Dietary and serum tyrosine, white matter microstructure and inter-individual variability in executive functions in overweight adults: Relation to sex/gender and age

Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Cognitive Neurology, University Medical Center Leipzig, Germany

ABSTRACT

Tyrosine (tyr), the precursor of the neurotransmitter dopamine, is known to modulate cognitive functions including executive attention. Tyr supplementation is suggested to influence dopamine-modulated cognitive performance. However, results are inconclusive regarding the presence or strength and also the direction of the association between tyr and cognitive function. This pre-registered cross-sectional analysis investigates whether diet-associated serum tyr relates to executive attention performance, and whether this relationship is moderated by differences in white matter microstructure.

59 healthy, overweight, young to middle-aged adults (20 female sex/gender group, 28.3 ± 6.6 years, BMI: 27.3 ± 1.5 kg/m²) drawn from a longitudinal study reported dietary habits, donated blood and completed diffusion-weighted brain magnetic resonance imaging and the attention network test. Main analyses were performed using linear regressions and non-parametric voxel-wise inference testing.

Confirmatory analyses did neither support an association between dietary and serum tyr nor a relationship between relative serum tyr/large neutral amino acids (LNAA) levels or white matter microstructure and executive attention performance. However, exploratory analyses revealed higher tyr intake, higher serum tyr and better executive attention performance in the male sex/gender group. In addition, older age was associated with higher dietary tyr intake and lower fractional anisotropy in a widespread cluster across the brain. Finally, a positive association between relative serum tyr/LNAA level and executive attention performance was found in the male sex/gender group when accounting for age effects.

Our analysis advances the field of dopamine-modulated cognitive functions by revealing sex/gender and age differences which might be diet-related. Longitudinal or intervention studies and larger sample sizes are needed to provide more reliable evidence for links between tyr and executive attention.

1. Introduction

Dietary intake of the amino acid tyrosine (tyr), a precursor of the neurotransmitter dopamine, has been claimed to modulate brain functions and cognitive performance, such as executive functions (Aquili, 2020). In rodents, protein-rich diets (single meals or habitual intake) or direct tyr injection increased serum and brain tyr concentrations and dopamine (DA) synthesis in the brain (reviewed in (John D. Fernstrom & Fernstrom, 2007)). Human studies also showed that dietary tyr/protein intake changes serum levels of tyr (J D Fernstrom et al., 1979; Strang et al., 2017; van de Rest et al., 2017; Wurtman et al., 2003), and acute depletion of tyr decreased brain DA measured indirectly using positron emission tomography (PET) (Leyton et al., 2004). Considering cognitive effects, some studies showed that tyr intake correlated with differences in inhibitory control (Colzato et al., 2014), task switching (Steemберgen et al., 2015) as well as working memory performance (Colzato et al., 2013; Hensel et al., 2019; Kühn et al., 2019; Thomas et al., 1999; van de Rest et al., 2017) and reward processing (Aquili, 2020), resulting in either improved (habitual dietary tyr or protein shakes) or both improved and weakened (high-dose oral supplementary tyr) test performance. In parallel, other studies could not demonstrate significant effects of tyr intake on executive function such as conflict monitoring and resolution measured with the attention network task (ANT) (Friggs et al., 2020) or with a related task combining subliminal priming and flanker interference (Stock et al., 2018).

These at first glance contradictory findings might be insightful considering several important aspects of the tyr-DA and DA-cognition relationship: Firstly, the direction and strength of DA-enhancing drug effects on task performance has been found to depend on differences in baseline DA levels. This baseline dependence may be modeled by an inverted U-shaped dose-response curve leading to either improvement, maintenance, or impairment of task performance by increasing DA

* Corresponding author. Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
E-mail address: witte@cbs.mpg.de (A.V. Witte).

https://doi.org/10.1016/j.appet.2022.106093
Received 1 December 2021; Received in revised form 16 March 2022; Accepted 19 May 2022
Available online 20 June 2022
0195-6663/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The study sample consisted of young to middle-aged adults with omnivorous, naive eating habits resembling a typical Western European diet. Moreover, we examined possible structure-function relationships to address whether the strength and direction of potential associations between serum tyr and executive attention performance might depend on differences in white matter microstructure of the executive attention network. To investigate possible structure-function relationships, we calculated tract-based fractional anisotropy (FA) based on diffusion weighted magnetic resonance imaging (dwMRI).

We pre-registered all hypotheses and analyses at https://osf.io/hbjyr to increase transparency and reproducibility. A visualization of our hypotheses is presented in Fig. 1.

2. Methods

2.1. Study design and participants

Data was drawn from baseline assessments of a two-arm cross-over within-subject randomized controlled dietary intervention study with four time points (https://clinicaltrials.gov/ct2/show/NCT03829189). Participants were randomly assigned to fiber-placebo or placebo-fiber arm (30 g inulin vs. equicaloric maltodextrin powder) with a 14-day supplementation each, divided by a 14-day wash-out period. In total, 60 young to middle-aged adults were recruited from the participant database of the Max Planck Institute for Human Cognitive and Brain Sciences (Leipzig, Germany) or via advertisements. The institutional ethics board of the Medical Faculty of the University of Leipzig, Germany, raised no concerns regarding the study protocol (228/18-ek) and all participants provided written informed consent. They received reimbursement for participation. For the current analysis, baseline assessments are drawn from the longitudinal data set. This cross-sectional analysis used the overall data from the first time point regardless of the participants’ assignment to the two different intervention groups.

Participants were included based on body mass index (BMI; range 25–30 kg/m²) and eating behavior (i.e., they reported to not follow restrictive dietary patterns such as vegetarian or vegan, and no food allergies etc., as well as no eating behavior disorders). The latter was monitored based on self-report on clinical questionnaires as well as additional questions such as “Do you follow a certain dietary habit such as...”
as vegetarian or vegan? Did you follow a diet to lose weight in the last three month?". In a 14-day food frequency questionnaire (FFQ) (for details see “Self-reported dietary tyrosine intake”), participants reported omnivorous diets with a mean total energy intake of 1615.9 (SD = 509.51) kcal per day (see Table 5). The male sex/gender group showed a higher mean energy intake (M = 1723.66, SD = 518.34) than the female sex/gender group (M = 1405.78, SD = 429.88). Note that subjects differed greatly in their energy intake, ranging from 501 kcal to 2727 kcal per day (Fig. 2E). Daily energy expenditure in this sample was estimated to 1592 (SD = 104) kcal for the female sex/gender group and to 2063 (SD = 161) kcal for the male sex/gender group according to Harris and Benedict (1919). Pertaining to our inclusion criteria, no participant consumed >50 g of alcohol, >10 cigarettes, or >6 cups of coffee per day. Hormonal contraceptive use (pill, intrauterine device or vaginal ring) was another inclusion criterion for participants of the female sex/gender group.

Exclusion criteria were neurological or psychiatric disorders, severe metabolic or internal disease or any medications acting on the central nervous system. Participants were excluded if they were pregnant or breastfeeding females. Due to high depressive symptoms at testing day, one subject was excluded from data analysis. Testing sessions were scheduled at either 07.15, 08.00, 09.15, 10.30 or 11.15 a.m. and began with blood drawing followed by physiological measurements, MRI scanning, computer tasks and the filling in of questionnaires. The cognitive assessment was conducted post-MRI 3–3.5 h after the blood drawing.

2.2. Attention network test

To measure individual differences in the efficiency of the executive attention network, we used a computerized version of the Attention Network Test (ANT) developed by Fan, Posner and colleagues (Fan et al., 2002). ANT data of n = 58 was available; one data set was faulty due to technical problems. The participants’ task was to identify the direction of a centrally presented arrow flanked by neutral (lines), congruent (arrows in the same direction), or incongruent (arrows of opposite direction) stimuli (see Fig. 3). In addition, the task included four cue conditions (no cue, center cue, double cue, spatial cue) that preceded the presentation of the stimuli and could indicate the location of the upcoming target stimuli (only spatial cue). A 30-min test session consisted

Fig. 2. Descriptive statistics of variables of interest. Boxplots visualize maximum, minimum, median, first and third quartiles. The length of the whisker is 1.5 times the interquartile range (IQR); outliers are depicted above or below. Abbreviations: BMI, Body Mass Index; SES, Socio-Economic Status.
of a practice block of 24 trials in which subjects received feedback, and 3 experimental blocks consisting of 96 randomly ordered trials without feedback. The efficiency of each network is quantified by error rates (ER) and reaction times (RT). ER represent an accuracy score. RT of only correct trials are used to compute so-called alerting, orienting and conflict effects that quantify respective performance in one of the three attentional components. Conflict effects measure the processing of conflicting visual information (i.e., the influence of incongruent flankers on the processing of a target stimulus). The smaller the difference between the RT in processing incongruent and congruent visual information, the better the EA performance.

Conflict effects – as a measure for the efficiency of the EA network – were calculated by subtracting mean RT of all congruent from mean RT of all incongruent trials. In addition, **alerting effects** were calculated by subtracting the mean RT of all double cue trials from the mean RT of all no cue trials and **orienting effects** were calculated by subtracting the mean RT of all spatial cue trials from the mean RT of all center cue trials.

Formulas for calculating ANT Effects:

- **Conflict Effect** = \(RT_{\text{incongruent}} - RT_{\text{congruent}} \)
- **Alerting Effect** = \(RT_{\text{no cue}} - RT_{\text{double cue}} \)
- **Orienting Effect** = \(RT_{\text{center cue}} - RT_{\text{spatial cue}} \)

2.3. Self-reported dietary tyrosine intake

Habitual dietary tyr intake over the last 7 days was assessed with the validated German Food Frequency Questionnaire (FFQ) DEGS1 by the Robert Koch Institute (Berlin, Germany); a tool to measure the intake of 53 single food items consumed based on self-reported frequency and quantity (Haftenberger et al., 2010). In this sample FFQ data from two baseline assessments for all macronutrients for a recall period of 7 days was fair to good (kappa\(_{\text{all}}\) ≥ 0.40, kappa\(_{\text{max}}\) = 0.73, all \(p < 0.001 \)), with highest agreement for protein and lowest for fat intake. To get a measure of dietary tyr intake, we calculated the mean tyr intake per day using reference food items from the German Nutrient Database (Bundeslebensmittelschlüssel (BLS), Version 3.02) or - in rare cases - individual sources directly from food suppliers (e.g., for plant-based milk). Further details on nutrient scoring: https://osf.io/h73wj/. First, we controlled tyr intake for total kcal to put very high or low tyr intake into perspective. Second, we accounted for the intake of other dietary LNAAs to provide a more meaningful measure of dietary tyr intake and its potential effect in the brain (cf. competing transport system at the blood-brain barrier).

2.4. Blood markers

Blood sampling was performed after overnight fasting (12.5 ± 2.2 h fasted) and about 2.5 h before the ANT. The following amino acids were of interest: tyr, tryptophan, phenylalanine, leucine/isoleucine, valine, methionine. Blood samples were centrifuged and stored at −80 °C. Analyses were conducted at the Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM) Leipzig University, Leipzig, Germany. Missing values due to limit of detection (LLOD) or limit of quantification (LLOQ) were substituted with values just below the limits (LLOD - 0.1 and LLOQ - 0.1). To relate dietary intake of tyr with serum tyr levels, absolute tyr levels were used. To get a proxy for acute brain DA levels, relative serum tyr/LNAAs ratios were calculated. Serum tyr/LNAAs ratios were calculated by dividing the tyr
concentration by the summed concentration of all remaining LNAA, i.e., tryptophan, phenylalanine, leucine, isoleucine, valine, methionine.

2.5. Sex/Gender

Sex/gender variable was collected by asking participants in German about their “Geschlecht” with three response options: “weiblich”, “männlich” and “keine Antwort”. The third option was not chosen by anyone. The German word “Geschlecht” was used ambiguously, since the German term carries both the meaning of biological sex and social gender without further specification. This conceptual indeterminacy affects the two response options “weiblich” (female/feminine) and “männlich” (male/masculine). Unfortunately, no other option such as “diverse” or “third gender” was provided. Since we cannot be certain which concept (i.e., biological sex or social gender) has been captured, we use the composite term sex/gender throughout the paper to highlight the underdetermination. Since a dichotomous question was asked, we will maintain this distinction between two groups by using the terms “male sex/gender group” and “female sex/gender group”. The reluctance to clearly assign the measured variable to biological sex or social gender will be particularly important when interpreting the results.

2.6. Socio-economic status

Socio-economic status (SES) was included as a control variable because differences in both cognitive performance and tyr intake may be due to differences in SES (Cinelli et al., 2020; Kühn et al., 2019). SES was assessed using a questionnaire on SES and subjective social status (Lampert et al., 2013). The SES index was calculated as a sum value based on three sub-dimensions: education, occupation and income (theoretical range: 3 to 21 points). The SES index was considered as a continuous variable. The SES index was available for n = 51 participants, eight participants did not provide information.

2.7. Image acquisition and processing

Anatomical MRI. Anatomical MRI was acquired with a T1-weighted Magnetization Prepared - RApid Gradient Echo (MP-RAGE) sequence using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) protocol (http://adni.loni.usc.edu/methods/documents/mri-protocols/) with the following parameters: repetition time (TR) = 2300 ms; echo time (TE) = 2.98 ms; flip angle = 9°; Field-of-view (FOV): (256 mm); voxel size: (1.0 mm); 176 slices. Preprocessing included skull stripping and realignment to anterior and posterior commissure and tissue segmentation with the default settings using SPM12.

Diffusion-weighted MRI (dwMRI). dwMRI was acquired using the following parameters: TR = 5200 ms; TE = 75 ms; flip angle = 90°; FOV: (220 mm); voxel size: (1.7 mm); 88 slices; max. b = 1000 s/mm² in 60 diffusion directions; partial Fourier = 7/8; GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) factor = 2 (Griswold et al., 2002); interpolation = OFF. Ap/ra-encoded b0-images were acquired for distortion correction. We acquired n = 58 dwMRI data sets; one participant aborted the MRI session due to nausea before dwMRI acquisition.

Preprocessing was performed with standard pipelines, including denoising (MRtrix v3.0) of the raw data, removal of Gibbs-ringing artifact from all b0 images using the local subvoxel-shift method (Keller et al., 2016) and outlier replacement using the eddy tool in FMRIB Software Library (FSL) (Andersson & Sotiropoulos, 2016). Subsequently, data was corrected for head motion and linearly co-registered to the T1 image with Lipsia tools (Lohmann et al., 2001). Finally, we applied tensor model fitting and generated fractional anisotropy (FA) images as an index of white matter coherence.

Through tract-based spatial statistics (TBSS) (Smith et al., 2006), we obtained FA maps of the individual white matter skeletons and extracted the mean FA value for each participant. All FA maps were co-registered using affine and non-linear transformations to FMRIB58_FA standard space and the individual local maximal FA values were projected onto the standard FA skeleton to match individual’s anatomy. The threshold for these standardized white matter fiber tract maps was set at 0.2. The FA skeleton maps were fed into voxel-wise analysis of FA for statistical comparison using the randomise tool by FSL version 5.0.11. We used 10,000 permutations (Winkler et al., 2014) in the confirmatory analyses and 5,000 permutations in the exploratory analyses concerning age correlations. Threshold-free cluster enhancement (TFCE) was applied as test statistic (Smith & Nichols, 2009) and significance level was set at q(FWE) = 0.05. Voxel-wise analysis was conducted on a whole-brain level and in the exploratory age correlation analysis we controlled for frame-wise displacement as a measure of head motion (Beyer et al., 2017).

2.8. Statistical analyses

Based on the OSF-preregistration, we distinguished between pre-registered confirmatory (systematically testing four hypotheses) and pre-registered sensitivity or exploratory analyses (including additional control variables). In addition, we performed additional non-pre-registered exploratory analyses to further elucidate possible relationships or underlying mechanisms. The selection and definition of the non-registered analyses builds on the results of the pre-registered analyses. All statistical analyses (except for brain data) were performed in R (version 4.0.3). Regression models and prerequisite testing were computed with R base functions, plots were created using R base functions or the R package ggplot2. The level of significance was set at α = 0.05.

(1) Dietary - Serum Tyrosine Relationship (pre-registered)

To investigate the relationship of dietary tyr intake and absolute tyr levels, we performed a multiple linear regression analysis controlling for sex/gender.

Regression model:

Absolute Serum tyr Level = β0 + β1 Dietary tyr Intake + β2 sex/gender + ε

(2) Serum Tyrosine and Executive Attention (pre-registered)

To examine the relationship between serum tyr/LNAA ratio and executive attention performance (i.e., conflict effects), we performed multiple linear regression analyses controlling for sex/gender. Executive attention performance was quantified by calculating conflict effects based on reaction times (RT). The serum tyr/LNAA ratio was calculated by dividing the serum tyr level by the sum of the remaining LNAA.

Regression model:

Conflict Effect = β0 + β1 serum tyr/LNAA ratio + β2 sex/gender + ε

(3) Executive Attention and White Matter Microstructure (pre-registered)

To examine the neural basis of inter-individual variability in executive attention performance, we performed voxel-wise cross-subject whole-brain analyses on the FA skeletons to correlate fractional anisotropy (FA) values with conflict effects.

General Linear Model:

4D skeletonized FA image = β0 + β1 Conflict Effect + ε

(4) Moderation Analysis (pre-registered)

Because of the lack of significant correlations between executive attention performance and FA values during the aforementioned voxel-wise whole-brain correlation analysis, this moderation analysis was not conducted.
The level of significance was set at α = 0.05 for all sensitivity analyses. In addition, the multiple regression analysis was repeated for absolute dietary tyr intake as predictor variables to examine which tyr measures (self-reported dietary tyr intake vs. tyr serum level) better predicted differences in executive attention performance. Following Hensel et al. and Kühn et al. (Hensel et al., 2019; Kühn et al., 2019), we adjusted dietary tyr intake to body weight. In addition, total energy intake was included as control variable.

Regression Model:

Conflict Effect = β0 + β1 Dietary tyr Intake/Body weight + β2 Energy Intake + ε

In addition, for the ANT, a two-way Analysis of Variance (ANOVA) was calculated to examine the influence of the two factors (1) flanker type (3 factor levels: neutral, congruent, incongruent) and (2) cue condition (4 factor levels: no cue, central cue, double cue, spatial cue) on the measured continuous dependent variable reaction time (RT) and error rates (ER), respectively. ANOVAs, post-hoc analyses for multiple pairwise comparisons (i.e., Tukey’s test), and Shapiro-Wilk normality test were calculated using R base functions. Homoscedasticity was tested with Levene’s test using the R package car.

2.9. Sensitivity and exploratory analyses (pre-registered)

In subsequent sensitivity analyses, additional control variables (BMI, SES, age) were added (Table 1 & Table 2). We applied a hierarchical regression analysis approach (Lewis, 2007), adding each variable one after the other to examine the contribution of each predictor to the model. The level of significance was set at α = 0.05 for all sensitivity analyses.

In addition, the multiple regression analysis was repeated for absolute dietary tyr intake as predictor variables to examine which tyr measures (self-reported dietary tyr intake vs. tyr serum level) better predicted differences in executive attention performance. Following Hensel et al. and Kühn et al. (Hensel et al., 2019; Kühn et al., 2019), we adjusted dietary tyr intake to body weight. In addition, total energy intake was included as control variable.

Regression Model:

Conflict Effect = β0 + β1 Dietary tyr Intake/Body weight + β2 Energy Intake + ε

In addition, for the ANT, a two-way Analysis of Variance (ANOVA) was calculated to examine the influence of the two factors (1) flanker type (3 factor levels: neutral, congruent, incongruent) and (2) cue condition (4 factor levels: no cue, central cue, double cue, spatial cue) on the measured continuous dependent variable reaction time (RT) and error rates (ER), respectively. ANOVAs, post-hoc analyses for multiple pairwise comparisons (i.e., Tukey’s test), and Shapiro-Wilk normality test were calculated using R base functions. Homoscedasticity was tested with Levene’s test using the R package car.

2.10. Non-pre-registered exploratory analyses

1. Correlation Analyses of Tyrosine Markers

First, we explored associations between dietary tyr and serum tyr markers using Pearson’s correlation coefficients for the following relationships:

- Dietary tyr intake – serum tyr levels
- Dietary tyr intake – serum tyr/LNAAs ratios
- Dietary tyr intake (adjusted for energy intake) – serum tyr levels
- Dietary tyr intake (adjusted for body weight) – serum tyr levels
- Absolute serum tyr levels - relative serum tyr/LNAAs ratios

Correlational models (Pearson’s product-moment correlation) and prerequisite testing were computed with R base functions.

2. Analyses of Sex/Gender Differences

Next, we examined sex/gender differences in variables of interest using non-parametric Mann-Whitney U test (i.e., Wilcoxon rank sum test), i.e.: dietary tyr intake, dietary tyr intake adjusted for energy intake, absolute serum tyr levels, relative tyr/LNAAs ratios, ANT conflict effects RT, age, BMI, SES. Analyses were performed using the R package stats. The level of significance was set at α = 0.05.

In addition, we performed the regression analyses outlined above with serum tyr/LNAAs ratio as predictor variable and executive attention performance (measured by conflict effects) as criterion variable for the male and female sex/gender group separately. In both models, we controlled for age because previous literature indicates detrimental age effects on executive functions (Ferguson et al., 2021).

Regressions per sex/gender group:

Male sex/gender group: Conflict Effect = β0 + β1 serum tyr/LNAAs ratio + β2 age + ε

Female sex/gender group: Conflict Effect = β0 + β1 serum tyr/LNAAs ratio + β2 age + ε

3. Age Relationships

Further, a simple linear regression approach was applied to examine possible associations between age and dietary tyr intake, serum tyr levels or executive attention performance (Table 3). Regression analyses

Table 1

<table>
<thead>
<tr>
<th>Models: Executive Attention and Serum tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflict Effect = β0 + β1 serum tyr/LNAAs ratio + β2 age + ε</td>
</tr>
<tr>
<td>Conflict Effect = β0 + β1 serum tyr/LNAAs ratio + β2 age + ε</td>
</tr>
<tr>
<td>Conflict Effect = β0 + β1 serum tyr/LNAAs ratio + β2 age + ε</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Models: Dietary - Serum tyr Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum tyr Level – body weight + β2 Energy Intake</td>
</tr>
<tr>
<td>Serum tyr Level = β0 + β1 Dietary tyr Intake + β2 age + ε</td>
</tr>
<tr>
<td>Serum tyr Level = β0 + β1 Dietary tyr Intake + β2 age + ε</td>
</tr>
</tbody>
</table>

Table 3

Simple linear regression models: Age relationship.

<table>
<thead>
<tr>
<th>Models: Age Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary tyr Intake = β0 + β1 age + ε</td>
</tr>
<tr>
<td>Serum tyr Level = β0 + β1 age + ε</td>
</tr>
</tbody>
</table>

Table 4

Multiple regression models: Age relationships.

<table>
<thead>
<tr>
<th>Models: Age Relationships (Interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary tyr Intake = β0 + β1 age + β2 sex/gender + β3 age*sex/gender + ε</td>
</tr>
<tr>
<td>Serum tyr Level = β0 + β1 age + β2 sex/gender + β3 age*sex/gender + ε</td>
</tr>
</tbody>
</table>

Table 5

Descriptive Statistics of the sample. Abbreviations: n, number of subjects; BMI, Body Mass Index; SD, standard deviation; SE, standard error; SES, socio-economic status; RT, reaction time; FA, fractional anisotropy.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>min</th>
<th>max</th>
<th>median</th>
<th>mean</th>
<th>sd</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>59</td>
<td>19</td>
<td>45</td>
<td>28</td>
<td>28.3</td>
<td>6.57</td>
<td>0.86</td>
</tr>
<tr>
<td>BMI (kg/ m²)</td>
<td>59</td>
<td>24.95</td>
<td>30.07</td>
<td>26.98</td>
<td>27.25</td>
<td>1.48</td>
<td>0.19</td>
</tr>
<tr>
<td>SES score</td>
<td>51</td>
<td>5.1</td>
<td>19.2</td>
<td>14.8</td>
<td>14.54</td>
<td>3.11</td>
<td>0.44</td>
</tr>
<tr>
<td>Dietary tyr intake (g)</td>
<td>59</td>
<td>0.23</td>
<td>5.96</td>
<td>2.24</td>
<td>2.3</td>
<td>1.07</td>
<td>0.14</td>
</tr>
<tr>
<td>Energy intake (kcal)</td>
<td>59</td>
<td>500.87</td>
<td>2727.3</td>
<td>1694.9</td>
<td>1615.9</td>
<td>509.51</td>
<td>66.33</td>
</tr>
<tr>
<td>Energy intake (g/kg)</td>
<td>58</td>
<td>25.5</td>
<td>88.5</td>
<td>53.7</td>
<td>53.37</td>
<td>11.99</td>
<td>1.57</td>
</tr>
<tr>
<td>Serum tyr level (μmol/L)</td>
<td>58</td>
<td>0.04</td>
<td>0.13</td>
<td>0.07</td>
<td>0.08</td>
<td>0.02</td>
<td><0.01</td>
</tr>
<tr>
<td>Serum tyr ratio</td>
<td>58</td>
<td>50.16</td>
<td>249.61</td>
<td>107.96</td>
<td>120.09</td>
<td>45.49</td>
<td>5.97</td>
</tr>
<tr>
<td>Conflict Effect RT (ms)</td>
<td>58</td>
<td>0.44</td>
<td>0.5</td>
<td>0.48</td>
<td>0.48</td>
<td>0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Whole-brain mean FA (skeleton)</td>
<td>58</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

were performed including all participants. To test whether the effect of the variable age depended on the variable sex/gender, we extended the simple regression models by the interaction term age*sex/gender and repeated the analysis (Table 4).

To further elucidate the neural basis of age effects, we performed voxel-wise whole-brain analyses to correlate FA values with age.

General Linear Model:

\[4D \text{ skeletonized FA image} = \beta_0 + \beta_1 \text{Age} + \varepsilon \]

3. Results

3.1. Descriptives

In total, 59 individuals were included in the analyses (female sex/gender group = 20, male sex/gender group = 39) with a mean age of 28 years (SD = 6.6), a mean BMI of 27.3 kg/m² (SD = 1.5) and a mean SES score of 14.5 (SD = 3.11; n = 51), reflecting medium to high socio-economic status (for details, see Table 5 & Fig. 2).

Briefly, participants consumed on average 2.3 g of tyr per day (SD = 1.07) or 0.03 g tyr per kg of body weight per day (SD = 0.01). They differed greatly in self-reported total energy intake (min = 501 kcal/d;
max = 2727 kcal/d). Serum tyr levels ranged from 25.5 to 88.5 μmol/l and serum tyr/LNAAs ratios from 0.04 to 0.13.

3.2. ANT performance

Regarding executive attention performance quantified by conflict effects based on reaction times (RT), the sample showed a mean conflict effect of 120.09 ms (SD = 45.49).

The medium error rate was consistently 0% across all flanker and cue conditions with the exception of the incongruent flanker type (Fig. 4 A & C). Both mean RT and mean error rate were highest in the incongruent flanker condition across all cue types (main effect of flanker type, error rate: F(2, 696) = 120.09, p < 2e-16; RT: F(2, 684) = 171, p < 2e-16; SI Table 8 for details). In addition, the spatial cue condition resulted in the lowest mean RT and the no-cue condition resulted in the highest mean RT across all flanker conditions (F(3, 684) = 26.241, p < 2e-16).

Regarding executive attention performance quantified by conflict effects based on reaction times (RT), the sample showed a mean conflict effect of 120.09 ms (SD = 45.49). However, the model revealed sex/gender as a significant predictor (β = 13.07, p = 9.6e-05; R²adj = 0.25, F(2, 55) = 10.31, p < 2e-4).

3.4. Serum tyr ratio and executive attention performance

Against our expectation, serum tyr ratios were not significantly related to executive attention performance (β = 0.42, p > 0.99). However, the non-significant model (R²adj = 0.05, F(2, 54) = 2.42, p < 0.098) pointed towards sex/gender as a significant predictor of executive attention performance (β = −27.50, p < 0.04).

3.5. Executive attention and white matter microstructure

Two individuals were excluded due to missing ANT or dwMRI data. With respect to executive attention performance operationalized as conflict effects, results showed neither a positive (TFCE, PWE > 0.16) nor a negative (TFCE, PWE > 0.95) relationship between differences in white matter integrity and executive attention performance.

Table 6

Summary Statistics ANT Effects. Abbreviations: n, number of subjects; sd, standard deviation; se, standard error.

<table>
<thead>
<tr>
<th>Effect</th>
<th>n</th>
<th>Min [ms]</th>
<th>Max [ms]</th>
<th>Median [ms]</th>
<th>Mean [ms]</th>
<th>Sd [ms]</th>
<th>Se [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alerting Effect</td>
<td>58</td>
<td>-59.982</td>
<td>131.981</td>
<td>40.46</td>
<td>43.508</td>
<td>29.196</td>
<td>3.834</td>
</tr>
<tr>
<td>Orienting Effect</td>
<td>58</td>
<td>1.792</td>
<td>106.503</td>
<td>48.004</td>
<td>48.92</td>
<td>23.057</td>
<td>3.028</td>
</tr>
<tr>
<td>Conflict Effect</td>
<td>58</td>
<td>50.156</td>
<td>249.607</td>
<td>107.96</td>
<td>120.092</td>
<td>45.486</td>
<td>5.973</td>
</tr>
</tbody>
</table>

Table 7

Model: Executive Attention and Serum tyr/LNAAs ratios.

1. Conflict Effect = β₀ + β₁ serum tyr/LNAAs ratio + β₂ sex/gender + β₃ age + ε
 - R²adj = 0.062 (F(3, 53) = 2.238, p = 0.09)

2. Conflict Effect = β₀ + β₁ serum tyr/LNAAs ratio + β₂ sex/gender + β₃ age + β₄ BMI + ε
 - R²adj = 0.046 (F(4, 52) = 1.675, p = 0.17)

3. Conflict Effect = β₀ + β₁ serum tyr/LNAAs ratio + β₂ sex/gender + β₃ age + β₄ BMI + β₅ SES + ε
 - R²adj = 0.003 (F(5, 43) = 1.031, p = 0.41)

Fig. 5. Summary statistics of ANT effects (i.e.; alerting effect, orienting effect, conflict effect) based on reaction times. First figure visualizes minimum, maximum, median, first and third quartiles. The length of the whiskers is 1.5 times the interquartile range (IQR); outliers are depicted above or below. Second figure shows summary statistics considering alerting, orienting and conflict (executive attention) effect of the ANT are summarized in Table 6 and visualized in Fig. 5. Note that the mean conflict (executive attention) effect of the ANT are summarized in Table 6 and visualized in Fig. 5.
3.9. Sex/Gender differences

We observed significant sex/gender differences in dietary tyr intake with the male sex/gender group presenting higher intake than the female sex/gender group (W = 236, p = 0.02) (Fig. 8). However, this difference attenuated when dietary tyr intake was adjusted for total energy intake (W = 285, p = 0.09). Note that total energy intake was significantly higher in the male sex/gender group (W = 252, p = 0.03) (Fig. 8).

Furthermore, the male sex/gender group showed on average slightly better executive attention performance operationalized as conflict effects based on reaction times (W = 493, p = 0.04). Note that the female sex/gender group was significantly younger than the male sex/gender group (W = 211, p = 4e-3). Moreover, our results showed that the male sex/gender group had significantly higher serum tyr markers than the female sex/gender group, both in terms of absolute and serum tyr/LNAAs ratios (all W > 232, all p < 0.02) (Fig. 9). The two sex/gender groups did not differ significantly in neither SES scores nor BMI (all W < 331, all p > 0.35).

In the female sex/gender group, we observed that neither serum tyr/LNAAs ratios nor age were related to conflict effects (R^2adj = 0.01, F(2, 15) = 1.098, p < 0.36). In the male sex/gender group, however, lower serum tyr ratio significantly predicted more pronounced conflict effects (p = -0.907, p < 0.01), when taking the effect of age into account (β = 3.39, p < 0.001). According to the model, conflict effects deteriorated by 3.39 ms RT with each additional year of life (Table 9). In contrast, the positive influence of tyr in terms of an improvement of executive attention performance by more than 900 ms per increase of 1 unit in the tyr/LNAAs ratio appeared surprisingly large. However, a tyr/LNAAs ratio of 2 means that twice as much tyr must be present in the blood relative to the sum of all other LNAAs. Therefore, this number represents a rather theoretical value.

3.10. Age relationships

Higher age was associated with higher dietary tyr intake in our sample (Table 10 & Fig. 10), and the effect of age on executive attention performance was dependent on sex/gender (Fig. 11 & table 11).

After excluding the oldest female participant (age = 45) to account for a possible bias due to outlier effects, the model still remained significant (R^2adj = 0.15, F(3, 53) = 4.34, p-value = 7.9e-4) but with sex/gender only as a significant predictor (β = -134, p = 0.029).

Regarding age-structure correlations, we found that higher age related significantly to lower FA values in seven clusters (TFCE, P < 0.05, Fig. 12), with the largest cluster (number of voxels = 35226) widely distributed across the brain (Fig. 13).

4. Discussion

In this cross-sectional analysis in 59 healthy, overweight adults, our pre-registered confirmatory analyses did not support any of the four hypotheses raised. Neither a relationship between dietary tyr intake and serum tyr levels nor between serum tyr/LNAAs ratios and executive attention performance could be demonstrated. In addition, whole-brain correlation analysis revealed no structure-function associations between white matter microstructure and executive attention performance. Therefore, no further moderation analyses were performed. Finally, the results of the pre-registered exploratory analysis also did not indicate an association between self-reported dietary tyr intake and cognitive performance in our sample. Further exploratory analysis indicated that dietary and serum tyr as well as conflict effects were higher in the male sex/gender group and that older age was associated with higher dietary tyr intake and lower fractional anisotropy in a widespread cluster across the brain. Finally, a higher relative serum tyr/LNAA concentration was linked to better executive attention performance in the male sex/gender

Table 8
Models: Dietary - Serum tyr Relationship.

| | Estimate | Std. Error | t-value | Pr(>|t|) |
|---|---|---|---|---|
| Intercept | 82.7669 | 33.1454 | 2.497 | 0.017234 |
| Serum tyr Intake | -906.9508 | 324.5920 | -2.794 | 0.006288 |
| Age | 3.3922 | 0.9263 | 3.662 | 0.000798 |

3.7. Dietary Tyrosine intake and executive attention performance

We used linear regression to examine whether daily dietary tyr intake (adjusted for body weight) was linked to executive attention performance when controlling for total energy intake. Again, the overall regression model did not indicate a link between dietary tyr intake adjusted for body weight and executive attention performance (R^2adj = -0.02, F(2, 55) = 0.35, p = 0.71), indicating that differences in executive attention performance could not be explained by differences in energy intake adjusted dietary tyr intake (β = -0.047, p < 0.77).
4.1. Dietary and serum tyr

The measured dietary and serum tyr levels resembled those already described in studies with much larger sample sizes. For example, Kühn et al. reported a mean dietary tyr intake of 2.85 g per day, irrespective of the lower mean BMI (M = 23.39 kg/m2) of the sample (341 younger adults, 53% women, mean age: 31, recruited from the Berlin Aging Study II (Kühn et al., 2019). Furthermore, mean serum tyr level of 53.37 μmol/l in our sample is close to the value obtained in a recently published large epidemiological study (M = 59.7 μmol/l, SD = 16.7, 1324 adults, 87% women, mean age: 44, recruited from the Australian Children’s B Cohort) in a sample with similar median BMI (26.54 kg/m2) (Andraos et al., 2021). The similarity of our sample to larger studies supports the reliability of our measurements and the methodology we used. Moreover, the result patterns of the ANT are largely consistent with those reported by the original study (Fan et al., 2002) indicating that the ANT has been properly performed and analyzed. However, analysis of the error rate data showed a ceiling effect. This ceiling effect might occur as our sample is healthy, young to middle-aged and of middle to high socioeconomic status.

With respect to the methods, self-reported data have been severely criticized as reliable measure of dietary behavior; especially with respect to energy underreporting due to recall biases (Subar et al., 2015). Moreover, the correlation of self-reported dietary intake with nutritional biomarkers has also been problematized (Naska et al., 2017). In particular, short-term concentration biomarkers (e.g.; serum concentrations) are affected by individual differences in metabolism and socio-demographical, behavioral or health-related characteristics.

Fig. 6. Correlations of (A) dietary tyrosine intake and absolute serum tyrosine levels, (B) dietary tyrosine intake and relative serum tyrosine/LNAA ratios, (C) dietary tyrosine intake adjusted for energy intake and absolute serum tyrosine levels, (D) dietary tyrosine intake adjusted for body weight and absolute serum tyrosine levels. Abbreviations: LNAA; large neutral amino acids; R, Pearson’s Correlation Coefficients; p, p-value.
leading to inconsistent findings in diet-related research. Thus, it has been suggested to validate the applied nutrition questionnaires by employing multiple methods simultaneously and incorporating new technologies (Naska et al., 2017).

Sample size was not powered to the current cross-sectional analysis, and might have been too low to detect the hypothesized effects. We propose larger samples, data pooling and a priori power analyses to circumvent underpowered analyses.

4.2. Executive attention and white matter microstructure

We could not confirm the findings of two cross-sectional studies examining the association between self-reported dietary tyr intake and cognitive performance (Hensel et al., 2019; Kühn et al., 2019). Both studies measured working memory and were based on large sample sizes (n > 280). In contrast, our pre-registered exploratory regression analysis did not demonstrate a relationship between dietary tyr intake and executive attention possibly due to a lack of power. The power calculation was based on effects regarding the intervention study. Another possibility for the lack of a relationship could be the differences in DA processing between executive attention and working memory.

Considering the null findings of the whole-brain voxel-wise correlation analysis, it could be argued that DTI analyses are more sensitive to group analyses and comparisons of patient vs. non-patient groups rather than at the individual level in correlation analyses (Op de Beeck & Nakatani, 2019). Moreover, we decided against a region of interest (ROI) approach and in favor of a whole-brain analysis to explore structure-function relationships without local restriction, although previous literature suggested the anterior corona radiata (ACR) as interesting ROI regrading executive attention performance (Niogi et al., 2010; Yin et al., 2013). Thus, the whole-brain analysis potentially suffered from lower statistical power. In further analyses, we aim to employ a ROI approach to increase statistical power by decreasing corrections for multiple comparisons (Saxe et al., 2006). By defining ROIs in advance, we would need fewer statistical tests and subsequently fewer corrections for multiple comparisons.

4.3. Exploratory findings

Considering exploratory analyses, sex/gender emerged as significant predictor of serum tyr concentrations. This unexpected finding also suggests that other relevant aspects influencing the variables of interest should be included in the analyses to elucidate the link between diet and cognition. Exploratory analyses showed sex/gender-specific differences with respect to various variables of interest: an effect of age on dietary tyr intake and sex/gender-age interaction effects in relation to executive attention performance. In addition, whole-brain correlation analysis showed that older age was associated with lower FA in a widespread cluster. Interestingly, we demonstrated a significant association between relative tyr serum levels and executive attention performance in the male sex/gender group only when taking negative age effects on white matter into account.

Correlation analysis of various dietary and serum tyr markers showed no significant associations. Thus, the results call a direct relationship between self-reported subjective measures of dietary tyr intake and objectively measured serum tyr levels into question. However, based on these null results, tools like FFQ based on self-report should not be doubted as a reliable method for measuring dietary tyr intake but should rather be used as an opportunity to implement recommendations to improve future studies of self-reported dietary measures. In contrast to the non-significant diet-serum associations, we demonstrated a moderate to strong correlation between the two serum markers, suggesting that individuals with higher tyr levels also had higher levels of all other six LNAs.

Fig. 7. Correlation of absolute serum tyrosine levels and relative serum tyrosine/LNAA ratios. Abbreviations: LNAA; large neutral amino acids; R, Pearson’s Correlation Coefficients; p, p-value.

Fig. 8. Sex/gender group differences regarding absolute dietary tyrosine intake (W = 236, p = 0.02, A), in total energy intake (W = 252, p = 0.03, B), and dietary tyrosine intake accounting for energy intake (W = 285, p = 0.09, C). Abbreviations: Tyr, Tyrosine; TYR/Energy, Dietary Tyrosine Intake adjusted for total energy intake. Boxplots depict median as line and Q1 and Q3 as boxes.
In line with our findings, several studies have previously reported sex/gender differences in eating behavior, food choices, and dietary strategies (Arganini et al., 2012; Grzymińska et al., 2020). Food intake for males and females differed not only in terms of quantity and quality, but also in terms of frequency, timing, and location of meals. For example, women are more likely to eat foods with higher fiber content (e.g., fruits and vegetables), while men tend to consume more dietary supplements. A reciprocal model of the relationship between sex/gender and diet has been proposed, shaped by the interplay of physiological, psychological, and sociocultural factors (Grzymińska et al., 2020).

Another limitation to nutritional biomarker-related research is the lack of consideration of the variable sex/gender (Song et al., 2018). A recent review emphasizes the need to consider sex/gender differences in nutrition-related research because of sex/gender differences in serum metabolite concentrations and amino acids (AA) level dynamics during the menstrual cycle (Brennan & Gibbons, 2020). An epidemiological study reporting higher plasma tyr levels in men points to research indicating higher insulin concentrations and insulin sensitivity in women (Andraos et al., 2021). These differences might be related to sex/gender differences in the amount and distribution of adipose tissue (Valencak et al., 2017). Insulin promotes the uptake of AA in peripheral tissues and thus decreases AA concentrations in blood and uptake at the blood-brain barrier (John D. Fernstrom, 2013). Strang and colleagues justified the selection of exclusively male subjects with sex/gender differences in metabolism (Strang et al., 2017) based on differences in abdominal adipose tissue. Sex/gender differences may also explain some of the previously published null results, e.g. no intervention effect of tyr supplementation on executive attention in females only (Frings et al.,

Table 10
Simple linear regression models: Age relationships.

1. Dietary tyr Intake = β₀ + β₁ age + ε	R² adj = 0.10	F(1,57) = 7.57	p = 7.9e⁻³
2. Serum tyr Level = β₀ + β₁ age + ε	R² adj = 0.016	F(1,56) = 1.92	p = 0.17
3. Executive Attention Performance/Conflict Effect = β₀ + β₁ age + ε	R² adj = 0.017	F(1, 56) = 0.07	p = 0.79

4.4. Sex/gender differences in tyr - cognition relation

In line with our findings, several studies have previously reported sex/gender differences in eating behavior, food choices, and dietary strategies (Arganini et al., 2012; Grzymińska et al., 2020). Food intake for males and females differed not only in terms of quantity and quality, but also in terms of frequency, timing, and location of meals. For example, women are more likely to eat foods with higher fiber content (e.g., fruits and vegetables), while men tend to consume more dietary supplements. A reciprocal model of the relationship between sex/gender and diet has been proposed, shaped by the interplay of physiological, psychological, and sociocultural factors (Grzymińska et al., 2020). Another limitation to nutritional biomarker-related research is the lack of consideration of the variable sex/gender (Song et al., 2018). A recent review emphasizes the need to consider sex/gender differences in nutrition-related research because of sex/gender differences in serum metabolite concentrations and amino acids (AA) level dynamics during the menstrual cycle (Brennan & Gibbons, 2020). An epidemiological study reporting higher plasma tyr levels in men points to research indicating higher insulin concentrations and insulin sensitivity in women (Andraos et al., 2021). These differences might be related to sex/gender differences in the amount and distribution of adipose tissue (Valencak et al., 2017). Insulin promotes the uptake of AA in peripheral tissues and thus decreases AA concentrations in blood and uptake at the blood-brain barrier (John D. Fernstrom, 2013). Strang and colleagues justified the selection of exclusively male subjects with sex/gender differences in metabolism (Strang et al., 2017) based on differences in abdominal adipose tissue. Sex/gender differences may also explain some of the previously published null results, e.g. no intervention effect of tyr supplementation on executive attention in females only (Frings et al.,

![Fig. 9. Significant sex/gender group differences in executive attention performance (i.e., conflict effect) (Figure D), absolute serum tyrosine levels (Figure E), relative serum tyrosine ratios (Figure F) and age (Figure G). Non-significant sex/gender group differences in BMI (Figure H) and SES Score (Figure I). Abbreviations: Tyr, Tyrosine; BMI, Body Mass Index; SES, Socio-Economic Status. Boxplots depict median as line and Q1 and Q3 as boxes.](image)

![Fig. 10. Age - Dietary Tyrosine Intake Relationship. The regression line is indicated in black. Abbreviations: Tyr, Tyrosine.](image)
sex/gender group showed better executive attention performance, but only in terms of significantly lower conflict effects based on reaction times. However, accuracy scores did not significantly differ between the two sex/gender groups. This pattern is also consistent with the current literature on sex/gender differences in cognition. A literature review concluded that there is little to no evidence for a consistent difference in attention, impulsive action, decision making, and working memory (Grissom & Reyes, 2019). Therein, differences in slower reaction times and a tendency of females to avoid negative consequences in decision making were reported. In addition, men and women seemed to differ in their working memory strategies and underlying neural activity patterns, possibly due to differences in neurotransmitter systems and structural brain development. In sum, the sex/gender differences found in our study align well with previous research findings.

4.5. Age influence on tyr - cognition relation

In addition to sex/gender, age seems to be relevant for the link between tyr in blood and executive attention. The positive association between serum tyr/LNAAs ratios and executive attention performance in the male sex/gender group was only significant when age was included as a control variable to account for negative age effects on task performance. We also showed that higher age was associated with higher dietary tyr intake. However, we were not able to confirm the interaction effects of sex/gender and age already described in previous research. Inconclusively, one study reported sex/gender effects (i.e. significant higher protein intake in male subjects) and sex/gender-age interactions with respect to dietary protein intake (Hone et al., 2020). By contrast, two other studies did not report any effect of age or sex/gender on dietary tyr (Hensel et al., 2019; Kühn et al., 2019). A longitudinal study showed increasing plasma tyr levels with increasing age (Darst et al., 2019) and another could demonstrate age differences in baseline serum tyr levels and in dose-dependent responses to oral tyr administration (van de Rest et al., 2017), yet both studies were conducted in older populations. Contrary to previous findings, we could not identify any age effect or age-sex/gender interaction with respect to serum tyr levels, presumably due to the young to middle-aged sample.

4.6. ANT performance

In contrast to previous studies (Gamboz et al., 2010; Jennings et al., 2007), we could not establish an effect of age on executive attention performance. Nevertheless, we found and interaction effect of age and sex/gender, revealing that the effect of age is only present in the male sex/gender group. Although previous studies found slower reaction times for executive function in older participants (mean age: 69.14/67.9), conflict effects did not differ significantly when controlling for general slowing in processing speed (Gamboz et al., 2010; Jennings et al., 2007). Our analysis revealed no significant relationship between age and reaction times (although we did not even correct for general slowing with age). The lack of an age effect on reaction times is presumably owed to the small age range and relatively young age of our sample. Importantly, our results regarding age effects on executive attention performance (in the male sex/gender group) should be interpreted with caution as we did not control for general slowing with age. This might be the main reason for reduced performance with higher age (Rey-Mermet & Gade, 2018) and should be included in future analyses.

Our whole-brain correlation analyses indicated a negative, locally non-specific association between age and white matter microstructure showing FA decreases with aging. This finding replicates the well-established age-related decline in white matter integrity (Cox et al.,...
4.7. Limitations

Besides considerations for interpreting results mentioned above, there are limitations in the study design. First, meals consumed just before ANT may have influenced task performance by either stimulating effects (e.g., coffee) or digestion-related sedative effects (e.g., burgers). Second, indirect effects of AA content and macronutrient composition relating to lower serum tyr may have not been traceable due to the too short time interval between food intake and ANT. Indeed, previously it has been shown that although the plasma tyr/LNAAs ratios increase linearly after a meal, it takes up to 2 h to reach highest levels (Strang et al., 2017), whereas in our design only 30 min had passed. In addition, additional time passes until tyr crosses the blood-brain barrier and is converted to DA; however, evidence is missing on how long transport and DA synthesis take in humans.

Next to confounding factors, differences in study procedure should be considered. For instance, testing sessions were scheduled at different morning slots, neglecting that serum tyr and tyr/LNAAs ratios vary throughout the day dependent on the amount of protein/tyr consumed (J D Fernstrom et al., 1979). Interestingly, serum tyr levels at 7 a.m. were almost the same for diets different in protein content and tyr/LNAAs ratios converged again in the afternoon. The main limitation of the theoretical foundation concerns the reduction of relevant influencing factors and their interrelationships, which led to a simplistic and mechanistic model. For instance, with respect to dopaminergic neuro-modulation, Cools points to three key principles (i.e., regional specialization, self-regulation, and baseline dependence) that indicate that the link between DA availability in the brain and cognitive function is not a one-way, monocausal, linear relationship (Cools, 2019). Moreover, it has been shown that chronically higher DA levels may lead to long-term adaptive changes in the dopaminergic system in terms of receptor or transporter expression and receptor sensitivity, which in turn may attenuate acute DA depletion effects (Hartmann et al., 2020). Also, brain DA in humans is mostly measured using proxy markers such as precursor availability, and not directly using PET imaging, tracing techniques or manipulation by dopaminergic drugs. Also, while we did not perform further mediation analyses because of a lack of main effects, we cannot exclude that other unknown confounding factors might have masked such an effect.

4.8. Conclusions and outlook

In summary, non-pre-registered exploratory analyses revealed multiple sex/gender and age effects which are largely consistent with previous research, yet which might have possibly confounded the outcome.
of our analyses (Fig. 14). Further exploration of sex/gender differences as imperfect proxies for yet unknown underlying biological and non-biological mechanisms is important, at least as a transitional solution to ensure equality in medical treatment and basic research for different sex/gender groups. Future neuroscientific research should consider differences in biological and non-biological mechanisms related to sex/gender when designing nutrition-related studies.

Ethical statement

This study was performed in compliance with the Helsinki Declaration guidelines. The institutional ethics board of the Medical Faculty of the University of Leipzig, Germany, raised no concerns regarding the study protocol (228/18-ek) and all participants provided written informed consent. They received reimbursement for participation.

Acknowledgements

We thank all individuals for participating in the study and the medical staff for collecting blood samples. We also thank Anja Willenberg and the team of the Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM) Leipzig University, Leipzig, for help in blood parameter analysis, Hendrik Hartmann for providing insights on considerations in dopaminergic markers and H. Lina Schaare for help in blood parameter analysis, Hendrik Hartmann for providing Chemistry and Molecular Diagnostics (ILM) Leipzig University, Leipzig, medical staff for collecting blood samples. We also thank Anja Willenberg, AV, JS. All authors have read and agreed to the published version of the work. This work was supported by grants of the German Research Foundation no. 387(8), 3520–3515. https://doi.org/10.1002/hbm.23605
Hartmann, H., Pauli, L. K., Janssens, L. K., Huhns, S., Ceglaruk, L., & Horstmann, A. (2020). Preliminary evidence for an association between intake of high-fat high-sugar diet, variations in peripheral dopamine precursor availability and dopamine-