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a b s t r a c t 

Population-level modeling can define quantitative measures of individual aging by applying machine learning 

to large volumes of brain images. These measures of brain age, obtained from the general population, helped 

characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Mag- 

netoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this 

approach towards prevention and public health by enabling assessments of brain health at large scales in so- 

cioeconomically diverse environments. However, more research is needed to define methods that can handle the 

complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we pro- 

pose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked 

popular classical machine learning pipelines and deep learning architectures previously used for pathology de- 

coding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, 

including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adapta- 

tions of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset 

provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep 

learning was used, the highest performance was reached by pipelines and architectures involving spatially aware 

representations of the M/EEG signals, leading to R 2 scores between 0.60-0.74. Hand-crafted features paired with 

random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken 

together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve 

as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain ag- 

ing. The generality of the approach renders this benchmark reusable for other related objectives such as modeling 

specific cognitive variables or clinical endpoints. 
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Aging-related disorders of the central nervous system affect hun-

reds of millions of patients, their caregivers and national health ser-

ices. Over the past decades, important progress has been made in

linical neuroscience, resulting in improvements to clinical diagnosis

nd treatment ( Walhovd et al. 2010 ; Ewers et al. 2011 ). Backed by in-

reasingly advanced analytical methods, this has enabled fine-grained
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haracterization of neurodegenerative conditions ( Gaubert et al. 2019 ;

chumacher et al. 2021 ; Güntekin et al. 2021 ). Yet, from a public-health

erspective, rather than focusing on pathology, it is essential to detect

isk factors early within the general population to provide actionable

eedback for preventive medicine, e.g., by targeting life-style changes.

uch predictions are still challenging. Could it be helpful to look at bi-

logical rather than chronological age to better estimate the risk of de-

lining brain health? 
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Recently, brain age has emerged as a concept for estimating bi-

logical aging in the general population ( Cole and Franke 2017 ;

iem et al. 2017 ; Dosenbach et al. 2010 ). Biological aging can be

nferred from the genome via telomere length, mitochondrial func-

ion, epigenetics and other cellular features ( Ferrucci et al. 2020 ;

ather et al. 2011 ). Yet, the age of a person is only a noisy mea-

ure of these cellular processes (people of the same chronological age

an have different biological ages). At the same time, biological ag-

ng affects brain structure and function ( King et al. 2014 ), induc-

ng loss of brain volume ( Driscoll et al. 2009 ; Scahill et al. 2003 )

nd characteristic changes in neuronal activity ( Cabeza et al. 2002 ;

amoiseaux et al. 2008 ; Babiloni et al. 2006 ). A proxy of biolog-

cal aging can, thus, be obtained by mapping chronological age to

rain data from large populations of subjects using machine learning

 Liem et al. 2017 ; Dadi et al. 2021 ). The resulting models can be used

o compute an expectation of a person’s age given her brain data. This

s achieved by quantitatively comparing that person’s brain data to the

istribution of brain data across different ages within the general pop-

lation. This statistical expectation can tell how old (or young) a brain

looks ” ( Spiegelhalter 2016 ), hence, predicting the risk of neurological

omplications potentially more precisely than the chronological age. 

This empirical measure of biological aging derived from the general

opulation has proven a useful marker of neurodegeneration and cogni-

ive decline in clinical populations ( Cole et al. 2018 ; Raffel et al. 2017 ;

enissen et al. 2021 ; Gonneaud et al. 2021 ). In these cohorts, pa-

ients typically appear to have older brains than their chronological

ge would suggest. Importantly, similar trends emerge when evaluat-

ng brain age in the general population where elevated brain age, com-

ared to chronological age, has been associated with lower cognitive

apacity, well-being, and general health ( Dadi et al. 2021 ; Cole 2020 ;

rigglesworth et al. 2021 ). Yet, so far, this approach has mainly been

ased on anatomical brain scans and hemodynamic signals obtained

rom magnetic resonance imaging (MRI). This limits the broad utility of

rain age for public health, as cerebral MRI scans are usually collected

hen there is an indication, which can be too late. Even when people

rom the general population are motivated to participate in brain re-

earch, this only concerns a small fraction of society: MRI devices and

euroscientific studies are not equally accessible in all regions of the

orld and do not attract all people equally from within society, poten-

ially leading to selection bias ( Fry et al. 2017 ). 

New hope to generalize this approach has been sparked by ad-

ances in large-scale modeling of biomedical outcomes from non-

nvasive electrophysiological data including magnetoencephalogra-

hy (MEG) and electroencephalography (EEG) ( Gaubert et al. 2019 ;

ngemann et al. 2018 ). This line of research in clinical neurology

ay help develop assessments of brain health in many additional

ontexts in which MRI cannot be applied. First MEG-based brain-

ge models have allowed to validate MEG-derived brain age against

RI-derived brain age. Results from several studies have shown that

he MEG- and MRI-derived brain aging asoimages are statistically

elated ( Engemann et al. 2020 ; David Sabbagh et al. 2020 ; Xifra-

orxas et al. 2021 ). This overlap can be explained by electromag-

etic field spread, independently of neuronal activity: As brain struc-

ure changes due to aging, cortical activity, even if unchanged, will

roject differently onto the M/EEG sensor array, making age indirectly

ecodable ( Sabbagh et al. 2020 ). Importantly, multiple articles have

ound that neuronal activity captured by MEG adds specific informa-

ion not present in MRI-derived brain age ( Engemann et al. 2020 ; Xifra-

orxas et al. 2021 ), leading to improved prediction performance and

icher neurocognitive characterization ( Engemann et al. 2020 ). 

While MEG can provide an important discovery context, it is un-

ikely to be the right instrument for addressing the availability issues

f MRI-based brain age as MEG scanners are even rarer than MRI

canners. In this context, EEG can make a true difference as EEG is

conomical and allows for flexible instrumentation for neural assess-

ents in a wide range of clinical and real-world situations including at-
2 
ome assessments. First evidence suggests that MEG-based strategies for

rain-age modeling can be translated to EEG. In an earlier publication

 Engemann et al. 2020 ) we found that among many alternative features

f varying data-processing complexity, the spatial distribution of corti-

al power spectra in the beta (13-30Hz) and alpha (8-13Hz) frequency

and explained most of the MEG’s performance as brain-age regressor.

his type of information can be well accessed without source localiza-

ion from the sensor-space covariance using spatial filtering approaches

r Riemannian geometry ( Sabbagh et al. 2020 ; Sabbagh et al. 2019 ),

hich has led to successful translation of this MEG-derived strategy

o clinical EEG with around 20 electrodes ( Sabbagh et al. 2020 ). In

linical and real-world contexts in which EEG is frequently collected,

ne-grained spatial information may not be present as only a few elec-

rodes are used. This has favored alternative EEG-derived brain-age

odels focusing on a wealth of spectral and temporal features ( Al Zoubi

t al. 2018 ) which may perform better on sparse EEG-montages and has

nabled sleep-based brain age measures ( Sun et al. 2019 ; Ye et al. 2020 ).

These results provide a sense of the flexibility and future potential

f EEG-based brain age as a widely applicable real-world measure of

rain health. Yet, to fully develop this research program, more and

icher evidence is desirable. At this point, comparisons between dif-

erent machine learning strategies are difficult. Most models were not

nly developed and validated in one specific context, but their imple-

entations and data-processing routines are dataset-specific. Moreover,

eneral machine learning approaches successful at pathology decoding

hould be well-suited for brain age modeling too, yet they have never

een tested for that purpose ( Gemein et al. 2020 ; Banville et al. 2020 ;

ngemann et al. 2018 ). This makes it hard to know whether any strat-

gy is globally optimal and where specific strategies have their preferred

iche. As a result, uncertainty is added to comparisons between MEG,

EG and MRI, slowing down efforts of validating M/EEG-based brain

ge. Finally, to mitigate the impact of selection bias concerning the

ubjects investigated, it will be crucial to analyze many, socially and

ulturally diverse M/EEG datasets and find representations that are in-

ariant to confounding effects that can raise issues of fairness and racial

ias if remaining unaddressed ( Choy, Baker, and Stavropoulos 2021 ).

o develop the next generation of M/EEG-derived brain age models, to

acilitate processing of larger numbers of diverse M/EEG-data resources

nd to avoid fragmentation of research efforts, standardized software

nd reusable benchmarks are needed. 

In this paper we wish to make a first step in that direction. We pro-

ide reusable brain-age-prediction benchmarks for different machine

earning strategies validated on multiple M/EEG datasets from different

ountries. Our benchmarks come in the form of readily usable, yet, easily

daptable Python scripts for computing brain age models and comparing

heir results. These scripts should not be taken as fully developed soft-

are but as practical templates for kick-starting future studies on brain

ge and biomarker learning on new datasets beyond the ones covered

n this study. To facilitate reproducibility and usability, the benchmarks

re built on top of well documented open-source software (MNE, PyRie-

ann, braindecode, scikit-learn) and The benchmarks are built on top

f highly standardized dataset-agnostic code enabled by the BIDS stan-

ard ( Gorgolewski et al. 2016 ; Niso et al. 2018 ; Appelhoff et al. 2019 ).

his makes the benchmarks easy to extend in the future for additional

atasets. The paper is organized as follows. The method section mo-

ivates the choice of the different machine learning benchmarks. The

eneral data processing approach and software developed for this con-

ribution are presented in the context of the benchmark. The selec-

ion of datasets is motivated, and datasets are then described in detail

nd compared regarding key figures that could provoke differences be-

ween benchmarks. Dataset-specific processing steps and peculiarities

re highlighted. Then a model validation strategy is developed. The

esults section presents benchmarks on prediction performance across

achine learning models and datasets and different performance met-

ics. The discussion inspects differences between models, modalities,

nd datasets, identifying unique niches, safe bets as well as unresolved
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hallenges. The work concludes with practical suggestions on additional

enchmarks that can be readily explored and extended by the commu-

ity in future studies using the proposed tools and resources. The scripts

nd library code for this benchmark are publicly available on GithHub 1 

nd latest benchmark results (updated in real time) next to the config

les specifying the analysis can be inspected on a dedicated website 2 . 

ethods 

rain age benchmarks 

Many different approaches exist for ML in neuroscience, and it can be

ard to select among them. The following categorization may help ori-

nt practical reasoning and study design. What varies in the taxonomy

f methods discussed below is how much M/EEG data are statistically

ummarized before being presented to the learning algorithm. In other

ords, ML methods vary with respect to the extent to which compres-

ion and summary of the M/EEG signals is performed by the learning

lgorithm vs. feature-defining procedures performed before and inde-

endently of the machine learning algorithm. 

-priori defined, a.k.a. handcrafted, features 

The first category represents approaches in which features are in-

pired by theoretical and empirical results in neuroscience or neu-

al engineering. Here, M/EEG is summarized in a rigid fashion by

lobal aggregation across sensors, time, and frequencies or by visit-

ng specific regions of interest ( Gemein et al. 2020 ; Sitt et al. 2014 ;

ngemann et al. 2018 ). A meaningful composition of features requires

rior knowledge of the (clinical) neuroscience literature, especially

hen interpretation of the model is a priority. In practice, it is con-

enient to extract all or the most relevant features discussed in a given

eld, apply multiple spatial and temporal aggregation strategies, and

hen bet on the capacity of the learning algorithm to ignore irrelevant

eatures ( Sitt et al. 2014 ). This motivates the use of tree-based algo-

ithms like random forests ( Breiman 2001 ) that are easy to tune, can

t nonlinear functions (higher-order interaction effects), and are rela-

ively robust to the presence of uninformative features. As local methods

hat can be seen as adaptive nearest neighbors ( Hastie et al. 2005 ), the

redictions of random forests and related methods are bounded by the

inimum and maximum of the outcome in the training distribution.

or clinical neuroscience applications, this has proven to yield robust

ff-the-shelf prediction models that are relatively unaffected by noise in

he data and in the outcome ( Engemann et al. 2018 ). This approach is

lso a natural choice when using sparse EEG-montages with few elec-

rodes. 

Here we implemented a strategy pursued in ( Gemein et al. 2020 ) and

 Banville et al. 2020 ), aiming at a broad set of different summary statis-

ics of the time-series or the power spectrum. This approach has turned

ut useful for a pathology detection task in which the labeling of EEG

s pathological can be due to different clinical reasons, hence, affecting

any different EEG signatures in potentially diffuse ways. Features were

omputed using the MNE-features package ( Schiratti, Le Douget, Van

uyen, et al. 2018 ). More specifically we used as features (each com-

uted for individual channels and concatenated across channels, and

hen averaged across epochs): the standard-deviation, the kurtosis, the

kewness, the different quantiles (10%, 25%, 75%, 90%), the peak-to-

eak amplitude, the mean, the power ratios in dB among all frequency

ands (0 to 2Hz, 2 to 4Hz, 4 to 8Hz, 8 to 13Hz, 13 to 18Hz, 18 to 24Hz,

4 to 30Hz and 30Hz to 49Hz), the spectral entropy ( Inouye et al. 1991 ),

he approximate and sample entropy ( Richman and Moorman 2000 ), the

emporal complexity ( Roberts, Penny, and Rezek 1999 ), the Hurst expo-

ent as used in ( Devarajan et al. 2014 ), the Hjorth complexity and mo-

ility as used in ( Päivinen et al. 2005 ), the line length ( Esteller, Echauz,
1 https://github.com/meeg- ml- benchmarks/meeg- brain- age- benchmark- paper 
2 http://meeg-ml-benchmarks.github.io/brain-age-benchmark-paper 

w  

s  

w  

w  

3 
t al. 2001 ), the energy of wavelet decomposition coefficients as pro-

osed in ( Teixeira et al. 2011 ), the Higuchi fractal dimension as used in

 Esteller, Vachtsevanos, et al. 2001 ), the number of zero crossings and

he SVD Fisher Information (per channel) ( Roberts, Penny, and Rezek

999 ). 

ovariance-based filterbank approaches 

This category represents approaches in which the spatial dimension

f M/EEG is fully exposed to the model, whereas temporal or spectral

spects of the signal are to some extent summarized before modeling. As

/EEG signals reflect linear superposition of neuronal activity projected

o the sensors through linear field/potential spread, it is natural to use

inear (additive) models for adaptively summarizing the spatial dimen-

ion of M/EEG signals ( King et al. 2018 ; Stokes, Wolff, and Spaak 2015 ;

ing and Dehaene 2014 ). This intuition is driving the success of linear

ecoders for evoked response analysis but faces additional challenges

hen applied to power spectra ( Sabbagh et al. 2020 ). Computing power

eatures on M/EEG sensor-space signals renders the regression task a

on-linear problem for which linear models will provide sub-optimal re-

ults ( Sabbagh et al. 2019 ). In practice, this can be overcome by extract-

ng nonlinear features like spectral power after anatomy-based source

ocalization, or in a data-driven fashion that does not require availability

f individual MRI scans. Spatial filtering techniques provide unmixing of

rain sources based on statistical criteria without using explicit anatom-

cal information, which has led to supervised spatial filtering pipelines

de Cheveigné and Parra 2014 ; Dähne et al. 2014 ). Another related strat-

gy consists in computing features that are invariant to field spread. This

an be achieved by Riemannian geometry, an approach first applied to

/EEG in the context of brain computer interfaces but that has also

roven effective for biomarker learning ( Barachant et al. 2012 ; Yger, Be-

ar, and Lotte 2017 ; Rodrigues, Jutten, and Congedo 2019 ). These ap-

roaches have in common to favor the covariance of M/EEG sensors as a

ractical representation of the signals. Manipulating the covariance al-

ows one to suppress the effects of linear mixing while, at the same time,

xposing the power spectrum and the spatial structure of neuronal ac-

ivity in each frequency band ( Sabbagh et al. 2020 ). To scan along the

ntire power spectrum, one computes covariances from several narrow-

and signals covering low to high frequencies ( Sabbagh et al. 2020 ).

his provides spatially fine-grained information of frequency-specific

euronal activity, hence the term filterbank . 

Here we implemented the filterbank models from ( Sabbagh

t al. 2020 ; Sabbagh et al. 2019 ) based on Riemannian geometry that

ere found to provide a practical alternative to MRI-based source local-

zation, although falling slightly behind in terms of performance. This

ay be explained by the model violations arising from computing the

iemannian embedding across multiple participants. The Riemannian

mbedding assumes can must linear field spread but each recording

omes from a different head and different sensor locations, which, on

he a few hum is explicitly modeled when computing individual-specific

ource estimates. It is an open question whether template-based source

ocalization can improve upon the Riemannian pipeline, observing that

n the case of MEG such a procedure would be informed by the head po-

ition in the MEG dewar. Both average brain templates and Riemannian

mbeddings mitigate field spread in a global way with the difference

hat the average template uses some anatomical information and ap-

roximate sensor locations in the context of MEG, whereas Riemannian

mbeddings are purely a data-driven procedure with some whitening

ased on the average covariance (across subjects). 

To evaluate the benefit of a template-based anatomy, we included a

lterbank model using source localization based on the fsaverage sub-

ect from FreeSurfer ( Fischl 2012 ). The forward model was computed

ith a 3-layer Boundary Element Method (BEM) model. Source spaces

ere equipped with a set of 4098 candidate dipole locations per hemi-

phere. Source points closer than 5mm from the inner skull surface

ere excluded. The noise covariance matrices used along with for-

ard solutions to compute minimum-norm estimates inverse operators

https://github.com/meeg-ml-benchmarks/meeg-brain-age-benchmark-paper
http://meeg-ml-benchmarks.github.io/brain-age-benchmark-paper
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ere taken as data-independent diagonal matrices. Diagonal values de-

aulted to the M/EEG-specific expected scale of noise (obtained via the

make_ad_hoc_cov ” function from MNE-Python). All computations were

one with MNE ( Gramfort et al. 2014 , 2013 ). For computational effi-

iency, source power estimates were obtained by applying the inverse

perators to the subjects’ covariance data (MNE-Python function “ap-

ly_inverse_cov ”). Dimensionality reduction was carried out with a par-

ellation containing 448 ROIs ( Khan et al. 2018 ). This procedure closely

ollowed the one from ( Engemann et al. 2020 ), with the difference that

ere an MRI template was used instead of subject-specific MRIs. Finally,

he 448 ROI-wise source power estimates represented as diagonal matri-

es were the inputs of the log-diag pipeline from ( Sabbagh et al. 2020 ;

abbagh et al. 2019 ). Features were computed using the coffeine pack-

ge 3 . 

eep learning approaches 

This category concerns modeling strategies in which the outcome

s mapped directly from the raw signals without employing separate a

riori feature-defining procedures. Instead, multiple layers of nonlinear

ut parametric transformations are estimated end-to-end to successively

ummarize and compress the input data. This process is controlled by

upervision and enabled by a coherent single optimization objective. In

any fields, emerging deep learning methods keep defining the state

f the art in generalization performance, often outperforming humans.

eep learning models are however greedy for data, and it may take hun-

reds of thousands if not millions of training examples until these mod-

ls show a decisive advantage over classical machine-learning pipelines.

pplied to neuroscience, where the bulk of datasets is small to medium-

ized, deep learning models may or may not outperform classical ap-

roaches ( Poldrack, Huckins, and Varoquaux 2020 ; Schulz, Thomas Yeo,

t al. 2020 ; Roy et al. 2019 ; He et al. 2020 ). The success of using a deep-

earning model may, eventually, depend on the amount of energy and

esources invested in its development ( Gemein et al. 2020 ). 

Apart from high performance on standard laboratory M/EEG

atasets and decoding tasks, deep learning models are attractive for

ther reasons. First, when very specific hypotheses about data gen-

rators or noise generators are available ( Kietzmann, McClure, and

riegeskorte 2019 ). In this setting, the model architecture can be de-

igned to implement this knowledge, e.g. to explicitly extract band dress-

ng power features in a motor decoding task. Second, these models have

 strategic advantage when the data generating mechanism is not known

t all, hence, few hypotheses about classes of features are available

 Schirrmeister et al. 2017 ). In this setting, models with a generic ar-

hitecture can learn and identify relevant features themselves without

equiring expert knowledge of the researcher. With neural architecture

earch and automated hyperparameter optimization, there is also in-

ense research to even reduce the amount of expert knowledge needed

o create the network architecture itself. This flexibility has led neuro-

cientists to discover the framework as a vector for hypothesis-driven

esearch probing brain functions and neural computation ( Yamins and

iCarlo 2016 ; Bao et al. 2020 ). At the same time, this flexibility is

qually beneficial under complex environmental conditions that de-

rade the quality of M/EEG recordings (e.g. real-world recordings out-

ide of controlled laboratory conditions), in which the classes of relevant

eatures are not a priori known and deep learning models can exploit

he structure of the data and noise sources to provide robust predictions.

 Banville et al. 2021 ). 

Based on prior work, here we benchmarked two battle-tested general

rchitectures ( Gemein et al. 2020 ) implemented using the Braindecode

ackage 4 ( Schirrmeister et al. 2017 ; Gramfort et al. 2013 ). Braindecode

s an open-source library for end-to-end learning on EEG signals. It is

losely intertwined with other libraries. One of them is Mother of all BCI
3 https://github.com/coffeine-labs/coffeine 
4 https://braindecode.org 

(  

d  

f  

g

4 
enchmarks (MOABB) ( Jayaram and Barachant 2018 ), which allows for

onvenient EEG-data fetching, MNE ( Gramfort et al. 2013 , 2014 ), imple-

ents well established data structures, preprocessing functionality, and

ore. A second key dependency is Skorch ( Tietz et al. 2017 ), which im-

lements the commonly known scikit-learn ( Pedregosa et al. 2011 ) API

or neural network training ( Buitinck et al. 2013 ). For these reasons,

raindecode is equally useful for EEG researchers who desire to apply

eep learning as well as for deep learning researchers who desire to work

ith EEG data. Braindecode builds on PyTorch ( Paszke et al. 2019 ) and

omprises a zoo of decoding models that were already successfully ap-

lied to a wide variety of EEG decoding classification and regression

asks, such as motor (imagery) decoding ( Schirrmeister et al. 2017 ;

ostas and Rudzicz 2020 ), pathology decoding ( Gemein et al. 2020 ;

an Leeuwen et al. 2019 ; Tibor Schirrmeister et al. 2017 ), error de-

oding ( Völker et al. 2018 ), sleep staging ( Chambon et al. 2018 ;

erslev et al. 2021 ), and relative positioning ( Banville et al. 2020 ). 

For this benchmark and the task of age regression we used two

onvolutional Neural Networks (ConvNets, sometimes abbreviated

NNs) ( LeCun et al. 1999 ) namely ShallowFBCSPNet (BD-Shallow)

nd Deep4Net (BD-Deep) ( Schirrmeister et al. 2017 ). BD-Shallow was

nspired by the famous filter bank common spatial pattern (FBCSP)

 Ang et al. 2008 ) algorithm. Initially, it has two layers that represent

 temporal convolution as well as a spatial filter. Together with a squar-

ng and logarithmic non-linearity it was designed to extract bandpower

eatures. Of note, in the present context this architecture is closely re-

ated to SPoC ( Dähne et al 2014 ) and, in therefore, in principle, has the

apacity to deliver consistent regression models as was formally proven

n previous work ( Sabbagh et al 2020 ). 

In contrast, BD-Deep is a much more generic architecture. In total,

t has four blocks of convolution-max-pooling and is therefore not re-

tricted to any specific features. While BD-Deep has around 276k train-

ble parameters and has therefore more learning capacity, BD-Shallow

as only about 36k parameters. 

It is important to note, that we did neither adjust the model architec-

ures (apart from those changes required by the regression task) nor run

ask-specific hyperparameter optimization. Both ConvNets were used as

mplemented in Braindecode with hyperparameters that were already

uccessfully applied to pathology decoding from the TUH Abnormal EEG

orpus ( Gemein et al. 2020 ; van Leeuwen et al. 2019 ; Tibor Schirrmeis-

er et al. 2017 ). For more information on Braindecode or the Con-

Nets, please refer to the original publication ( Schirrmeister et al. 2017 ).

or decoding, we converted the MEG input data from Tesla to Fem-

otesla, the EEG input data from Volts to Microvolts. Additionally, each

ataset was rescaled separately by dividing each of its recordings by

ts global channel standard deviation (i.e., the standard deviation com-

uted across all recordings), such that each dataset has roughly zero

ean and unit variance (see Section Datasets). 

eneral data processing strategy using BIDS and the MNE-BIDS 

ipeline 

Neuroimaging and behavioral data are stored in many different

omplex formats, potentially hampering efforts of building widely us-

ble methods, hence, impeding reproducible research. Our goal was

o provide brain-age prediction models that can be directly applica-

le to any new electrophysiological dataset. For this purpose, we used

he Brain Imaging Data Structure (BIDS) ( Gorgolewski et al. 2016 )

hich allows us to organize neuroimaging data in a standardized way

upporting interoperability between programming languages and soft-

are tools. We used the MNE-BIDS software ( Appelhoff et al. 2019 )

or programmatically converting M/EEG datasets into the BIDS format

 Pernet et al. 2019 ; Niso et al. 2018 ). This has allowed us to access all

atasets included in this work in the same way, enabling data analysis

or all these datasets with the same code. We will now summarize the

eneral workflow (cf. Fig. 1 ) . 

https://github.com/coffeine-labs/coffeine
https://braindecode.org
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Fig. 1. Data processing, feature extraction and model construction based on the BIDS standard. This benchmark project provides a common data processing 

and feature extraction code allowing comparisons of different classical and deep learning-based machine learning models across different M/EEG datasets. Support 

for new datasets can be added with minimal modifications. For a detailed description consider the main text and the open-source code repository supporting this 

article ( https://github.com/meeg- ml- benchmarks/meeg- brain- age- benchmark- paper ). 
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For this study, we used the MNE-BIDS-Pipeline for automatic prepro-

essing of MEG and EEG data stored in BIDS format 5 ( Jas et al. 2018 ).

ts main advantage is that we can implement various custom analy-

es for different datasets without having to write any elaborate code.

odifying the overall processing pipeline or adapting a given pipeline

o a new dataset only requires few edits. Controlling the pipeline is

chieved through dataset-specific configuration files that specify the de-

ired processing steps and options of the MNE-BIDS-Pipeline while deal-

ng with the peculiarities of the data. The MNE-BIDS-Pipeline scripts

hemselves do not need to be modified and are readily applicable on

iverse datasets. 

We designed configuration files to implement data processing steps

ommon to all datasets analyzed in this benchmark while handling

ataset-specific details. Raw signals bandpass-filtered between 0.1 and

9Hz using a zero-phase finite impulse response (FIR) filter with Ham-

ing window. Window length and transition bandwidth were auto-

atically controlled by default settings of MNE-Python (v0.24). Like

ll preprocessing parameters, epoching can be easily adjusted to needs

f a particular study via the dataset-specific config files. We consid-

red epochs of 10-second length without overlap. These epochs coin-

ided with eyes-closed or eyes-open resting-state conditions in some

f the datasets. As additional channels measuring ocular and cardiac

ctivity were not consistently available across datasets, we only im-

lemented amplitude-based artifact rejection using the local autoreject

ethod ( Jas et al. 2017 ). Through 5-fold cross-validation, autoreject

hose channel-specific rejection peak-to-peak-amplitude thresholds and

hen decided if a given epoch could be repaired using interpolation, or

f it should be rejected to obtain clean data. We kept the default grid

f candidate values for the hyperparameters ‘rho’ (the consensus pro-

ortion of bad channels leading to rejection of an epoch) and ‘kappa’

maximum number of channels allowed to be interpolated). For ‘rho’

e considered a linearly spaced grid of 11 points between 0 and 1. For

kappa’ we considered 1, 4, or 32 channels. As the local autoreject is not

et supported in the MNE-BIDS pipeline, this step was implemented in a

ustom script (see the “compute_autoreject.py ” in the code repository).

his script could be easily edited to implement alternative artifact clean-

ng methods (e.g. RANSAC, Bigdely-Shamlo et al. 2015 ) or even omitted

o probe the impact of preprocessing on model predictions. Apart from

reprocessing, we also made use of the MNE-BIDS-Pipeline to generate

orward solutions and inverse operators for the source localization ap-

roach based on template MRI (see section Covariance-based filterbank

pproaches for detailed explanations). 
5 https://github.com/mne- tools/mne- bids- pipeline 
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5 
Each model of the benchmark is based on features extracted from

lean epochs. Again, the conversion of datasets to BIDS has enabled

eature extraction using one general script for all datasets ( “com-

ute_features.py ” in the code repository). 

atasets 

Large datasets and biobanks are the backbone of population model-

ng. In the past 10 years, this has led to a wealth of publications in cogni-

ive neuroscience on modeling biomedical outcomes and individual dif-

erences in cognition from MRI data ( Kernbach et al. 2018 ; Cole 2020 ;

mith et al. 2015 ). This has been enabled by consortia and large-scale

nstitutional collaborations ( Bycroft et al. 2018 ; Van Essen et al. 2013 )

hat aim at recontextualizing existing data for open-ended future us-

ge ( Leonelli 2016 ). More recently, the first M/EEG datasets have

merged with a focus on characterizing populations ( Taylor et al. 2017 ;

arson-Prior et al. 2013 ; Babayan et al. 2019 ; Obeid and Picone 2016 ;

iso et al. 2016 ; Valdes-Sosa et al. 2021 ; Bosch-Bayard et al. 2020 ). The

election of datasets for the present study did not aim at comprehensive-

ess but represents an attempt to secure a minimum degree of diversity.

ocial bias and fairness are important challenges, not only in the field

f machine learning but also in biomedical research. It has been shown

or modern biobanks that the sample deviates from the general popu-

ation in important ways, oversampling Caucasian people with higher

ducation degrees ( Fry et al. 2017 ; Henrich and Heine 2010 ). For de-

loyment of predictive biomarkers, this can have tragic consequences

s clinical utility may depend on sex and ethnicity ( Duncan et al. 2019 ).

s a result, in EEG research, specific risks of racial bias have been recog-

ized lately, highlighting the risk of selection bias and confounding, e.g.,

ue to culture-specific hair style ( Choy, Baker, and Stavropoulos 2021 ).

aken together, this emphasizes the importance of benchmarking on

ocially and culturally different datasets. Our selection includes M/EEG

atasets from four different countries representing culturally and socioe-

onomically diverse contexts. To support construction of valid brain age

odels we focussed either on datasets sampled from the general popu-

ation of healthy volunteers or on subsets of clinical EEG data that were

abeled as non-pathological by medical experts. In the following we will

rovide a high-level introduction to the datasets, highlighting character-

stic differences, challenges and opportunities for unique benchmarks. 

am-CAN MEG data 

The Cambridge Centre of Ageing and Neuroscience (Cam-CAN)

ataset ( Taylor et al. 2017 ; Shafto et al. 2014 ) has been the starting

oint of our efforts in building brain age models ( Engemann et al. 2020 ;

https://github.com/meeg-ml-benchmarks/meeg-brain-age-benchmark-paper
https://github.com/mne-tools/mne-bids-pipeline
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Table 1 

Aggregate cross-validation results across benchmarks and datasets. 

Dataset benchmark R 2 (M) R 2 (SD) MAE (M) MAE (SD) 

Cam-CAN (MEG) deep 0.63 0.11 8.74 1.23 

Cam-CAN (MEG) shallow 0.72 0.03 7.65 0.51 

Cam-CAN (MEG) filterbank-source 0.69 0.07 8.16 1.22 

Cam-CAN (MEG) filterbank-riemann 0.74 0.04 7.30 0.72 

Cam-CAN (MEG) handcrafted 0.49 0.06 10.68 1.00 

Cam-CAN (MEG) dummy -0.02 0.03 15.90 1.22 

LEMON (EEG) deep 0.69 0.16 7.75 1.78 

LEMON (EEG) shallow 0.69 0.09 8.67 1.89 

LEMON (EEG) filterbank-source 0.67 0.11 8.67 1.07 

LEMON (EEG) filterbank-riemann 0.54 0.13 10.78 1.88 

LEMON (EEG) handcrafted 0.51 0.11 10.23 1.78 

LEMON (EEG) dummy -0.13 0.17 18.70 1.60 

CHBP (EEG) deep 0.01 0.29 6.89 0.99 

CHBP (EEG) shallow 0.11 0.27 6.65 0.87 

CHBP (EEG) filterbank-source -1.47 4.58 7.76 2.07 

CHBP (EEG) filterbank-riemann -0.01 0.13 7.17 0.63 

CHBP (EEG) handcrafted 0.18 0.17 6.48 0.60 

CHBP (EEG) dummy -0.04 0.05 7.33 0.83 

TUAB (EEG) deep 0.60 0.06 7.75 0.56 

TUAB (EEG) shallow 0.61 0.04 7.80 0.41 

TUAB (EEG) filterbank-source 0.56 0.06 8.43 0.57 

TUAB (EEG) filterbank-riemann 0.56 0.05 8.25 0.41 

TUAB (EEG) handcrafted 0.33 0.04 10.75 0.64 

TUAB (EEG) dummy -0.01 0.01 13.55 0.82 
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abbagh et al. 2020 ) and we like to see it as a discovery context. The

am-CAN dataset investigated healthy participants sampled from the

eneral population without history of major disease (see exclusion cri-

eria, Table 1 in Shafto et al. 2014 ). The combination of a wide, almost

niformly distributed age range and MEG data alongside MRI and fine-

rained neurobehavioral results make it a rich resource for exploring

ging-related cortical dynamics. On the other hand, models developed

n this dataset may not be generalizable to real-world contexts in which

EG is operated. The following two sections are based on the meth-

ds description from our previous publications ( Engemann et al. 2020 ;

avid Sabbagh et al. 2020 ). 

Sample description. The present work was based on the latest

IDS release of the Cam-CAN dataset (downloaded February 2021).

e included resting-state MEG recordings from 646 participants (fe-

ale = 319, male = 327). The age of the participants ranged from 18.5

o 88.9 years with a mean age of 54.9 (female = 54.5, male = 55.4) and

 standard deviation of 18.4 years. Data is provided in Tesla and has a

tandard deviation of 369.3 Femtotesla. We did not apply any data ex-

lusion. Final numbers of samples reflect successful preprocessing and

eature extraction. For technical details regarding the MEG instrumenta-

ion and data acquisition, please consider the reference publications by

he Cam-CAN ( Taylor et al. 2017 ; Shafto et al. 2014 ). In the following

e highlight a few points essential for understanding our benchmarks

n the Cam-CAN MEG data. 

Data acquisition and processing. MEG was recorded with a 306 Vec-

orView system (Elekta Neuromag, Helsinki). This system allowed mea-

uring magnetic fields with 102 magnetometers and 204 orthogonal

lanar gradiometers inside a light magnetically shielded room. Dur-

ng acquisition, an online filter was applied between around 0.03Hz

nd 1000Hz. After bandpass filtering (0.1 - 49Hz), we applied decima-

ion by a factor of 5, leading to a sample frequency of 200Hz (at the

poching stage). To mitigate the contamination of the MEG signal by

nvironmental magnetic interference, we applied the temporal signal-

pace-separation (tSSS) method ( Taulu, Simola, and Kajola 2005 ). De-

ault settings were applied for the harmonic decomposition (8 compo-

ents of the internal sources, 3 for the external sources) on a 10-s sliding

indow. To discard segments for which inner and outer signal compo-

ents were poorly distinguishable, we applied a correlation threshold of

8%. As a result of this procedure, the signal was high pass filtered

t 0.1Hz and the dimensionality of the data was reduced to 65, ap-
6 
roximately. It is worthwhile to note that Maxwell filtering methods

ike tSSS merge the signal from magnetometers and gradiometers into

ne common low-rank representation. As a result, after tSSS, the sig-

al displayed on magnetometers becomes a linear transformation of the

ignals displayed on the gradiometers. This leads to virtually identical

esults when conducting analyses exclusively on magnetometers versus

radiometers ( Garcés et al. 2017 ). To reduce computation time, we an-

lyzed the magnetometers for our benchmark. To deal with the reduced

ata rank, a PCA projection to the common rank of 65 was applied

henever the machine learning pipeline was sensitive to the rank (e.g.,

iemannian filterbank models). For the full specification of the pre-

rocessing, please refer to the “config_camcan_meg.py ” file in the code

epository. 

EMON EEG data 

The Leipzig Mind-Brain-Body (LEMON) dataset offers rich mul-

imodal EEG, MRI and fMRI data for a well characterized group

f young and elderly adults sampled from the general population

 Babayan et al. 2019 ). The LEMON dataset investigated healthy partici-

ants without history of major disease (see exclusion criteria, Table 1 in

abayan et al. 2019 ) . As it was the case for the Cam-CAN data, here the

esearch was conducted in a research context using high-end equipment

ccompanied by rich and fine-grained neurocognitive and behavioral as-

essments. 

Sample description. EEG resting-state data from 227 healthy individ-

als from the LEMON dataset were included in this study. This sample

ontains 82 females (mean age = 44.2) and 145 males (mean age = 36),

epresenting a clearly visible difference in the composition of the sam-

le ( Fig. 2 ). Their age distribution went from 20 to 77 years old with

n average of 38.9 + - 20.3 years. Our sample covers the whole avail-

ble dataset (downloaded September 2021) as we did not apply any

xclusion criteria. It is a peculiarity of this dataset is that it is divided

nto 2 distinct age subpopulations, one between 20-35, the second be-

ween 55-77 ( Fig. 2 ), rendering the mean a bad representation of the

ge distribution. Moreover, the public version of the datasets only pro-

ides ages in a granularity of 5 years to mitigate the risk of identify-

ng participants. For the purpose of this study, we included the precise

ges obtained through institutional collaboration. The impact on aver-

ge modeling results turned out negligible, however. Data is provided

n Volts and has a standard deviation of 9.1 Microvolts. 

Data acquisition and processing. EEG was recorded with 62-channel

ctive ActiCAP electrodes and a bandpass filter between 0.015Hz

nd 1kHz. We applied additional bandpass filtering between 0.1Hz

nd 49Hz. The channel placement implemented the 10-5 system

 Oostenveld and Praamstra 2001 ). EEG data were sampled at 2500Hz.

fter bandpass filtering (0.1 - 49Hz), data were decimated by a factor

f 5, yielding a final sampling frequency of 500Hz. As a peculiarity of

he dataset, resting-state recordings encompass samples from two condi-

ions: eyes closed and eyes open. Our pipeline explicitly respected these

ifferent conditions. To include a maximum of data and, potentially, a

arger set of distinguishable EEG sources, we pooled the data prior to

eature extraction. For the full specification of the preprocessing, please

efer to the “config_lemon_eeg.py ” file in the code repository. 

HBP EEG data 

The Cuban Human Brain Mapping Project (CHBP) provides rich

ultimodal EEG and MRI data sampled from young to middle-aged

dults from the general population ( Valdes-Sosa et al. 2021 ; Hernandez-

onzalez et al. 2011 ; Bosch-Bayard et al. 2020 ). The CHBP dataset

nvestigated healthy participants without history of major disease

see exclusion criteria, Table 3 in Valdes-Sosa et al 2021 ). As for the

am-CAN and LEMON data, research was carried out using high-end

lectrophysiological equipment in a biomedical research context. How-

ver, the data was collected in a Latin American mid-income country

 Valdes-Sosa et al. 2021 ), adding a much-needed opportunity for

ncreasing the diversity in population-level neuroscience datasets. This
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Fig. 2. Age distributions by gender by dataset. The kernel density (y axis) is plotted across the age range (x axis) for all four M/EEG datasets included in the 

study, separately for male (blue) and female (red) participants. Individual observations are displayed by rug plots at the bottom of each panel. The Cam-CAN data 

(MEG) show a wide age range with a quasi-uniform distribution and no obvious sex imbalance. This situation poses no a priori challenges for age prediction while, 

at the same time, analysis of MEG data may be more complex. The LEMON dataset included a group of young participants and a group of old participants, leading to 

a characteristic bimodal distribution. Sex imbalance is clearly visible with more male participants in the group of young participants and fewer male participants in 

the group of older participants. This may lead to potential sex differences in prediction success and renders the average age a bad summary of the age distribution. 

The CHBP data shows a rather reduced age range with a right-skewed age distribution and some sex imbalance (again more young male participants). Predicting the 

age can be expected to turn out more difficult on this dataset for the implied lack of density along the age range. Finally, the TUAB data present a symmetric age 

distribution with minor sex differences, however, a less uniform age distribution. This may lead to more pronounced errors in young and elderly participants. This 

may, however, be compensated for by the more generous sample size. 
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iversity expresses itself in the composition of EEG protocols which con-

ain elements of real-world neurology exams, e.g., a hyperventilation

ask. 

Sample description . EEG resting-state data from 282 healthy indi-

iduals from the CHBP dataset were included in this study. The sam-

le contained 87 females (mean age = 36.7) and 195 males (mean

ge = 29.9), representing a clearly visible difference in the composi-

ion of the sample ( Fig . 2 ). The overall age distribution went from 18

o 68 years with an average of 32 + /- 9.3 years. Data is provided in

olts and has a standard deviation of 6.6 Microvolts. Our sample covers

he whole available dataset (download June 2021) as we did not apply

ny exclusion criteria. Final numbers reflect successful processing of the

ata. 

Data acquisition and processing. EEG data were recorded using a

EDICID 5 system and two different electrode caps ofeither 128 or 64

hannels with a subset of 53 common channels. The channel placement

mplemented the 10-5 system ( Oostenveld and Praamstra 2001 ). Here

e focused the analysis on the subset of common channels present in all

ecordings, leading to 53 channels. We applied additional bandpass fil-

ering between 0.1Hz and 49Hz. As in the LEMON dataset, resting-state

ecordings encompassed samples from eyes-closed and eyes-open condi-

ions. Again, we pooled both conditions prior to feature extraction. Note

hat for the data release (downloaded July 2021) used in this work, we

ould not benefit from the expert-based annotations of clean data. The

esults obtained on this dataset may therefore be impacted by quality

ssues to unknown extents. 

For the full specification of the preprocessing, please refer to the

config_chbp_eeg.py ” file in the code repository. 

UAB EEG data 

The Temple University Hospital Abnormal EEG Corpus (TUAB) pro-

ides socially and ethnically heterogeneous clinical EEG data ( Obeid and

icone 2016 ) mostly from Latin-American and African American partic-

pants (personal communication, Joseph Picone). As a peculiarity, the

EG data is obtained from an archival effort of recovering different EEG

xams from the Temple University Hospital in Philadelphia. EEGs were

dministered for different purposes and indications and subsequently

abeled as pathological or non-pathological. The clinical and social di-
7 
ersity render the TUAB dataset an important resource for electrophysi-

logical population modeling ( Gemein et al. 2020 ; Sabbagh et al. 2020 ).

Sample description. Here, we focused exclusively on the EEG record-

ngs labeled as not pathological by medical experts comprising a sub-

ample of 1385 subjects (female = 775 and males = 610). This sample

ontained individuals ranging from newborn children (min age = 0 for

emale and min age = 1 for male) to elderly (max age = 95 for female

nd 90 for male) people ( Fig . 2 ). The average age is 44.4 + /- 16.5 years.

ata is provided in Volts and has a standard deviation of 9.7 Micro-

olts. The data processing closely followed our previous work on the

UAB data ( Sabbagh et al. 2020 ). For further details about the dataset,

lease refer to the reference publications ( Harati et al. 2014 ; Obeid and

icone 2016 ). 

Data acquisition and processing. EEG data were recorded using differ-

nt Nicolet EEG devices (Natus Medical Inc.), equipped with between 24

nd 36 channels. For channel placement, the 10-5 system was applied

 Oostenveld and Praamstra 2001 ). EEG data were sampled at 500Hz.

fter bandpass filtering (0.1 - 49Hz), data were resampled to 200Hz.

ll sessions have been recorded with an common reference. Here we

onsidered a subset of 21 common channels. As channel numbers dif-

ered across recordings, re-referencing was necessary. For consistency,

e also applied re-referencing with an average reference on all other

EG datasets. As sampling frequencies were inconsistent across record-

ngs, we resampled the data to 200Hz. For many patients, multiple

ecordings were available. For simplicity we only considered the first

ecording. For the full specification of the preprocessing, please refer to

he “config_tuab_eeg.py ” file in the code repository. 

odel evaluation and comparison 

To gauge model performance, we first defined a baseline model

hat should not provide any intelligent prediction. As in previous work

 Sabbagh et al. 2020 ; Sabbagh et al. 2019 ; Engemann et al. 2020 ), we

mployed a dummy regressor model as a low-level baseline in which

he outcome is guessed from the average of the outcome on the training

ata. This approach is fast and typically converges with more compu-

ationally demanding procedures based on permutation testing that we

hall briefly outline below. Of note, our benchmark code can be used to
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un and display any alternative user-defined baseline, e.g., by passing

lternative csv files for the dummy model. 

This is particularly relevant for the present benchmark where the

ombinatorial matrix of machine learning models (including deep learn-

ng) versus datasets would lead to unpleasant computation times when

pplying tens of thousands of permutations. The same can be said for

ther approximations focusing on ranking statistics across hundreds of

onte Carlo cross-validation iterations ( Sabbagh et al. 2019 ). Finally,

nother approach relies on large left-out datasets, entirely independent

rom model construction, in which predictions can be treated like ran-

om variables, hence, classical inferential statistics are valid. In previ-

us work ( Dadi et al. 2021 ), permutation tests and the non-parametric

ootstrap were employed on more than 4000 left-out data points to as-

ess performance above chance and pairwise differences between mod-

ls. Such generous held-out datasets are not available in the present

etting, nor can we readily compute statistics across folds, as cross-

alidation iterations are not statistically independent. We therefore im-

lemented a less formal approach comparing competing models against

ummy regressors and against each other based on standard 10-fold

ross-validation based on fixed random seeds. This ensured that for any

odel under consideration, identical data splits were used. Of note, our

eusable benchmark code allows interested readers to implement more

xhaustive model comparison strategies. 

For scoring prediction performance, we focused on two complemen-

ary metrics. The coefficient of determination (R 

2 ) score – “bigger is

etter ” interpretation – and the mean absolute error (MAE) – “smaller

s better ” interpretation. Considering the dummy regressor, the R 

2 score

s a natural choice as it quantifies the incremental success of a model

ver a regressor returning the average of the training-data as a guess

or the outcome. Compared to Pearson correlations that are sometimes

sed in applied neuroscience studies, the R 

2 metric is more rigorous as

t is sensitive to the scale of the error and the location: Predictions that

re entirely biased, e.g, shifted by a large offset, could still be correlated

ith the outcome. In contrast, the R 

2 metric clearly penalizes system-

tically wrong predictions by assigning scores smaller than 0. Positive

redictive success thus falls into a range of R 

2 between 0 and 1 (higher

cores are better). This facilitates comparisons across models within the

ame dataset while posing challenges when comparing models across

atasets. 

We therefore considered the MAE which has the benefit of expressing

rediction errors at the scale of the outcome. This is particularly con-

enient for scientific interpretation when the outcome has some prac-

ical meaning as is the case in the present benchmarks on age predic-

ion (smaller scores are better). Importantly, the MAE does not per se

esolve the problem of comparisons across datasets as the meaning of

rrors entirely depend on the distribution of the outcome: Small errors

n years are good for datasets with wide age distributions but bad in

atasets with narrow age distributions. This obviously calls for contex-

ualizing the MAE against a dummy baseline regression model. While

his does not necessarily facilitate comparisons across datasets, it helps

ake visible situations in which one cannot rely solely on the R 

2 for

odel comparisons. 

For model comparisons, we employed a multivariate extension of

land-Altman plots ( Bland and Altman 1999 ; Möller et al. 2021 ). Fol-

owing Möller et al., the lack of agreement threshold was computed from

he the chi-square quantile function and the standard deviation across

he models 𝜒2 ( 0 . 95 , 𝑚 − 1 ) 1 √
( 𝑚 −1 ) 

𝑛 −1 
𝑛 ∑

𝑖 

𝑠 𝑖 where m is the number of

odels and s is the standard deviation across models. 

omputational considerations and software 

M/EEG data processing. BIDS conversion and subsequent data analy-

is steps were carried out in Python 3.7.1, the MNE-Python software

v0.24, Gramfort et al. 2014, 2013 ), the MNE-BIDS package (v0.9,

ppelhoff et al. 2019 ) and the MNE-BIDS-pipeline on a 48-core Linux

igh-performance server with 504 GB RAM. The joblib library (v1.0.1)
8 
as used for parallel processing. For artifact removal, the latest devel-

pment version (v0.3dev) of the autoreject package ( Jas et al. 2017 )

as used. 

Classical machine learning benchmarks. For future computation, the

ne-features (0.2, Schiratti, Le Douget, Le Van Quyen, et al. 2018 ,

yRiemann (v0.2.6) and the coffeine (0.1, David Sabbagh et al. 2020 )

ibraries were used. Analyses were composed in custom scripts and

ibrary functions based on the Scientific Python Stack with NumPy

v1.19.5, Harris et al. 2020 ), SciPy (v1.6.3, Virtanen et al. 2020 )

nd pandas (v.1.2.4, McKinney and Others 2011 ). Machine-learning

pecific computation was composed using the scikit-learn package

 Pedregosa et al. 2011 ). Analysis was carried out on a 48-core Linux

igh-performance server with 504 GB RAM. Model training and evalu-

tion completed within a few minutes to hours. However, feature com-

utation could last several days, depending on the dataset and the types

f features. 

Deep learning benchmarks. A high-performance Linux server with 72

ores, 376 GB RAM and 1 or 2 Nvidia Tesla V100 or P4 GPUs was used.

ode was implemented using the PyTorch ( Paszke et al. 2019 ) and brain-

ecode ( Schirrmeister et al. 2017 ) packages. Model training and evalu-

tion completed within 2-3 days. 

Data visualization. Graphical displays and tables were composed on

n Apple Silicon M1 Macbook Pro (space gray) in R (v4.0.3 “Bunny-

unnies Freak Out ”) using the ggplot2 (v3.3.5, Wickham 2011 ), patch-

ork (v1.1.1, Pedersen 2019 ), ggthemes (v4.2.4) and scales (v1.1.1,

rnold 2017 ) packages with their respective dependencies. 

esults 

For the age prediction benchmark, we considered five alternative ap-

roaches: heterogeneous handcrafted features & random forest (‘hand-

rafted’), filterbank features based on Riemannian embeddings & ridge

egression (‘filterbank-riemann’), filterbank features based on source lo-

alization with MRI-average template & ridge regression (‘filterbank-

ource’), a shallow deep learning architecture ( “shallow ”) and a 4-

ayer deep-learning architecture (‘deep’). These approaches were bench-

arked across four M/EEG datasets: The Cambridge Centre of Ageing

nd Neuroscience (Cam-CAN) dataset ( Taylor et al. 2017 ), the Cuban

uman Brain Mapping Project (CHBP) dataset ( Valdes-Sosa et al. 2021 ),

he Leipzig Mind-Brain-Body (LEMON) dataset ( Babayan et al. 2019 )

nd the Temple University Hospital Abnormal EEG Corpus (TUAB)

ataset ( Obeid and Picone 2016 ). Generalization performance was esti-

ated using 10-fold cross validation after shuffling the samples (fixed

andom seed). The coefficient of determination (R 

2 , bigger is better) was

sed as a metric enabling comparisons between datasets independently

f the age distribution, mathematically quantifying the additional vari-

nce explained by predicting better than the average age. A dummy

odel empirically quantifies chance-level prediction by returning the

verage age of the training data as prediction. The results are displayed

n Fig. 3 . One can see that on most of the datasets all machine learning

odels achieved R 

2 scores well beyond the dummy baseline. The high-

st scores were observed on the Cam-CAN MEG dataset, followed by

he LEMON EEG dataset. Caution is warranted though to avoid prema-

ure conclusions: The R 

2 offers a common scale that explicitly compares

he incremental model performance over the average predictor. This is

chieved by dividing the sum of squares of the model’s prediction by the

um of squares of the average predictor but, in turn, depends on the dis-

ribution of age. As a result, this can be misleading in cross-dataset com-

arisons when the variance of the outcome is not the same, which is the

ase here (cf. Fig. 2 ). We therefore also computed results using the mean

bsolute error (MAE, smaller is better) as a performance metric ( Fig 4 ).

ne can now see that the overall distribution of scores, including the

cores of the dummy model, depend not only on the dataset but also on

ts age range. Where the range is small, improvements over the baseline

odels are harder to observe. Moreover, comparing MAE scores across

atasets without taking into account the baseline can yield misleading

https://paperpile.com/c/m4qq5M/yWN7+5Elz
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Fig. 3. Age prediction benchmarks across M/EEG datasets (R 

2 score). Generalization performance was assessed by 10-fold cross-validation and the R 2 score 

(bigger is better) for five machine learning strategies compared against a dummy model (rows) and four datasets (panels). Across datasets, dummy models were 

mostly well-calibrated with R 2 scores close to zero. The LEMON dataset was one exception as dummy scores were systematically worse than chance, which can 

be explained by the bimodal age distribution (cf. Fig. 2 ), rendering the average age a bad guess for the age. The ‘handcrafted’ benchmark delivered moderate but 

systematic prediction success across all datasets. The two filterbank models performed well across datasets with similar performances, markedly higher than for the 

‘handcrafted’ approach. The only exception was the CHBP benchmark for which neither the filterbank nor the deep models delivered useful predictions. Note that 

here, for the ‘filterbank-source’, a single fold with an abysmal R 2 score of -15 was obtained (x limits constrained to a range between -.3 and 1.0). Overall, the deep 

learning benchmarks performed similarly to the filterbank models. 
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onclusions. For example, the same score of e.g. an MAE = 10 can be

ay above chance in one dataset (Cam-CAN) but below chance in an-

ther dataset (CHBP). To alleviate this problem, normalized MAE scores

ave been suggested in which the MAE scores are related to the range of

he age distribution (James H. Cole, Franke, and Cherbuin 2019 ). This

oes not come without its own problems, as then outliers in non-uniform

istributions could drive the scores. As research keeps evolving on this

opic and the community has not yet agreed on the best metric, we rec-

mmend considering multiple classical machine learning metrics when

omparing model performance – in critical awareness of their respective

imitations. 

Confronting the relative performances of models to the dummy base-

ine in Fig. 3 and Fig. 4 , one can see overall similar performance rank-

ngs between the models, regardless of the metric. See Table 1 for

ide-by-side comparisons of the aggregated cross-validation distribu-

ions. The big-picture results argue in favor of the importance of fine-

rained spatial features for M/EEG prediction while considering impor-

ant between-dataset heterogeneity. Both filterbank pipelines provide

eatures based on spatially aware representations of the M/EEG sig-

als, which either explicitly or implicitly deal with the spatial spread

f electrical potentials and fields characteristic for M/EEG signals. The
9 
ource-level filterbank approximates source localization using the aver-

ge MRI template, whereas Riemannian embeddings provide non-linear

pectral features that are affine invariant, hence, independent of lin-

ar mixing. The deep benchmarks, on the other hand, implied spatial-

ltering layers capable of mimicking source localization by learning an

nmixing function. Surprisingly, using the average MRI template instead

f the Riemannian embedding to construct a filterbank model did not

ead to consistent improvements across datasets, suggesting that both

pproaches may be equally effective in practice. We would have con-

ectured that even an imprecise biophysical head model would pro-

ide inverse solutions leading to more accurate unmixing of M/EEG

ources. Compared to our previous benchmarks ( Engemann et al. 2020 ;

avid Sabbagh et al. 2020 ) favoring filterbank models based on source-

ocalization, one has to point out that this finding may reflect at least

wo differences: The use of an MRI template instead of individual co-

egistration and the use of empty-room-based suppression of environ-

ental noise. The second factor may be less relevant for EEG though

here empty room recordings are not available and data-based covari-

nces are more common in event-related studies where brain activity

nduced by stimuli is compared against the background resting-state ac-

ivity. As a practical implication, and if inspection of the brain sources
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Fig. 4. Age prediction benchmarks across M/EEG datasets (mean absolute error). Same visual conventions as in Fig. 3 . As the MAE (smaller is better) is sensitive 

to the scale and distribution of the outcome, one can see characteristic differences across datasets. The distribution of the dummy scores provides an estimate of the 

random guessing. As before, in all but the Cuban datasets all benchmarks achieved MAE scores markedly better than the dummy with no overlap between model 

and dummy distributions. Model rankings resemble the ones obtained using the R 2 . On the LEMON data, the deep benchmark now presented a slight advantage over 

all other benchmarks. 
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s not a priority, the purely data-driven pipelines may be more practical

s no additional MRI-based data processing is needed (cf. Fig. 1 ). 

Interestingly, none of these approaches involving spatially fine-

rained representations of the M/EEG signal worked well on the CHBP

ata, whereas the random forest on top of hand-crafted features scored

ystematically better than the dummy baseline. This may be related to

hree factors that come together in the CHBP benchmark dataset: Like

he LEMON dataset, the sample size is relatively small. Second, the age

istribution is far less uniform, leading to underrepresentation of elderly

articipants. This makes the learning task at hand harder as models have

ewer training examples from elderly populations. These challenges ap-

ly equally to all machine learning benchmarks, hence, do not explain

hy the random forest model on hand-crafted features is working to

ome extent. In this context, it may be worthwhile to remember that the

HBP uses two different EEG montages, one with 128, one with 64 elec-

rodes (both implementing 10-05 electrode placement). Despite only fo-

ussing on the 53 common channel locations, the larger VS higher num-

er of electrodes may induce substantial differences in the covariance

tructure of the signals ( Nunez and Srinivasan 2006 ) as the same elec-

rodes in the context of a smaller electrode array implies more spatial

veraging of cortical activity. This may have affected the random-forest

ipeline less strongly as the hand-crafted features extracted marginal

hannel-wise summary statistics of the time-series or the power spec-

rum rather than pairwise interactions. Progress on this specific bench-
10 
ark may therefore involve explicit consideration of the montage when

electing samples for cross-validation or even at the level of the machine

earning model (e.g., by including the number of electrodes or montage

ype as covariate). Moreover, future availability of samples from older

opulations in the CHBP dataset will help disambiguate this point. Fi-

ally, once the expert-based quality-control annotations are considered

or epochs-selection, the results obtained in this benchmark may change

see section Datasets/CHBP EEG data for details). 

A different type of challenge is illustrated by the benchmarks on the

EMON dataset. As the age distribution is bimodal here ( Fig. 2 ), the R 

2 

core is not well calibrated as the average predictor will not provide a

easonable summary of the distribution. This is not automatically mit-

gated by considering the MAE as a metric. On the other hand, it will

ot affect the ranking of the machine learning models, which compare

verall well to results obtained on the Cam-CAN and the TUAB datasets.

o obtain a more rigorous baseline, one could envision a group-wise

verage predictor that, depending on the age group, would return the

roups’ respective average age from the training data. We did not imple-

ent such a custom baseline here as it was our goal to stick to standard

outines provided by the software libraries our benchmarks were based

n. Second, it was our intention to expose such issues as this may stim-

late future research and development. 

When applying brain age models for research or clinical purposes to

haracterize individuals, e.g., correlating brain age with clinical scores,
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Fig. 5. Scatter plots of actual versus brain-predicted age. Cross-validated age predictions were generated by concatenating the predictions on the 10 held-out cross- 

validation splits. Every point represents one participant. For convenience, previously reported average R 2 scores are displayed in each panel. Diagonal identity lines 

represent ideal error-free predictions. 
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t is important to account for residual correlations with chronological

ge. This topic has been recently discussed as brain age bias expressed in

ystematic errors in younger or older age groups, which may arise from

he training distribution, regularization or limited expressiveness of the

odel. Fig. 5 displays individual-level correlations between chronolog-

cal age and brain-predicted age. One can readily see that better per-

orming benchmarks distributed more narrowly around the identity line

e.g. shallow net in Cam-CAN), whereas worse performing models were

ystematically off (e.g. handcrafted in TUAB), inducing residual corre-

ations between brain age and age. Also when focussing on the younger

nd older age ranges in the best-performing benchmarks, over predic-

ion and under prediction can be spotted by the naked eye. The results

mphasize the importance of deconfounding or residualizing for chrono-

ogical age as a key practical issue when applying the presented bench-

arks (see Smith et al. 2019 ; Liang, Zhang, and Niu 2019 for general

iscussion, Engemann et al 2020 for applied examples with MEG). As

or applications of MRI-derived brain age, taking into consideration the

esidual error structure remains an important issue for applications of

/EEG-derived brain age. It will be worthwhile to investigate if bias-
11 
orrection methods focusing on regression to the mean can improve the

resented benchmarks ( Liang, Zhang, and Niu 2019 ). 

The overall similar associations between brain age and chronological

ge ( Fig. 5 ) pose the question about the redundancy and complemen-

ary the model predictions. To better understand the relationship be-

ween the models, we analyzed their predictions on a sample-by-sample

asis using a multivariate Bland-Altman plot ( Bland and Altman 1999 ;

öller et al. 2021 ). Results in Fig. 6 A show that, except for an im-

ortant outlier in the CHBP dataset, model agreement was rather uni-

ormly distributed along the age range of each dataset. Nevertheless,

ncreased mismatch between the models can be spotted in younger and

lder age groups, potentially enabling improvements through model av-

raging. This raises the question if pooling the models using simple bag-

ing ( Breiman 1996 ) can improve model performance by capturing po-

entially informative differences between models. Results revealed that

imple model averaging via bagging did not lead to clear improvements

ver the best model but, roughly, preserved the best model’s perfor-

ance ( Fig. 6 B). This may suggest that the models learned overall sim-

lar functions, potentially tuning into similar aspects of the input data. 
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Fig. 6. Model redundancy and complementarity. Panel (A) plots the sample-wise average over the prediction from different benchmarks against the standard 

deviation over the benchmarks, implementing a multi-rater Bland-Altman plot. The dashed line represents the statistically expected lack-of-fit threshold. Panel 

(B) shows performance after averaging model predictions prior to scoring (R 2 ). For convenience, the median performance of the best model is indicated by black 

diamonds. 
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iscussion 

In this study, we proposed empirical benchmarks for age prediction

omparing distinct machine learning approaches across diverse M/EEG

atasets comprising, in total, more than 2500 recordings. The bench-

arks were implemented in Python based on the MNE-software ecosys-

em, the Braindecode package and the BIDS data standard. The ex-

licit reliance on the BIDS standard renders these pipelines applicable

o any M/EEG data presented in the BIDS format. This enabled coherent

ide-by-side comparisons of classical machine learning models and deep

earning methods across M/EEG datasets recorded in different research

r medical contexts. 

Our cross-dataset and cross-model benchmarks pointed out stable

anking of model performance across two metrics, the R 

2 score and

ean absolute error (MAE). R 

2 scores have been less consistently re-

orted in the literature, however, the top MAE scores observed across

atasets in this benchmark of 7 to 8 years are well in line with reports

rom previous publications ( Sun et al. 2019 ; Sabbagh et al. 2020 ; Xifra-

orxas et al. 2021 ). While direct comparisons against MRI were not

erformed in this study, the present benchmarks would be compatible

ith the impression that for what concerns the overall performance of

ge prediction, M/EEG features are slightly weaker than MRI features

 Engemann et al. 2020 ; Xifra-Porxas et al. 2021 ). We found that, overall,

iemannian filterbank models and deep learning models achieved the

est scores (highest R2 and lowest MAE). On the other hand, random

orests based on hand-crafted features delivered robust performance in

he sense that performance was never at the top but still present when

ther methods failed. This can be explained by the fact that the hand-

rafted features – compared to the other models – did not handle field-

pread and volume-condition effects, potentially leading to lower per-

ormance with small datasets, while, at the same time, the random forest

s robust in the sense of returning predictions from within the support

f the training distribution, preventing extrapolation errors. 

In line with previous work ( Gemein et al. 2020 ), these results sug-

est that deep learning methods do not necessarily show a consistent

dvantage over classical pipeline models: Similar performance may be

xplained by the fact that our filterbank models and the deep models
12 
mply similar spatially aware representations of the M/EEG data (see

esults section for detailed discussion in context). Of note, the shallow

nd the deep model (both described in Schirrmeister et al 2017 ) were

n par, suggesting that the additional convolutional layers of the deep

et, here, did not add useful model complexity. Moreover, given the

elatively small training datasets, it can be considered good news that

hese parameter-rich models did not seem to overfit as was evidenced

y comparisons against simpler classical models. Yet, it may be simply a

atter of collecting larger samples until deep learning approaches may

eveal their advantage at extracting more elaborate representations of

/EEG signals. While concrete estimates for the decisive sample size

or M/EEG are not available, related research on the scaling of machine

earning models applied to MRI in the UK biobank would suggest that

ne would need sample sizes in the order of ten to a hundred of thou-

ands if not one million ( Schulz, Yeo, et al., 2020 ; Schulz et al. 2022 ).

his may lead to positioning M/EEG-based brain age prediction on par

ith MRI-based brain age prediction just as MRI-based deep learning

odels of brain age have defined state-of-the-art performance on large

atasets ( Cole et al. 2017 ; Bashyam et al. 2020 ; Jonsson et al. 2019 ).

owever, more importantly, the value of M/EEG-derived brain age mod-

ls should not be defined in terms of incremental improvement over

RI-based models as M/EEG-based models may enhance MRI-derived

nformation ( Engemann et al. 2020 ) or may be the only option available

 Sun et al. 2019 ). 

Our results nicely demonstrate a second critical merit of cross-model

nd cross-dataset benchmarking. It was sufficient to analyze four differ-

nt sources of data until we found a perfectly legitimate EEG dataset

rom an academic research context (CHBP) in which our previously fa-

ored modeling techniques developed on the Cam-CAN and the TUAB

ata did not perform well by default. There may be good reasons for

hese discrepancies related to the age distribution found in the CHBP

ata and the fact that multiple different EEG montages were used in

hat dataset (see results section for detailed discussion in context). But

ore importantly, we did not anticipate this to happen and would have

ever learned about it had we confined the scope to previously ana-

yzed datasets. Such discoveries are favored by systematic benchmarks

ith dataset-independent code implementation, which has the poten-
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l  
ial to lower the burden threshold for including always more datasets

nto model development. In the long run, we hope that this effort will

timulate new research leading to more generalizable models. 

This brings us to some limitations of this work. Our work has been

otivated by the absolute necessity to diversify datasets for develop-

ent of M/EEG-based measures of brain health. This has led us to ana-

yzing more than 2500 M/EEG recordings and, yet we only included

our datasets. Other M/EEG datasets come to mind that would have

een potentially relevant. The Human Connectome Project MEG data

 Larson-Prior et al. 2013 ) includes MEG recordings from less than 100

articipants, which we deemed insufficient for predictive regression

odeling. The OMEGA data resource ( Niso et al. 2016 ) was not ac-

essible at the time of this investigation but would have been a good

atch for this study. Finally, the LIFE cohort ( Loeffler et al. 2015 )

ncludes a large number of EEG recordings of participants sampled

rom the general population yet follows a closed / controlled access

cheme. The Healthy-Brain-Network EEG data ( Alexander et al. 2017 )

oncerns a developmental cohort. Despite potentially relevant similar-

ties between brain development and aging, age prediction in develop-

ental cohorts would have exceeded the scope of the present study.

ven if we had integrated these resources in the present benchmark,

his may have only marginally enhanced the diversity covered by the

urrent selection datasets as most public neuroscience datasets come

rom the wealthiest nations. We hope that this situation will improve

s new promising international consortia and efforts emerge that fo-

us on curating large EEG datasets from diverse national and cultural

ontexts ( Ibanez et al. 2021 ; Ibrahim et al. 2020 ; “Global Brain Con-

ortium Homepage ” n.d. ). A second limitation of the present study con-

erns the depth of validation. To advance our understanding of M/EEG-

erived brain age, more systematic comparisons against MRI-derived

rain age ( Xifra-Porxas et al. 2021 ) and other measures of mental health

nd cognitive function are important objectives ( Anatürk et al. 2021 ;

adi et al. 2021 ). 

In the following we wish to point out a few imminent opportuni-

ies for turning the limitations of the present work into future research

rojects, potentially, enabled by the results and tools brought by the

urrent benchmarks. 

pportunities and suggestions for follow-up research using the benchmark 

ools 

The impact of deeper architectures. An important design decision in

eep neural networks is the total depth of the neural network. Here we

sed previously published architectures designed for EEG-based pathol-

gy decoding ( Schirrmeister et al. 2017 ). Future studies could build on

op of this benchmark to explore the importance of deep architectures

or brain age modeling. Specifically, it would be possible to use methods

rom neural architecture search, e.g., AutoPyTorch ( Zimmer, Lindauer,

nd Hutter 2021 ), to design better-performing architectures. Since this

enchmark does not only provide access to diverse datasets in an iden-

ical file format, but also enables direct comparison to others, it is the

ptimal starting point for such an optimization while at the same time

voiding overfitting the architecture to a single dataset. 

The role of preprocessing. While data cleaning is of major impor-

ance for extracting physiologically interpretable biomarkers, predic-

ions from machine learning models tend to be far less affected by noise

 Sabbagh et al. 2020 ). On the other hand, artifacts and noise may inform

redictions, potentially reducing biological specificity. Future studies

ould benefit from this benchmark to quantify the role of artifact sig-

als for brain age predictions and develop de-confounding strategies

 Du et al. 2021 ; Mehrabi et al. 2021 ; Lu, Schölkopf, and Hernández-

obato 2018 ; Bica, Alaa, and Van Der Schaar 2020 ). 

Eyes-open versus eyes-closed. Some of the datasets analyzed in this

enchmark contain resting-state signals under different conditions. In

he lack of strong a-priori hypotheses, here we simply pooled both con-

itions. It is currently unclear whether the relationship between eyes-
13 
losed versus eyes-open resting-state may contain valuable information

bout brain aging. It is imaginable, however, that signals induced by

ransient visual deprivation may reveal levels of vigilance ( Wong, DeY-

ung, and Liu 2016 ), which in turn may be altered by neuropsychi-

tric conditions ( Hegerl et al. 2012 ). Future work could benefit from

he benchmark to investigate the importance of eyes-closed versus eyes-

pen resting-state for brain age modeling. 

Model averaging. Good prediction performance defines practically

seful machine learning models. In many instances, combining pre-

iction models using model averaging approaches can improve the

rediction performance ( O’Connor et al. 2021 ; Dadi et al. 2021 ;

aroquaux et al. 2017 ). This could also be a practical way of combin-

ng the benchmarks into a single model for subsequent generalization

esting. Here we demonstrated a very basic form of bagging in which

odel predictions were combined by their arithmetic means, which

id not lead to clear improvements, however. Future studies could use

his benchmark to investigate more sophisticated model averaging tech-

iques that combine predictions through supervised learning. 

Model inspection. Prediction performance and interpretability can

tand in tension with another and are often addressed separately. The in-

erpretability of machine learning models is essential for clinical impact

 Rudin 2019 ; Ghassemi, Oakden-Rayner, and Beam 2021 ) and can be

pproached by either analyzing the role of input features for prediction

r by analyzing the predictions themselves. In his benchmark we did not

over methods for explaining the role of variable importance for model

redictions such as explainers ( Biecek 2018 ; Baniecki et al. 2020 ) but,

nstead, only provided basic comparisons between model predictions at

he individual-sample level. Applying common explainer methods e.g.

HAP values or permutation importance was not straight-forward in our

etting as the benchmarks were based on different types of input data

tabular data for handcrafted benchmark, entire covariance matrices for

lterbank models, entire EEG data for deep learning models), prevent-

ng apples-to-apples comparisons based on the same set of explainers.

uture work could investigate the relative importance of M/EEG signals

r features for brain age modeling through a more targeted and system-

tic analysis using explainers most adequate to each benchmark with

ubsequent qualitative comparisons. This may also lead to a more gen-

ral framework for comparing models based on diverse types of input

ata. 

Exploring the link between modalities and cognitive or clinical scores. A

econd approach to model interpretation is analyzing the correlates of

odel predictions This study established the tools and methods for basic

enchmarks on prediction performance. However, to build useful brain

ge models, it is essential to validate brain-age predictions to cogni-

ive function, measures of health or clinical endpoints ( Dadi et al. 2021 ;

ole et al. 2018 ; Liem et al. 2017 ). To further establish the relative

erit of M/EEG over MRI, comparisons between the modalities are es-

ential ( Engemann et al. 2020 ). Unfortunately, direct comparisons be-

ween MEG and EEG are not possible at this point as this would require

ecordings with both modalities in the same subjects. As an intermediate

tep, it would be worthwhile to use the present benchmarks for devel-

ping a model enabling generalization from MEG to EEG and vice versa.

n this context, it will be worthwhile to compare against other types of

ormative approaches for M/EEG beyond brain age ( Li et al. 2022 ). For-

unately, most of the datasets covered in this benchmark include MRI

ata, social details and psychometric scores next to the M/EEG data.

lthough these measures are not harmonized across datasets, they still

rovide a wealth of opportunities for within-dataset validation of brain

ge measures. Moreover, the benchmarks here could be compared on

ew emerging datasets and clinical studies. 

onclusion 

Computational benchmarks across M/EEG datasets and machine

earning methods bear the potential to enhance applications of machine

earning in clinical neuroscience in several ways. Standardization of data
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ormats, software and analysis pipelines are important factors for the

calability of predictive modeling of M/EEG. For stimulating the de-

elopment of more generalizable machine learning models it is crucial

hat a critical mass of M/EEG datasets be analyzed by the international

ommunity. As the diversity of the datasets increases, generalization

aps will manifest themselves, calling for computation methods for clos-

ng these gaps. The implied learning process may eventually lead to

eveloping more widely applicable M/EEG-based biomarkers that are

linically robust across a wide range of sociocultural contexts, clinical

opulations, recording sites and measurement techniques. We hope that

enchmarks, tools and resources resulting from this study will facilitate

nvestigating open scientific questions related to learning biomarkers of

rain health on an ever-growing number of M/EEG datasets from in-

reasingly diverse real-world contexts. 
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