Soil moisture control of NO turnover and N$_2$O release in nitrogen-saturated subtropical forest soils

Ronghua Kang 1,2, Thomas Behrendt $^3^*$, Jan Mulder 2 and Peter Dörsch $^2^*$

1CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China

2Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway

3Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany

Corresponding authors: tbehr@bgc-jena.mpg.de; peter.doersch@nmbu.no

Supplementary Materials

Figures S1-S4
Figure S1. Dry-out curves at 30°C for soils HS-T3 (filled circles) and GDZ-B5 (open circles) in (a) the NO experiment conducted at MPI Mainz and (b) the N₂O experiment conducted in Norway.
Figure S2. Net NO-N release rates in (a) HS-T0, HS-T1, HS-T3, HS-T5 and (b) GDZ-B2, GDZ-B5 and GDZ-B6 as a function of WFPS in the dry-out experiment with zero-NO flushing (filled triangles) and elevated NO flushing (at 130 ppb and 300 ppb in HS and GDZ soils, respectively; open circles). Inserts show NO release and uptake rates at WFPS < 6%. The temperature was 30°C. Note different scales of x and y-axes.
Figure S3. 2M KCl extractable NH$_4^+$ and NO$_3^-$ in the dry-out experiment with soils from (a) HS-T3 and (b) GDZ-B5. Values are means and standard deviations (n=3). Note different scales of x- and y-axes in (a) and (b).
Figure S4. N₂O-N, NO-N and CO₂-C accumulation with and without spiking 10 g of moist mixed HS soil (60% WFPS) with 350 ppm NO. The soil was incubated anoxically in a crimp-sealed 120 ml serum bottle in a He-atmosphere. Solid lines indicate the treatment with NO addition, whereas dashed lines are the control without NO addition.