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ABSTRACT: Collective variable-based enhanced sampling meth-
ods are routinely used on systems with metastable states, where
high free energy barriers impede the proper sampling of the free
energy landscapes when using conventional molecular dynamics
simulations. One such method is variationally enhanced sampling
(VES), which is based on a variational principle where a bias
potential in the space of some chosen slow degrees of freedom, or
collective variables, is constructed by minimizing a convex
functional. In practice, the bias potential is taken as a linear
expansion in some basis function set. So far, primarily basis
functions delocalized in the collective variable space, like plane
waves, Chebyshev, or Legendre polynomials, have been used.
However, there has not been an extensive study of how the
convergence behavior is a�ected by the choice of the basis functions. In particular, it remains an open question if localized basis
functions might perform better. In this work, we implement, tune, and validate Daubechies wavelets as basis functions for VES. The
wavelets construct orthogonal and localized bases that exhibit an attractive multiresolution property. We evaluate the performance of
wavelet and other basis functions on various systems, going from model potentials to the calcium carbonate association process in
water. We observe that wavelets exhibit excellent performance and much more robust convergence behavior than all other basis
functions, as well as better performance than metadynamics. In particular, using wavelet bases yields far smaller �uctuations of the
bias potential within individual runs and smaller di�erences between independent runs. Based on our overall results, we can
recommend wavelets as basis functions for VES.

1. INTRODUCTION
A major problem impeding conventional molecular dynamics
(MD) simulations is the so-called time scale or rare event
problem. Often, the molecular process of interest occurs on a
much longer time scale than one can simulate in practice; in
other words, it is a rare event. Thus, the system stays in a
metastable state during the simulation, and one does not observe
transitions to other metastable states. Despite impressive
developments in specialized hardware1,2 and MD codes3,4 that
make very e�cient usage of modern graphics processing units, it
is unlikely that accessible time scales will increase signi�cantly in
the near future. The speedup of individual processing units has
come to an end and high-performance computing relies on the
usage of massive parallelization,5 and time is not easily
parallelizable. Thus, there has been considerable interest in
developing advanced methods that enhance phase space
sampling and overcome this time scale problem.6�12

A popular class of such advanced sampling methods is the so-
called collective variable (CV) based enhanced sampling
methods. In these methods, we identify a few relevant coarse-
grained order parameters, that is, CVs, that correspond to
essential slow degrees of freedom. Typically, the selection of CV
is made manually by using physical and chemical intuition13�15

and sometimes requires a bit of trial and error, while methods
based on machine learning are also showing great promise in
automating this task.16�19 The slow molecular process of
interest is then associated with free energy barriers separating
metastable states on the free energy surface (FES) as a function
of the chosen CVs. We then enhance the sampling of the FES by
introducing an external bias potential that is adaptively
constructed on the �y during the simulation to reduce or even
wholly �atten free energy barriers. We can trace the idea of
biased sampling to the original umbrella sampling method
introduced in 1977.20 The main di�erence between CV-based
enhanced sampling methods lies in how they construct the bias
potential and which kind of biased sampling is obtained. Some
examples of methods that fall into the category of CV-based
enhanced sampling techniques are local elevation,21 adaptive
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biasing force,22�24 energy landscape paving,25 multiple windows
umbrella sampling,26 Gaussian-mixture umbrella sampling,27

nonequilibrium umbrella sampling,6,28 metadynamics,29�31

metabasin metadynamics,32 parallel-bias metadynamics,33 basis
function sampling,34 Green’s function sampling,35 arti�cial
neural network sampling,36 reweighted autoencoded variational
Bayes for enhanced sampling,37 on-the-�y probability-enhanced
sampling,38,39 adaptive topography of landscapes for accelerated
sampling,40 and reweighted Jarzynski sampling.41

Variationally enhanced sampling (VES)42 is a recently
developed CV-based enhanced sampling method based on a
variational principle. It introduces a convex functional of the bias
potential that is related to the relative entropy and the
Kullback�Leibler divergence.43 To minimize the functional,
we generally take the bias potential as a linear expansion in some
basis function set. Bias potentials based on a neural network44 or
free energy models45�48 have also been considered in the
literature. VES not only allows for obtaining FESs but can also be
used to obtain kinetic properties.49

The focus of this paper is the choice of basis set in the linear
expansion of the bias potential within VES. So far, the basis
functions employed have been primarily global functions such as
plane waves, Chebyshev, or Legendre polynomials that are
orthogonal but delocalized in the CV space. Gaussian basis
functions have also been used.50,51 However, there has not been
an extensive study of how the choice of the basis functions a�ects
the convergence behavior. In particular, it remains an open
question if basis functions that are localized in the collective
variable space might perform better. While Gaussian basis
functions might be the type of localized basis functions that �rst
comes to mind, they have the disadvantage of not forming
orthogonal basis sets. Instead, a more appealing option might be
Daubechies wavelet-based basis sets,52 as they are orthogonal
and exhibit an attractive multiresolution property. Daubechies
wavelets have recently been used as basis functions for other
applications within molecular simulations, such as density
functional theory53,54 or coarse-grained potentials.55

In this work, we introduce the Daubechies wavelets as basis
functions for the variationally enhanced sampling method. We
implement the wavelets into the PLUMED 2 code,56 tune their
parameters, and evaluate their performance on various systems,
going from model potentials to the calcium carbonate
association process in water.57 We also test Gaussians and
cubic B-splines as other types of localized basis functions.
Section 2 presents the theory of the VES method and introduces
the new basis functions. Besides the theoretical properties, we
also provide details on the implementation of the new
functionality into the VES module of PLUMED 2.56 In Section
3, we present the computational details of the benchmark
systems. We discuss the results of the simulations in Section 4,
and in Section 5, we end with some concluding remarks.

2. THEORY AND METHODOLOGY
2.1. CV-Based Enhanced Sampling. We consider a

molecular system described by the set of atomic coordinates r �
and a potential energy function U(r �). Without the loss of
generality, we limit our discussion to the canonical (NVT)
ensemble in the following. The Boltzmann distribution, which
we want to sample by molecular dynamics (MD) or Monte
Carlo simulations, is de�ned as

r
r

P( )
e

d e

r

r

U

U

( )

( )
� =

� �

�

�

Š �

Š � (1)

where � = (kBT)�1 is the inverse of the thermal energy. In
collective variable (CV) based enhanced sampling methods, we
identify a few relevant CVs that correspond to critical slow
degrees of freedom. The equilibrium probability distribution
corresponding to a set of CVs, s(r �) = {s1(r �), s2(r �), ..., sN(r �)}, is
given by

s r s s r r s s rP P( ) d ( ( )) ( ) ( ( ))� � �= � Š � � = � Š � � (2)

while the free energy surface (FES) is de�ned as

s sF P C( ) log ( )1�= Š +Š (3)

where C is an additive constant.
We are generally interested in systems where the FES (or,

equivalently, the equilibrium probability distribution P(s)) is
hard to sample by unbiased molecular dynamics simulations. For
example, the FES might be characterized by many metastable
basins separated by high free energy barriers such that barrier
crossings occur on far greater time scales than we can a�ord in
simulations, that is, they are rare events.

To overcome this time scale or rare event problem, we can
enhance the sampling by introducing a bias potential V(s(r �))
that acts in the space of the CVs. The introduction of this bias
potential will lead to a biased (i.e., non-Boltzmann) distribution
given by

r
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Consequently, this leads to a biased CV distribution given by

s r s s r rP P( ) d ( ( )) ( ) e s s
V V

F V( ) ( )� �= � Š � � � �Š [ + ]
(5)

that is chosen such that the sampling is easier and free energy
barriers are reduced or even completely �attened.

From the biased simulation, we can obtain an ensemble
average of an observable O(r �) for the unbiased simulation
through reweighting

r
r r

r
O

O w

w
( )

( ) ( )

( )
V

V

� � � =
� � � �

� � � (6)

where w(r �) = e rV s( ( ))� � is the weight of con�guration r �and the
averages on the right side are obtained in the biased ensemble. In
particular, we can obtain the FES for some CV set s� by using

rO( )� = � (s� � s�(r �))

s s s r rF w C( ) log ( ( )) ( ) V
1� �= Š � �Š � � � � + �Š (7)

where we can ignore the denominator in eq 6 as it only gives a
constant shift of the FES (i.e., we can include it in the constant
C�). In practice, the reweighted FES is obtained using a
reweighted histogram or kernel density estimation where each
sample is weighted by the bias acting on it, w(r �) = e rV s( ( ))� � . The
reweighting procedure of eq 6 assumes a �xed bias potential, but
often, it can be used for adaptively constructed bias potentials
under the assumption that the bias potential is quasi-stationary,
as we discuss below.

2.2. Variationally Enhanced Sampling. In the VES
method introduced by Valsson and Parinello,42 the bias

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00197
J. Chem. Theory Comput. 2022, 18, 4127�4141

4128

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00197?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


potential is constructed by minimizing a convex functional given
by

s

s
s s sV p V
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where p(s) is a normalized probability distribution. The
stationary point of this functional is given up to a constant by

s s sV F p( ) ( )
1

log ( )
�

= Š Š
(9)

which, due to the convexity of � [V], is the global minimum. At
this minimum, the CVs are distributed according to p(s), which
is consequently called a “target distribution”. It can be shown
that the � [V] functional is related to the Kullback�Leibler
divergence (or relative entropy) and the cross entropy.43

Thus, by minimizing � [V], we can construct a bias potential
that leads to a sampling of the CVs according to the target
distribution p(s). The most straightforward choice of the target
distribution is a uniform target distribution, leading to
completely �at sampling in the CV space. However, we have
found it better to employ a so-called well-tempered target
distribution30,58 given by p(s) = [P(s)]1/�/ � ds[P(s)]1/� , where
� is a parameter, named bias factor, that determines how much
the sampling is enhanced as compared to the equilibrium
distribution P(s).

We can determine the FES directly from the bias potential
through eq 9. Alternatively, we can obtain the FES, both for the
biased CVs and also for any other set of CVs, by using the
reweighting procedure shown in eq 6. While the VES bias
potential is time-dependent, it quickly becomes quasi-stationary.
Therefore, this reweighting procedure is valid after a short initial
transient in the time series that is ignored. Note that, di�erently
from metadynamics,31,59 we generally do not need to account for
time-dependent constants when performing reweighting with

VES. Furthermore, under certain conditions, the VES method
can also be used to obtain kinetic properties.49

In practice, we perform the minimization of the � [V]
functional by assuming a functional form of the bias potential
V(s; � ) that depends on a set of variational parameters � = {� 1,
� 2, ..., � M}. Thus, we go from an abstract functional minimization
to a minimization of the multidimensional function � (� ).

The most general strategy is to take the bias potential to be a
linear expansion in some set of basis functions f = {f1, f 2, ..., f M}:

s sV f( ; ) ( )
i

i i	� �=
(10)

We can then obtain the gradient �� (� ) and the Hessian H� (� )
as
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where angular brackets denote expectation values and Cov[···] is
the covariance, obtained either over the bias potential or over
the target distribution.

Due to statistical sampling, the estimates of the gradient and
Hessian are generally noisy. Therefore, we perform the
minimization of � (� ) using stochastic optimization algorithms.
In particular, the averaged stochastic gradient descent algorithm
from ref 60 has proven to be a convenient choice. In this
algorithm, the instantaneous parameters are updated according
to the following recursion equation:

H( ) ( )( )n n n n n n( 1) ( ) ( ) ( ) ( ) ( )� � � � � ��= Š [
� � + � Š � ]+
�

(13)

where � is a constant step size and the gradient and Hessian are
obtained using the averaged parameters n

n i
n i( ) 1

1 0
( )� �� = 	

+ =

Figure 1. Visualization of di�erent VES basis functions used in this paper. The Sym8 wavelets, Gaussians, and cubic B-splines are localized basis
functions. Here, we only show two adjacent functions, while a full basis set would include all shifted functions in the given interval (that is, [�3, 3]
here). On the contrary, Legendre polynomials are delocalized functions supported on the full interval of the bias. The Legendre basis set consists of all
polynomials up to a certain order; the �gure shows the functions up to the quartic polynomial.
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(i.e., the bias potential depends on the averaged parameters).
The parameters are updated with a relatively small stride, on the
order of 1000 MD steps. Here, we only employ the diagonal part
of the Hessian matrix, as generally done in VES.42,43

2.3. Linear Basis Functions for VES. The focus of this
paper is the basis functions used in the linear expansion of the
bias potential (eq 10). So far, the basis functions employed have
been global functions such as plane waves (i.e., Fourier series),42

Chebyshev polynomials,58 or Legendre polynomials. The usage
of global functions is closely related to the idea of using spectral
methods for function approximation.61 Favorable for their usage
within VES, these basis functions form complete and orthogonal
basis sets. However, they are delocalized in the CV space. In
other words, they are non-zero over their full domain except on
isolated points.

Using global or delocalized basis functions means that, during
the optimization process, the bias potential will change even in
parts of CV space where the MD simulation is not currently
exploring. While this has not proven to be a signi�cant issue, it is
clear that delocalized basis functions might not be the optimal
choice.

In this work, we consider the performance of using VES with
localized basis functions, that is, functions that are non-zero on
only some part of the domain of the bias potential. Therefore,
they should not su�er from the issue of the bias potential
changing in parts of CV space that the simulation is not currently
exploring.

Examples of such localized basis functions that come to mind
would be Gaussians or splines. In fact, in refs 50 and 51, the
authors employed VES with Gaussian basis functions. The
results obtained with this VES setup were found to be inferior to
some of the results obtained with other enhanced sampling
methods used by the authors (such as umbrella sampling20), but
as no other basis functions were used with VES, it is hard to
judge the performance of the Gaussian basis from their results.
However, one disadvantage with using Gaussians or splines as
basis functions is that they do not form orthogonal basis sets,
which might a�ect the optimization process.

We have thus been motivated to explore the usage of wavelets
as basis functions. In particular, we consider Daubechies
wavelets,52,62 which are localized functions that form orthogonal
and complete basis sets. Furthermore, they have an intrinsic
multiresolution property that makes it possible to iteratively add
more basis functions on smaller scales in a way that preserves the
orthogonality of the basis.

In the following sections, we brie�y describe the new localized
basis functions� Daubechies wavelets, Gaussians, and cubic B-
splines� as well as Legendre and Chebyshev polynomials that
we consider for comparison. These basis functions are shown in
Figure 1. We give descriptions of one-dimensional basis
functions only, as basis sets for higher dimensions can be
obtained by considering a tensor product. For example, in two
dimensions, we obtain

V s s g s h s( , ; ) ( ) ( )
i j

i j i j1 2
,

, 1 2	� �=
(14)

where gi(s1) and hj(s2) are some one-dimensional basis
functions. All the one-dimensional basis sets described in the
following are de�ned on some given interval [a, b] and include
an additional constant basis function. In practice, for MD
simulations, we also need the derivatives of the basis functions to
obtain the biasing force due to the external bias potential, but

this is a straightforward task for all of the basis functions
considered here.

2.4. Daubechies Wavelet Basis Functions. Daubechies
developed a theory for special types of wavelets that can be used
to construct complete and orthogonal basis functions.52 These
wavelets are based on using a pair of functions: the scaling
function (or father wavelet) � and the wavelet function (or
mother wavelet) � . They are de�ned by

x x k( ) 2 (2 )k
j j j/2� �= ŠŠ Š

(15)

x x k( ) 2 (2 )k
j j j/2� �= ŠŠ Š

(16)

for a given scale j �= and shift k �= . The exact properties are
set by choosing the �lter coe�cients hk and gk in the re�nement
relations given by

x h x k( ) 2 (2 )
k

k	� �= Š
(17)

x g x k( ) 2 (2 )
k

k	� �= Š
(18)

Daubechies proved that certain �nite sets of �lter coe�cients
result in orthonormal bases. Using these wavelet functions, any
square-integrable function g(x) can be approximated up to an
arbitrary precision by a linear combination with coe�cients �

g x x x( ) ( ) ( )
k

k k
j

l j k
l k k

l
,	 	 	� � � �= +

� (19)

where the wavelet functions satisfy orthogonality relations:63

x x xd ( ) ( )k
j

k
j

kk� � � �=� � (20)

x x x j jd ( ) ( ) 0 fork
j

k
j� � � = � ��
�

(21)

x x xd ( ) ( )k
j

k
j

jj kk� � � � �=�
�

� � (22)

We can see the multiresolution property of the wavelet basis
functions in eq 19. Starting with the father wavelets � at some
scale j, an increasingly more accurate approximation is obtained
by adding mother wavelets � at �ner scales.

In this paper, we will focus on the coarsest approximation
only, which corresponds to a single level of father wavelets at
some scale j

g x x( ) ( )
k

k k
j	 � �=

(23)

The exact wavelet type and the scale are left for us to choose.
The wavelet type is determined by the set of �lter coe�cients

hk and gk. Desirable properties for our application are small
support of the individual function, at least C1 regularity (one
continuous derivative), and the reproduction of polynomials up
to a desired order.

The wavelets developed by Daubechies satisfy these proper-
ties and in fact result in the minimally supported functions for a
given polynomial order. In this paper, we consider �lter
coe�cients that result in the least asymmetric variant of these
wavelets or so-called symlets.52 The reduced asymmetry of the
symlets comes at the cost of slightly reduced regularity as
compared to the conventional maximum phase Daubechies
wavelets. However, this does not cause problems as we only
require one continuous derivative. In practice, we found the
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symlets to perform better than the maximum phase Daubechies
wavelets. The symlets are also used in wavelet-based density
functional theory calculations.54 We will denote the symlets by
SymN, where N is equal to half the number of coe�cients used
for construction.

The chosen number N determines the properties of the
symlets, including the number of vanishing moments of the
mother wavelet. Having N vanishing moments means that all
polynomial functions up to the order N � 1 are orthogonal to the
mother wavelet. Consequently, any polynomial of order up to N
� 1 can be represented exactly by a single level of the father
wavelet � (i.e., the scaling function). Employing a wavelet basis
with a larger N can thus helps to construct a bias potential with
less regularity and steeper slopes. On the other hand, the range
over which the wavelet functions are non-zero is proportional to
2N � 1. Because the basis consists of integer-shifted functions, a
larger support (i.e., non-zero range) results in more overlap
between functions. This makes it necessary to use more basis
functions at the same scale and thus results in more expansion
coe�cients to optimize. After some testing, we found that using
Sym8 or Sym10 yields the best results for the systems considered
in this paper. Further discussion and a comparison of symlets
with di�erent numbers of vanishing moments can be found in
Section S1 of the Supporting Information (SI).

The scale j of the wavelet basis can be chosen freely. Instead of
selecting the scale directly, we set the desired number of basis
functions. In principle, there is an in�nite number of shifted
wavelet functions in the basis. However, only a few of them are
supported inside the range [a, b] on which the bias potential is
de�ned. Furthermore, they are non-zero only on a small part of
their domain. Thus, we choose to only include the ones with any
(absolute) function value inside the bias range that is at least 1%
of the maximal function value. We then calculate the required
scaling to arrive at the desired number of basis functions. We did
not observe disadvantages from excluding wavelets with minor
contributions, while it allows us to reduce the number of
coe�cients to be optimized.

Generally, using a smaller scale and, consequently, more basis
functions allows us to represent �ner features better at the cost of
needing to optimize more variational parameters. In Section S1
of the SI, we show results where we change the number of the
basis functions for a �xed N value.

2.5. Gaussian Basis Functions. Gaussian basis functions
are given by the mathematical expression

f x
x

( ) exp
( )

2i
i

2

2

�c

�e

�d�d�d�d�d�d�d�d�d�d�d

�f

�h

�g�g�g�g�g�g�g�g�g�g�g

�

�
= Š

Š

(24)

where � i is the center of the individual Gaussian and 	 is a
constant width parameter. The full basis set is then given by
Gaussian functions with centers distributed evenly on the
interval [a, b]. We add the �rst center at � 0 = a and de�ne the
shift between centers as d= � i � � i � 1 = (b� a)/N, where N is a
user-speci�ed integer �xing the number of basis functions.

To mitigate systematic errors at the boundaries, we add one
function on each side outside the range, resulting in a total of
N + 3 basis functions including the constant. As the force from
the VES bias is zero outside the chosen interval by design, these
additional functions will only contribute inside the bias range,
similar to the boundary correction approach for metadynamics
in ref 64. Although more complicated boundary correction
algorithms have been developed,65,66 we found our simple
approach to work well.

The width 	 of the Gaussians is set by the user. For a �xed
number of Gaussians, the possible resolution of the basis can be
increased by choosing Gaussians with a smaller width. However,
reducing the width will reduce the overlap between Gaussians,
and a too-small width will result in an ill-behaving basis set.
Thus, the optimal width, which very likely is system dependent,
is the smallest one that still results in good convergence. In refs
50 and 51, the width 	 was set to be equal to the distance d
between the centers of the Gaussians. However, as shown in
Section S2 in the SI, we found improved performance when
using a smaller width of 	 = 0.75d. Because this yielded better
results for the model systems considered here, we will show only
Gaussian results obtained with this optimal width in the rest of
the paper, while we refer the reader to the SI for results obtained
with other 	 values.

2.6. Cubic B-Spline Basis Functions. We consider the
cubic B-spline basis functions from ref 67 that are given by the
mathematical expression
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Here � i is the center of the cubic B-spline basis function, and 	 is
the width. The full basis set is then given by spline functions with
centers distributed evenly on the interval [a, b]. The �rst center
is set on the left boundary � 0 = a, and we de�ne the shift between
centers as d= � i � � i � 1 = (b� a)/N, where N is a user-speci�ed
integer �xing the number of basis functions. Similar to the
Gaussian basis functions, to avoid boundary e�ects, we add
functions on each side outside the range, resulting in a total of
N + 3 basis functions including the constant. Di�erent from the
Gaussians, the width 	 is �xed and taken as equal to the distance
between centers, 	 = d.

2.7. Legendre and Chebyshev Polynomial Basis
Functions. Legendre and Chebyshev polynomials form sets
of orthogonal basis functions on a closed interval that is matched
to the range of the bias potential. Contrary to the previously
described bases, the basis functions are not localized in a speci�c
part of the interval but are non-zero except on isolated points.
Chebyshev polynomials of the �rst kind are given by the
recursion relations

C x( ) 10 = (27)

C x x( )1 = (28)

C x x C x C x( ) 2 ( ) ( )n n n1 1= Š+ Š (29)

while the recursion relations of the Legendre polynomials are

L x( ) 10 = (30)

L x x( )1 = (31)
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Both Chebyshev and Legendre polynomials are de�ned
intrinsically on the interval [�1, 1] and need to be scaled and
shifted when employed on di�erent intervals. For a given
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interval [a, b], we use the following function to transform t �
[a, b] to x � [�1, 1]:

x t
t a b

b a
( )

2 ( )
=

Š +
Š (33)

2.8. Implementation of New Basis Functions. We have
implemented the new basis functions into the VES module of
the PLUMED 2 code.56,68 Our implementation is publicly
available in the o�cial PLUMED 2 GitHub repository, and it is
released in version 2.8 of PLUMED.

While it was straightforward to implement Gaussians and
splines, wavelets pose the problem of not having an analytic
mathematical expression. Instead, in the beginning of the
simulation, we generate the wavelet values and derivatives on a
grid through an iterative scheme. We then use the grid as a
lookup table during the simulation. This means that the
computational overhead of using the wavelets is minimal. To
generate the wavelet grid, both for the values and for the
derivatives, we employ a vector cascade algorithm69 that relies
on �nding eigenvectors of a characteristic matrix and subsequent
vector�matrix multiplications to iteratively get values on an
increasingly �ner spaced grid. We calculate the exact values on a
grid of at least 1000 points and use linear interpolation to obtain
in-between values.

As localized functions are non-zero only in a small region of
the total CV space, we have to modify the optimization scheme
slightly. If there is no sampling in the non-zero region of a basis
function during one iteration of the bias potential, the elements
of gradient and Hessian corresponding to that basis function are
set to zero before updating the variational parameters. This is
needed because the gradient elements for these basis functions

might still be non-zero due to the average over the target
distribution (the second term in eq 11). Setting them to zero
prevents erroneous updates of variational parameters if no
sampling of the non-zero region occurred. Note that this
procedure is done only for individual elements, so the total
gradient vector and Hessian matrix still include non-zero
elements.

We note that our implementation of the wavelet, Gaussian,
and spline basis functions also supports periodic CVs.
Furthermore, in addition to the least asymmetric wavelets
(i.e., symlets) that we use in this work, the wavelet
implementation also supports conventional maximum phase
Daubechies wavelets. However, we found the latter to perform
worse when compared to the symlets.

3. COMPUTATIONAL DETAILS
To evaluate the performance of the di�erent basis functions, we
perform simulations on di�erent systems, going from model
potentials in one and two dimensions to a realistic system
modeling the association process of calcium with carbonate in
water.

3.1. Double-Well Potential. We start by considering a
single particle moving in a one-dimensional model potential
given by

U x x x x( ) 4 0.74 2= Š + (34)

that has two states separated by a barrier of around 5 energy
units. The form of this potential can be seen in Figure 2a. We
take the x-coordinate as the CV such that the reference FES will
be given by the potential above, F(x) = U(x) (up to an additive
constant). We employ the ves_md_linearexpansion command

Figure 2. Results for the one-dimensional double-well potential described in Section 3.1. (a) The reference FES along with the FES obtained using the
wavelet basis functions at di�erent numbers of bias iterations for one of the runs. (b) The RMS error measure (Section 3.5, eq 36) for the di�erent basis
functions as a function of the number of bias iterations. The lines denote the average over 20 independent runs, and the shaded areas denote the
corresponding standard error. (c, d) The RMS error of the individual runs for (c) Sym8 wavelets and (d) Legendre polynomials. The thick lines are the
same as in panel b, and the dashed lines each resemble one of the runs.
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line tool from the VES code for the simulations. The
ves_md_linearexpansion tool implements a simple molecular
dynamics integrator with a Langevin thermostat.70 We use a
time step of 0.005 and a friction coe�cient of 10 for the
Langevin thermostat. We set the temperature to T = 0.5/kB such
that the barrier height is about 10 kBT (kB = 1). We choose to run

simulations with four di�erent basis sets: Sym8 wavelets,
Gaussians, cubic B-splines, and Legendre polynomials. We
expand the bias potential in the interval from �3 to 3 and �x the
number of basis functions to 22 for each basis set to allow for a
fair comparison. We employ a uniform target distribution and
update the coe�cients of the bias potential every 500 steps. The

Figure 3. Results for the two-dimensional Wolfe�Quapp potential described in Section 3.2. (a) The reference FES along with free energy projections
on the x- and y-coordinates. (b, c) The free energy di�erence � F(Section 3.5, eq 38) between the two states obtained using (b) Sym8 wavelets and (c)
Legendre polynomials as a function of the number of bias iterations. We show results from 20 independent simulations with dashed lines. We use solid
lines for the averages and shaded areas to denote the standard errors. We denote the reference value with solid black lines. To de�ne the areas
corresponding to the two di�erent states, we use the y = 0 line.

Figure 4. Results for the rotated two-dimensional Wolfe�Quapp potential described in Section 3.3. (a) The reference FES along with free energy
projections on the x- and y-coordinates. Only the x-coordinate is biased. (b, c) The free energy di�erence � F (Section 3.5, eq 38) between the two
states obtained using (b) Sym8 wavelets and (c) Legendre polynomials as a function of the number of bias iterations. We show results from 20
independent simulations with dashed lines. We use solid lines for the averages and shaded areas to denote the standard errors. We denote the reference
value with solid black lines. To de�ne the areas corresponding to the two di�erent states, we use the x = 0 line.
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step size � in the averaged stochastic gradient descent
optimization algorithm (eq 13) was adjusted to yield the fastest
convergence for each basis set. We set it to � = 0.5 for
simulations using localized basis functions and decrease it to � =
0.1 for the simulations with Legendre polynomials. Each
simulation is run for 5 × 106 steps, while the FES was
determined every 5 × 104 steps via eq 9. For each basis set, we
run 20 independent simulations that are started in the global
minimum with di�erent random seeds for the initial velocities
and random forces.

3.2. Wolfe�Quapp Potential. The second model potential
is the two-dimensional Wolfe�Quapp potential:71,72

U x y x y x y xy x y( , ) 2 4 0.3 0.14 4 2 2= + Š Š + + +
(35)

that has two states separated by a high barrier along the y-
coordinate, while along the x-coordinate, the mobility is high.
The potential can be seen in Figure 3 along with projections on
the x- and y-coordinates. We take both the x-coordinate and the
y-coordinate as CVs such that the reference FES will be given by
the potential F(x, y) = U(x, y) (up to an additive constant). We
bias both CVs in the interval from �3 to 3 using 22 basis
functions per CV (484 two-dimensional basis functions in total).
We set the temperature to T = 1/kB. We set the step size for all
simulations to � = 0.5. We run 20 independent simulations for
each basis set. Otherwise, we employ the same basis functions
and simulation parameters as for the one-dimensional potential
in the previous section.

3.3. Rotated Wolfe�Quapp Potential. To test the
behavior when biasing only a suboptimal CV, we consider a
rotated and scaled version of the Wolfe�Quapp potential. As in
ref 48, the potential is rotated by an angle of 
 = �0.15� . The
potential energy surface is given in Figure 4 together with
projections on the x- and y-coordinates. We take only the x-
coordinate as a biased CV, which results in missing orthogonal
slow degrees of freedom (the y-coordinate). The reference FES
for the x-coordinate can be obtained by integrating over the y-
coordinate, F(x) = �� �1 log � dye�� U(x, y). We use a temperature
of T = 1/kB. We expand the bias potential in the interval from �3
to 3 and �x the number of basis functions to 22 for each basis set.
We employ a uniform target distribution and update the
coe�cients of the bias potential every 500 steps. Otherwise, we
employ the same basis functions and simulation parameters as
for the previous two model potentials.

For this system, we observe that using the averaged stochastic
gradient descent optimization algorithm does not yield good
convergence for the localized basis functions. Therefore, we use
the Adam stochastic gradient descent algorithm,73 which has
been used previously for VES in combination with neural
networks.44 Details of the Adam algorithm can be found in
Section S3 in the SI. We notice a high sensitivity of the
convergence to the step size � of the Adam algorithm. Although
the standard value of � = 0.001 works in most cases, the
convergence of the bias is slow, especially for simulations with
Sym8 wavelets. Increasing it to � = 0.005 provides much better
behavior, whereas increasing it even further results in non-
converging simulations with Legendre polynomials. We use � =
0.005 for all simulations with the Adam algorithm but note
explicitly that the choice of parameters seems crucial for good
convergence.

While the usage of the Adam algorithm helps improve the
convergence for this system, we �nd a worse performance in
comparison to the averaged stochastic gradient descent

algorithm when testing it on the other systems considered in
this paper. Therefore, further investigation is needed to
understand the optimal choice for stochastic optimization.
The choice very likely depends on the form of the bias potential
(e.g., a linear expansion versus a neural network44 or a bespoke
model45�48) and the basis functions used. An interesting idea
might be to combine ideas from di�erent algorithms, similar to
what was done in ref 48 where the authors introduced a
combination between AdaGrad and Bach’s algorithms. How-
ever, a detailed investigation of the stochastic optimization
algorithm used within VES is beyond the scope of the current
work.

3.4. Calcium Carbonate Association. To study the
performance of wavelet basis functions for a realistic system,
we consider the association process of a calcium carbonate ion-
pair in water. We use the LAMMPS code74 (5 June 2019 release)
interfaced with the PLUMED 2 code for the simulations. We
employ the calcium carbonate force �eld developed in refs 75
and 76 and the SPC/Fw77 water model. We follow the
computational setup used in a previous metadynamics study
of the association process57 using this force �eld. We set up a
system that contains a single Ca2+�CO3

2� ion-pair and 2448
water molecules in a periodic cubic box. We equilibrate the
system in the NPT ensemble at a constant temperature of 300 K
and a constant pressure of 1 bar for 500 ps. All subsequent
simulations are performed in the NVT ensemble using a
constant temperature of 300 K and a cubic box with side lengths
of 41.69 Å. We run 5 ns of unbiased MD simulations from which
we select in total 75 snapshots that we use as initial
con�gurations for the biased simulations. We employ a time
step of 0.001 ps. All simulations are performed at a constant
temperature of 300 K using a Nose��Hoover thermostat78�80

with a chain length of 5 and a relaxation time of 0.1 ps. For the
NPT equilibration, we employ a Nose��Hoover barostat with a
relaxation time of 1 ps to keep a constant pressure of 1 bar.
Electrostatic interactions are calculated according to the PPPM
method81 with an accuracy of 10�5.

We use the same CVs as in ref 57, namely, the distance
between the Ca and C atoms and the coordination number of Ca
with water (see Section S5 in the SI for further details). As in the
original work,57 we use the technique of multiple walkers82 with
25 walkers running in parallel to improve convergence, where
each walker starts from a di�erent initial con�guration. We
employ Sym10 wavelets or Chebyshev polynomials as basis
functions. For the CV corresponding to the distance between
the Ca ion and C atom of the carbonate ion, we use 60 basis
functions in the range from 2 to 12 Å. For the CV corresponding
to the coordination number, we use 30 basis functions in the
range 5 to 9. The total number of two-dimensional basis
functions is then 1200. Due to the usage of multiple walkers, we
update the coe�cients of the bias potential more frequently, that
is, every 10 MD steps (the total number of data points for each
iteration is then 250). We use the averaged stochastic gradient
descent optimization algorithm with a step size of � = 0.001 for
the Sym10 wavelets. For simulations with Chebyshev poly-
nomials, this does not always result in stable simulations, and we
use a lower step size of � = 0.0005 for these. We employ a well-
tempered target distribution58 with a bias factor of 5, where the
target distribution is iteratively updated every 100 bias potential
updates (1000 MD steps). We run each walkers for 3 ns,
resulting in a cumulative simulation time of 75 ns.

For comparison, we also perform a well-tempered metady-
namics (WTMetad)30 simulation using the same setup as in ref
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57. The bias factor is set to 5. For the Gaussians, we use an initial
height of 1 kBT and widths of 0.2 Å and 0.1 for the distance and
coordination number, respectively. We deposit Gaussians every
1 ps (1000 MD steps). For the metadynamics simulations, we
also run each walker for 3 ns, resulting in a cumulative simulation
time of 75 ns.

To focus the sampling in the part of the con�guration space of
interest for the association process, we add an arti�cial repulsive
wall at a Ca�C distance of 11 Å in all simulations to prevent the
ions from moving further apart. In practice, this is implemented
by a harmonic bias of the form  (x � x0)2 where we set the
parameters to  = 12 eV and x0 = 11 Å.

To obtain the reweighted FESs, we employ a reweighted
kernel density estimation as implemented in PLUMED 2. We
use Gaussian kernels with bandwidths of 0.05 Å and 0.05 for the
Ca�C distance and coordination number CV, respectively. We
ignore the �rst 200 ps of each walker and use samples obtained
every 0.1 ps. For the metadynamics simulations, we use the c(t)
reweighting scheme described in refs 31 and 59. During the
metadynamics simulations, we calculate the time-dependent
constant c(t) needed for the biasing weights every time a
Gaussian is added using a grid of 275 × 300 over the domain
[2,13] × [3,10].

To assess the stability of the simulations, we perform three
independent runs using di�erent initial con�gurations for each
of the three biasing setups (VES with wavelets, VES with
Chebyshev polynomials, and WTMetaD).

3.5. Performance Measures. To evaluate and compare the
performance of the basis functions, we consider two di�erent
performance measures: the root mean square error with respect
to a reference and the free energy di�erence between some two
metastable states.

To measure the quality of the FES F(s) obtained directly from
the bias through eq 9, we calculate the root mean square (RMS)
error of the FES with respect to a reference as done in refs 58 and
83. Given some reference FES Fref(s), the RMS error is given by
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where we perform the integration over the full CV space and 
 is
a Heaviside step function such that only regions with a free
energy lower than a threshold value � are considered. Since the
FESs are only determined up to a constant, we shift them by
their average value in the region of interest, that is, we use

s s s s s sF F F F( ) ( ) d ( ) d ( )ref� �� = Š +
� � (37)

to calculate the error metric in eq 36, where � is taken as the
region of CV space where Fref(s) � 4 kBT. We set the parameter �
= 8 kBT. We consider always an ensemble of multiple
independent runs that are initiated with di�erent initial
conditions because a single simulation might not be
representive.84,85 We then compare the mean RMS error as
well as the associated standard error of the mean.

Another performance measure we can employ is to calculate
the free energy di�erence � FA, B between two di�erent states:31
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where the domains of integration are the regions in CV space
associated with the states A and B, respectively.

3.6. Data Availability. The data supporting the results
reported in this paper are openly available at Zenodo86 (DOI:
10.5281/zenodo.5851773). All LAMMPS and PLUMED 2
input �les and analysis scripts required to reproduce the results
reported in this paper are available on PLUMED-NEST (www.
plumed-nest.org), the public repository of the PLUMED
consortium,68 as plumID:22.001 at https://www.plumed-nest.
org/eggs/22/001.

4. RESULTS AND DISCUSSION
4.1. Model Potentials. A common way to test the

performance of methodological developments of enhanced
sampling methods is to consider the dynamics of a single particle
on model potentials that emulate prototypical free energy
landscapes. We, therefore, start by considering three model
potentials, where we compare the performance of the localized
basis functions (Sym8 wavelets, Gaussians, and cubic B-splines)
to the delocalized Legendre polynomials that have been used as
basis functions within VES so far. For these simulations, we
always perform 20 independent runs for each set of basis
functions and use the performance measures that we have
described in Section 3.5 to compare the FESs obtained from the
bias potential via eq 9.

We start by considering the one-dimensional double-well
potential shown in Figure 2a that has a high free energy barrier of
around 10 kBT when going from the left to right side. In panel a
of Figure 2, we show an example of the FES obtained using
wavelet basis functions at di�erent bias iterations. In the SI, we
present a movie showing the time evolution of the FES of
exemplary simulations for all di�erent basis sets. In panel b, we
show the RMS error metric (eq 36) for the di�erent basis
functions. We can observe that, on average, the FES (or
equivalently the bias) converges considerably faster with the
localized basis functions than with the delocalized Legendre
polynomials. Furthermore, the localized basis functions
converge to a better estimate of the FES as indicated by the
smaller RMS error. We can observe that the wavelets perform
the best of the three localized basis functions.

In Figure 2b, we can also observe considerably larger
�uctuations in the average RMS error and a larger standard
error for the Legendre polynomials. The reason for this is
twofold, as we can see from looking at the RMS error for the
individual runs, shown in panels c and d for the wavelets and the
Legendre polynomials, respectively. First, within each individual
simulation, the bias potential is �uctuating more for the
Legendre polynomials. Second, there is a more signi�cant
di�erence between runs for the Legendre polynomials. In
comparison, the wavelets show a much more robust behavior
with considerably smaller �uctuations within individual runs and
more minor di�erences between runs. We can see a similar e�ect
for the Gaussians and cubic B-splines, although they do not
behave as well as the wavelets (see Figure S5 in the SI).
Therefore, for this simple system, we can already see the bene�ts
of using localized basis functions.

In the following, we will focus on the wavelets and the
Legendre polynomials, while we refer the reader to the SI for
results for the Gaussians and cubic B-splines. Furthermore, we
will only use the free energy di�erence to compare the basis
functions while presenting the results for the RMS error metric
in the SI.

The next system that we consider is the two-dimensional
Wolfe�Quapp potential71,72 that is a commonly used model
potential for testing methods.72,87�89 We show its free energy
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