Cu2+-Induced self-assembly and amyloid formation of a cyclic D,L-\(\alpha\)-peptide: structure and function†

Daniel Klose,a Meital Abayev,d Sahithya Phani Babu Vemulapalli,b Michal Richman,c, d Safra Rudnick,de Vered Aisha,d Meital Abayev,d Marina Chemerovski,d Meital Shviro,de David Zitoun,d Katharina Majer,a Nino Wili,a Gil Goobes,d Christian Griesinger,d Gunnar Jeschkea and Shai Rahimipourd

In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-\(\alpha\)-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including \(\beta\)-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-\(\alpha\)-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-\(\beta\)-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrilization and lead to formation of spherical particles, showing self-assembly to different morphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.

Introduction

Self-assembly of proteins into oligomers and amyloid fibers lies at the heart of a variety of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases and further synucleinopathies, and also plays a major role in etiologies of amyotrophic lateral sclerosis, frontotemporal dementia and diabetes.1–5 Recent reports collectively suggest that amyloid formation is driven by liquid–liquid phase separation,6–8 and the early-stage oligomers rather than fibrils are considered as the pathological state of these proteins.9–18 At the early stage of aggregation, small oligomers, such as dimers, trimers or tetramers, are present only transiently and at low concentrations as larger oligomers are rapidly formed,14,17,19 even for simple tripeptide model systems.20,21 Attempts to trap oligomers with sufficient concentration have led to characterization of several multi-mers, for some of which structural information has been obtained.15,17,22–25 However, due to the complexity of the self-assembly process,17 low abundance, and rapid interconversion, structural information on the small oligomers, such as dimers, is largely limited. At the same time, understanding the initial aggregation steps and the properties of these oligomers is highly sought after for a molecular understanding of the early steps towards different polymorphs that might be connected to...
different pathologies \(^{26}\) for example by generating varying extents of reactive oxygen species. \(^{27-31}\) Also, the factors that trigger the aggregation process in cells remain elusive. A dysfunctional metal homeostasis leading to elevated concentrations of metal ions is one of the presently debated factors that may contribute to increased aggregate formation. For example, the metal-assisted self-assembly of amyloid-\(\beta\) protein (A\(\beta\)) or \(\alpha\)-synuclein into soluble aggregates and amyloids has been linked to the etiologies of Alzheimer’s and Parkinson’s diseases. \(^{5,27,32-38}\) Once the aggregation process has been started, current models suggest that cell-to-cell transmission of aggregates or oligomers rather than the formation of fibrils is responsible for the disease onset and progression. \(^{3,13-15,18}\)

This complexity inherent to the natural amyloidogenic systems renders the important structural characterization by biophysical methods impractical.

A far simpler system that still shares many of the amyloid properties, such as metal-binding driven self-assembly with different polymorphs, is the cyclic d,L-\(\alpha\)-peptide architecture. \(^{39-41}\) Such cyclic peptides with an even number of alternating d- and l-\(\alpha\)-amino acids can form flat and ring-shaped conformations. Under conditions that favour hydrogen bonding and depending on their side chains and the external environment, cyclic d,L-\(\alpha\)-peptides can stack on top of each other through a complementary intermolecular hydrogen-bonding network to form hollow and cross-\(\beta\)-sheet-like tubular structures (Scheme S1A, ESI†). \(^{39,40}\) The cross-\(\beta\)-sheet conformations exhibited by cyclic d,L-\(\alpha\)-peptides closely resemble those of pathogenic amyloids formed from A\(\beta\), \(\alpha\)-syn and tau-derived AcPHF6, and this similarity is most likely responsible for their cross interaction and modulation of aggregation. \(^{30,34,41-47}\) For model tripeptides, non-classical cross-\(\beta\)-sheet structures have been found during oligomerization. \(^{21}\)

In contrast to natural amyloids and natural polypeptides, the aggregation of cyclic d,L-\(\alpha\)-peptides can be specifically arrested at the stage of dimers, \(^{40}\) which allows to obtain structural information and probe the degree of local order early on in the aggregation process.

Previously, we have shown that the His-rich cyclic d,L-\(\alpha\)-peptide 1 [HwWhHhHk] (where the upper and lower case letters represent l- and d-\(\alpha\)-amino acid residues, respectively, while square brackets indicate a cyclic structure; Scheme 1) effectively self-assembles to generate amyloid-like nanostructures and induces peroxidase-like activity to protect cells from oxidative stress. \(^{48}\) Such catalytic and antioxidant activities were also reported to characterize other self-assembled amyloidogenic systems, such as A\(\beta\) and \(\alpha\)-syn. \(^{16,28,35,49,50}\)

In this study, we used different complementary techniques to study the metal chelation properties of the cyclic d,L-\(\alpha\)-peptide 1. Similarly to A\(\beta\) whose aggregation is modulated by copper binding to histidines, the aggregation (or alternatively self-assembly) of cyclic d,L-\(\alpha\)-peptide 1 is also affected by Cu\(^{2+}\) through interaction with His residues to generate amyloid-like nanostructures that can be reversibly controlled by Cu\(^{2+}\) or ethylenediaminetetraacetic acid (EDTA). Using backbone amide methylation to generate 3 (Scheme 1), \(^{51}\) we limit the aggregation process to dimer formation. \(^{40}\) This allows us to obtain structural information by spectroscopic methods such as nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies and to probe whether a well-defined dimer is generated at the first step of the self-assembly. We find that the early aggregates of cyclic peptides formed due to the metal ion coordination are highly heterogeneous dimers that are in exchange with each other. Given the observation of polymorphism of fibril structures, our results suggest that polymorphism can be detected even at the level of the dimer.

Results and discussion

Many amyloidogenic proteins bind metal ions, such as Cu\(^{2+}\), via histidine residues and this interaction influences the aggregation kinetics. \(^{3,27,32-38}\) Mimicking such Cu\(^{2+}\)-induced self-assembly in a minimal peptide model system, we recently developed a cyclic d,L-\(\alpha\)-peptide octamer 1 (Scheme 1) containing multiple His residues. This system reproduces several properties of amyloids, including generation of cross-\(\beta\)-sheet conformation and exhibiting catalytic activity, such as peroxidase activity, which was utilized to protect L6 rat skeletal muscle cells from oxidative stress-induced toxicity under hyperglycemic conditions. \(^{58}\) The design of these cyclic peptides was inspired by the self-assembly to amyloids of A\(\beta\) and its sequence contains three His residues that were proposed to be involved in chelation of metal ions, including Cu\(^{2+}\) in a process that facilitated the self-assembly of monomeric A\(\beta\) and enhanced cell toxicity. \(^{52,53}\) In addition, the cyclic d,L-\(\alpha\)-peptides also contained two hydrophobic aromatic amino acids (Trp) that promote the self-assembly of the peptides in aqueous solutions and induce sufficient hydrophobicity to ensure effective partitioning in lipid membranes. \(^{54}\)

Synthesis of the cyclic d,L-\(\alpha\)-peptide analogs and study their self-assembly process

The cyclic d,L-\(\alpha\)-peptide 1 (Scheme 1) was synthesized on a solid support and cyclized on the resin through head-to-tail cyclization. \(^{58}\) This peptide was also labeled with 4-chloro-7-nitrobenzofurazan (NBD-Cl) through the free \(\varepsilon\)-amine of Lys1 to follow its self-assembly. The N-methylated derivative 3 was synthesized also on the resin support according to the method developed by Chatterjee et al. \(^{51}\) and its free \(\varepsilon\)-amino group was acetylated with sodium acetate-\(\text{2-}^{13}\)C and EDC to afford analogue 4 (Scheme 1).
In order to show that 1 spontaneously self-assembles to generate amyloid-like structures, it was aged for 48 h in the presence of thioflavin T (ThT) as an indicator of amyloid formation. After a lag-phase of about 10 h, we observed a large increase in ThT fluorescence (Fig. 1A, black line), suggesting that 1 can intrinsically generate β-sheet structure, as expected.\(^{39,41}\) Amyloid-like fibril formation by 1 was also confirmed by transmission electron microscopy (TEM) after 72 h of aging (Fig. 1B and Fig. S1, ESI†), which demonstrated the generation of dense and long nanotube-like bundles with 6.59 ± 0.45 nm diameter and up to 1 μm length, very similar to those reported previously.\(^{39,48}\) Analysis of the high resolution TEM images revealed high crystallinity of the nanotube walls with lattice fringes of about 0.33 nm spacing that were perpendicular to the axis of the tube (Fig. S1C, ESI†). This suggests the formation of peptide nanotubes as found previously for similar cyclic D,L-α-octapeptides.\(^{39,40}\)

Metal binding characterization of the cyclic D,L-α-peptide analogues

To confirm Cu\(^{2+}\) binding by the His residues present in 1, we incubated an aqueous solution of 1 with CuSO\(_4\) and then analysed it by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fig. 1C shows the mass analysis of an equimolar solution of 1 and CuSO\(_4\). The spectrum consists of the molecular mass of the peptide (\(m/z = 1186.5\) g mol\(^{-1}\)) and two additional peaks at 1208.5 and 1248.4 g mol\(^{-1}\) that correspond to the Na\(^+\) and Cu\(^{2+}\) adducts of the peptide, respectively. The peak at \(m/z = 1248.4\) g mol\(^{-1}\) does not appear in the mass spectrum of the peptide alone, showing that 1 is able to chelate Cu\(^{2+}\).

The ability of 1 and its NBD-conjugated analogue 2 to chelate Cu\(^{2+}\) was also monitored by UV/Vis and fluorescence spectroscopy. The gradual addition of Cu\(^{2+}\) to 1 or 2 in a 1 : 1 solution of DMSO in MES buffer dose-dependently decreased both the absorbance of 1 (at 230 and 350 nm, Fig. S2A, ESI†) and the fluorescence of 2 (Fig. 1D). The decrease of NBD fluorescence is most likely due to self-quenching of the NBD moieties by Cu\(^{2+}\)-assisted self-assembly of the peptide, since similar self-quenching of NBD fluorescence has been observed in other self-assembling systems.\(^{55}\) Further, reduction in the fluorescence intensity of 2 was also observed in the absence of Cu\(^{2+}\) when the total concentration of DMSO in solution was

Fig. 1 Effect of Cu\(^{2+}\) on the spontaneous self-assembly of cyclic D,L-α-peptides 1 and 2. (A) ThT fluorescence kinetics of 1 in the absence or presence of increasing amounts of Cu\(^{2+}\). Monomeric 1 (400 μM) was incubated at 30 °C in a ThT solution (20 μM, 50% DMSO and MES (25 mM, pH 7.2)) in the absence or presence of Cu\(^{2+}\), and the fluorescence was monitored over time. (B) Spontaneous aggregation of cyclic D,L-α-peptide 1. TEM image of 1 (400 μM) aged for 72 h in DMSO and MES (1 : 1) solution (negatively stained sample). (C–F) Metal-chelating property of cyclic D,L-α-peptide 1. (C) MALDI-TOF mass spectrum of 1 (0.22 mM, calc. \(m/z (1–H^+) = 1186.3\) g mol\(^{-1}\)) with an equimolar mixture of CuSO\(_4\) (calc. \(m/z (1–H^+ + Cu^{2+}) = 1248.8\) g mol\(^{-1}\)). (D) Fluorescence spectra (\(λ_{ex} = 470\) nm) of 2 (1 μM) in a DMSO and MES (1 : 1) solution in the presence of increasing amounts of Cu\(^{2+}\), expressed as the molar ratio of 2 : Cu\(^{2+}\). (E) Fluorescence titration of 2 (1 μM) in the presence of increasing amounts of Cu\(^{2+}\) showing a saturable binding curve. Absolute values are shown. (F) Cyclic D,L-α-peptide 2 binds selectively to Cu\(^{2+}\). Cyclic peptide 2 (1 μM) was incubated with various metals (1 μM) and the fluorescence signal was measured after 60 min. Data in (A and D–F) are representative of three-independent experiments that yielded similar results.
gradually decreased (Fig. S2B, ESI†) or the solution was incubated for a prolonged time (Fig. S2C, ESI†), confirming the spontaneous self-assembly of the cyclic D,L-ζ-peptides as shown also by the ThT fluorescence assay (Fig. 1A). The spontaneous self-assembly of 1 is most likely mediated by intermolecular aromatic interactions between Trp residues and hydrogen bonds generated between the cyclic D,L-ζ-peptides.39,40

The UV/Vis titration studies of 1 with CuSO4 were consistent with the formation of a peptide : Cu2⁺ complex with an average stoichiometry of 1 : 2.5 (Fig. S2D, ESI†). Further, fluorescence titration of 2 with increasing concentrations of CuSO4 as a ligand showed a saturable binding curve with apparent dissociation constant (Kd) of 1.5 μM for formation of the Cu2⁺–2 complex (Fig. 1E). The fluorescence intensity of 2 was also followed for Zn2⁺, Fe3⁺, Co2⁺, and Ni2⁺ to determine whether chelation is metal specific. The cupric ion was found to bind best to 2, followed by Zn2⁺, as may be expected from a His-rich polypeptide. Other metal ions influenced the fluorescence of 2 only slightly, suggesting the selectivity of the cyclic peptides for Cu and Zn ions (Fig. 1F).

The affinity and selectivity of 2 toward different metals were confirmed by the MicroScale Thermophoresis (MST). MST has been widely applied to determine the interaction between macromolecules or even cell components with small molecules or ions.56–58 The binding affinity obtained with MST for Cu2⁺ and 2 was very similar to those obtained from the fluorescence intensity and therefore it was used to determine and compare the Kd values of other metals. Collectively, the MST results confirm those obtained from the fluorescence studies and suggest that 2 binds with similar affinity Cu2⁺ (Kd = 1.78 ± 0.16 μM) and Zn2⁺ (Kd = 2.82 ± 0.20 μM), while it has a significantly lower affinity for Ni2⁺ (Kd = 13 ± 1.14 μM), Fe3⁺ (Kd = 150 ± 34.5 μM) and Co2⁺ (Kd = 287 ± 20.4 μM).

Effect of Cu2⁺ on self-assembly and aggregation of the cyclic D,L-ζ-peptides 1 and 2

Since copper showed the highest binding affinity to the peptide, we tested its effect on the self-assembly of 1. In ThT fluorescence experiments, we found that the presence of catalytic amounts of Cu2⁺ (1 : 0.0016 and 1 : 0.015, 1 : Cu2⁺) significantly increased the ThT fluorescence, while higher concentrations of Cu2⁺ (> 1 : 0.045) significantly decreased the ThT fluorescence and prolonged the kinetic lag phase (Fig. 1A). These results suggest that catalytic concentrations of Cu2⁺ enhance the self-assembly and aggregation of 1, while higher, but still substoichiometric concentrations of Cu2⁺ either inhibit the formation of the fibrils or led to the generation of aggregates that do not bind ThT. Alternatively, the reduction in ThT fluorescence might be attributed to the quenching effect of the free paramagnetic Cu2⁺ (see below). A similar effect of Cu2⁺ on aggregation kinetics and a possible quenching effect of the ThT fluorescence were reported when Aβ was incubated with increasing concentrations of Cu2⁺.30,45,47,59

Further evidence for the metal-induced self-assembly of 1 was provided by TEM and atomic force microscopy (AFM). Samples were collected from the kinetic ThT assays performed in the absence and presence of different concentrations of Cu2⁺ and analysed by TEM and AFM. While very few peptide nanostructures with spherical structure (diameter of 30.4 ± 4.1 nm) were observed in the absence of Cu2⁺ at time t = 0 (Fig. 2A), few fibrillar structures were evident in fresh preparation of the cyclic peptide even in the presence of substoichiometric amounts of Cu2⁺ (0.6 μM; Fig. 2B). The spherical nature of the particles at t = 0 was also confirmed by AFM, which demonstrated particles with a diameter of (86 ± 18) nm (Fig. 2D and E). Interestingly, fresh solution of 1 mixed with a higher concentration of Cu2⁺ (53 μM) did not form any fibrils, but rather generated particles with a diameter of (13.2 ± 2.3) nm (Fig. 2C). Upon incubation of the mixtures for 4 h, the number of the fibrils increased in all samples prepared in the absence or presence of Cu2⁺ (Fig. 2F–H). However, round-shaped structures with a diameter of (45 ± 11) nm were still detectable in the samples prepared in the absence of Cu2⁺ (Fig. S3, ESI†), and the amount of the fibrils generated in the presence of low Cu2⁺ concentration was significantly higher than the fibrils generated in the absence of Cu2⁺ or at higher concentration of Cu2⁺ (Fig. 2F–H). Mature and long fibrillar structures were observed when 1 was aged for 24 h in the absence or presence of Cu2⁺ (0.6 μM; Fig. 2I and J), however the amount of the fibrils in samples incubated with low concentration of Cu2⁺ was significantly higher than that generated in the absence of Cu2⁺, which correlates with the higher ThT
fluorescence of the sample (Fig. 1A). In sharp contrast, higher concentration of Cu\(^{2+}\) (53 \(\mu\)M) largely abolished the formation of the fibrils after 24 h incubation and stabilized the formation of round-shaped particles (Fig. 2K), which is again in agreement with the low ThT fluorescence of the samples. Spherical structures were also reported when A\(\beta\) was incubated with Cu\(^{2+}\).\(^{45}\) These results show that the decreased ThT fluorescence of the samples incubated with Cu\(^{2+}\) concentrations of 18 \(\mu\)M and higher (Fig. 1A) is directly related to the lower amount of fibrils generated rather than to a quenching effect of the ThT fluorescence by excess Cu\(^{2+}\). Cu\(^{2+}\)-induced nanotubular structures could be detected by TEM even in the absence of uranyl acetate used for negative staining, most probably because of the chelated Cu\(^{2+}\). Indeed, the presence of Cu\(^{2+}\) on the fibrils was confirmed by energy-dispersive X-ray spectroscopy (data not shown).

The inhibitory effect of high concentrations of Cu\(^{2+}\) on the self-assembly and aggregation of 1 was further confirmed with dynamic light scattering (DLS). While incubation of 1 (400 \(\mu\)M) for 24 h generated particles with a mean size of about 0.65 nm, the presence of Cu\(^{2+}\) (800 \(\mu\)M) led to the formation of significantly smaller particles with a largest size intensity of about 220 nm (Fig. S4, ESI\(^{†}\)), confirming the ThT and TEM observations. Interestingly, the DLS measurements also show a minor fraction of particles with sizes of (54 \(\pm\) 12) nm, which are most likely correlated with the spherical particles also detected by TEM (Fig. 2K and Fig. S3, ESI\(^{†}\)).

The thermodynamic properties of Cu\(^{2+}\) binding and induced self-assembly of 1 were also studied by isothermal titration calorimetry (ITC). Fig. S5 (ESI\(^{†}\)) shows the ITC data obtained upon injecting Cu\(^{2+}\) into a solution of 1 at 30 °C and corresponding fits using a model with two independent binding sites. The fitted data estimated the average stoichiometry of the binding of 1 and Cu\(^{2+}\) to be 1:2.3, which is in good agreement with the result obtained from the fluorescence titration. The association constant for the first binding event was determined to be about (1.2 \(\times\) 10\(^7\) \(\pm\) 3.9 \(\times\) 10\(^6\)) M\(^{-1}\) (\(K_a = 8.3 \times 10^{-8}\) M), which corresponds to a standard Gibbs free energy change (\(\Delta G^0\)) of \(-9.8\) kcal mol\(^{-1}\). This reflects a favorable enthalpic contribution (\(\Delta H^0 = -15.4 \pm 0.3\) kcal mol\(^{-1}\)) and an unfavorable entropic contribution (\(\Delta S^0 = 5.6 \pm 1.8\) kcal mol\(^{-1}\)), which might originate from loss of conformational degrees of freedom in 1 due to the metal chelation. These values are in good agreement with the ITC values obtained for the interaction of other His-rich peptides with Cu\(^{2+}\).\(^{60}\) The second binding step is assumed to be related to the Cu-induced self-assembly process of the cyclic \(\alpha\)-\(\gamma\) peptide with an association constant of (6.2 \(\times\) 10\(^5\) \(\pm\) 1.7 \(\times\) 10\(^5\)) M\(^{-1}\) (\(K_a = 1.6 \times 10^{-8}\) M), which corresponds to a \(\Delta G^0\) of \(-8.03\) kcal mol\(^{-1}\). Most of the free energy in this reaction originates from favorable entropic contributions (\(\Delta S^0 = -12.75 \pm 2.1\) kcal mol\(^{-1}\)), which compensate for the unfavourable endothermic enthalpy of association (\(\Delta H^0 = 4.7 \pm 0.3\) kcal mol\(^{-1}\)). A very similar binding constant (5.3 \(\times\) 10\(^7\) M\(^{-1}\)) was reported for the self-assembly of a 6-residue \(\alpha\)-\(\gamma\) cyclic peptide.\(^{61}\) The second association constant observed by ITC of 1 in the presence of Cu\(^{2+}\) is close to those resulting from fluorescence and MST studies of the cyclic peptide 2, where only a single binding constant was observed during the Cu\(^{2+}\)-induced self-assembly process, suggesting that in this case an effective binding constant for the Cu\(^{2+}\)-induced self-assembly is observed.

Using circular dichroism (CD) we studied the effect of Cu\(^{2+}\) coordination on the secondary structure of 1. In the absence of Cu\(^{2+}\), the CD spectrum of 1 displayed a positive CD peak at around 209 nm and a negative peak at around 226 nm (Fig. 3A), which resembles the CD spectrum obtained from other cyclic \(\alpha\),\(\beta\)-peptides generating \(\beta\)-sheet structures.\(^{41,43,44}\) The CD spectrum was stable even after 24 h (data not shown). Co-incubation of 1 with Cu\(^{2+}\) (1:1) caused an immediate increase in the CD intensity and a shift of the spectrum to positive and negative peaks at 213 and 231 nm, respectively. The negative band at 231 nm is suggestive of Trp–Trp interactions,\(^{62,63}\) which are generated by Cu\(^{2+}\)-triggered self-assembly of 1 into peptide nanostructures, and therefore its intensity is enhanced over time following the addition of Cu\(^{2+}\) (Fig. 3A, black line).

The effect of metal chelation on the rate of self-assembly was confirmed by fluorescence studies. Cyclic \(\alpha\),\(\beta\)-peptide 2 (1 \(\mu\)M) was incubated with Cu\(^{2+}\) (0.5 and 1 \(\mu\)M) and its fluorescence was monitored over time and compared with that of 2 alone.
While the fluorescence of 2 slowly decreased over time in the absence of Cu\(^{2+}\) as a result of the spontaneous self-assembly of the cyclic D,L-\(\alpha\)-peptide scaffold, the addition of Cu\(^{2+}\) dramatically enhanced the self-assembly rate, as revealed by the fast reduction in the fluorescence signal (Fig. 3B). These results also suggest that the direct fluorescence measurement of 2 to determine its rate of self-assembly and aggregation is more sensitive to early self-assembly steps than ThT-based experiments because kinetics by fluorescence quenching could be detected during the lag phase of about 10 h of the ThT assay (Fig. 1A) during which dimers or other small oligomers are formed, while changes in ThT-based fluorescence require formation of more mature fibrillar structures.

Having shown that the binding of Cu\(^{2+}\) to 1 promotes the self-assembly of the latter, we next determined whether this process is reversible. Peptide 2 (1 \(\mu\)M) was incubated with Cu\(^{2+}\) (1 \(\mu\)M) for 100 min to induce self-assembly, which was followed by a reduction in fluorescence intensity (Fig. 3C, green line). EDTA was added in excess and the fluorescence was monitored further for 100 min. An increase in the fluorescence intensity back to the level of 2 in the absence of Cu\(^{2+}\) was observed, most probably due to disassembling the preformed metal-induced aggregates to monomeric peptide. Similar results were reported for the metal-mediated assembly of \(\alpha\)\(\beta\)\(\gamma\) and collagen-based peptides.\(^{64-66}\) Notably, we found that the aggregation and disaggregation processes of 2 are fully reversible over repeated cycles of Cu\(^{2+}\) and EDTA additions (Fig. 3D), resembling the activity of molecular switches that can perform simple “ON” and “OFF” operations.\(^{67}\)

Study the effect of Cu\(^{2+}\) on the structure of cyclic D,L-\(\alpha\)-peptide analogues

In order to obtain structural information on the interaction of 1 and Cu\(^{2+}\) and the Cu\(^{2+}\)-induced self-assembly, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies were used. These methods also helped to decipher how His-nitrogens coordinate Cu\(^{2+}\).

EPR studies

The cw EPR spectrum of paramagnetic Cu\(^{2+}\) has a strong \(g\)-anisotropy and a four-fold hyperfine splitting due to its nuclear spin \(I = 3/2\). The spin Hamiltonian parameters, the \(g\)- and \(A\)-tensors describing the Zeeman and the hyperfine interaction, respectively, are known to be correlated to the type of atoms present in the first coordination shell of Cu\(^{2+}\), for which Cu\(^{2+}\) favours square planar coordination.\(^{68}\)

In cw EPR titration experiments, incubation of 1 (0.4 mM) with increasing concentrations of Cu\(^{2+}\) for 0 and 24 h generated an overall broad spectral shape most likely due to variability in the Cu\(^{2+}\) coordination geometries (Fig. 4A). The similar \(A_1\) hyperfine splitting, resolved on the low-field side of the spectra and observed up to 2 mM of Cu\(^{2+}\), suggests that the first-shell coordination environment of peptide-bound Cu\(^{2+}\) does not change for concentrations between 133 \(\mu\)M and 2 mM. This spectral component becomes saturated (Fig. 4B) at a Cu\(^{2+}\) concentration of 0.8 mM and higher, corresponding roughly to a ratio of one Cu\(^{2+}\) per two histidine residues of 1. At Cu\(^{2+}\) concentrations of 2 mM and higher, a combination of 1-bound Cu\(^{2+}\) and free [Cu(H\(_2\)O)\(_6\)]\(^{2+}\) becomes visible in the spectra. These results are in good agreement with those obtained from a Job’s plot using UV/Vis spectroscopy (Fig. S2D, ESI†). The EPR signal of low concentrations of free Cu\(^{2+}\) appears to be
suppressed by the MES buffer as has been described for NEM buffer. Upon an incubation time of 24 h, we observed a significant increase of the EPR signal intensity without a change in the spectral shape, indicating an increase in the fraction of EPR-visible Cu²⁺ (Fig. 4 and Fig. S6A, ESI†). Fig. 4 also shows the g_\parallel region of the spectra and the Cu²⁺ A_\parallel hyperfine quartet in the field range from about 260 to 320 mT, from which we determined the corresponding g_\parallel and A_\parallel values. These parameters have been used by Peisach and Blumberg to investigate the coordination of type 2 Cu²⁺ sites.68 We have compared our experimental results to the empirically known Peisach–Blumberg correlations for g_\parallel and A_\parallel values, which gives insight into the first, square-planar Cu²⁺ coordination shell (Fig. S6B, ESI†). The results are consistent with several Cu²⁺ coordination modes. Taking into account that the net charge of the coordination site is not likely to be strongly negative for the peptide, the analysis indicates that on average at least two nitrogen atoms are directly coordinating Cu²⁺.

We further used the pulsed EPR techniques ESEEM70 and its 2D variant HYSCORE71 to detect weakly coupled nuclei, such as non-coordinating nitrogens (¹⁴N, I = 1), in the vicinity of paramagnetic Cu²⁺. Histidine, which is abundant in 1, coordinates Cu²⁺ directly via one nitrogen atom leading to a strong hyperfine coupling for that nitrogen. This leaves the second nitrogen atom in the regime of weak hyperfine coupling. Probing for such weakly coupled nitrogens around Cu²⁺, 3-pulse-ESEEM (3pESEEM) data obtained from 1 (400 μM) in the presence of increasing concentrations of Cu²⁺ up to 2 mM shows pronounced oscillations that stem from nitrogens and protons, while in case of Cu²⁺ (4 mM) modulation from solvent protons dominates (Fig. S7, ESI†). This is in agreement with the water-coordinated Cu²⁺ observed in the cw EPR experiments at this concentration. Moreover, similar to the cw EPR results, the local Cu²⁺ environment appears to be unchanged in the Cu²⁺ concentration range from 200 to 800 μM. As better spectra can be obtained at higher concentrations, more detailed studies were focused on the system with 400 μM 1 and 800 μM Cu²⁺.

The 3pESEEM data of 1, recorded at a proton blind spot to enhance nitrogen sensitivity, and the corresponding cross-term averaged75 and Fourier transformed spectra (Fig. 5A and B) are dominated by the nitrogen quadrupolar interaction with three principal transitions below 2 MHz and a broader double-quantum transition around 4 MHz.76,77 The N-methylated analogue of 1, the cyclic d,l-α-peptide 3 (Scheme 1) forms only dimers, as the methyl groups block further stacking.

![Fig. 5](image_url) Analysis of weakly coupled nitrogens by 3-pulse-ESEEM. (A) The intensity-normalized 3pESEEM time traces of 1 and the N-methylated analogue 3 (offset for clarity after normalization), and (B) the Fourier transform (FT) spectra (analysed with cross-term averaging) normalized to the proton intensity showing the coupling of weakly coupled nitrogens. To quantify the number of nitrogens, FT spectra (as in (B), without cross-term averaging, see Fig. S8D, ESI†) were integrated over (C) the proton frequencies and (D) the weakly coupled nitrogen frequencies. (E) The ratio of the integrated intensities in C and D is proportional to the number of the weakly coupled nitrogens, as validated using the four model compounds with zero (diethylenetriamine (DETA)) to four (imidazole) weakly coupled nitrogens (see Fig. S8, ESI†). The ratio is fitted by linear regression (red) and subsequently normalized to the number of weakly coupled nitrogens. The average value for all the peptide/Cu²⁺ samples (grey line) indicates an average number of ~2 weakly coupled nitrogens.
The ESEEM spectra of 1 and 3 in the presence of Cu²⁺ are very similar, suggesting that the observed Cu²⁺ coordination environment can be understood in terms of the dimer structure. By comparing the spectra obtained from mixtures of 1 and Cu²⁺ to those of model compounds featuring different numbers of weakly coupled nitrogens, namely 0, 1, 2 or 4 (Fig. S8, ESI†), we found that the spectra of 1 closely resemble that with two weakly coupled nitrogens of bis-histidine-coordinated Cu²⁺. A similar approach was applied to study the local coordination of Cu²⁺-bis-histidine in a fibrillary Aβ peptide fragment. In contrast to the previous study, we observe broader ESEEM spectra for 1 and 3 that indicate some local variation in the Cu²⁺ coordination geometry.

We quantified the number of weakly coupled nitrogens around a Cu²⁺ ion by integrating the nitrogen region in the 3pESEEM spectra, using the proton signal as a reference. A similar analysis was also used in earlier studies to quantify the number of deuterium atoms around a nitroxide spin label. Accordingly, the 3pESEEM spectra evaluated without cross-term averaging of 1, 3 and the model compounds incubated with Cu²⁺ were integrated over the 14N-spectral range and normalized by the integral over the proton range (Fig. 5C–E). The resulting 14N/1H intensity ratio (Fig. 5E) shows a linear dependence on the number of weakly coupled nitrogens for the model compounds, as expected from literature. In the spectra obtained from incubation of the cyclic α,β-peptides 1 with Cu²⁺, this intensity ratio appears constant for all incubation times. Linear regression yields an average number of 1.9 ± 0.2 weakly coupled nitrogens in the Cu²⁺ coordination environment. A similar value of 2.3 ± 0.3 is also found for the dimeric Cu²⁺ complex of 3. Therefore, the majority of the Cu²⁺ sites in both cases feature two weakly coupled nitrogens, which may either reside in the imidazole rings of Cu²⁺-coordinating histidine residues or in the peptide backbone. This conclusion is further corroborated by HYSCORE spectra of 1-Cu²⁺ complex as well as the model compounds shown in Fig. 6 and Fig. S9, S10 (ESI†). Like the 3pESEEM spectra obtained from 1 and Cu²⁺ with different incubation times (0, 24 and 48 h) (Fig. 5), the corresponding HYSCORE spectra are largely similar and show an intensity pattern similar to the bis-histidine-Cu²⁺ model.
compound (Fig. 6). Particularly, two features in the spectra underline this similarity. First, the intensity ratios of \(^{1}N\) single and double-quantum transitions of the \(1 + Cu^{2+}\) spectrum strongly resemble those of bis-histidine-\(Cu^{2+}\) (Fig. S9 and S10, ESI†); and second, the two-nitrogen double-quantum transition around 8 MHz (green arrow in Fig. 6) is discernible from the noise level in the 1D projections (Fig. 6C and F), which is an unambiguous indicator of species with two or more weakly coupled nitrogens.\(^{77}\) This feature is visible in the spectra of \(1 + Cu^{2+}\) as well as in the model compound spectra with two and four weakly coupled nitrogens with an intrinsically low intensity due to the low probability of this transition. Therefore, in agreement with the 3pESEEM spectra (Fig. 5 and Fig. S8, ESI†), the HYSCORE spectra point towards two nitrogens that are weakly coupled to \(Cu^{2+}\) from coordination by two histidine residues. An alternative assignment to backbone nitrogens, when the adjacent carbonyl oxygen directly coordinates \(Cu^{2+}\),\(^{81,82}\) appears unlikely considering that backbone oxygens are also involved in inter-peptide hydrogen bonding. Furthermore, the HYSCORE spectrum of \(3 + Cu^{2+}\) shows the same nitrogen couplings in spite of the partial backbone N-methylation, which suggests a similar \(Cu^{2+}\) coordination for dimer and fibrils.

The coordination of \(Cu^{2+}\) to \(1\) was further probed by the pulse EPR techniques ELDOR-detected NMR (EDNMR) and the recently developed CHEESY-detected NMR that allow to analyse moderately-sized hyperfine couplings with high sensitivity.\(^{83}\) The spectra shown in Fig. S11 and S12 (ESI†) reveal both strongly and weakly coupled nitrogens for the model compounds as well as for \(1\). The stronger couplings, which correspond to nitrogens directly coordinated to \(Cu^{2+}\), vary significantly for the different model compounds. For the cyclic peptide \(1\), they appear broadly distributed so that individual couplings cannot be distinguished, similar to what we observe for the weakly coupled nitrogens. Hence, the ELDOR-detected NMR spectra support the notion of \(Cu^{2+}\) coordination by histidine with a broad distribution of local coordination geometries even if the number and type of coordinating atoms may not vary. The experimentally observed \(Cu^{2+}\) coordination by on average two histidines is consistent with the sterically permissive coordination geometries on a peptide nanotube, which span one to three histidine residues (Fig. S13, ESI†).

Since the \(Cu^{2+}\)-induced self-assembly of \(1\) should lead to close proximity of \(Cu^{2+}\) ions, we probed for the presence of \(Cu-Cu\) distances by the EPR technique Double Electron–Electron Resonance (DEER).\(^{84,85}\) We assumed that the self-assembly of \(Cu-bound 1\) to amyloid-like structures, would cause the juxtaposition of \(Cu\) atoms, in which case their inter-spin distance could be measured by DEER. Using this technique, \(Cu^{2+}-Cu^{2+}\) distances have been resolved in many systems, where two \(Cu^{2+}\) ions were bound at distinct sites.\(^{86-88}\) Fig. S14 (ESI†) shows the putative proximity of \(Cu\) atoms along the assembled \(1\) or \(3\), using 4-pulse DEER. The results show a fast decay of the dipolar modulation indicating inter-spin distances shorter than 1.5 nm and hence below the quantification limit by DEER, along with a slower background decay. Both the fast and slow decay components are slightly faster for \(1\) compared to \(3\), indicating a higher local \(Cu^{2+}\) concentration for the self-assembled \(1\). This is in agreement with significantly faster spin–lattice relaxation times measured for \(1\) (Fig. S15, ESI†) as compared to those measured for the model compounds and for the \(N\)-methylated peptide \(3\) that can self-assemble only to dimers. The number of interacting spins given by the DEER modulation depth remains approximately equal for 0, 24, and 48 h incubation time, indicating that DEER is not sensitive to fibril formation. This in turn suggests that the \(Cu^{2+}\) ions involved in this process reside at binding sites with minimal distances shorter than 1.5 nm, below the interpretable distance range of DEER. Notably, the intermolecular distance between equivalent sites in two adjacent cyclic peptides in the assembly is estimated to be 0.47 nm.\(^{39}\) In summary, the EPR data collectively suggest that \(Cu^{2+}\) binds \(1\) through coordination of at least two histidine residues and that the dimer features a distribution of copper coordination geometries, which is also present in the fibrils.

NMR studies

It has been reported by Ghadiri and co-workers that the backbone of the cyclic peptides with even number of alternating D- and L-amino acids adopts a low-energy flat ring-shaped conformation with N–H and C=O groups pointing perpendicular to the plane of the ring. The observed large \(J_{\text{NH-HO}}\) couplings (6.4–8.4 Hz) in the \(^1H\) NMR spectra and strong \(NH_{\alpha}/H_2_{\alpha+1}\) NOE correlations are in good agreement with the flat ring-shaped conformation of the backbone of the cyclic peptides \(1\) and \(3\) (Fig. S16 and Tables S1, S2, ESI†). The ability of \(Cu^{2+}\) chelation of \(1\) and \(3\) was monitored by recording \(^1H\) NMR titration spectra with increasing amounts of \(Cu^{2+}\). \(Cu^{2+}\) concentration dependent attenuation of histidine imidazole side chain \(H_\alpha\) and \(H_\beta\) protons (Fig. 7) suggests that all 5 histidines including the isolated His-8 of \(1\) and \(3\) are involved in \(Cu^{2+}\) coordination, which agrees with the UV-Vis and EPR spectroscopy derived stoichiometry of 1:2.5 peptide: \(Cu^{2+}\), in agreement with dimer formation with a molar ratio of 2:5 peptide:C\(u^{2+}\). Therefore, a similar \(Cu^{2+}\) coordination environment is expected for both \(1\) and \(3\). However, at 0.4 molar equivalents of \(Cu^{2+}\), all the proton resonances vanished in the spectrum, which hinders the study of fully saturated complex of 1 or 3 with \(Cu^{2+}\) (Fig. 7). The aggregation of \(1\) was monitored by acquiring a series of \(^1H\) NMR spectra of 800 \(\muM\) of \(1\) in 1:1:1 DMSO-D\(_2\)/MES (25 mM, pH 7.2) at 303 K. The consumption of peptide monomer over a period of 24 h indicates the spontaneous aggregation of \(1\) (Fig. S17, ESI†). Presence of substoichiometric equivalents of \(Cu^{2+}\) enhanced the aggregation of \(1\) (Fig. S17D, ESI†), which is in agreement with the observations from ThT fluorescence and TEM analysis. No new signals appeared and no line broadening of proton resonances was observed in the \(^1H\) NMR spectra of \(1\), suggesting that the oligomers and fibrils formed are not observable in the NMR spectrum and the signal decay is purely due to the depletion of the cyclic peptide monomer. In order to better understand the \(Cu^{2+}\) concentration dependent morphological changes of cyclic peptide self-assembly, one needs to characterize the early oligomeric species, which act as a seed for further
aggregation. All proton signals disappear due to paramagnetic relaxation in the presence of 0.4 equivalents of Cu$^{2+}$, which is well below the saturation of peptide : Cu$^{2+}$ complex. Therefore, it is not possible to characterize the structure of Cu$^{2+}$ mediated dimers of cyclic peptides. Since, these cyclic peptides exhibited similar binding affinity for Cu$^{2+}$ and Zn$^{2+}$ (MST results), we then proceeded with the characterization of N-(2-13C)acetylated-3 (4, Scheme 1) complexed with Zn$^{2+}$, which is expected to oligomerize up to dimers only. 1H NMR titration spectra of 4 were acquired in 99.95% D$_2$O with increasing amounts of Zn$^{2+}$ at 303 K (Fig. 8). In the absence of Zn$^{2+}$, the sharp proton resonances appeared in the 1H NMR spectrum of 4 are attributed to the presence of pure monomeric peptide. At 1:1 molar equivalents of 4:Zn$^{2+}$, H$_{e1}$ and H$_{d2}$ protons of imidazole ring shifted downfield and broadened indicating the chelation of all 5 histidines with Zn$^{2+}$ and existence of monomeric and dimeric species in intermediate exchange on the NMR time scale. Even at saturation conditions i.e. 1:2.5 equivalents of 4:Zn$^{2+}$, H$_{e1}$ and H$_{d2}$ protons are further shifted downfield and further broadened. This is incompatible with a single conformation of the dimer, but rather suggests the presence of various dimeric arrangements (homo-stacking, hetero-stacking, and head to tail) of cyclic peptide in intermediate exchange, i.e. lifetimes below or around 1 ms. The observed broadening of tryptophan’s aromatic ring protons and 13CH$_3$ doublet of Lys-1 further support the formation of Zn$^{2+}$ mediated cyclic peptide dimers with various arrangements with different chemical shifts. We conclude that the presence of highly heterogeneous cyclic peptide/Zn$^{2+}$ dimers hampers the formation of a specific dimer arrangement. A similar cyclic peptide dimer formation is expected in the presence of Cu$^{2+}$ in a concentration-dependent fashion. Therefore, the observed Cu$^{2+}$ concentration dependent diversity in the morphology of the cyclic peptide aggregates is attributed to the highly heterogeneous dimer conformations (early aggregates) of the cyclic peptide formed due to Cu$^{2+}$ chelation.
Conclusions

Cyclic D,L-α-peptides are peptides that intrinsically self-assemble to generate cross-β-sheet tubular structures due to their even number of alternative D- and L-α-amino acids. Since their discovery, cyclic D,L-α-peptides have gained considerable attention due to their diverse biological activities and therapeutic potential, including antibacterial, antiviral and antiatherosclerosis activities. Recently, also antiamyloidogenic activity has been reported due to structural and functional similarities of cyclic D,L-α-peptides to pathological amyloids that mediates their cross-β-interaction. In contrast to natural amyloidogenic proteins, the self-assembly of cyclic peptides can be arrested at the level of the dimer by backbone N-methylation. Thus, high dimer concentrations amenable for spectroscopic characterization can be achieved, which is exploited here for structural characterization.

In this study, we show that the histidine-rich cyclic D,L-α-peptide undergoes copper-induced self-assembly to different polymorphs, reminiscent of classical amyloids for which the effect of metal ions is controversially debated. Aggregation of the cyclic peptide strongly depends on Cu²⁺ concentration – while catalytic amounts of Cu²⁺ significantly accelerate the aggregation, higher (but still substoichiometric) concentrations of Cu²⁺ dramatically decrease the rate of formation and the amount of ThT-reactive fibrils. Moreover, Cu²⁺ concentration has a significant effect on the morphology of the self-assembled fibrils. While a catalytic amount of Cu²⁺ enhances the generation of long fibrillar species, larger amounts lead to the formation of spherical aggregates. Summarizing the structural information for these aggregates, we find by EPR spectroscopy that Cu²⁺ binds to on average two histidine residues, whereas sterically coordination by 1 to 3 histidines is possible, and binding sites exhibit a significant conformational distribution. The local Cu²⁺ coordination by the dimer remains preserved in the oligomers. This suggests that the binding interface in the dimer is likely perpetuated in the oligomers and that at least part of the Cu²⁺ may act by bridging histidines from adjacent monomers. NMR spectroscopic results indicate that the dimer itself in the presence of zinc undergoes intermediate exchange on the NMR time scale between multiple conformations. This conformational ambiguity shows a reduced local order present in the cyclic peptide system from the initial interactions of the self-assembly process onwards. The structural heterogeneity is consistent with the conformational distribution of Cu²⁺ coordination observed by EPR. Hence a broadly distributed ensemble of structures is present, rather than a single structure.

Based on these results, we speculate that catalytic amounts of Cu²⁺ favour the generation of early low molecular-weight oligomers that can act as seeds to enhance the aggregation kinetics and fibrillization of the cyclic peptide. In contrast, higher concentrations of Cu²⁺ inhibit the aggregation most likely due to saturation of the available Cu²⁺ binding sites on each individual cyclic peptide molecule, which precludes coordination of multiple molecules to the same Cu²⁺ and thus inhibits stacking. These findings illustrate how very low substoichiometric amounts of Cu²⁺ may have a pronounced...
influence on amyloid formation. Further, structural heterogeneity is already present at the early aggregation stage of the dimer, which may be related to polymorphism of self-assembled 1, and is also observed for many aggregating proteins involved in neurodegeneration. The reduced order at the stage of the dimer may contribute to the mechanism of how the cross-interaction of cyclic peptides with amyloidogenic proteins suppresses fibril formation and cytotoxicity of the latter.

Materials and methods

General

All reagents for solid-phase peptide synthesis were purchased from Shanghai Hankong Scientific (Shanghai, China) and used as received. Cyclic \(\text{d,L-\ensuremath{\alpha}} \) peptides 1 and 2 and the \(\text{N}-\text{methylated derivative} \) 3 were synthesized on 2-Cl-trityl resin and purified to homogeneity (>95% purity based on analytical HPLC) as described previously.\(^{43,44,91}\) All peptides were dissolved in dimethylsulfoxide (DMSO) to ensure a monomeric form and the concentration of the stock solutions were determined at 280 nm based on the Trp extinction coefficient (\(\varepsilon_{280} = 11,000 \text{ M}^{-1} \text{ cm}^{-1} \)).

Self-assembly of the cyclic \(\text{d,L-\ensuremath{\alpha}} \)-peptide 2

A 1:1 (v/v) solution of 2 (1 \(\mu \text{M} \)) in DMSO and 2-(N-morpholino)ethanesulfonic acid (MES; 25 mM, pH 6.6) was added to the wells of a black 96-well plate and incubated for different time intervals at room temperature with increasing concentrations of the metals (0.01–10 \(\mu \text{M} \)). The fluorescence of the wells was then measured at an excitation of 470 nm and emission of 500–600 nm, using a plate reader (Infinite M200, Tecan, Switzerland). Binding curves of 2 and \(\text{Cu}^{2+} \) were obtained by following changes in fluorescence intensity at 548 nm, and apparent binding affinity was calculated using GraphPad Prism (GraphPad Software, San Diego, USA) and employing a 1/1 binding model.

Thioflavin T (ThT) aggregation assay

The aggregation assay was performed in black 96-well flat-bottom plates as described previously with some modification.\(^{43,44,91}\) In brief, a freshly prepared solution of 1 (400 \(\mu \text{M} \)) in 50% DMSO and MES (25 mM, pH 7.2) was incubated with increasing concentrations of \(\text{CuSO}_4 \) (in DDW) in the presence of ThT (20 \(\mu \text{M} \)). The plates were sealed with clear polyolefin foils and the fluorescence of bound ThT was monitored every 15 min for 72 h at 30 °C, using a plate reader (Infinite M200, Tecan, Switzerland). The plates were shaken for 1 min before each measurement. The ThT experiments were also carried out at pH 6.6 similar to other experiments, however the ThT fluorescence signal under these conditions was substantially smaller.

Dynamic light scattering (DLS) studies

Samples similar to those prepared for the fluorescent studies were also tested with dynamic light scattering (DLS, Malvern Zetasizer Nano ZS system, Malvern, UK) after different time intervals to examine the effect of \(\text{Cu}^{2+} \) on the size distribution of the self-assembled 1.

Transmission electron microscopy (TEM) analysis

The self-assembly of 1 was also studied by TEM. Solutions of 1 in the absence or presence of \(\text{Cu}^{2+} \) were incubated for different time intervals at room temperature and then spotted onto glow-discharged, carbon-coated Formvar/copper grids (SPI supplies, West Chester, PA, USA). The samples were then blotted with a filter paper, negatively stained with 2% (w/v) uranyl acetate in water (5 \(\mu \text{l} \)) for 30 seconds, washed (\(\times 2 \)) with water, blotted again, and dried. Samples were then analyzed by a Tecnai G2 TEM (FEI TecnaiTM G2, Hillsboro, Oregon, USA) operated at 120 kV.

Isothermal titration calorimetry (ITC)

All ITC measurements were carried out at 30 °C with a VP-ITC calorimeter (MicroCal Inc., Northampton, MA, USA). The titrant and sample solutions were made from the same stock buffer solution (\(\text{NaHCO}_3 \), 100 mM, pH 9.2) to avoid a dilution signal, and both experimental solutions were thoroughly degassed before each titration. The solution of cyclic \(\text{d,L-\ensuremath{\alpha}} \)-peptide 1 (1 mM, 1.442 mL) in the cell was stirred at 370 rpm by the syringe to ensure rapid mixing. A solution of \(\text{CuSO}_4 \) (0.15 mM, 10 \(\mu \text{l} \)) was then delivered with an adequate interval (4 min) between injections to allow complete equilibration. A background titration, consisting of the identical titrant solution (\(\text{CuSO}_4 \), 0.15 mM) and the buffer solution in the sample cell, was subtracted from each experimental titration. The data were collected automatically and subsequently analyzed with the software MicroCal Origin using a two-site binding model.

Circular dichroism (CD) spectroscopy

CD measurements were carried out using a Chirascan spectrophotometer (Applied Photophysics, UK). Samples of 1 (10 \(\mu \text{M} \)) and \(\text{CuSO}_4 \) (10 \(\mu \text{M} \)) were prepared in MES buffer (10 mM, pH 6.6) and analyzed over time. Measurements were performed at room temperature in a 2 mm optical path length cell without dilution and the spectra were recorded from 260–190 nm with a step size and a bandwidth of 1 nm. The spectra are the average of three measurements after background subtraction.

Thermophoresis measurements

The association constant between 2 and the metals (\(\text{Cu}^{2+}, \text{Zn}^{2+}, \text{Co}^{2+}, \text{Ni}^{2+}, \text{and Fe}^{3+} \)) was analyzed with a NanoTemper Monolith NT.115 instrument (NanoTemper Technologies GmbH, Munich, Germany), as described elsewhere.\(^{56}\) In brief, a solution of 2 (10 \(\mu \text{M} \)) in MES (25 mM, pH 6.6) was incubated with increasing concentrations of the metals (1 \(\mu \text{M}–15 \text{ mM} \)) and introduced to 16 MST-grade standard-treated capillaries. The measurements were carried out at room temperature and with MST power of 20% and LED Power of 70%.

EPR spectroscopy

Samples were prepared in a 1:1 mixture of DMSO:MES buffer (25 mM, pH 6.6), supplemented with the required amount of
Cu$^{2+}$ (20 mM, in H$_2$O). The mixtures were incubated at room temperature in the dark and at different time intervals samples (60 μL) were filled into 3 mm (outer diameter) quartz tubes and shock frozen in liquid nitrogen for EPR measurements.

Continuous wave (cw) EPR spectra were recorded at X-band (ca. 9.5 GHz) on an Elexys E580 EPR spectrometer (Bruker Biospin, Rheinstetten, Germany) equipped with a cylindrical resonator (Bruker SHQ) and an ESR900 helium flow cryostat (Oxford Instruments, Oxfordshire, UK) to stabilize the temperature at 20 K. Spectra were acquired under non-saturating conditions with a microwave power of 0.2 mW, a B-field modulation amplitude for lock-in detection of 0.3 mT and a conversion time of 81.92 ms using 1024 points.

The pulse EPR experiments ESEEM and HYSCORE were performed at X-band (ca. 9.5 GHz) using a Bruker Elexys E580 spectrometer (Bruker Biospin, Rheinstetten, Germany) equipped with a 3 mm split-ring resonator (Bruker MS3) and cooled to 5 or 10 K employing a liquid helium flow cryostat (Oxford Instruments, Oxfordshire, UK). 3-pulse ESEEM data were acquired with the sequence π/2–π/2–π/2–π/2–π/2–π/2–τ–echo70 using 20 ns π/2 pulses and an interpulse delay τ of 144 ns to detect 14N modulations while suppressing 1H modulations. ESEEM time domain data (1024 points in 8 ns steps) were baseline corrected, using a 2nd or 4th order polynomial, apodized by a Hamming window, zero-filled to 2048 points and Fourier transformed, either with or without cross-term averaging75 over the whole trace using the Matlab toolbox EasySpin.92 The resulting spectra were integrated from 0 to 11 MHz to measure the 14N spectral intensity, and from 13 to 16 MHz to measure the 1H spectral intensity. The ratio of these two intensities was found to be proportional to the number of weakly coupled 14N.72 To quantify the relative contributions of different nuclei by integration, it is essential to integrate spectra that were Fourier transformed without cross-term averaging because cross-term averaging can lead to an imbalance in the relative contribution of different frequencies that affects linearity of the integration result. Yet, for interpretation of the ESEEM spectral shape cross-term averaging is important as it alleviates artifacts that are due to spectrometer dead time.75

The HYSCORE pulse sequence π/2–τ–π–τ–T$_1$–π–T$_2$–π–τ–echo70 was set up, using 24 ns π/2 pulses and a 16 ns π pulse through an 8 steps phase cycle. Times t$_1$ and t$_2$ were incremented independently in 16 ns steps over 400 × 400 points. The resulting 2-dimensional time domain data was baseline corrected by a 2nd or 4th order polynomial, apodized using a Hamming window, zero-filled to 1024 × 1024 points and Fourier transformed to yield the resulting 2D spectra.

EPR inter-spin distance measurements were performed at Q-band (34.5 GHz) employing the four-pulse DEER sequence93,94 at 10 K and in 3 mm quartz tubes. DEER measurements were performed using a Q-band spectrometer equipped with a TWT amplifier with a nominal output power of 150 W and a home-built TE102 rectangular resonator.84 Observer pulse lengths were set to 12 ns, while the pump pulse length was set to 16 ns. The pump pulse was applied at the maximum of the Cu$^{2+}$ spectrum, the observer pulse was adjusted at a frequency offset of 100 MHz and nuclear modulations were averaged out by incrementing the first inter-pulse delay in 8 steps by 4 ns each. The data were analyzed employing the software DeerAnalysis2016.95

NMR spectroscopy

NMR spectra were acquired on Bruker Avance NEO 800 MHz and Bruker Avance III HD 600 MHz spectrometers equipped with 3 mm and 5 mm cryo probes, respectively. 1H chemical shifts were referenced to 2,2-dimethyl-2-silapentane-5-sulfonate (DSS, δ$_H$ 0 ppm). The chemical shift assignment of 1 and 3 was carried out using 1D 1H and 2D-NOESY and TOCSY spectra acquired in a 1:1 mixture of DMSO-D$_6$:MES buffer (25 mM, pH 6.6) at 298 K. 2D NOESY and TOCSY spectra were recorded using mixing times of 500 ns and 80 ns, respectively. 1H NMR titration spectra of cyclic peptides with increasing amounts of Cu$^{2+}$ were acquired in 1:1 mixture of DMSO-D$_6$:MES buffer (25 mM, pH 6.6) at 298 K. 1H NMR titration spectra of 4 (Scheme 1) with increasing amounts of Zn$^{2+}$ were acquired in 99.95% D$_2$O at 303 K. For monitoring aggregation kinetics of 1, cyclic peptide in 1:1 mixture of DMSO-D$_6$:MES buffer (25 mM, pH 7.2) was incubated at 303 K in the magnet over a period of 24 h and a series of 1H NMR spectra were recorded using Bruker Topspin au program multizg_vd. pH of the solution was adjusted with the aliquots of NaOH and HCl using Mettler Toledo SvenEasy S20 pH meter. A three-point calibration was done using standard buffers with pH 4, 7, 10 before measuring pH of the NMR samples. NMR spectra were processed using Topspin 3.5pl7 (Bruker, Germany).

Author contributions

D. K. and S. P. B. V. and M. R. contributed equally and wrote the manuscript with input from all authors. D. K., K. M., N. W. carried out CW EPR, HYSCORE, ESEEM, DEER, EDNMR and CHEESY-detected NMR measurements. M. S. and D. Z. performed and analyzed HR-TEM. S. P. B. V. and C. G. performed NMR experiments and analyzed the data. ITC studies were carried out and analyzed by M. A. and G. G. M. R., S. Rudnick, V. A. and M. C. performed the synthesis and chemical characterization of the cyclic d,L-α-peptides, studied their affinity to different metals, and probed the effect of the Cu$^{2+}$ on aggregation of the cyclic d,L-α-peptides. C. G., G. J. and S. Rahimipour coordinated the project and provided guidance. All the authors revised the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported in part by a joint grant from German Israel Foundation (Grant No. I-1516-302.5/2019) to CG and SR. Open Access funding provided by the Max Planck Society.
References

