJCNN. IEEE, http:
//dx.doi.org/10.1109/IJCNN52387.2021.9533412.

alke, L., Mai, F., Vagliano, I., & Scherp, A. (2018). Multi-modal adversarial
autoencoders for recommendations of citations and subject labels. In UMAP.
ACM, http://dx.doi.org/10.1145/3209219.3209236.

alke, L., Vagliano, I., & Scherp, A. (2019). Can graph neural networks go
‘‘online’’? An analysis of pretraining and inference. In Representation learning
on graphs and manifolds, ICLR workshop.

lorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In AISTATS. JMLR.org.

oodfellow, I. J., Bengio, Y., & Courville, A. C. (2016). Adaptive computation and
machine learning, Deep learning. MIT Press.

oyal, P., Chhetri, S. R., & Canedo, A. (2020). dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based
Systems, 187, http://dx.doi.org/10.1016/j.knosys.2019.06.024.

oyal, P., Kamra, N., He, X., & Liu, Y. (2018). DynGEM: Deep embedding method
for dynamic graphs. arXiv:1805.11273.

amilton, W. L. (2020). Synthesis lectures on artificial intelligence and machine
learning, Graph representation learning. Morgan & Claypool Publishers, http:
//dx.doi.org/10.2200/S01045ED1V01Y202009AIM046.

amilton, W. L., Ying, Z., & Leskovec, J. (2017). Inductive representation learning
on large graphs. In NeurIPS.

https://github.com/lgalke/lifelong-learning
https://doi.org/10.5281/zenodo.3764770
http://dx.doi.org/10.1145/2601412
http://dx.doi.org/10.1007/s11063-018-09977-1
http://dx.doi.org/10.1007/s11063-018-09977-1
http://dx.doi.org/10.1007/s11063-018-09977-1
http://dx.doi.org/10.1109/CVPR.2016.173
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb4
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb4
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb4
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb4
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb4
http://arxiv.org/abs/1711.07553
http://arxiv.org/abs/1711.07553
http://arxiv.org/abs/1711.07553
http://dx.doi.org/10.1145/3485447.3512176
http://dx.doi.org/10.2200/S00832ED1V01Y201802AIM037
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb8
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb8
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb8
http://arxiv.org/abs/2106.06273
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb10
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb10
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb10
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb11
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb11
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb11
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb11
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb11
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb12
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb12
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb12
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb12
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb12
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb13
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb13
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb13
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb14
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb14
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb14
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb14
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb14
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb15
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb15
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb15
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb16
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb16
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb16
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb16
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb16
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/2202.10688
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb19
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb19
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb19
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb20
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb20
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb20
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb20
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb20
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
http://dx.doi.org/10.1109/IJCNN52387.2021.9533412
http://dx.doi.org/10.1109/IJCNN52387.2021.9533412
http://dx.doi.org/10.1109/IJCNN52387.2021.9533412
http://dx.doi.org/10.1145/3209219.3209236
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb24
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb24
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb24
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb24
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb24
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb25
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb25
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb25
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb26
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb26
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb26
http://dx.doi.org/10.1016/j.knosys.2019.06.024
http://arxiv.org/abs/1805.11273
http://dx.doi.org/10.2200/S01045ED1V01Y202009AIM046
http://dx.doi.org/10.2200/S01045ED1V01Y202009AIM046
http://dx.doi.org/10.2200/S01045ED1V01Y202009AIM046
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb30
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb30
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb30


L. Galke, I. Vagliano, B. Franke et al. Neural Networks 164 (2023) 156–176

H

S

S

S

S

T

T

T

T

T

V

W

W

W

W

W

W

W

W

X

X

X

Y

Y

Y

Z

Z

e, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020). LightGCN:
Simplifying and powering graph convolution network for recommendation.
In SIGIR (pp. 639–648). ACM, http://dx.doi.org/10.1145/3397271.3401063.

Hendrycks, D., Mazeika, M., & Dietterich, T. G. (2019). Deep anomaly detection
with outlier exposure. In ICLR. OpenReview.net.

Herbster, M., Pontil, M., & Wainer, L. (2005). Online learning over graphs. 119,
In ICML (pp. 305–312). ACM.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., et al. (2020). Open graph
benchmark: Datasets for machine learning on graphs. In NeurIPS.

Hu, Y., You, H., Wang, Z., Wang, Z., Zhou, E., & Gao, Y. (2021). Graph-MLP:
Node classification without message passing in graph. arXiv preprint arXiv:
2106.04051.

Huang, W., Zhang, T., Rong, Y., & Huang, J. (2018). Adaptive sampling towards
fast graph representation learning. In NeurIPS.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
ICLR. OpenReview.net.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In ICLR. OpenReview.net.

Kumar, S., Zhang, X., & Leskovec, J. (2018). Learning dynamic embeddings from
temporal interactions. arXiv:1812.02289.

Lee, K., Lee, K., Lee, H., & Shin, J. (2018). A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In NeurIPS
(pp. 7167–7177).

Lee, J. B., Nguyen, G., Rossi, R. A., Ahmed, N. K., Koh, E., & Kim, S. (2021). Dynamic
node embeddings from edge streams. IEEE Transactions on Emerging Topics
in Computational Intelligence, 5(6), 931–946. http://dx.doi.org/10.1109/TETCI.
2020.3011432.

Liang, S., Li, Y., & Srikant, R. (2018). Enhancing the reliability of out-of-
distribution image detection in neural networks. In ICLR. OpenReview.net.

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE
Transactions on Information Theory, 37(1), http://dx.doi.org/10.1109/18.61115.

Liu, B. (2017). Lifelong machine learning: a paradigm for continuous learn-
ing. Frontiers of Computer Science, 11(3), 359–361. http://dx.doi.org/10.1007/
s11704-016-6903-6.

Liu, H., Yang, Y., & Wang, X. (2021). Overcoming catastrophic forgetting in graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence,
vol. 35, no. 10 (pp. 8653–8661). http://dx.doi.org/10.1609/aaai.v35i10.17049.

Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for continual
learning. In NIPS (pp. 6467–6476).

Macêdo, D., & Ludermir, T. (2021). Improving entropic out-of-distribution de-
tection using isometric distances and the minimum distance score. arXiv:
2105.14399.

Macêdo, D., Ren, T. I., Zanchettin, C., Oliveira, A. L., & Ludermir, T. (2021). Entropic
out-of-distribution detection. In IJCNN. IEEE.

Mai, F., Galke, L., & Scherp, A. (2018). Using deep learning for title-based
semantic subject indexing to reach competitive performance to full-text. In
Proceedings of the 18th ACM/IEEE on joint conference on digital libraries. ACM,
http://dx.doi.org/10.1145/3197026.3197039.

Manessi, F., Rozza, A., & Manzo, M. (2020). Dynamic graph convolutional
networks. Pattern Recognition, 97.

Masud, M. M., Gao, J., Khan, L., Han, J., & Thuraisingham, B. M. (2011).
Classification and novel class detection in concept-drifting data streams
under time constraints. IEEE Transactions on Knowledge and Data Engineering,
23(6), 859–874. http://dx.doi.org/10.1109/TKDE.2010.61.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., & Bronstein, M. M.
(2017). Geometric deep learning on graphs and manifolds using mixture
model CNNs. In CVPR. IEEE.

Newman, M. E. (2005). Power laws, Pareto distributions and Zipf’s law.
Contemporary Physics, 46(5).

Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., & Kim, S. (2018).
Continuous-time dynamic network embeddings. In WWW (pp. 969–976).
ACM.

Pang, G., Shen, C., Cao, L., & van den Hengel, A. (2021). Deep learning for
anomaly detection: A review. ACM Computing Surveys, 54(2), 38:1–38:38.
http://dx.doi.org/10.1145/3439950.

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., et
al. (2020). Evolvegcn: Evolving graph convolutional networks for dynamic
graphs. In AAAI (pp. 5363–5370). AAAI Press.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual
lifelong learning with neural networks: A review. Neural Networks, 113,
54–71. http://dx.doi.org/10.1016/j.neunet.2019.01.012.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). Icarl: Incremental
classifier and representation learning. In CVPR.

Robins, A. V. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal.
Connection Science, 7(2), 123–146.
176
Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein, M. M.
(2020). Temporal graph networks for deep learning on dynamic graphs.
arXiv:2006.10637.

Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M. M., & Monti, F.
(2020). SIGN: scalable inception graph neural networks. arXiv:2004.11198.

Ruvolo, P., & Eaton, E. (2013). ELLA: an efficient lifelong learning algorithm. In
ICML (pp. 507–515). JMLR.org.

Sankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2020). DySAT: Deep neural
representation learning on dynamic graphs via self-attention networks. In
WSDM. ACM.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009).
The graph neural network model. IEEE Trans. Neural Networks, 20(1), http:
//dx.doi.org/10.1109/TNN.2008.2005605.

en, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., & Eliassi-Rad, T. (2008).
Collective classification in network data. AI Magazine, 29(3).

eo, Y., Defferrard, M., Vandergheynst, P., & Bresson, X. (2018). Structured
sequence modeling with graph convolutional recurrent networks. In ICONIP.
Springer.

hu, L., Xu, H., & Liu, B. (2017). DOC: deep open classification of text documents.
In EMNLP (pp. 2911–2916). ACL, http://dx.doi.org/10.18653/v1/d17-1314.

ilver, D. L., Yang, Q., & Li, L. (2013). Lifelong machine learning systems: Beyond
learning algorithms. SS-13-05, In AAAI spring symposium: Lifelong machine
learning. AAAI.

an, Z., Ding, K., Guo, R., & Liu, H. (2022). Graph few-shot class-incremental
learning. In WSDM (pp. 987–996). ACM, http://dx.doi.org/10.1145/3488560.
3498455.

hrun, S. (1998). Lifelong learning algorithms. In Learning to learn (pp. 181–209).
Springer.

hrun, S., & Mitchell, T. M. (1995). Learning one more thing. In IJCAI
(pp. 1217–1225). Morgan Kaufmann.

rivedi, R., Dai, H., Wang, Y., & Song, L. (2017). Know-Evolve: Deep temporal
reasoning for dynamic knowledge graphs. In ICML. PMLR.

rivedi, R., Farajtabar, M., Biswal, P., & Zha, H. (2019). Dyrep: Learning
representations over dynamic graphs. In ICLR. OpenReview.net.

eličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018).
Graph attention networks. In ICLR. OpenReview.net.

ang, B., Chen, Y., Li, X., & Chen, J. (2021). Lifelong classification in open world
with limited storage requirements. Neural Computation, 33(7), 1818–1852.
http://dx.doi.org/10.1162/neco_a_01391.

ang, C., Qiu, Y., Gao, D., & Scherer, S. (2022). Lifelong graph learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 13719–13728).

ang, J., Song, G., Wu, Y., & Wang, L. (2020). Streaming graph neural networks
via continual learning. In CIKM (pp. 1515–1524). ACM, http://dx.doi.org/10.
1145/3340531.3411963.

ang, M., et al. (2019). Deep graph library: Towards efficient and scalable deep
learning on graphs. arXiv preprint arXiv:1909.01315.

ebb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Characterizing
concept drift. Data Mining and Knowledge Discovery, 30(4), 964–994.

ebb, G. I., Lee, L. K., Goethals, B., & Petitjean, F. (2018). Analyzing concept
drift and shift from sample data. Data Mining and Knowledge Discovery, 32(5),
1179–1199.

u, M., Pan, S., & Zhu, X. (2020). OpenWGL: Open-world graph learning. In
ICDM (pp. 681–690). IEEE.

u, F., Souza, . A. H., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. Q. (2019).
Simplifying graph convolutional networks. In ICML (pp. 6861–6871). PMLR.

u, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural
networks? In ICLR. OpenReview.net.

u, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., & Jegelka, S. (2018).
Representation learning on graphs with jumping knowledge networks. In
ICML. PMLR.

u, H., Liu, B., Shu, L., & Yu, P. (2019). Open-world Learn-
ing and Application to Product Classification. In WWW
(pp. 3413–3419). ACM, http://dx.doi.org/10.1145/3308558.3313644.

ang, Z., Cohen, W. W., & Salakhutdinov, R. (2016). Revisiting semi-supervised
learning with graph embeddings. In ICML. JMLR.org.

ang, J., Zhou, K., Li, Y., & Liu, Z. (2021). Generalized out-of-distribution
detection: A survey. arXiv arXiv:2110.11334.

ing, Z., You, J., Morris, C., Ren, X., Hamilton, W. L., & Leskovec, J. (2018).
Hierarchical graph representation learning with differentiable pooling. In
NeurIPS.

eng, H., Zhou, H., Srivastava, A., Kannan, R., & Prasanna, V. K. (2020). Graphsaint:
Graph sampling based inductive learning method. In ICLR. OpenReview.net.

hou, F., & Cao, C. (2021). Overcoming catastrophic forgetting in graph neural
networks with experience replay. arXiv preprint arXiv:2003.09908.

http://dx.doi.org/10.1145/3397271.3401063
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb32
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb32
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb32
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb33
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb33
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb33
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb34
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb34
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb34
http://arxiv.org/abs/2106.04051
http://arxiv.org/abs/2106.04051
http://arxiv.org/abs/2106.04051
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb36
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb36
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb36
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb37
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb37
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb37
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb38
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb38
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb38
http://arxiv.org/abs/1812.02289
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb40
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb40
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb40
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb40
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb40
http://dx.doi.org/10.1109/TETCI.2020.3011432
http://dx.doi.org/10.1109/TETCI.2020.3011432
http://dx.doi.org/10.1109/TETCI.2020.3011432
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb42
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb42
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb42
http://dx.doi.org/10.1109/18.61115
http://dx.doi.org/10.1007/s11704-016-6903-6
http://dx.doi.org/10.1007/s11704-016-6903-6
http://dx.doi.org/10.1007/s11704-016-6903-6
http://dx.doi.org/10.1609/aaai.v35i10.17049
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb46
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb46
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb46
http://arxiv.org/abs/2105.14399
http://arxiv.org/abs/2105.14399
http://arxiv.org/abs/2105.14399
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb48
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb48
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb48
http://dx.doi.org/10.1145/3197026.3197039
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb50
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb50
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb50
http://dx.doi.org/10.1109/TKDE.2010.61
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb52
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb52
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb52
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb52
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb52
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb53
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb53
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb53
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb54
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb54
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb54
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb54
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb54
http://dx.doi.org/10.1145/3439950
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb56
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb56
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb56
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb56
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb56
http://dx.doi.org/10.1016/j.neunet.2019.01.012
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb58
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb58
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb58
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb59
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb59
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb59
http://arxiv.org/abs/2006.10637
http://arxiv.org/abs/2004.11198
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb62
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb62
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb62
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb63
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb63
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb63
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb63
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb63
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb65
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb65
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb65
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb66
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb66
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb66
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb66
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb66
http://dx.doi.org/10.18653/v1/d17-1314
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb68
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb68
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb68
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb68
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb68
http://dx.doi.org/10.1145/3488560.3498455
http://dx.doi.org/10.1145/3488560.3498455
http://dx.doi.org/10.1145/3488560.3498455
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb70
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb70
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb70
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb71
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb71
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb71
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb72
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb72
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb72
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb73
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb73
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb73
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb74
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb74
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb74
http://dx.doi.org/10.1162/neco_a_01391
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb76
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb76
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb76
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb76
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb76
http://dx.doi.org/10.1145/3340531.3411963
http://dx.doi.org/10.1145/3340531.3411963
http://dx.doi.org/10.1145/3340531.3411963
http://arxiv.org/abs/1909.01315
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb79
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb79
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb79
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb80
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb80
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb80
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb80
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb80
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb81
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb81
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb81
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb82
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb82
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb82
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb83
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb83
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb83
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb84
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb84
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb84
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb84
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb84
http://dx.doi.org/10.1145/3308558.3313644
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb86
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb86
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb86
http://arxiv.org/abs/2110.11334
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb88
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb88
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb88
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb88
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb88
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb89
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb89
http://refhub.elsevier.com/S0893-6080(23)00208-3/sb89
http://arxiv.org/abs/2003.09908

	Lifelong learning on evolving graphs under the constraints of imbalanced classes and new classes
	Introduction
	Problem Formalization: Lifelong Learning on Graphs
	Key Contributions
	Organization of the Article

	Related Work and Selection of Models for Experiments
	Graph Neural Networks
	Lifelong Learning
	Out-of-Distribution and Unseen Class Detection
	Summary

	Lifelong and Open-World Graph Learning
	Training Procedure for Lifelong Graph Learning
	Self-Detection of New Classes using our gDOC Method
	Summary

	Measure of k-Neighborhood Time Differences
	Formal Definition of the tdiffk Measure
	Equivariance to Temporal Granularity
	Summary

	Datasets and Analyses
	Static Graph Datasets
	Evolving Graph Datasets
	Basic Characteristics
	Changes in the Class Set and Distribution Shift
	Analyzing Time Differences using tdiffk
	Dataset Preprocessing

	Summary

	Experiment 1: Transductive versus Inductive Learning
	Procedure
	Hyperparameters
	Measures
	Results
	Summary

	Experiment 2: Lifelong Learning on Graphs
	Procedure
	Hyperparameters
	Measures
	Results
	Ablation Study: Incrementally-Trained vs. Once-Trained Models
	Summary

	Experiment 3: Lifelong Learning with Limited Labeled Data
	Procedure
	Hyperparameters
	Measures
	Results
	Summary

	Experiment 4: Detection of Unseen Classes
	Procedure
	Hyperparameters
	Measures
	Results
	Combining gDOC with Different GNN Base Models
	Trade-off between In-Distribution Accuracy and OOD Detection
	Summary

	General Discussion
	Main Findings
	Generalizability

	Conclusion and Future Work
	Declaration of Competing Interest
	Data availability
	References


