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Fig. S1. Distribution of global drylands defined by the aridity index, the ratio of precipitation to potential 

evapotranspiration based on 1981-2010 mean gridded surface climatology (TerraClimate). We 

classified drylands as one of the four following climate classes: Hyper-arid: P/PET < 0.05, Arid: 0.05 

< P/PET < 0.2, Semi-arid: 0.2 < P/PET < 0.5, Sub-humid: 0.5 < P/PET < 0.65. We masked areas north 

and south of 55 degrees from the Equator, to exclude high-latitude arid permafrost areas. Bold outlines 

indicate the continent regions where AGC could be compared to L-VOD-based estimates and oceans 

are masked in all figures. 



Fig. S2. Global map depicting dryland areas with retained L-VOD observations after quality filtering 

for the full period (2011-2018) that were used for the temporal analysis of above ground carbon. These 

areas covered ca. 64% of the total dryland areas for these continents (Figure S1). 



Fig. S3. We used the biomass map (GlobBiomass, Santoro et al., 2018) with the best correlation to L-

VOD for global drylands to develop a new, drylands-specific biomass transfer function relating L-VOD 

to aboveground carbon. It was necessary to develop a drylands-specific biomass transfer function 

because previous linear models (e.g. Brandt et al. 2018) calibrated against data including high-biomass 

ecosystems like tropical forests tend to overestimate dryland biomass. It should be noted that 

intercomparisons reveal disagreements remaining between different biomass products in savannas and 

sparsely vegetated shrublands and grasslands (Zhang et al., 2019b) and there is clearly room for 

improvement in biomass data used for this calibration. We constrained the intercept through zero 

because areas with zero biomass have zero L-VOD (Brandt et al. 2018). The resulting linear model 

relating L-VOD to AGC has a slope of 52.48 (95% CI: 52.12-52.84) [Mg C ha-1], standard error = 0.18 

and R2 = 0.65. 



Fig. S4. Maps of trends (2011-2018) in AGC for climatic drylands of the studied continents with 

reliable L-VOD data. Units are Mg C ha-1 yr-1. 



Fig. S5: Maps of trends (2001-2018) in GPP for global climatic drylands. Units are Mg C ha-1 yr-1. 
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Fig. S6: Difference between productivity (mean GPP 2001-2018) derived from MODIS observations 

and simulations by the TRENDY models over global drylands (TRENDY model - MODIS GPP). Units 

are Mg C ha-1 yr-1.  
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Fig. S7: Difference between productivity trends (annual GPP 2001-2018) derived from MODIS 45 
observations and simulations by the TRENDY models over global drylands (TRENDY model - MODIS 46 
GPP). Units are Mg C ha-1 yr-1.  47 



Fig. S8: Difference between AGC (mean 2011-2018) inferred from L-VOD and simulated by the 

TRENDY models for climatic drylands of the studied continents with reliable L-VOD data (TRENDY 

model - L-VOD AGC). Units are Mg C ha-1. 



Fig. S9: Difference between AGC trends (2011-2018) inferred from L-VOD and simulated by the 

TRENDY LSMs for climatic drylands of the studied continents with reliable L-VOD data (TRENDY 

model - L-VOD AGC). Units are Mg C ha-1 yr-1. 



Fig. S10: Frequency of burned area between 2001-2018, extracted from the MCD64A1v006 burned 

area product and resampled to 1° gridcell. Values of 0.5 might indicate the entire pixel burned every 

two years or that half the pixel burned every year. 



Fig. S11. GPP model-data comparison for different fire frequencies. Units are GPP (Mg C ha-1 y-1). We 

saw little systematic relationship between burn frequency and GPP bias, although some models (JULES 

and CLASS-CTEM, ORCHIDEE-CNP, and OCN) did overestimate GPP in more frequently burned 

areas. Models with explicit representation of fire are indicated by the black flame icon. Black lines are 

the medians, rectangles are interquartile range and whiskers extend from maximum to minimum. The 

histogram (n) indicates the number of grid-cells per burned frequency bin.  



Fig. S12. AGC model-data comparison for different fire frequencies. Units are AGC density (Mg C ha-

1). There was generally no relation between burn frequency and model - data residuals, apart from 

JULES and CLASS-CTEM which overestimated biomass in more frequently burned regions. Models 

with explicit representation of fire are indicated by the black flame icon. Black lines are the medians, 

rectangles are interquartile range and whiskers extend from maximum to minimum. The histogram (n) 

indicates the number of grid-cells per burned frequency bin. 



Fig. S13: Effects of a) CO2 increase, b) climate change, c) land-use change and d) combined on cVeg, 

using TRENDY model runs S1: changing CO2 and recycled climatology, S2: changing CO2 and 

varying climatology and S3: changing CO2, varying climatology and land-use change. (d-f) show the 

model means with ribbons representing the interquartile range. The divergence is shown relative to 

1901. The model set used to generate this figure is identical to Fig. 6. 



Fig. S14: Effects of a) CO2 increase, b) climate change, c) land-use change and d) combined on cSoil, 

using TRENDY model runs S1: changing CO2 and recycled climatology, S2: changing CO2 and 

varying climatology and S3: changing CO2, varying climatology and land use change. (d-f) show the 

model means with ribbons representing the interquartile range. The divergence is shown relative to 

1901. The model set used to generate this figure excludes ISAM as an S1 run for cSoil was not available. 



Fig. S15: Effects of a) CO2 increase, b) climate change, c) land-use change and d) combined on cEco, 

using TRENDY model runs S1: changing CO2 and recycled climatology, S2: changing CO2 and 

varying climatology and S3: changing CO2, varying climatology and land-use change. (d-f) show the 

model means with ribbons representing the interquartile range. The divergence is shown relative to 

1901. The model set used to generate this figure excludes ISAM as an S1 run for cSoil was not available. 



Fig. S16: Effects of a) CO2 increase, b) climate change, c) land-use change and d) combined GPP, using 

TRENDY model runs S1: changing CO2 and 20-yr recycled climatology, S2: changing CO2 and 

varying climatology and S3: changing CO2, varying climatology and land use change. (d-f) bold lines 

show model means with ribbons representing the interquartile range. The divergence is shown relative 

to 1901. The model set used to generate this figure excludes OCN as an S1 run for GPP was not 

available. 



Fig. S17: Sensitivity analysis of extraction methods for comparing model outputs with different spatial 

resolution. Summed GPP pixel values at native model resolutions with different handling of border 

pixels. Contained: A pixel is only considered if it lies entirely within the boundary. Exact: The exact 

extent of the overlapping edge pixel is used. Extended: Any intersected pixel is considered in full. 

Extracting values from rasters that have relatively coarse resolution can yield substantial differences 

due to the inclusion or exclusion of adjacent areas. Weighted extraction methods that account for partial 

coverage of cells within the boundary of a mask should be used when undertaking these kinds of 

analyses across datasets with two or more different native resolutions. Different methods could account 

for more than a 10-fold difference in the total productivity retrieved for drylands. When investigating 

the carbon dynamics of regions of variable spatial extents with strict boundaries, climatic or otherwise, 

the spatial resolutions at which LSMs are implemented must be considered appropriately when 

resampling.  



Fig. S18: Sensitivity analysis of extraction methods for comparing model outputs with different spatial 

resolution. Summed AGC pixel values at native model resolutions with different handling of border 

pixels. Contained: A pixel is only considered if it lies entirely within the boundary. Exact: The exact 

extent of the overlapping edge pixel is used. Extended: Any intersected pixel is considered in full. 

Extracting values from rasters that have relatively coarse resolution can yield substantial differences 

due to the inclusion or exclusion of adjacent areas. Weighted extraction methods that account for partial 

coverage of cells within the boundary of a mask should be used when undertaking these kinds of 

analyses across datasets with two or more different native resolutions. Different methods could account 

for more than a 10-fold difference in the total biomass retrieved for drylands. When investigating the 

carbon dynamics of regions of variable spatial extents with strict boundaries, climatic or otherwise, the 

spatial resolutions at which LSMs are implemented must be considered appropriately when resampling. 



Fig. S19. Sensitivity analysis of extraction methods for comparing model outputs with different spatial 

resolution. The relative impact of different sampling approaches depends on grid resolution. On the y-

axis are ratios of mean total a) cVeg and b) GPP values from using the contained grid-cell and exact 

methods respectively, the x-axis shows the model spatial resolution in degrees. The difference was more 

pronounced for coarser resolution datasets. When investigating the carbon dynamics of regions of 

variable spatial extents with strict boundaries, climatic or otherwise, the spatial resolutions at which 

LSMs are implemented must be considered appropriately when resampling.  



Table S1. Global products used for analysis. 

Product Type Spatial 

resolution 

Temporal 

resolution 

Period Reference 

Productivity PML-V2 (MODIS 

product) 

500 m 8-day 2000-02-26 to 2020-

12-26 (Zhang et al., 

2019) 

Biomass L-VOD (vegetation

optical depth)

0.25° (approx. 

25 km) 

3-day 2010 to present (Fernandez-

Moran et al., 

2017) 

Precipitation 

Potential 

Evapotranspir

ation 

TerraClimate 2.5 arc minutes monthly 1958-2019 (Abatzoglou et al., 

2018) 

Modelled 

GPP and 

Biomass 

TRENDY (v8) S3 1° GPP: monthly 

Biomass: yearly 

1901-2018 (Friedlingstein et 

al., 2019) 

Burned area MCD64A1v006 

(MODIS product) 

500 m monthly 2000 to present (Giglio et al., 

2015) 



Table S2: Pearson’s r between different AGC maps resampled to 0.25° resolution and the filtered L-

VOD values of the corresponding years. For AGC maps with reference year 2010, L-VOD for 2011 

was used instead due to data availability. 

AGC product Pearson’s r 

Globbiomass map (2010) 0.76 

European Space Agency Climate Change Initiative Biomass map (2017) 0.68 

Saatchi biomass map (2015) 0.67 

Avitabile biomass map (2010) 0.42 



Table S3. A brief description of the 12 land surface models from TRENDY v8 that are included in this 

study. 

Model Native spatial 

resolution 

Dynamic 

natural land-

cover changes 

Ecosystem 

demography 

Representation 

of Fire 

Reference 

CABLE-POP 1° ⨉ 1° N Y N (Haverd et al., 2018) 

CLASS-

CTEM 
2.8125° ⨉ 2.8125° N N Y (Melton & Arora, 2016) 

CLM5.0 0.9375° ⨉ 1.25° N N Y (Lawrence et al., 2019) 

DLEM 0.5° ⨉ 0.5° N N Y (H. Tian et al., 2015) 

ISAM 0.5° ⨉ 0.5° N N N (Meiyappan et al., 2015) 

ISBA-CTRIP 1° ⨉ 1° N N Y (Delire et al., 2020) 

JSBACH 3.2 T63 (~1.9°) N N Y (Mauritsen et al., 2019; 

Reick et al., 2021)  

JULES-ES-

1.0 

1.25° ⨉ 1.875° Y N N (Clark et al., 2011) 

LPJ-GUESS 0.5° ⨉ 0.5° Y Y Y (B. Smith et al., 2014) 

OCN 1° ⨉ 1.2° N N N (Zaehle & Friend, 2010) 

ORCHIDEE 0.5° ⨉ 0.5° N N N (Krinner et al., 2005) 

ORCHIDEE-

CNP 
2° ⨉ 2° N N N (Goll et al., 2017) 

https://www.zotero.org/google-docs/?GlMqn6


Table S4. Slope parameters for linear models fitted to each time-series of GPP (global, 2001-2018) and 

AGC (four continents, 2011-2018) using robust Theil-Sen estimators. Grey shading indicates 

significant trends (p < 0.05). 



Table S5: Mean total dryland C stocks and changes predicted by individual models (1901 to 2018) and 

deviation from the TRENDY mean value in 2018 in units of TRENDY models standard deviation, 

colours indicating over- (blue) and underestimation (red). 


