DNA methylation: a historical perspective

Alexandra L. Mattei, Nina Bailly and Alexander Meissner

In 1925, 5-methylcytosine was first reported in bacteria. However, its biological importance was not intuitive for several decades. After this initial lag, the ubiquitous presence of this methylated base emerged across all domains of life and revealed a range of essential biological functions. Today, we are armed with the knowledge of the key factors that establish, maintain, and remove DNA methylation and have access to a staggering and rapidly growing number of base-resolution methylation maps. Despite this, several fundamental details about the precise role and interpretation of DNA methylation patterns remain under investigation. Here, we review the field of DNA methylation from its beginning to present day, with an emphasis on findings in mammalian systems, and point the reader to select experiments that form the foundation of this field.

DNA methylation: why (still) bother?

A quarter century ago, one of the pioneers in the field of DNA methylation, Rudolf Jaenisch, outlined in the August 1997 issue of Trends in Genetics why we should bother caring about DNA methylation and speculated in which developmental contexts it might function [1]. Here, we would like to review why we still bother, what we have learned in nearly a century of research, and what we still need to address in the coming years. Since its initial discovery in bacteria in 1925, DNA methylation has been investigated in a vast range of organisms and is linked to biological topics from gene regulation and genome organization, to reproduction and development, and to disease and aging. It is the most well-studied epigenetic mechanism and is often used as the classical example of epigenetic inheritance, although recent advances have shown this modification to be more dynamic, and hence more complex, than previously thought [2–4].

Despite an ever-growing body of work published on DNA methylation each year, it remains difficult to pinpoint the precise function of most DNA methylation found across the genome. It is also still unresolved why DNA methylation is essential to differentiated, but not pluripotent, cells [5–7] and why it is altered into a distinct landscape across most cancer types [8]. As typical review articles by design focus on summarizing more recent discoveries and advances around their time [9–18], we decided to complement this by providing a systematic review covering the entire history of the field to highlight many foundational discoveries on which our current work is built. As expected, the primary literature is vast, and we apologize for having to omit many elegant experiments as we summarize the emergence and progression of the field of DNA methylation across a century.

1900–1959: From genetics to epigenetics

At the turn of the 20th century, Walter Sutton (1902) and Theodore Boveri (1903) independently proposed the chromosomal theory of inheritance, linking Gregor Mendel’s (1866) long overlooked laws on gene behavior and inheritance to their own work on meiosis [19,20]. This initially controversial theory gained credence following a 1910 paper from one of its detractors, Thomas Hunt Morgan, who demonstrated that eye color in Drosophila melanogaster is

Highlights

SmC was discovered in mammals and found to have a nonrandom distribution that suggested a possible biological function.

In the early 1980s, DNA methylation within 5’ promoter regions, but not elsewhere, was found to inhibit transcription of the associated gene.

Throughout the 1990s and 2000s, mechanisms of gene regulation by DNA methylation were elucidated as well as its relationship with histone modifications and influence on the 3D genome organization uncovered.

Over the past decade, high-throughput sequencing technologies complemented earlier single-gene efforts and ultimately provided a global understanding of DNA methylation and its dynamics in development and disease.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
determined by inheritance of a gene on the X chromosome, which provided the first decisive piece of evidence in support of this theory [21]. Levene and Jacobs’ research on nucleic acids revealed that they reside in a polymer chain of nucleotides [22] and the growing interest in the composition of these nucleic acids laid the foundation among others for the field of epigenetics, with DNA methylation as a central actor (Figure 1A).

The discovery of 5-methylcytosine in living cells
In 1925, Johnson and Coghill isolated and crystallized nucleic acids from Mycobacterium tuberculosis in an effort to identify its pathogenic determinant. One of their candidates was 5-methylcytosine (5mC) (see Glossary), a nucleotide Johnson had postulated might occur naturally in living organisms based on his previous success with its in vitro biochemical synthesis [23]. Microscopic examination of their hydrolyzed nucleic acid picrate crystals under polarized light indeed distinguished cytosine from 5mC [24].

Despite this early and seemingly relevant discovery, the next report on 5mC was only published 23 years later. Using recent advances in paper chromatography [25], Hotchkiss observed a faint band near that of cytosine on his chromatograph of calf thymus DNA that behaved like cytosine, yet was slightly shifted in its migration, leading him to suggest it is cytosine but with some modification and therefore labeled it ‘epi-cytosine’ [26] (Figure 1B). Specifically, he noted that the epi-cytosine relates to cytosine in terms of its absorption spectrum and mobility in the same manner that thymine relates to uracil. As thymine is 5-methyluracil, Hotchkiss inferred that epi-cytosine could possibly be 5mC. Two years later, Wyatt confirmed the presence of 5mC in mammalian, insect, and plant DNA with a broad range of quantities [27,28].

As nucleic acids were confirmed to be the carriers of genetic information [29,30], and the structure of the DNA double helix was reported [31], interest in the field of DNA methylation grew. Sinsheimer subsequently noted that 5mC is not randomly distributed in DNA but is found specifically in the CpG dinucleotide context (Figure 1C). Interestingly, the CpG doublet was not found as frequently as expected in eukaryotic DNA [32,33].

Summary
Why did it take so long from its initial biological discovery before research on 5mC started to progress more rapidly? One obvious reason is the historical context of its discovery. In 1925, we did not know yet that polymer chains of nucleic acids carry genetic information. The 1928 transformation experiments by Frederick Griffith [34], the 1944 Avery-MacLeod-McCarty experiment [29], the conclusion of the Second World War, the 1952 Hershey-Chase experiment [30], and the resolution of the DNA double helix [31] helped lay the needed foundation that enabled the exploration of the possible relevance of 5mC in DNA. Two additional factors may have caused some initial hesitation: other groups did not find 5mC in their DNA isolates of M. tuberculosis [27,35], and the low abundance of 5mC reported by Hotchkiss and Wyatt seemed disqualifying for 5mC to have a major biological function. As an aside, it is worth mentioning that in parallel to these experimental advances, the developmental biologist Conrad Waddington coined the term ‘epigenetics’ in 1942 [36] and published his widely used epigenetic landscape in 1957 [37]; however, these concepts were not linked to DNA methylation until its function became clearer over subsequent decades.

1960–1969: Insights into the utility and mechanisms of 5mC in bacteria
The dawn of molecular biology set the stage for a more thorough investigation and appreciation of DNA methylation from plants to mammals. However, essential progress was first made by studying the methylation of nucleic acids in bacteria [38]. As a tractable and abundant model organism,
bacteria provided major insights into the biology of 5mC in prokaryotes and thereby paved the way for its study in higher organisms (Figure 2A).

The bacterial restriction and modification system
Luria, Bertani, and Weigle first demonstrated that different families of bacteriophage diverge in their ability to infect certain bacterial strains [39,40]. The basis for their strain specificity of viral infection was not due to a phage’s differential ability to enter the bacterial strains, but rather because once inside, incompatible phage DNA was found to be degraded in an immune-like response [41]. A key mechanistic advance was the discovery that different bacteria have strain-specific methyltransferase activity, which raised the possibility of a role for 5mC in the defense against phages [42]. Thus, Arber proposed the restriction and modification system (R-M system) where methylation-sensitive ‘restriction enzymes’ defend the bacterial host against invading viruses by digesting their DNA. Bacterial DNA is protected from these restriction enzymes due to modifications to their DNA in the form of species-specific DNA methylation [43].

DNA methylation during DNA replication in bacteria
Beyond its role in host protection, a link between bacterial DNA methylation and DNA replication was observed [44]. Billen found that during normal Escherichia coli growth, DNA methyltransferase activity was evident behind the replication fork where 5mC was exclusively placed on the unmethylated nascent strand of DNA (Figure 2B). DNA replication in the absence of methionine, the methyl donor, led to the synthesis of an unmethylated nascent strand, which retained the ability to get methylated after S phase when methionine was added back into the media [45]. However, it seemed that the unmethylated nascent strand of DNA cannot serve as template DNA in the subsequent round of replication [46] and strains deficient for the methyl-donor showed DNA degradation [47].

5mC and methyltransferase activity in rat tissues
In their 1964 review on nucleic acid modifications, Srinivasan and Borek speculated that because 5mC plays a defining role in bacteria, similar mechanisms might act in eukaryotes that could underlie their cell type diversity [48]. Four years later, they reported DNA methyltransferase activity in the nuclear extracts of different tissues of embryonic as well as adult rat and tested their ability to methylate DNA from various species. Interestingly, these experiments showed that some extracts, such as from kidney or liver, harbor more potent methyltransferase activity than brain or spleen extracts. Based on these observations, they suggested that different tissues from the same organism might have different 5mC content [49].

Summary
The first biological roles for DNA methylation were gleaned from studies on the basics of bacterial immunity and DNA replication, though it remained unclear whether any of these functions would be conserved in higher organisms. A key advance was based on the discovery that enzymes are responsible for adding the methyl group to cytosines in nucleic acid polymers. This suggested that DNA methylation could be regulated, thus providing a path for specific target modification. In particular, the possible tissue-specific roles of 5mC in rodents were intriguing, but the data were too sparse to draw more meaningful conclusions yet.

1970–1979: DNA methylation in higher organisms
Once it became clear that 5mC, despite its relatively low abundance, does have a biological function in bacteria, the possibility that DNA methylation could also play a more general regulatory role across species gained credibility. As in many fields, important technological advances were needed to enable a thorough and informative investigation of the theoretical models that emerged in this decade.
Broader quantification of DNA methylation

The presence of 5mC in bacteria, plants, and mammals indicated that 5mC is a widespread DNA modification, which led to further exploration of methylation content using mass spectrometry. In the early 1970s, Vanyushin quantified 5mC levels present in different cell types of many animals, including sponges, mollusks, sea urchins, bony fish, amphibians, reptiles, and mammals [50,51]. These analyses showed that while both GC and 5mC content can differ between species, they are often more similar between closely related species and generally comparable between different tissues. Interestingly, Vanyushin later found 5mC in sequence contexts other than the CpG dinucleotide in plants and in varying quantities across different plant species [52].

A role for DNA methylation in gene regulation

As more reports of methylation profiling by mass spectrometry accumulated, several groups speculated about the possible role of 5mC in higher organisms, including that: (i) 5mC may play no role in eukaryotic development [53,54]; (ii) 5mC may guide DNA mutations, which at the time were thought to be required for transcriptional changes [55]; and (iii) 5mC may act as a transcriptional activator [56] (Box 1). In 1975, three notable reviews were published that each

Figure 1. The discovery of 5-methylcytosine. (A) Timeline of early studies that established the field of DNA methylation between 1900 and 1959, including the in vivo discovery of 5mC in bacteria and then mammals. Web of Science citation counts as of March 9, 2022 are shown. (B) A schematic illustration of a paper chromatograph shown by Hotchkiss in his 1948 paper that reports the UV absorption of the products of hydrolyzed calf thymus genomic DNA. A base of low abundance believed to be 5-methylcytosine due to its characteristics was labeled by Hotchkiss as ‘epi-cytosine’ given the uncertainty of its exact identity. (C) Sinsheimer digested calf thymus DNA into dinucleotides that were fractionated by column chromatography. The plot shows the UV absorptions of these nucleotide doublets. MG = 5-methylcytosine followed by guanine. See [24,26,27,33].
Figure 2. Propagation of stable methylation patterns and first theories on their functions. (A) In the 1960s and 1970s, the first major roles for DNA methylation were discovered and explored. (B) To determine where methyl groups are added after DNA synthesis, Billen cultivated bacteria first in the presence of 14C-labeled thymine for one cycle of replication followed by 5-bromouracil (5bU) present for the second cycle, to label the parent and nascent strand, respectively. In these cycles, 3H-labeled methionine was added to track the placement of methyl groups. As shown, the 3H-labeled methyl groups were found solely on nascent DNA (blue line) and not parent DNA (purple line) when separated by density. (C) Schematic of Holliday and Pugh’s model for the generation and stable propagation of DNA methylation. Enzyme E1 methylates unmodified DNA at target sites, but this activity alone is unstable due to the expected loss through DNA replication (top: Unstable state). Thus, a second enzyme E2 is required to enable maintenance of the methylation pattern by specifically recognizing hemimethylated DNA and complementing methylation at the symmetrical nascent CpG (bottom: Stable state). E1 and E2 were not known at the time and were hypothetical enzymes. (D) Densitometer tracing of gel-fractionated mouse DNA, digested with MspI or its methylation-sensitive isoschizomer HpaII, by Singer et al. The abundance of smaller MspI fragments compared with HpaII fragments indicates that the genome-wide cut sites are predominantly methylated. (E) Schematics of C3H 10T1/2 fibroblasts by phase-contrast microscopy in Constantinides et al. revealed a striking change in morphology after treatment with the mutagen and methylation inhibitor 5-aza for 9–10 days, indicating differentiation into myotubes. See [43–46,50,53,67–69,64,65,79,94]. Abbreviations: 5-aza, 5-azacytidine; 5mC, 5-methylcytosine; R-M system, restriction and modification system.
provided unique frameworks for contemplating and investigating the biological effects of DNA methylation [57–59]. While each review differed in its specific, well rationalized mechanisms, they all fundamentally agreed that 5mC would play a role in regulating gene expression and orchestrating development.

Holliday and Pugh proposed a model for switching genes on and off that utilizes two different specialized enzymes for de novo methylation and maintenance methylation (Figure 2C) [57]. They argued that DNA methylation seemed a better candidate than sequence mutation to reversibly control gene expression, considering experiments by Gurdon and colleagues that showed transplanting a somatic cell nucleus into an enucleated oocyte can reprogram it to totipotency [60]. To Comings, the idea that 5mC is enriched in active DNA regions in eukaryotes implicated it as a transcriptional activator.

In 1973, Adams demonstrated that sea urchin DNA is twice as methylated at the pluteus stage than at the morula stage [54], in agreement with earlier findings suggesting that methylation in sea urchins does not occur until gastrulation [278,279]. Adams’ report was the first to quantify such changes at each developmental stage, which led him to revise his previous theory that DNA methylation does not regulate gene expression and to instead propose the new idea that DNA methylation could function to ‘switch off’ genes after contributing to their specific function in early development.

Riggs detailed the theoretical connection between DNA methylation and the process of X inactivation and proposed that the evolutionarily ancient 5mC could serve as its initiator in a two-step process carried out by one enzyme [58]. Interestingly, Riggs argued that the rules governing his X inactivation model could be applied more broadly to the control of gene expression, with a high barrier to transcriptional change in either direction that, once triggered, could respond quickly. Specifically, inspired by the mechanism of the bacterial R-M system, he suggested that 5mC found in gene regulatory sequences could influence the ability of proteins to bind there, but when 5mC occurs outside of regulatory sequences, such as at satellite repeats, it may serve other roles [58].

Sager and Kitchin also took inspiration from the work in bacteria to extrapolate a parsimonious role for 5mC as an R-M system in all organisms harboring genomic methylation [59]. Broadly speaking, the proposed system would generate small, inherited modifications to DNA that enable its later ‘restriction’ by degradation or heterochromatinization, therefore leading to inactivation. In eukaryotes, they proposed that the insertions or deletions resulting from double strand breaks

[Box 1. Early theories on the function of DNA methylation]

Work prior to the 1970s led several scientists to propose formal hypotheses about the function of DNA methylation in eukaryotes. In the late 1960s, Scarano and colleagues observed that 90% of 5mC in sea urchin DNA is found in the CG context and is thus not randomly distributed in DNA, leading them to speculate about a role for 5mC in differentiation [277,278]. In 1971, Scarano proposed that spontaneous deamination of 5mC, which generates a C→T conversion, could lead to heritable changes in the DNA sequence. A popular theory from the 1960s up until the early 1980s was that sequence mutations in genes direct differentiation. Scarano therefore speculated that 5mC-guided mutation could direct cellular differentiation during embryogenesis [56].

In the same year, Adams’ work on 5mC patterning following DNA replication in mouse fibroblasts revealed that early replicating DNA is methylated quickly, while late replicating DNA takes several hours to become fully methylated. The observation that active DNA methylation occurs predominantly in S-phase led Adams to conclude that 5mC must not play a role in controlling transcription [53]. His conclusions might also have been influenced by the bacterial studies by Billen and Lark that implicated 5mC as a regulator of DNA replication [45,46]. Interestingly, in 1972 Comings came to a different conclusion looking at Chinese hamster ovarian cells, where he found that late replicating AT-rich DNA is undermethylated to a greater extent than would be expected from its base composition, while early replicating GC-rich DNA is highly methylated. Comings speculated that if DNA methylation is needed in high amounts in euchromatic DNA where it might play a role in active transcription, then spontaneous deamination of 5mC leading to CG→TA mutations would be actively selected against in euchromatin [56]. To Comings, the idea that 5mC is enriched in active DNA regions in eukaryotes implicated it as a transcriptional activator.

In 1973, Adams demonstrated that sea urchin DNA is twice as methylated at the pluteus stage than at the morula stage [54], in agreement with earlier findings suggesting that methylation in sea urchins does not occur until gastrulation [278,279]. Adams’ report was the first to quantify such changes at each developmental stage, which led him to revise his previous theory that DNA methylation does not regulate gene expression and to instead propose the new idea that DNA methylation could function to ‘switch off’ genes after contributing to their specific function in early development.
created by restriction endonuclease activity could provide the heritable sequence mutations thought to be needed to stably regulate gene expression changes during differentiation. Changes in DNA methylation throughout development could direct those cut sites and their subsequent mutation.

The restriction enzyme toolbox
Shortly after Arber postulated their existence [43], restriction enzymes were isolated for the first time from Escherichia coli and Haemophilus influenzae [61–63]. Their potential as invaluable tools was quickly realized and commercialization led to their widespread use in all of molecular biology. Arguably one of the most important restriction nucleases used in the field of DNA methylation was discovered in a strain of Haemophilus parainfluenzae grown at Cold Spring Harbor and then sent to New England Biolabs for the production and sale of what was thought to be the previously characterized enzyme HpaII. In 1978, two groups simultaneously published their independent observation that this new HpaII behaved differently than the HpaII they had used before and instead turned out to be HpaII’s isoschizomer MspI [64,65]. These papers illustrated how a methylation-insensitive (for the inner C) MspI digestion can locate all CCGG sites in the genome and the complementary methylation-sensitive HpaII digestion can reveal the CpG methylation status (Figure 2D). Together, this pair of enzymes finally enabled researchers to determine the methylation status of specific CpGs within their local sequence contexts.

DNA methylation and gene expression
Combining HpaII/MspI digestions with Southern blots, many research groups began to investigate the methylation status of genes with tissue-specific expression patterns, such as β-globin and albumin [66–68]. Comparing the methylation of individual genes across different cell types of the same organism quickly revealed sites that were always, never, or variably methylated. These variably methylated sites were much less methylated in cell types where their associated gene was active, meaning that the methylation status of this gene was anticorrelated with its expression [69,70]. This observation, which was verified by many others, led to the wider consensus that 5mC acts as a repressive DNA modification.

5-Azacytidine (5-aza) and loss of methylation
Research on a compound called 5-aza intersected with the field of DNA methylation in the late 1970s and eventually provided another important tool for the field [71–74]. 5-aza is a nucleoside analog of cytosine that can be incorporated into DNA and RNA [75] and was widely used in the late 1960s and early 1970s as a mutagen [76] and anticancer drug [77]. While studying the mutagenic effects of 5-aza on cells in vitro, Jones and colleagues observed that treatment was accompanied by morphological changes indicating differentiation [78,79]. Constantinides et al. showed that 5-aza-treated mouse fibroblasts became tubular and multinucleated, which suggested their differentiation into muscle cells [79] (Figure 2E). Similarly, Taylor and Jones treated mouse fibroblasts with a selection of known mutagens to test whether the induced mutations could cause any differentiation in vitro and found that only 5-aza had this specific effect [80]. In an important next step, Friedman found that 5-aza treatment in E. coli decreased 5mC but not 6mA levels, demonstrating that in addition to its mutagenic properties, 5-aza may act as a specific inhibitor of 5mC methyltransferases [81]. A year later, Jones and Taylor extended these findings to eukaryotes and reported that 5-aza reduces 5mC, and speculated it may impede the advance of the presumably progressive methyltransferase activity along the DNA [82].

Summary
The 1970s saw notable advances in both research and hypothetical models about the role of DNA methylation in gene regulation. Improved 5mC detection methods enabled locus-specific
methylation analysis, serving as a major accelerator for the field. Careful reading of these early papers reveals additional points to highlight, including the global differences in genome methylation between invertebrates and vertebrates [50], though other results such as hypomethylation of vertebrate sperm did not hold true when repeated by others [83]. At the end of this decade, the field had a good appreciation of DNA methylation within and across species and it became generally accepted that DNA methylation acts as a repressor of gene expression.

1980–1989: Gene and genome regulation by 5mC
Several advances in in vitro and in vivo cloning [84–88] as well as transgenic techniques from the mid-1970s to mid-1980s [89–93] enabled a suite of new experiments to explore the sequence context and functional role of DNA methylation. For instance, the possibility of inserting both unmethylated and methylated DNA constructs into living cells served as the foundation of many studies in this decade (Figure 3A).

DNA methylation and gene regulation
The 1980s began with the observation by Bird and colleagues that 5mC seemed to be distributed in vertebrate and invertebrate genomes in an ‘all or none’ fashion, with stretches of methylated DNA punctuated by stretches of unmethylated DNA, each occupying different chromatin fractions. They speculated that methylation distinguishes transcriptionally inert DNA from transcribable DNA [94,95]. This idea was in line with the earlier 5-aza experiments that demonstrated demethylation could lead to the activation of genes [82]. However, it was not yet clear to what extent the relative quantity of DNA methylation at a gene or the location of DNA methylation within and around this gene mattered for its expression. Nevertheless, the observation of transcriptional inactivity of some relatively unmethylated genes already suggested that loss or lack of methylation alone does not always lead to gene activation [96–98]. A few examples were also reported where tissue-specific genes were active while methylation was high across the gene [99,100] and, in another case, methylation was noted to be lost upstream of the 5′ end of the gene, but not elsewhere, upon its activation [97]. Due to these various observations and the as of yet incomplete information on this topic, questions remained about the general rules for when and where methylation acts as a gene repressor and how its removal may lead to gene activation.

In addition, while DNA replication was one possible cellular mechanism of passive methylation loss, it was expected, but not known, whether an enzyme or other biological process could more specifically demethylate certain genes during in vivo development. In 1982, Gjerset and Martin published initial evidence of a demethylating activity found in the nucleoplasm isolated from mouse erythroleukemia cells. The nuclear extract was shown to have proteinase K sensitive CpG demethylation capabilities in the absence of DNA replication [101]. However, there was no further purification or characterization of the putative demethylating enzyme.

Repression of viral DNA elements
Some mouse strains carrying germline copies of Moloney murine leukemia virus (M-MuLV) show virus activation at different stages of development and therefore provided an opportunity to study the potential of viral genes to be regulated by DNA methylation [102]. In line with the findings that endogenous genes can become activated by loss of methylation, Jaenisch and colleagues found that cloned, and thus unmethylated, copies of M-MuLV were active and infectious when transferred into fibroblasts, while their endogenous and methylated counterparts were not [103]. Injecting mouse embryos at different developmental stages with viral DNA revealed that in addition to germline silencing, preimplantation embryos quickly de novo methylated and inactivated the viral sequences, while post-implantation embryos failed to do so [104].
Figure 3. Promoter methylation and the discovery of CpG islands (CGIs). (A) Advances made in the 1980s made key contributions to our understanding of how 5-methylcytosine (5mC) affects gene expression. (B) Jaenisch and colleagues studied the ability of mouse pre- and postimplantation embryos to methylate newly integrated copies of murine leukemia virus (M-MuLV). Methylation-sensitive restriction digestions show that the M-MuLV sequence becomes methylated when introduced into the host genome. (C) Krucez & Doerfler, 1983

Plasmids containing viral gene acetyl-transferase CAT driven by different viral promoters were methylated with M-HpaII at indicated sites:

- Ad12 Ef1a
- Ad12 IX
- SV40

Expression of CAT assessed by measuring the enzymatic conversion of CAM by CAT

CAT enzyme control

unmethylated Ad12 Ef1a

methylated Ad12 Ef1a

Expression of CAT assessed by measuring the enzymatic conversion of CAM by CAT

Genic methylation does not inhibit transcription

Methylation outside promoter does not inhibit transcription

Methyl group via M.HpaII

Ad12 Ef1a promoter

Viral CAT gene

Ad12 IX promoter

CAT transcript

SV40 promoter

Trends in Genetics

Figure 3. Promoter methylation and the discovery of CpG islands (CGIs). (A) Advances made in the 1980s made key contributions to our understanding of how 5-methylcytosine (5mC) affects gene expression. (B) Jaenisch and colleagues studied the ability of mouse pre- and postimplantation embryos to methylate newly integrated copies of murine leukemia virus (M-MuLV). Methylation-sensitive restriction digestions show that the M-MuLV sequence becomes methylated when introduced into the host genome. (C) Krucez & Doerfler, 1983

Plasmids containing viral gene acetyl-transferase CAT driven by different viral promoters were methylated with M-HpaII at indicated sites:

- Ad12 Ef1a
- Ad12 IX
- SV40

Expression of CAT assessed by measuring the enzymatic conversion of CAM by CAT

CAT enzyme control

unmethylated Ad12 Ef1a

methylated Ad12 Ef1a

Expression of CAT assessed by measuring the enzymatic conversion of CAM by CAT

Genic methylation does not inhibit transcription

Methylation outside promoter does not inhibit transcription

Methyl group via M.HpaII

Ad12 Ef1a promoter

Viral CAT gene

Ad12 IX promoter

CAT transcript

SV40 promoter
Therefore, Jaenisch and colleagues reasoned that the early mouse embryo might be uniquely capable of retroviral de novo methylation due to the existence of a specific methyltransferase activity that would be absent or less active later in development.

Injections of various constructs into Xenopus oocytes together with in vitro cell culture transfection experiments revealed that mammalian and viral gene expression is sensitive to methylation at the 5’ end of the genes. These promoter regions are rich in CpGs and overlap with a nucleosome-free gap [105–107] (Figure 3C), where methylation was proposed to directly influence protein binding, nucleosome positioning, and thus transcription [105,108]. Further work suggested that only certain CpGs within these regions are responsible for controlling a gene’s expression [107,109,110]. Intriguingly, two studies that infected embryonic carcinoma (EC) cells with M-MuLV showed that proviral sequences are quickly silenced upon infection, yet only become methylated days later, demonstrating that DNA methylation is not the primary silencer of these genes [111,112]. Furthermore, Niwa and colleagues showed that removing methylation using 5-aza on EC cells did not reactivate the virus; however, if the cells were first differentiated before 5-aza treatment, methylation removal was sufficient to activate M-MuLV. The authors therefore hypothesized that there could be two distinct mechanisms regulating gene expression during different stages of development, with early development being independent of DNA methylation and late development being dependent on it [112].

The discovery of CpG islands (CGIs)
Although sperm is overall highly methylated, undermethylated stretches like those found in early metazoan embryos were also seen in sperm cells at constitutively expressed genes [94,95,113–115]. Bird and colleagues then showed that these unmethylated regions are comprised of CpG-rich DNA and are preserved unmethylated across many mouse tissues. Given their sensitivity to HpaII nuclease digestion, they were initially named HpaII tiny fragments (Figure 3D) [116] and later popularized as CGIs. Bird reasoned that the structure of CGIs at housekeeping genes could reflect their continuous occupancy by proteins protecting them from methyltransferases and, thus, from the accompanying mutational loss of CpGs by spontaneous deamination of 5mC [117] (Box 2). CGIs, with their genomic rarity but genic abundance, may present unique platforms for protein–DNA interaction that could be modulated by DNA methylation [110,118]. The possibility of a more complex translation of the methylation signal on DNA emerged through experiments initially aimed at identifying proteins that exclusively bind the characteristic stretches of unmethylated, CpG-rich DNA. However, in these experiments, Bird and colleagues unexpectedly found the MeCP1 protein complex that formed not on unmethylated DNA, but rather on methylated probes or highly methylated genomic DNA [119].

5mC dynamics from gametes through early development
In 1987, Monk et al. applied a novel low-input DNA end-labeling technique to assess DNA methylation in germ cells, zygotes, and early developing mouse embryos [120]. They found oocyte preimplantation but not postimplantation embryos, suggesting that only the preimplantation embryo is capable of de novo methylation. (C) Kruczek and Doerfler tested the positional effect of 5mC on the expression of viral chloramphenicol acetyl-transferase (CAT) by cloning viral promoters with varying CpG distribution and content into a vector they then methylated with M.HhaII in vitro before measuring its expression capabilities. CAT expression was assessed by detecting the acetylation of chloramphenicol (CAM) using thin-layer chromatography. Methylation within a promoter sequence inhibited transcription, while methylation flanking the promoter or within the gene did not. (D) Bird and colleagues used end-labeling to visualize the low quantity of DNA resulting from HpaII digestion of sea urchin genomic DNA into tiny fragments. These HpaII tiny fragments (HTF) are the result of the presence of regions containing many HpaII motifs (5’ C-C-G-G 3’) that are unmethylated, regions now known as CpG islands (CGIs). (E) Monk and colleagues investigated methylation changes during mouse embryonic development using end-labeling of digested genomic DNA. The varying amounts of large HpaII fragments indicate a differential gain of 5mC in the embryonic and extraembryonic tissues. The strong signal at the bottom of the lanes stems from the sensitive detection of canonically unmethylated CGIs. See [104,107,111,112,116,120,126].
DNA was relatively undermethylated, while sperm DNA was highly methylated. Following zygote formation, embryonic methylation decreased steadily to its lowest point around the onset of implantation. Next, the extraembryonic lineages and embryo proper were progressively and distinctly de novo methylated through gastrulation (Figure 3E) [121].

Cloning the first DNA methyltransferases
Cloning and protein sequencing of bacterial methyltransferases provided important insights about the evolutionary conservation and functionality of their catalytic domains [122,123]. In particular, elucidation of the chemistry of the methyl-transfer reaction, as well as the enzymology of bacterial methyltransferase sequence specificity, came from studies of the bacterial enzyme M.HhaI [124–126]. Building on this momentum, a series of studies that purified and characterized DNA methyltransferase activities from mammalian tissues [127–130] led to the successful cloning of murine DNA methyltransferase 1 (Dnmt1), the first mammalian DNA methyltransferase, by Bestor and colleagues in 1988 [131].

Summary
The 1980s provided crucial insights into the overall distribution and function of DNA methylation, including the discovery of CGIs and a much-improved understanding of the role of 5mC in gene regulation. The successful cloning and characterization of over a dozen bacterial and the first mammalian methyltransferases represented another milestone. Although a general consensus emerged that 5’ promoter methylation suppresses transcription, some exceptions to this rule highlighted that further studies were still needed to appreciate and interpret the context-specific role of DNA methylation [97,99,100]. Despite these key advances in mammalian systems, it is worth noting that the dominant model organisms at the time included Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, which do not have DNA methylation; this may explain some remaining concerns in the community about the wider significance of 5mC.

Box 2. Mutagenic effects of 5mC
Several studies in the 1950s and 1960s demonstrated that animal and plant DNA is relatively AT rich and GC poor and that the CpG dinucleotide specifically is under-represented. This raised questions about the biological function and evolution of 5mC, yielding the hypothesis that 5mC may direct DNA sequence mutations controlling gene expression [32,33,48,277,278,280]. Evidence supporting this hypothesis first came from Coulondre and colleagues who found that mutational hotspots in an E. coli gene were located at 5mC residues but disappeared when this gene was demethylated by being introduced into bacterial strains deficient in DNA methyltransferases [281]. The authors proposed that spontaneous deamination of 5mC to thymine is the basis of its increased mutagenesis. When cytosine is deaminated it produces uracil, which results in a mismatch that is easily recognized as an unnatural base in DNA, excised, and repaired by DNA-uracil glycosylase. However, deamination of 5mC produces thymine. Coulondre et al. found that the resulting mismatch is often not properly corrected; instead, the guanine on the opposite strand may be excised and repaired as adenine, thus generating the frequent CG→TA mutations [281]. These findings were corroborated by an analysis looking at the potential correlation of CpG frequency with DNA methylation levels in animals. Bird found that organisms with the lowest CpG frequency had higher levels of DNA methylation and an excess of CpTs and CpAs, whereas lowly methylated genomes displayed no deficiency in CpGs and no excess of CpTs and CpAs [282].

In 1989, Cooper and Krawczak sought to determine the rate of deamination of 5mC in vivo, however, the process is too slow for accurate measurements. They therefore measured the rate of 5mC deamination using controlled in vitro conditions and used these values in a mathematical model to estimate the time span over which the ‘CpG suppression’ observed in vertebrate genomes would have occurred [283]. They estimated the length of time needed to achieve the GC:AT composition of the vertebrate genome today to be 450 million years. The authors proposed that the adaptive radiation of vertebrates might have coincided with the evolution of a heavily methylated genome [283]. More recent estimates predict CpGs to be about 18 times more likely to mutate than non-CpGs in the human germline and the CpG context is over-represented among germline mutations, suggesting that the hypermutability of 5mC may be an important contributor to human genetic diseases [284,285]. Given that the cost of 5mC in the genome is a slow erosion of CpGs with potentially deleterious consequences for germline mutation, tolerance of these negative effects further supported the likely functional importance of 5mC in the genomes of vertebrates [282,283].
1990–1999: The eukaryotic methyltransferases

The 1990s saw major progress in our molecular understanding of phenomena such as genomic imprinting and X chromosome inactivation that we are unable to cover here in detail but have been reviewed extensively elsewhere [132–134] (Box 3). Beyond that, this decade was particularly noteworthy for a series of studies that identified, cloned, and knocked out mammalian methyltransferases, revealing their essential roles during development. In parallel, Arabidopsis thaliana gained traction as a powerful model organism for epigenetic studies, including DNA methylation (Figure 4A).

Methylation artifacts of in vitro culture

As the Bird lab continued their investigation of CGIs, in 1990 they noted a propensity of certain CGIs to become aberrantly methylated during in vitro culture (Figure 4B). The mechanism that protects these in vivo and the reason for their susceptibility in cell culture remained unclear. CGIs typically lie in open, accessible chromatin and, hence, they speculated, would have to be actively protected from methylation during normal development and tissue homeostasis [135].

The essential role of DNA methylation in mammalian development

In 1992, the Jaenisch Lab disrupted mouse Dnmt1 activity that resulted in global loss of most, but not all, DNA methylation in vitro and in vivo (Figure 4C) [136]. Undifferentiated Dnmt1 knockout (KO) mouse embryonic stem cells (ESCs) remained viable, while differentiated ESCs arrested or died. Similarly Dnmt1 KO mice displayed developmental delays and lethality around embryonic day E8.5–E9.5 [136–138]. Reintroducing a Dnmt1 cDNA into the endogenous locus of KO cells restored global DNA methylation but failed to rescue imprinted methylation [139], which could only be achieved through germline passage [140] (Figure 4D). Combined, these studies

Box 3. Imprinting and X inactivation

The term ‘imprint’ was coined by Helen Crouse in 1960 following her experiments on sex determination in Sciara, a species of fungus gnat, that loses the paternal X chromosome during differentiation of the germline. Chromosomal translocations revealed that a specific region of the X chromosome carries an ‘imprint’ established during germline development that determines which X chromosome is lost [288]. In the mid-1980s, several studies demonstrated that the maternal and paternal genomes are both needed for mammalian embryonic development, which led to the discovery of genes whose expression was determined by the parent that gene was inherited from [287,288]. The idea that DNA methylation may play a role in imprinted gene expression arose following studies showing that germ cells display sex-specific methylation patterns [120,289,290] and that DNA methylation plays a role in the imprint expression of single-copy transgenes [291–293].

During the first half of the 1990s, many imprinted genes, such as Igf2, Igf2, H19, Srypx, and Peg1 were mapped and further characterized in mouse and human [294–298]. To date, 25 clusters of ICRs regulating multiple imprinted genes have been discovered [134]. Maternally or paternally imprinted alleles are methylated at the imprinting control regions (ICRs) in the oocyte and sperm, respectively, by DNMT3A and DNMT3L [192,194]. Though the oocyte and sperm methylomes differ quite extensively such that thousands of genes show differential DNA methylation in the early embryo, only a subset resist preimplantation DNA demethylation and maintain their parent-of-origin specific DNA methylation [299,300]. The zinc-finger protein ZFP57 recruits the KAP1-complex and DNMT1, maintaining methylation at these select sites [301–303]. In addition to DNA methylation imprints, a small number of noncanonical, maternal H3K27me3 imprints were found in the extraembryonic ectoderm [304], and more recent work has described the different imprinting mechanisms at play in the embryonic and extraembryonic lineages [305].

Prior to Crouse’s studies on sex determination, research on the regulation of X chromosomes in female cells had already been underway for a decade following the 1949 description of the Barr body, by Barr and Bertram, as a nucleolar satellite found in female cat neurons that they speculated to be ‘sex chromatin’ [306]. Ten years later, Ohno confirmed that the Barr body is indeed the X chromosome, reporting that one mammalian female X is condensed and heterochromatinized, while the other is euchromatic [307]. In 1961, Lyon’s observations about the coat color of female mice provided critical evidence that one female X is inactive while the other is active, and she postulated that the condensed X is genetically inactive [308]. In 1975, Riggs was the first to propose the X chromosome inactivation center and that the process of X inactivation as a whole might be controlled by DNA methylation [59]. While this idea was investigated by several groups throughout the early 1980s [309–311], DNA methylation was ultimately ruled out as the primary initiator of X inactivation, although it, along with other epigenetic modifications, plays a role in stable gene silencing on the X chromosome [313].
Mouse ESCs have at least one more DNMT in addition to DNMT1 (Lei et al., cited 624).

DNA methylation imprints are established only through germline passage (Tucker et al., cited 227).

De novo methylation is required for mammalian development (Okano et al., cited 4039).

5mC represses transposable elements during embryonic development (Walish et al., cited 788).

MBDs form repressive complexes with HDACs (Nan et al., cited 2546; Hendrich & Bird, cited 989).

5mC is essential for mammalian development; Dnmt1 is required to maintain global DNA methylation (Li et al., cited 3066).

DNA methylation imprints are established only through germline passage (Tucker et al., cited 227).

De novo methylation is required for mammalian development (Okano et al., cited 4039).

Trends in Genetics

(A) Inactive tissue-specific CGI promoters often gain methylation during in vitro culture (Antequera et al., cited 649).

Plants accumulate developmental defects in the absence of 5mC (Kakukana et al., cited 99).

First plant DNMT, MET1, cloned (Finnegan and Dennis, cited 204).

DNA methylation imprints are established only through germline passage (Tucker et al., cited 227).

5mC represses transposable elements during embryonic development (Walish et al., cited 788).

MBDs form repressive complexes with HDACs (Nan et al., cited 2546; Hendrich & Bird, cited 989).

5mC is essential for mammalian development; Dnmt1 is required to maintain global DNA methylation (Li et al., cited 3066).

Mouse ESCs have at least one more DNMT in addition to DNMT1 (Lei et al., cited 624).

Discovery of Dnmt3a and -b (Okano et al., cited 1178).

De novo methylation is required for mammalian development (Okano et al., cited 4039).

(B) Antequera et al., 1990

Human α-globin

Complete digestion of unmethylated DNA

Incomplete digestion of partially methylated DNA

Triosephosphate isomerase

Many cell lines show substantial gain of methylation at the CGI of an inactive promoter

(C) Li et al., 1992

Dnmt2 homozygous mutant ESCs and embryos show substantial loss of global methylation; ESCs remain viable while embryos are not

Dnmt1 allele

Methylated

Partially methylated

Unmethylated

(D) Tucker et al., 1996

Methylation at maternal imprint is lost in the absence of Dnmt1

CDNA rescue fails to reestablish the imprint

Rescued ESCs derived from chimera also fail to establish the imprint

Passage through the germline resets the imprint in CDNA rescued cells

(E) Okano et al., 1999

Disruption of Dnmt3a and -b leads to a more modest global loss of methylation compared to Dnmt1 KO, but still results in embryonic lethality

Trends in Genetics

(See figure legend at the bottom of the next page.)
provided crucial insights and highlighted the essential role that DNA methylation plays in normal development.

The first crystal structure of a DNA methyltransferase

In 1993, the Roberts lab published the first crystal structure of a DNA methyltransferase, M.HhaI, in a complex with the methyl donor SAM at 2.5 Ångstrom resolution [141]. The core structure of M.HhaI, being one of the smallest methyltransferases, was found to consist largely of the sequence motifs conserved across all 5mC methyltransferases. The mechanism of a methyl group transfer to DNA as determined by Wu and Santi in 1987 [126] revealed that the nucleophilic attack on the targeted cytosine central to this mechanism results in a covalent intermediate between DNA and the methyltransferase [142]. This intermediate can be trapped by substituting the hydrogen at the C5 position with a fluorine [143]. Using this technique, the crystal structure of the M.HhaI–SAM complex trapped in its covalent intermediate revealed that both methyltransferase and DNA change conformation. B-form DNA is bound in a cleft formed by the two domains of M.HhaI with the target cytosine base flipped completely out of the DNA helix and into the active site of M.HhaI [144].

Discovery and characterization of the mammalian de novo Dnmts

The residual methylation present in Dnmt1 KO cells provided an indication of the existence of additional methyltransferases [136,137]. Previous work demonstrated that the catalytic domains of different bacterial cytosine methyltransferases exhibit a great degree of homology with each other as well as DNMT1 [123,126,131,145–147]. Therefore, different groups took advantage of homology-based BLAST searches and independently identified additional eukaryotic DNA methyltransferases [148–151]. Dnmt2 was subsequently ruled out as a candidate de novo methyltransferase, given its apparent lack of 5mC methyltransferase activity in ESCs [150]. Dnmt3a and Dnmt3b, however, were able to methylate CpGs of both hemimethylated and fully unmethylated substrates with equivalent efficiencies in vitro while showing high expression in mouse ESCs and generally lower expression in somatic cells [151]. Single and double KO of Dnmt3a and -b in mouse ESCs and their corresponding KO mouse models demonstrated the essential and partially overlapping roles of these enzymes during embryonic development (Figure 4E) [152].

DNA methylation readers

The Bird lab showed that the methylated versions of four different promoters were each transcribed equivalently to their unmethylated versions when MeCP1 binding was diluted by adding methylated competitor DNA to the in vitro reaction [153]. Likewise, extracts from cells deficient for MeCP1 used in analogous assays were unable to efficiently repress transcription of methylated DNA. Similar results obtained from the transient transfection of methylated DNA and competitor DNA suggested these mechanistic principles might also apply in vivo. These experiments led the

Figure 4. Discovery and characterization of the eukaryotic DNA methyltransferases. (A) Key advances in the field of DNA methylation between 1990 and 1999 include the cloning and characterization of plant and mammalian DNMTs. (B) Antequera and colleagues tested the methylation status of CpG islands (CGIs) at housekeeping and tissue-specific genes in a variety of cell lines using a methylation-sensitive HpaII digestion. They detected varying degrees of aberrant methylation at CGIs of tissue-specific genes that are not active in the respective cell lines, while CGIs of housekeeping genes remained methylation free. (C) Li et al. assayed genomic 5-methylcytosine (5mC) levels by methylation-sensitive HpaII digestion in wild type (wt) (+/+), and Dnmt1 mutant (+/−, −/−) embryonic stem cells (ESCs) and E10.5 embryos. Dnmt1−/− cells were extensively demethylated and, while these hypomethylated ESCs were viable, Dnmt1−/− derived embryos were not. (D) Tucker et al. stably integrated a Dnmt1 cDNA into the endogenous locus of Dnmt1−/− cells. While global methylation was restored, methylation of imprints, exemplified here by methylation-sensitive digestion of the Igf2r locus, was not restored until the rescued cells were passaged through the germline. (E) This digestion by Okano et al. visualized the methylation status of the intracisternal A-particle (IAP) repeat of Dnmt1 knockout (KO) (Dnmt1−/−), Dnmt3a/Dnmt3b double KO, and wt embryos, as well as wt blastocysts. KO of Dnmt3a and -b resulted in widespread demethylation of this repeat, indicated by the presence of small and medium-sized fragments; however, the loss of methylation was not as extensive as in Dnmt1 KO embryos. See [135,136,138,140,150,152,157,159,167,171,180]. Abbreviations: Blast, Blastocyst; ESCs, embryonic stem cells; HII, HpaII; M, MspI; MBD, methyl-CpG binding domain.
Bird lab to hypothesize that it is not the direct effect of DNA methylation that inhibits transcription, but rather an indirect effect involving MeCP1 binding of promoter proximal methylated CpGs [153]. The next year, a second methyl-CpG binding protein, MeCP2, was found to be capable of binding a single symmetrically methylated CpG. It localized predominantly, but not exclusively, to pericentromeric heterochromatin, which in the mouse genome covers approximately 40% of all 5mC and is therefore readily visible by immunofluorescence [154]. MeCP2 also repressed transcription from the DNA templates it bound in vitro [155]. While MeCP2 is not necessary for ESC viability, the mouse KO of MeCP2 by chimera formation from mutant ESCs showed a variety of mutant phenotypes scaling with the degree of contribution [156]. In a series of pulldown experiments, it was found that the transcriptional repression domain of MeCP2 binds another repressive complex containing a histone deacetylase and the repressor mSin3A. To test the mechanism implied by the association of these complexes, cells were treated with a histone deacetylase inhibitor, which resulted in transcriptional derepression [157], findings in line with the previously shown repressive nature of histone deacetylation in yeast [158] (Box 4). Several other proteins containing methyl-CpG binding domains (MBDs) were identified in mouse and human with both overlapping and unique expression patterns. All MBDs except MBD3 appear to bind methylated, but not unmethylated, DNA [159], and MBD2 was found to belong to the MeCP1 histone deacetylase complex [160].

DNA methylation in Arabidopsis thaliana

Some of the earliest studies on DNA methylation had observed high 5mC content in plant DNA [27,32,52] and noted that both CpG and CpXpG (X = A, C, or T) methylation occur [32,161]. While the genomes of plants such as wheat were an asset for obtaining large quantities of DNA, this property proved difficult for mapping and cloning genes. In the 1980s, Arabidopsis thaliana became a popular genetic model, in part due to its smaller genome size [162] as well as advances in transformation protocols [163–165] that made it amenable to mutational studies [166].

In 1993, Finnegan and Dennis identified and cloned the first plant DNA methyltransferase, MET1, using sequence homology to murine and bacterial methyltransferases [167]. That same year, a mutational screen looking for genes involved in DNA methylation in Arabidopsis identified the
DDM1 locus, disruption of which resulted in the demethylation of mainly repeat elements [168,169]. Despite seeming to be nonessential for plant development, DNA methylation was demonstrated to be involved in a number of physiological processes, such as the vernalization required to induce flowering in *Arabidopsis*, where both vernalization and 5-aza treatment resulted in similar degrees of DNA demethylation. Burn and colleagues therefore hypothesized that demethylation of genes involved in flowering may be required for the initiation of this process [170]. Further studies revealed that the developmental defects associated with hypomethylation increase in severity with several rounds of self-fertilization [171]. In contrast to mice, methylation levels in *Arabidopsis* were only slowly restored when functional alleles of *DDM1* and *MET1* were reintroduced through crossing, implying that plants do not reset their DNA methylation between generations and do not undergo phases of strong *de novo* methylation during development [168,172]. Finnegan and colleagues demonstrated that demethylation results in the aberrant expression of floral homeotic genes in leaves, further linking DNA methylation to transcriptional regulation in plants [172].

Dnmt classes in plants

Loss of *MET1* was found to reduce 5mC at CpG dinucleotides only, while loss of *DDM1* reduced 5mC within both the CpG and CpXpG contexts [168,172]. Biochemical studies of pea MET1 supported the idea that MET1 is closely related to the mammalian maintenance methyltransferase DNMT1, as it also preferentially acts on hemimethylated CpGs [173]. These findings pointed towards the existence of further putative Dnmts in plants. In addition, in 1997, Jacobsen and Meyerowitz showed that a phenotype observed in plants with reduced MET1 activity is caused by the hypermethylation of a specific regulatory region [174].

The next year, chromomethylase 1 (CMT1) was identified in *Arabidopsis* [175] and more genes encoding MET1-like and CMT1-like methyltransferases were detected [176]. By 1999, *DDM1* was shown to encode a SWI2/SNF2-type chromatin remodeler required for the methylation of repeat elements as well as high-fidelity maintenance methylation of low-copy sequences [177]. Linking their findings to the recently uncovered interplay between 5mC and histone deacetylation, Jeddeloh and colleagues proposed that chromatin remodeling to alter histone modifications or to increase DNA accessibility is required for proper DNA methylation [177].

Finally, a third class of DNA methyltransferases was identified. Using the sequence of the recently identified Dnmt3 enzymes in mammals [151], Jacobsen and colleagues discovered homologous genes in maize, soy, and *Arabidopsis* [178]. However, in contrast to all previously identified classes of DNA methyltransferases in plants and mammals, the conserved sequence motifs in the catalytic domain of these novel enzymes were found to be arranged in a different order, leading to the name domains rearranged methyltransferase (DRM) in *Arabidopsis* [178].

Biological function remained controversial

In 1997, the Bestor lab published a review article in *Trends in Genetics*, the central thesis of which was the idea that the primary function of DNA methylation may be to suppress parasitic sequence elements in the mammalian genome [179]. Bestor and colleagues noted that a subset of genes were subject to allele-specific expression via imprinting or part of X chromosome inactivation. Beyond that, it seemed less clear that methylation of silent genes in somatic tissues prevents their transcription and that promoter demethylation would result in gene activation *in vivo*. Although differentiation of cells upon 5-aza treatment pointed to a demethylation mechanism of gene activation [79], more recent work had shown that the CGI promoters of such genes are not normally methylated *in vivo*, but frequently become so *in vitro* [135]. Thus, their activation by demethylation, at least in this context, was not a true developmental mechanism. However, they argued
that the detection of transposon transcripts during lowly methylated developmental stages was good evidence of their regulation by DNA methylation. The Bestor lab continued to study the regulation of retrotransposons and a year later showed the massive upregulation of intracisternal A-particles (IAPs) in Dnmt1-deficient mouse embryos [180].

In a response article in the same journal, Bird argued strongly against this hypothesis, stating that there was little to no evidence for the silencing of transposable elements in germ cells and stem cells by DNA methylation. In contrast, he pointed to evidence consistent with the silencing of transposons by DNA methylation in somatic cells, where transposon activity would be more detrimental than in germ and stem cells [112]. Why, Bird asked, would an organism fail to protect its germline from these parasitic DNA elements while it can do so effectively in somatic cells? Furthermore, given the relatively low number of individual loci studied in great detail, it was too soon to conclude that none of the many genes with promoters that lie within highly methylated regions rely on DNA methylation for silencing [181].

Summary
The 1990s were clearly defined by the functional evaluation of the mammalian and plant DNA methyltransferases and 5mC readers having methyl-binding domains, as well as investigations of transcriptional repression. The essential, though incompletely understood, role for genomic methylation helped create a broader interest in DNA methylation within the scientific community. Unfortunately, despite much excitement, the question of whether and how active DNA demethylation occurs, remained unresolved at the end of this decade, which yielded no clear mechanism despite many attempts and publications.

2000–2009: Genome-wide DNA methylation landscapes
The early 2000s saw a major transition in the biological sciences with the completion of several draft genome assemblies, including Arabidopsis, mouse, and human [182–184]. These genome maps in turn enabled investigation of additional layers of the epigenome and hence served as the basis that allowed inferences first made about the regulation of individual genes to be expanded to whole genome scales by the end of the decade. Computational tools and more cost-effective sequencing methods emerged in the second half of this decade. A technique called bisulfite sequencing, first reported in 1992 [185], became the gold standard for quantifying and mapping methylation. These tools were rapidly applied to generate the first genome-scale methylation maps (methylomes). In parallel, major advances in the fundamental biology of methylation readers, writers, and erasers were reported (Figure 5A).

Impact on enhancer–promoter loops
The study of the role of 5mC in imprinted gene expression led to the finding that Igf2 and H19 have reciprocal expression controlled by the same imprinting control region (ICR), raising the question of how methylation can lead to the transcription of one gene and the repression of the other. Two studies identified four CCCTC-binding factor (CTCF) binding motifs in the Igf2/H19 ICR. The methylation or deletion of these binding sites, which then prevented CTCF binding, reduced the ICR’s enhancer blocking activity [186,187] (Figure 5B). This suggested that methylation of this ICR may determine whether an enhancer contacts the Igf2 or H19 promoter through the methylation-sensitive binding of CTCF and that methylation outside of promoters can have regulatory activity that influences looping of the DNA.

Linking DNMTs to histone modifications
In 2001, Tamaru and Selker found the Neurospora crassa gene dim-5 to be required for normal DNA methylation patterns and showed it encodes an enzyme catalyzing histone 3 lysine 9
A. Methylation blocks CTCF binding (Bell and Felsenfeld, cited 1224; Hark et al., cited 1151) and 5mC depends on H3K9 methylation in N. crassa (Tamaru and Selker, cited 778). **B.** Dnmt3a is necessary to establish maternal imprints (Bourc’his et al., cited 953). First genome-scale methylation map by 5mC IP in A. thaliana (Zhang et al., cited 1209). **C.** Model of de novo methylation via crystal structure of DNMT3A bound to DNMT3L (Jia et al., cited 553). Unmethylated promoters are marked by H3K4 methylation (Weber et al., cited 1515). **D.** Human single basepair methylome shows hypomethylation of PMDs and somatic enhancers (Lister et al., cited 2939). TET enzymes catalyze demethylation (Tahiliani et al., cited 3756).

B. Hark et al., 2000

C. Ooi et al., 2007

D. Sharif et al., 2007

MS2 MS3 MS1 MS2 MS3 MS4

E. Meissner et al., 2008

F. Tahiliani et al., 2009

Trends in Genetics

Trends in Genetics, Month 2022, Vol. xx, No. xx
(H3K9) methylation [188]. Partially replacing H3K9 with H3L9 or H3R9 led to reduced 5mC levels, demonstrating that H3K9 methylation is required upstream of some DNA methylation. This led to the idea that eukaryotic Dnmts may depend on specific histone modifications as cofactors guiding their activity [188]. Jackson and colleagues next demonstrated that this principle holds in plants, reporting that the Arabidopsis H3K9 methyltransferase KRYPTONITE is required for CpXpG methylation placed by the DNA methyltransferase CMT3 [189,190]. In addition, they showed that LHP1, an Arabidopsis homolog of heterochromatin protein 1 (HP1) and reader of H3K9 methylation, interacts with CMT3, and proposed a mechanistic link that extends across animals and plants that have homologs of HP1 (Box 4).

Structure and function of Dnmts with their cofactors
The discovery and subsequent KO of the catalytically inactive cofactor DNMT3L highlighted its role in imprinting [191–193]. Kaneda and colleagues later used germline conditional KOs to show that both Dnmt3a and Dnmt3l are essential for the establishment of maternal and paternal imprints [194]. Protein biochemistry of DNMT3L revealed that it binds to DNMT3A, DNMT3B, and histone H3, but this interaction with H3 is inhibited by histone 3 lysine 4 (H3K4) methylation. This provided experimental evidence that DNMT activity can be directly blocked by a specific histone modification [195] (Figure 5C). Further structural insights into the mechanisms guiding de novo methylation were provided by the first crystal structure of a mammalian DNMT published in 2007 [196]. The structure comprised the C terminal domains of DNMT3A and DNMT3L in complex with each other. Later that year, an essential cofactor for DNMT1, ubiquitin like with PHD and ring finger domains (UHRF1 or Np95), was discovered and shown to bind the methylated cytosine of hemimethylated DNA. Its depletion led to global loss of CpG methylation that largely phenocopied the loss of DNMT1, demonstrating that UHRF1 is required for the recruitment or activity of DNMT1 [197,198] (Figure 5D).

Genome-wide methylation maps: the first methylomes
The first genome-scale methylation maps were produced in the mid-2000s for the Arabidopsis genome using enzyme- and antibody-based enrichment of 5mC followed by microarray hybridization [199,200]. While previous work in Arabidopsis had identified DNA methylation at repeats and transposable elements [201], genome-scale maps both confirmed and extended these findings. They showed that the 5′ ends of genes are largely devoid of CpG methylation, while bodies of constitutively expressed genes are extensively methylated and relatively CpG depleted. Henikoff and Jacobsen hypothesized that genic methylation might serve to silence cryptic intragenic promoters [199]. Extensive methylation at regions producing small interfering RNAs and intergenic noncoding RNAs suggested that these elements may also be controlled by DNA methylation [200]. In parallel with these plant studies, the Bestor and Schübeler labs used similar enrichment-based techniques to create the first comprehensive maps of human DNA methylation [202,203]. These maps strengthened previous work supporting the idea that promoter CGIs are

Figure 5. Interplay of histone modifications with 5-methylcytosine (5mC) and active demethylation by the TET enzymes. (A) In the 2000s, global surveys of 5mC and the discovery of Dnmt cofactors underscored the connection of 5mC to other epigenetic modifications. (B) This binding assay by Henk and colleagues determined that CTCF cannot bind its methylated motifs (H3K4me3) within the imprinting control region (ICR) of the H19/Igf2 locus when they are methylated, as it is the case on the paternal allele. (C) Ooi et al. characterized the dissociation behavior of H3 tail peptides from recombinant human DNMT3L using fluorescence polarization. This assay showed that DNMT3L efficiently binds unmodified H3 peptides (H3K4me0), but hardly binds peptides methylated at lysine 4, even at high DNMT3L concentrations. (D) Methylation-sensitive restriction digestion of genomic DNA probes by the intracisternal A-particle (IAP) sequence by Sharif and colleagues indicated extensive demethylation of both Dnmt1 and Uhrf1 knockout (KO) embryonic stem cells (ESCs). (E) Reduced representation bisulphite sequencing (RRBS) data generated by Meissner et al. showed a loss of methylation at highly conserved noncoding sequences, indicative of regulatory elements, upon differentiation of ESCs to neural progenitor cells (NPCs). The alignment with ChIP data revealed a concomitant enrichment of histone modifications. (F) Tahiliani and colleagues transfected HEK293 cells with various constructs to determine the effect of TET1 on 5mC levels. This included the catalytic domain of TET1 or full-length TET1, either in its wild type (wt) or a catalytically inactive mutant form. Genomic DNA was digested with MspI and the fragments were resolved by thin-layer chromatography and then quantified, revealing the presence of a novel nucleotide, subsequently confirmed to be 5-hydroxymethylcytosine. See [186–188,192,194–198,200,206,208,211,214]. Abbreviations: CGI, CpG islands; PMD, partially methylated domain.
predominantly unmethylated in normal human cells; however, the Schübeler lab found hypermethylation at CGIs in one colon cancer cell line, consistent with the earlier observations of the Bird lab [135]. Interestingly, this cell line also showed notable hypomethylation across large gene-poor domains and the inactive X chromosome [202].

Further advances in sequencing technologies then enabled the first single-base resolution methylation maps in Arabidopsis, mouse, and human ESCs as well as somatic tissues [204,205]. Reduced representation bisulfite sequencing (RRBS) showed limited dynamic methylation over the majority of promoters and uncovered specific focal methylation changes at more distal, highly conserved putative regulatory sites [206] (Figure 5E). Paired with histone modification maps [207] these studies highlighted clear correlations between changes in 5mC and changes in H3K4 methylation during differentiation as well as the relationship to other modifications, including H3K27me3 [206,208]. In addition, maps of 5mC during neural differentiation showed that aberrant culture-induced CGI hypermethylation can also occur in nontransformed cells [206]. Ecker and colleagues showed that CpG methylation in immortalized cells, in contrast to human pluripotent stem cells, is reduced across large areas of the genome, with about 40% of the genome now being covered by partially methylated domains (PMDs) [208]. Furthermore, both mouse and human maps demonstrated the hypomethylation of active enhancers, which may be a cause or consequence of protein–DNA interactions at these regulatory sites [206,208].

Promoter architecture and function
Saxonov and colleagues performed computational analysis of the human genome that revealed two classes of promoters: low CpG (LCG, 30% of promoters) and high CpG (HCG, 70% of promoters) density promoters [209]. Genes associated with LCG promoters tended to have transcriptional potential independent of their promoter methylation and most of these promoters were typically methylated. In contrast, most HCG promoters were found to be unmethylated, even when their associated gene was not being transcribed. In specific contexts where these HCG promoters do get methylated, such as germline genes in somatic cells, this methylation is sufficient to prevent transcription [203]. These studies, together with previous work [210], further highlighted that most endogenous promoters are not primarily regulated by methylation and that unmethylated promoters are enriched for H3K4 methylation [211]. Combined with the DNMT structure and biochemistry papers from 2007 [195,196], these studies helped build a consensus that H3K4 methylation may shield these promoters from DNMTs.

Active DNA demethylation
Immunostainings of 5mC in early mouse preimplantation embryos showed a rapid loss of 5mC within the paternal pronucleus before the first cleavage division [212]. In contrast, 5mC signal in the maternal pronucleus was largely stable up to the two-cell stage. Importantly, the paternal loss of 5mC was independent of DNA replication, meaning that an active mechanism must be at work in the first hours following fertilization. In the decade before and after this finding, many papers had been published that claimed to have identified this demethylation activity, but none led to robust and reproducible mechanisms [213]. Finally, a computational search in 2009 pointed towards TET1, TET2, and TET3 and their orthologs [214]. Specifically, TET1 was then shown to catalyze the conversion of 5mC to 5-hydroxymethylcytosine (5hmC) in mammalian cells (Figure 5F). Published back-to-back, Kriaucionis and Heintz also demonstrated that 5hmC is abundant in neurons, further strengthening the role of 5hmC in the active demethylation pathway [215]. Despite the general conservation of the TET enzymes across metazoans, fungi, and algae, plants appear to rely more on DNA glycosylases for the removal of methylation, particularly at genes near highly methylated repetitive sequences [216].
Summary
This decade provided key insights into the genome-wide distribution of DNA methylation that, together with mechanistic and structural advances, established a more holistic view of DNA methylation. These efforts allowed the principles that had been established individually and at lower resolution in the prior decades to be generalized across the genome, for example, by showing the sufficiency but not necessity of 5mC to repress transcription from CpG-dense promoters. However, the finding that most promoters are in fact not regulated by 5mC prompted a paradigm shift away from a promoter-centric view to a more comprehensive, global approach to understanding DNA methylation. Importantly, the interconnectedness of 5mC with other epigenetic modifications, such as lysine 4 methylation of H3 peptides, also became increasingly clear. The long-sought discovery of an actual demethylating enzyme was a major milestone to explain the focal DNA methylation dynamics that occur during differentiation and in normal development.

2010–2019: DNA methylation is dynamic
Several comprehensive reviews have been published over the past years covering the more recent discoveries from this decade [14,16,17,217–219]. To complement this, we selected a subset of experimental advances that further expanded the fundamental principles of 5mC and its role in genome regulation. Increased sensitivity, throughput, and affordability in sequencing technologies enabled a range of new mapping studies that provided the basis for a number of novel insights (Figure 6A).

Crosstalk of DNA methylation and transcription factors (TFs)
As DNA methylomes were measured with increasing resolution for various cell types, it became clear that lowly methylated CpGs are often concentrated in short regions that do not overlap with CGIs [220–222]. Schübeler and colleagues took a closer look at lowly methylated regions (LMRs) in mouse ESCs and neural progenitors and showed that they comprise about 4% of all CpGs and adopt an intermediate level of methylation between 10% and 50% [222]. The majority of LMRs are lost or gained de novo during differentiation and are enriched for the motifs of TFs expressed in their respective cell types [221,222]. Earlier studies had shown that the binding of individual TFs is directly affected by DNA methylation [110,118,223]. However, DNA methylation also changes chromatin organization and accessibility, which in turn may influence TF binding. Computational predictions suggest a significant effect of 5mC on DNA shape, which may impact TF access to target sequences [224]. To quantify this effect, high-throughput in vitro screens were developed [225,226], finding that the affinity of 90% of the studied TFs containing a CpG in their motif was influenced by DNA methylation [226], but only few studies have gone on to demonstrate this in vivo [227,228]. Nonetheless, it is also worth noting that the binding of CTCF and RE1-silencing transcription factor (REST) can induce the formation of LMRs [222]. Moreover, classic pioneer factors, such as FOXA2, also possess the ability to trigger targeted loss of DNA methylation [229]. Elevated levels of 5hmC have been found at LMRs, suggesting a role for active demethylation at LMRs [222].

DNA methylation valleys (DMVs)
Closer inspection of whole genome bisulfite sequencing (WGBS) data from mouse hematopoietic stem cells and human in vitro differentiation experiments revealed another characteristic feature: DMVs or canyons, long stretches of unmethylated DNA that often cover multiple CGIs [230,231] (Figure 6B). These are generally conserved across tissues and species, are near developmental genes, and have a median length of several kilobases [230,231] (Figure 6C). Follow-up work showed that DMV borders seem to be dynamically regulated in mouse ESCs by the dual targeting of DNMT3A and TET1 [232].
Figure 6. Recruitment mechanisms of the DNMTs and global methylation architecture. (A) Comprehensive mapping studies in the last decade enabled new insights into the recruitment and regulation of DNMTs and highlighted several novel elements of global methylation architecture. (B) Simplified schematic of a DNA methylation canyon using whole genome bisulfite sequencing (WGBS) data from mouse hematopoietic stem cells by Jeong and colleagues. (C) Interrogation of WGBS data reveals methylation valleys are defined as regions 3 kb and larger, which is notably bigger than CGIs.

(D) Guo et al., 2015

(E) Baubec et al., 2015

(F) Smith et al., 2017

DNA methylation landscapes

Establishment of two distinct DNA methylation landscapes

E3.5 blastocyst

E6.5 epiblast

Cpg methylation

TSS

TSS

Median

Epiblast (EPI)

Extraembryonic ectoderm (ExE)

ExE shows elevated levels (hypermethylation) at select TSS regions and reduced levels (hypomethylation) in the periphery in comparison to the EPI, which is high in the periphery and low around the TSS.

(Figure legend continued at the bottom of the next page.)
Allosteric regulation of the DNMTs

Several structural and biochemical studies showed that all of the DNMT3 enzymes bind to the H3 peptide via their highly conserved ADD domain, which is sensitive to the methylation status of H3K4 [233]. DNMT3A mutated to be insensitive to inhibition by H3K4me3 aberrantly methylated a subset of H3K4me3-marked promoters in mouse ESCs, leading to the downregulation of their associated genes [234]. The mechanism of how methylated H3K4 inhibits DNA methylation was revealed when Guo and colleagues resolved the crystal structure of DNMT3A in conformations with and without bound H3 peptide (Figure 6D). It was found that unbound DNMT3A adopts an autoinhibitory conformation where the ADD domain occludes the DNA binding site within the catalytic domain. When DNMT3A is bound to unmethylated H3, the ADD-catalytic domain interaction is disrupted and allows for DNA binding and its subsequent methylation [235]. This study proposed a model for DNMT regulation where the

de novo

methyltransferases adopt the autoinhibitory conformation until they are locally activated by binding H3 tails. Additional studies showed that this regulatory principle not only applies to the canonical

de novo

methyltransferases, but also to DNMT1. In this case, binding of the replication foci targeting (RFT) domain to allosteric activators such as UHRF1 is required to expose the catalytic site [236–238]. UHRF1, in turn, has been shown to adopt an autoinhibited conformation that can be relieved by binding to hemimethylated DNA and H3K9me3 [239,240].

Recruitment and targeting of

de novo

DNMTs

In contrast to the shielding effect of H3K4 methylation, several studies found that methylation of H3K36 recruits DNMTs. In 2010, the PWWP domain conserved in the

de novo

methyltransferases was found to interact with H3K36 di- and trimethylation in vitro and this interaction was required for the proper localization of DNMT3A in human cells [241]. A few years later, the Schübeler lab showed that while both DNMT3A and -B are generally recruited to CpG-dense regions, DNMT3B is specifically recruited to the bodies of actively transcribed genes through its PWWP domain interacting with H3K36me3 [242] (Figure 6E). Weinberg and colleagues then showed that DNMT3A is specifically recruited to intergenic regions by H3K36me2. Removing H3K36me2 from mouse ESCs redistributed DNMT3A binding to H3K36me3 marked regions [243]. Another study reported that H3K36 methyltransferases, NSD1 and SETD2 play key roles in shaping the DNA methylation landscape of male and female germ cells in mice [244,245]. Together, these studies showed that the

de novo

methyltransferases typically bind CpG-rich regions, unless protected by H3K4 methylation, while H3K36 methylation recruits

de novo

DNMTs to additional targets such as actively transcribed gene bodies. Combined with earlier work in plants, these observations strengthened the hypothesis that gene body methylation might serve to regulate the use of intergenic promoters [199]. In support of this, Neri et al. uncovered a significant increase of spurious transcripts originating from cryptic intragenic promoters in Dnmt3b KO and Setd2 KO mouse ESCs [246].

With the advent of Cas9-based gene-editing tools [247,248], the ability of Cas9 to recognize specific genomic sequences was harnessed to build tools for the targeted recruitment of various

Abbreviations: CGIs, CpG islands; PMD, partially methylated domain.
Key figure

Key concepts of mammalian gene regulation by DNA methylation

Figure 7. (Top left) 5-methylcytosine (5mC) occurs at symmetrical CpG dinucleotides. DNA replication produces two hemimethylated molecules. The hemimethylated DNA is recognized by UHRF1, which in turn recruits DNMT1 to add methylation onto the nascent strand. Proofreading by DNMT3A/B increases the fidelity of maintenance methylation by filling sites omitted by DNMT1 or counteracting active demethylation by the TETs. (Top right) In essentially all somatic cell types, the methylome adopts a bimodal distribution. About half of the genome is covered by megabase-size domains, termed partially methylated domains (PMDs), that exhibit slightly lower methylation and alternate with highly methylated domains (HMDs). This high level of methylation is punctuated by unmethylated DNA methylation valleys (DMVs) spanning several kilobases and shorter CpG-dense stretches called CpG islands (CGIs). (Bottom left) DMVs or canyons demarcate extended regions devoid of 5mC, often near developmental genes. When active, these promoters are marked by H3K4me3, which ensure DNMT3A and -B remain in their autoinhibitory conformation. DMVs remain free of methylation even when the associated genes are silenced by H3K27me3. (Bottom center left) A subset of enhancers in pluripotent cells is highly methylated but undergoes constant turnover of 5mC through the counteracting activities of DNMT3A/B and TETs. These enhancers can stay methylated or become hypomethylated upon differentiation. CpG-dense promoters are generally unmethylated, irrespective of transcriptional status. (Bottom center right) If
regulators [249]. The first generation of epi-editing tools included fusion proteins of catalytically inactive Cas9 (dCas9) and the catalytic domain of DNMT3A or TET1. These systems were designed to control transcription of reporter genes by methylating or demethylating their promoters [250]. Fusing multiple DNMT3A or TET1 units to dCas9 using the SunTag system further improved their efficiency [251,252]. However, as expected, extensive off-target effects were observed and further improvements to on-target specificity are needed to restrict catalytic activity to the desired targets only [253].

Escaping targeted DNA methylation

Genome-scale methylation maps of early development helped highlight other more specific features of the mammalian genome that are targeted for methylation during discrete windows of development. For example, many but not all repetitive elements escape the global erasure during preimplantation development [254–256]. Among the human long interspersed nuclear elements (LINEs), the younger L1PA subfamilies are the only LINEs that continue to be active and, together with L1HS, account for nearly all LINE transcription in human preimplantation embryos. These select LINE subfamilies were also found to be demethylated early in development, while the older subfamilies maintained higher methylation during this period. Notably, the demethylated and active subfamilies shared a deletion in their 5′ UTRs compared with their nontransposing ancestors that appeared to co-occur with the evolutionary emergence of LINEs that evade a sequence-based repressive mechanism [255]. Shortly thereafter, it was revealed that this sequence contains the Krab zinc finger ZNF93 binding site that would normally have repressed these elements by binding and recruitment of TRIM28/KAP1 [257].

Global methylation alterations in development and disease

More comprehensive mapping of 5mC improved the description of the distinct global architecture of highly methylated domains (HMDs) and PMDs [208]. While PMDs can be detected in most healthy cell types, aged, cancerous, and extraembryonic tissues all display a further reduction in methylation levels within PMDs [258–261]. Zhou et al. suggested that the degree of PMD hypomethylation relates to the number of mitotic cell divisions. Incomplete methylation in these late replicating regions may result in a continued loss of DNA methylation during an organism’s life, a process that may be accelerated during tumor development and progression [259].

As noted, the early extraembryonic lineages and placenta, as well as somatic cancers, share the reduction in PMD methylation, but also exhibit specific gain of methylation over CpG-rich domains that overlap with H3K27me3 repressed developmental genes [260,262–265] (Figure 6F), which often lie within DMVs. Once the DNA methylation landscape is set up in the early epiblast, methylation appears static at most features, with the exception of the subset of CpGs typically found outside of promoter regions that shows dynamic methylation changes during differentiation [206,208,222,266].

Summary

The use of sequencing technology to map methylomes of hundreds of cell types and developmental stages from different organisms has refined insights from the prior decades, closed some important knowledge gaps, and provided a comprehensive overview of the distribution present in sufficient density, 5mC silences associated promoters and is bound by methyl-CpG binding domain proteins (MBDs). Some transcription factors (TFs) are repelled by 5mC at their motifs. Promoter–enhancer contacts involve binding of methylation-sensitive CTCF. (Bottom right) Intergenic regions are marked by H3K36me2, attracting DNMT3A. Transcribed genes are marked by H3K36me3, recruiting DNMT3B to methylate the gene body. Gene body methylation does not impede transcriptional elongation but suppresses cryptic promoter activity. Binding of some TFs may require 5mC at their motifs.
and dynamics of 5mC. Combined with structural studies, this led to a detailed understanding of the recruitment and activity of DNMTs as well as the impact of DNA methylation on gene regulation. How some of that is mechanistically translated and what role it plays in other parts of the genome remains to be explored.

Concluding remarks

In this review, we have provided a chronological overview of the field of DNA methylation from its start to the present day. This historical perspective highlights key experiments that document the innovation and tremendous progress the field has made. It also serves to contextualize former hypotheses that have withstood or been challenged over time. Many of the core concepts of the field were established by the 1990s, however, recent work continues to provide insights, including unexpected discoveries that add complexity and nuance to the well-established views (Figure 7, Key figure). For example, another mammalian methyltransferase, Dnmt3c, was discovered in male germ cells in 2016 [267] and several papers have reported functional de novo methylation capabilities of the canonical maintenance methyltransferase DNMT1 [268–271]. Another example is the discovery of active turnover of 5mC at highly methylated somatic enhancers in pluripotent stem cells, a finding that changes the assumption that DNA methylation is, once established, a stably propagated modification that remains static over successive cell divisions [2–4]. In addition, several new regulators, including QSER1 and BANP, have been reported to play a role in shaping mammalian methylation landscapes and their interpretation [272,273]. In addition, two recent publications provide evidence that DNMT1 may be able to directly interact with H3K9me3 [274] as well as H4K20me3, a modification frequently co-occurring with H3K9me3 in ESCs [275]. Furthermore, DNMT3A was found to be recruited to regions marked by ubiquitinated H2AK119 placed by the Polycomb repressive complex 1, an interaction usually masked by the stronger recruitment to H3K36me2 [276]. As we are approaching the end of a century since the discovery of 5mC in bacteria [24], the field has matured and DNA methylation is now frequently used as a tool to study other biological processes and disease phenotypes. Nonetheless, questions remain that need to be addressed in the coming years before we can claim to have a complete understanding of this small but essential and impactful chemical modification to DNA (see Outstanding questions).

Acknowledgments

We thank S. Hetzel and H. Kretzmer as well as all members of the Meisner Lab for helpful comments and discussions about the figures and text. We thank S. Pradhan for helpful information about the history of MspI. We also thank the anonymous reviewers for their helpful feedback and perspective. A.L.M is supported by the National Science Foundation Graduate Research Fellowship and the Frederick Sheldon Traveling Fellowship. N.I.B is supported by the doctoral scholarship of the German Academic Scholarship Foundation and the Max Planck Society. A.M is supported by the Max Planck Society.

Declaration of interests

No interests are declared.

References

Outstanding questions

The past decade has highlighted that DNA methylation is much more dynamic than classically portrayed, but how elastic is DNA methylation really and why?

Most promoters are not regulated by DNA methylation and, while it correlates with active enhancers, its functional role there is not well understood. We therefore still need to define what its precise function in cell and lineage regulation is.

What role does the intergenic recruitment (through H3K36me2) of DNA methylation play?

Does methylation have a function in parts of the genome that have been ignored so far and become mappable in new T2T assemblies?

How are ubiquitous enzymes like the DNMTs and TETs targeted or recruited to their specific substrates and how does their regulation and activity change during differentiation? Is there a biological role for the oxidation products of TETs?

What are the mechanistic underpinnings of aging clocks? What are the changes and why do they occur at defined rates over time?

Given the mutational burden of 5mC and the gradual depletion of CpGs from the genome, will vertebrate genomes have to evolve a new mechanism for genome regulation in the future?

Why do virtually all cancer cells converge on a common DNA methylation pattern and how does this pattern affect development and progression of disease? What is the function and disease relevance of the intermediate CGI hypermethylation and genomewide hypomethylation typical of cancer (and aging)?

What allows pluripotent cells to proliferate in the absence of DNA methylation and, in contrast, what function underlies the somatic cell requirement for DNA methylation?

Related to that, why do DNMT deficient embryos die? This is a question that has remained unanswered since the initial Dnmt7 disruption in 1992.

Fucik, V. et al. (1973) On the induction of segment extension and chromatid structural changes in Vitel faba chromosomes after treatment with 5-azacytidine and 5-aza-2′deoxycytidine. Mutat. Res. 9, 599–606

Benedict, W.F. et al. (1977) Induction of morphological transformation in mouse C3H10T1/2 clone 8 cells and chromosomal damage in hamster AT/1C1-3 cells by cancer chemotherapeutic agents I. Cancer Res. 37, 2202–2208

Bolivar, F. et al. (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2, 95–113

Gordon, J.W. et al. (1960) Genetic transformation of mouse embryos by microinjection of purified DNA. Genetics 77, 7390–7384

Ott, M.-O. et al. (1982) Undermethylation at the 5′ end of the albumin gene is necessary but not sufficient for albumin production by rat hepatoma cells in culture. Cell 30, 853

Cate, R.L. et al. (1983) Comparison of the methylation patterns of the two rat insulin genes. J. Biol. Chem. 258, 6645–6652

Stuhlmann, H. et al. (1981) Infectivity and methylation of retroviral genomes is correlated with expression in the animal. Cell 26, 221–232

Eden, F.C. et al. (1981) Clusters of repeated sequences of chicken DNA are extensively methylated but contain specific unmethylated regions. J. Mol. Biol. 148, 159–151

Cooper, D.N. et al. (1983) Unmethylated domains in vertebrate DNA. Nucleic Acids Res. 11, 647–658

Bird, A. et al. (1985) A fraction of the mouse genome that is derived from nonmethylated, CpG-rich DNA. Cell 40, 51–99

135. Antequera, F. et al. (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62, 503–514

188. Hata, K. et al. (2004) Essential role for de novo DNA methylation in mammalian de novo DNA methyltransferases to establish maternal inheritance by recruiting Dnmt1 to methylated DNA.

