Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands

Min Jung Kwon1,2 | Ashley Ballantyne1,3 | Philippe Ciais1 | Chunjing Qiu1,4 | Elodie Salmon1 | Nina Raoul1 | Bertrand Guenet1,5 | Mathias Göckede6 | Eugénie S. Euskirchen7 | Hannu Nykänen8 | Edward A. G. Schuur9 | Merritt R. Turetsky10 | Catherine M. Dieleman11 | Evan S. Kane12,13 | Donatella Zona14,15

1Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
2Institute of Soil Science, University of Hamburg, Hamburg, Germany
3Department of Ecosystem and Conservation Science, University of Montana, Missoula, Montana, USA
4INRAE, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
5Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL Research University, Paris, France
6Systems Department, Max Planck Institute for Biogeochemistry, Jena, Germany
7Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
8Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
9College of the Environment, Forestry, and Natural Sciences, Northern Arizona University, Flagstaff, Arizona, USA
10Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
11School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
12College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
13USDA Forest Service Northern Research Station, Houghton, Michigan, USA
14Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
15Department of Biology, San Diego State University, San Diego, California, USA

Correspondence
Email: minjung.kwon86@gmail.com

Funding Information
Academy of Finland, Grant/Award Number: 337550; Agence Nationale de la Recherche, Grant/Award Number: ANR-10-LABX-100-01, ANR-16-CONV-0003 and ANR-18-MPGA-0007; H2020 Societal Challenges, Grant/Award Number: 101000289 and 641816; National Science Foundation, Grant/Award Number: DEB-1026415, DEB-1636476 and LTREB-2011276

Abstract
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology in Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m⁻² year⁻¹; including 6 ± 7 g C–CH4 m⁻² year⁻¹ emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m⁻² year⁻¹ and decreased CH4 emission by 4 ± 4 g CH4 m⁻² year⁻¹, thus accumulating less C over 100 years (0.2 ± 0.2 kg C m⁻²).
Yet, the reduced emission of CH$_4$, which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO$_2$-eq m$^{-2}$ year$^{-1}$. Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m$^{-2}$ over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH$_4$ emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.

KEYWORDS
carbon flux, carbon stock, drainage, high latitude, land surface model, manipulation experiment, permafrost thaw

1 | **INTRODUCTION**

The carbon (C) stock of northern peatlands is estimated to be 265–621 Pg (Gorham, 1991; Hugelius et al., 2020; Treat et al., 2019; Yu et al., 2010) with some estimates as high as 1055 Pg C (Nichols & Peteet, 2019) despite controversy (Nichols & Peteet, 2021; Ratcliffe et al., 2021; Yu et al., 2021). Approximately half of northern peatlands are underlain by permafrost (Hugelius et al., 2020), contributing to a large portion of permafrost C stock of 1035 ± 150 Pg in the first 3 m depth (Hugelius et al., 2014; Schuur et al., 2015). Most of the northern peatlands C have accumulated after the last glacial maximum (Kleinen et al., 2012; MacDonald et al., 2006; Treat et al., 2019; Yu et al., 2010), and undisturbed peatlands continue to accumulate C at present (Bridgham et al., 2006; Hugelius et al., 2020; Tarnocai et al., 2009). Peatlands act as C sinks because plant productivity sustains litter C input but anaerobic conditions, low pH, and poor litter quality inhibit peat decomposition. However, there is an increasing concern that this substantial C stock is becoming vulnerable to decomposition in response to drying. Drying, as a result of a lower water table (WT), exposes the upper peat horizons to aerobic conditions, which dramatically increases C decomposition rates.

In low to mid-latitudes, substantial areas of peatlands have become drier due to anthropogenic drainage by ditches for forestry, agriculture, and urbanization (Byrne et al., 2004; Evans et al., 2021; Wijedasa et al., 2018), in addition to climate warming and drying over natural peatlands (Swindles et al., 2019). In northern high latitudes, however, peatland drying is mostly associated with climate change through several processes. First, if evapotranspiration increases faster than precipitation, the WT is likely to decrease. Generally, increasing precipitation is expected due to an enhanced hydrologic cycle (Bintanja & Andry, 2017; Bintanja & Selten, 2014) but the patterns vary spatially and temporally (Greve et al., 2014) together with more frequent extreme precipitation events (Palmer & Räisänen, 2002; Shiogama et al., 2016). Furthermore, in the high latitudes, a large fraction of precipitation can be lost during the spring melt (Douville et al., 2021; Kirtman et al., 2013) and the growing season can have a negative water balance. Coupled Model Intercomparison Project (CMIP6) climate models predict shorter but stronger drought events at high latitudes by 2100 (Ukkola et al., 2020). Warmer temperatures also enhance evapotranspiration (Helbig et al., 2020), which decreases soil moisture, and possibly the WT in peatlands. Second, higher air temperatures thaw permafrost and melt extensive ground ice complexes, which subsequently increases active layer thickness and changes surface morphology. This change in surface morphology alters the spatial and vertical distribution of water in permafrost peatlands and exposes surface peat layers to aerobic decomposition in some areas (Lewis et al., 2012; Olefeldt et al., 2016). This can occur at small spatial scales, with a variation of local wet versus dry patches in polygonal tundra, or at large scales, such as thermokarst formation or thaw lake drainage, which are highly variable in space and time (Fewster et al., 2022; Jones et al., 2022; Liljedahl et al., 2016).

Currently, Arctic and boreal peatlands are C sinks (Virkkala et al., 2021), and peatland drying has the potential to alter C fluxes and soil organic C (SOC) stocks (Avis et al., 2011; Lara et al., 2015; Lawrence et al., 2015; Vaughn et al., 2016; Wainwright et al., 2016), potentially contributing to a positive carbon-climate feedback (Günther et al., 2020; Huang et al., 2021) estimated CO$_2$ emissions to be increased by 1.12 mg C m$^{-2}$ h$^{-1}$ cm$^{-1}$ and CH$_4$ emissions to be decreased by 0.09 mg C m$^{-2}$ h$^{-1}$ cm$^{-1}$ due to drying in global peatlands, but the emission changes of northern peatlands were highly sensitive and variable compared to lower latitudes. In addition, temperature sensitivity of CH$_4$ emissions varies with WT and can add complexity to the CH$_4$/CO$_2$ ratio under temperature and WT variations (Chen et al., 2021).

Despite growing research on the sensitivity of peatlands to drying, both CO$_2$ and CH$_4$ gas responses and the change of C
stocks in northern circumpolar peatlands are still uncertain, especially for peatlands underlain by permafrost. Individual-site studies in Arctic and Boreal regions consistently showed increased CO$_2$ emissions from ecosystem respiration (R_{ec}; Kittler et al., 2016; Martikainen et al., 1995; Natali et al., 2015) and decreased CH$_4$ emissions (Kittler et al., 2017; Kwon et al., 2017; Natali et al., 2015; Nykänen et al., 1998; Olefeldt et al., 2017; Turetsky et al., 2008, 2014; Zona et al., 2009) in response to lower WT. However, gross primary production (GPP) showed contrasting responses, that is, reduced (Olefeldt et al., 2017) or increased GPP (Kittler et al., 2016; Natali et al., 2015), depending on the plant community composition and the occurrence of shift in species due to drying. Some studies synthesized the drying effects in northern circumpolar peatlands, but they were limited to CH$_4$ (Nykänen et al., 1998; Olefeldt et al., 2013; Turetsky et al., 2014) or to a small region (Laine et al., 1996). To quantify the response of both CO$_2$ and CH$_4$ fluxes and SOC stock to drying in northern peatlands, we compiled CO$_2$ and CH$_4$ fluxes from six field WT manipulation experiments from Arctic and Boreal sites, optimized key parameters of the ORCHIDEE-PCH4 land surface model using data assimilation to reproduce varying WT conditions, and quantified the C flux and stock change in response to drying. Specifically, using a site specifically optimized model, we first quantify the sensitivity of C fluxes of each site when WT is sequentially lowered by 5, 10, 20, and 50 cm relative to the control WT, and then evaluate the changes of C stocks when the WT is lowered for 100 years. Lastly, we compare what drives the variations in C flux sensitivity among sites.

Method

Field drying manipulation experiment sites

We used data from six field WT manipulation (drainage) experiments, which are located between 62- and 71-degree North: (1) Särkkä, Finland (FI-SAR), (2) Lakkasuo, Finland (FI-LAK), (3) Healy, Alaska (US-HEA), (4) Bonanza, Alaska (US-BZF), (5) Chersky, Russia (RU-CHE), and (6) Utqiagvik (a.k.a. Barrow), Akaska (US-BES; Table 1). The specific peatland types include boreal bog, fen, and moist/wet tundra. Three sites are underlain by permafrost, while the others are not (Table 1). Peat depths range from 0.2 to 2.7 m (Table 2; note that RU-CHE has peat depths of 0.2–0.4 m considering spatial heterogeneity, and to be exact it is not peatland by definition—peat depth should be >0.4 m). The average control WT varies from 20 cm (belowground) to ~5 cm (aboveground), with the lowest seasonal WT ranging from 45 cm to ~1 cm (Figure S1). The drainage experiments were carried out in parallel with the control experiments, and the drainage intensity varies by site, ranging from ~17 (17 cm lower WT compared to the control) to 0 cm (no average difference). Flux rates were measured 0–30 years after the drying experiments started. CO$_2$ and CH$_4$ fluxes were measured using eddy covariance method and/or chambers. More details on

<table>
<thead>
<tr>
<th>Site (abb)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Ecosystem type</th>
<th>WT since (observation years)</th>
<th>Gas measured Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Särkkä, Finland (FI-SAR)</td>
<td>61.79</td>
<td>24.28</td>
<td>Bog</td>
<td>Ch (1991–92)</td>
<td>CO$_2$, CH$_4$, Nykänen et al. (1998)</td>
</tr>
<tr>
<td>Lakkasuo, Finland (FI-LAK)</td>
<td>62.80</td>
<td>30.98</td>
<td>Fen + bog</td>
<td>Ch (1991–92)</td>
<td>CO$_2$, CH$_4$, Nykänen et al. (1998)</td>
</tr>
<tr>
<td>Healy, Alaska (US-HEA)</td>
<td>63.88</td>
<td>149.23</td>
<td>Moist tundra</td>
<td>Ch (2011–18)</td>
<td>CO$_2$, CH$_4$, Euskirchen et al. (2019), Kittler et al. (2017)</td>
</tr>
<tr>
<td>Bonanza, Alaska (US-BZF)</td>
<td>64.70</td>
<td>144.33</td>
<td>Fen</td>
<td>Ch (2005–16)</td>
<td>CO$_2$, CH$_4$, Euskirchen et al. (2019), Kittler et al. (2017)</td>
</tr>
<tr>
<td>Chersky, Russia (RU-CHE)</td>
<td>68.62</td>
<td>161.35</td>
<td>Wet tundra</td>
<td>Ch (2005–16)</td>
<td>CO$_2$, CH$_4$, Zona et al. (2005, 2013)</td>
</tr>
<tr>
<td>Utqiagvik, Akaska (US-BES)</td>
<td>71.28</td>
<td>156.30</td>
<td>Wet tundra</td>
<td>Ch (2005–16)</td>
<td>CO$_2$, CH$_4$, Zona et al. (2005, 2013)</td>
</tr>
</tbody>
</table>

Abbreviations: Ch, chamber; EC, eddy covariance; MAP, mean annual precipitation; MAT, mean annual temperature.
CO2 and CH4 fluxes in northern peatlands using the parameterizations from Qiu et al. (2018) and a CH4 module (Salmon et al., 2021). Photosynthesis and plant respiration are simulated for peatland vegetation type (represented as C3 graminoids) as described in section 2.2.1 in Qiu et al. (2018). After senescence, litterfall goes into two litter pools (metabolic and structural) and three soil C pools (active, slow, and passive) after a series of decomposition processes following the CENTURY scheme (Krinner et al., 2005; Parton et al., 1987; Paustian et al., 1992). The decomposition rates of active, slow, and passive soil C pools, including the transfer among soil pools are 1.0, 0.027, and 0.0006 year⁻¹ at 30°C, and the actual rates are simulated considering soil temperature, moisture, and depth (Qiu et al., 2019). Peat C from three pools is decomposed to CO₂ and CH₄, with the decomposition rates affected by soil temperature and moisture, peat depth, and additionally oxygen concentration in soil pores in the case of CH₄ (Qiu et al., 2019; Salmon et al., 2021). Oxygen is diffused between the atmosphere and the top soil layer, or through snow layers when existing, as well as between soil layers, and is also provided up to the rooting depths by plant roots (Salmon et al., 2021). Oxygen in soils oxidizes CH₄, and the oxidation rate is determined by the turnover time of CH₄ (Salmon et al., 2021). The residual CH₄ after oxidation in each layer is then emitted to the atmosphere through diffusion, ebullition, and plant-mediated transport. Diffusion occurs between soil layers as well as between top soil layer and the atmosphere based on the concentration gradients, soil moisture, and soil pore size. Methane bubbles form due to hydrostatic pressure in soil, and the probability of these bubbles to reach the atmosphere is simulated as ebullition. The amount of plant-mediated transport is influenced by the gas transport efficiency (representing aerenchyma density) and seasonal plant productivity. More details on these processes are described in section 2.1 in Salmon et al. (2021). Peat growth (accumulation of peat C; C input into soil minus CO₂ & CH₄ production/decomposition) is simulated by transferring excessive peat C of one layer to the one below within the 32 discretized soil layers (section 2.1 in Qiu et al. (2019)).

Model description

Model setup and parameter optimization

The ORCHIDEE model allows multiple vegetation types in one grid cell, with distinct soil tiles to compute the hydrology of peat, herbaceous, and woody vegetation types. The fraction of the grid cell occupied by peatland receives runoff from the other non-peat vegetation fractions to maintain a high WT (Qiu et al., 2018), and the prognostic WT in peatland depends on the fraction size of non-peatland vegetation. Here, we do not use the prognostic WT from the model but set the entire grid cell to be covered by peatlands. Then, we prescribed soil moisture according to the observed daily WT (the resolution can be 30 min), and set soil moisture to 0.80 (80% of soil porosity filled with water and 20% with air) for the soil layers below WT and to 0.50 for the soil layers above WT. These values are the averages soil moisture observed in US-HEA and RU-CHE sites, where volumetric soil moisture was measured.

To more accurately simulate soil temperature, which is one of the critical drivers for CO₂ and CH₄-related processes and their rates, we used the thermal properties (heat capacity of 2.5·10⁴ J K⁻¹ m⁻³ and thermal conductivity of 0.05 W m⁻¹ K⁻¹ [dry] and 0.25 W m⁻¹ K⁻¹ [solid]) of 100% organic soil in the model. The apparent heat capacity and thermal conductivity were calculated considering the water and ice content in soil (Guimberteau et al., 2018). Plus, when simulated soil temperature was higher than observations, we overwrote the thermal properties of dry peat soils at the top soil layers within the soil thermic sub-module to mimic the insulating function of an overlying moss or organic soil layer to accurately simulate observed soil temperature profiles (Gornall et al., 2007; Soudzilovskaia et al., 2013).

Initialization parameters for each site for fitting soil temperature and soil organic carbon (C) content

<table>
<thead>
<tr>
<th>Site</th>
<th># dry peat layer (cm)</th>
<th>SOC accumulation (years)</th>
<th>obs. peat depth (m)</th>
<th>sim. peat depth (m)</th>
<th>obs.SOC (kg C m⁻²)</th>
<th>sim.SOC (kg C m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI-SAR</td>
<td>3 (1.0)</td>
<td>800</td>
<td>2.7</td>
<td>2.0</td>
<td>71–78</td>
<td>77</td>
</tr>
<tr>
<td>FI-LAK</td>
<td>2 (0.4)</td>
<td>700</td>
<td>2.3</td>
<td>2.0</td>
<td>71–78</td>
<td>76</td>
</tr>
<tr>
<td>US-HEA</td>
<td>4 (2.1)</td>
<td>800</td>
<td>0.35–0.45</td>
<td>1.5</td>
<td>19–31</td>
<td>35</td>
</tr>
<tr>
<td>US-BZF</td>
<td>2 (0.4)</td>
<td>800</td>
<td>1–2</td>
<td>1.5</td>
<td>-</td>
<td>53</td>
</tr>
<tr>
<td>RU-CHE</td>
<td>3 (1.0)</td>
<td>8000</td>
<td>0.2–0.4</td>
<td>0.7</td>
<td>12–24</td>
<td>24</td>
</tr>
<tr>
<td>US-BES</td>
<td>0 (0.0)</td>
<td>2000</td>
<td>1</td>
<td>1.5</td>
<td>16–31</td>
<td>34</td>
</tr>
</tbody>
</table>

Note: The number of dry peat layers (and corresponding thickness in cm) was included to increase goodness of fit between simulated and observed soil temperature, which does not influence the actual WT or soil moisture. Simulated peat depth and SOC are from the corresponding observation years for comparison to the observations, and may differ over the simulation years. The amount of SOC was simulated by adjusting the number of spin-up years, that is, SOC accumulation years.
as in (Ekici et al., 2014). These dry peat layers were decoupled from the soil hydrology module and only used for simulating soil temperature profiles. The number of dry peat layers was optimized for each site by minimizing the root mean squared error (RMSE) and Nash-Sutcliffe model efficiency coefficient (MEF) from the observed soil temperatures (shown in Table 2 and Figure S2).

We calibrated the key parameters that are associated with CO₂ and CH₄ fluxes to simulate site-specific fluxes of the control treatment (Table 3). Thus, the differences in C fluxes between control and dry treatments are driven by the prescribed WT of each treatment and model parameters that change by soil moisture. For GPP, the VC_max at 25°C (maximum carboxylation rate in photosynthesis at 25°C; default 40 μmol m⁻² s⁻¹ [Qiu et al., 2018]) was calibrated. In default setting, GPP decreases with decreasing soil moisture availability. However, some plants can photosynthesize more actively under dry condition (Salman et al., 2010). In addition, some sites (e.g., RU-CHE) showed significant changes in vegetation communities due to drying, with greater shrub abundance (Kwon et al., 2016). Increasing shrub abundance is often observed in drying northern peatlands unless taller trees outcompete them for light (Harris et al., 2020; Laiho et al., 2003; Murphy et al., 2009). To test the effects of increased photosynthetic rates on flux and stock change with or without composition changes, we additionally ran simulations with the increased VC_max at 25°C by 10% to mimic increased plant productivity. The phenology was selected between C₃ grasses and C₄ grasses + mosses by minimizing errors (RMSE and MEF) between simulations and observations. Phenology determines the onset time of photosynthesis, with the earlier onset (RMSE and MEF) between simulations and observations. Phenology was selected targeting the best fit to the observed CH₄ emissions of control treatment of each site using the ORCHIDEE Data Assimilation Systems (ORCHIDAS; Bastrikov et al. (2018); https://orchidas.lsce.ipsl.fr/). Daily CH₄ emissions of growing season were linearly interpolated for days without observations, and the earliest (latest) observations of each year were used for CH₄ emissions before (after) the first (last) observation of that year. Within the ORCHIDAS framework, we used the genetic algorithm (Goldberg & Holland, 1988; Haupt & Haupt, 2004) to find the best set of parameters within the defined boundary of each parameter. This stochastic algorithm is a global random search method based on the principles of genetics and natural selection, and was found in Bastrikov et al. (2018) to outperform traditional

\[
\text{GDD threshold} = 320 + 6.25 \cdot \text{temp} + 3.125 \cdot 10^{-2} \cdot \text{temp}^2 \quad (1)
\]

where temp is the average air temperature of the past 3 years. The coefficients of Equation (1) are calibrated globally for different vegetation types (Botta et al., 2000; Krinner et al., 2005). Earlier onset of photosynthesis for C₃ grasses + mosses is achieved by reducing the threshold of GDD using

\[
\text{GDD threshold} = \frac{1.93 \cdot 10^3}{1 + e^{-8.13 \cdot 10^{-3} \cdot (\text{temp} - 87.87)}}
\]

which is calibrated by GPP observations in 19 northern peatlands (Qiu et al., 2018). Different from the default setting of respiration (CO₂ production) cutoff below −1°C, we allowed a continuous CO₂ respiration at sub-zero temperatures, with the temperature control on respiration using

\[
\text{Temperature control} = e^{0.69 \frac{\text{temperature} - 20}{10}}, \text{max} = 1
\]

as non-growing season respiration can be considerable (Natali et al., 2019).

The amount of plant-mediated CH₄ transport was calculated after subtracting the fixed fraction of methanotrophy at roots (mrox) in the equation 9 in Salmin et al. (2021) in the original model. Instead, we excluded the methanotrophy (mrox) term in the plant-mediated CH₄ transport equation but used mrox as the amount of oxygen provided into soil through roots, and let it oxidize CH₄ during the methanotrophy process in soils, similar to Morel et al. (2019). This allowed the amount of plant-mediated CH₄ transport decoupled from methanotrophy in soils. Then, six parameters were optimized targeting the best fit to the observed CH₄ emissions of control treatment of each site using the ORCHIDEE Data Assimilation Systems (ORCHIDAS; Bastrikov et al. (2018); https://orchidas.lsce.ipsl.fr/). Daily CH₄ emissions of growing season were linearly interpolated for days without observations, and the earliest (latest) observations of each year were used for CH₄ emissions before (after) the first (last) observation of that year. Within the ORCHIDAS framework, we used the genetic algorithm (Goldberg & Holland, 1988; Haupt & Haupt, 2004) to find the best set of parameters within the defined boundary of each parameter. This stochastic algorithm is a global random search method based on the principles of genetics and natural selection, and was found in Bastrikov et al. (2018) to outperform traditional

Table 3 Parameter sets for each site for fitting CO₂ and CH₄ fluxes: VC_max at 25°C (maximum carboxylation rate in photosynthesis at 25°C), k (methanogenesis rate relative to the oxic decomposition), k_meth (turnover time of methanotrophy), t_veg (the amount of CH₄ transported through aerenchymatous plants), mrox (the amount of oxygen provided into soil through roots), mxr (the mixing ratio of CH₄ in bubbles in soils), and wsize (the extent of the connected network of water-filled pores)

<table>
<thead>
<tr>
<th>Site</th>
<th>VC_max (μmol m⁻² s⁻¹)</th>
<th>Phenology</th>
<th>k (ratio to oxic decomposition)</th>
<th>k_meth (s)</th>
<th>t_veg</th>
<th>mrox (fraction)</th>
<th>mxr (fraction)</th>
<th>wsize (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI-SAR</td>
<td>40</td>
<td>C₃ + moss</td>
<td>4.92</td>
<td>129,047</td>
<td>0.10</td>
<td>1.30</td>
<td>0.05</td>
<td>0.49</td>
</tr>
<tr>
<td>FI-LK</td>
<td>40</td>
<td>C₃ + moss</td>
<td>4.56</td>
<td>86,400</td>
<td>0.25</td>
<td>1.03</td>
<td>0.07</td>
<td>0.48</td>
</tr>
<tr>
<td>US-HEA</td>
<td>40</td>
<td>C₃</td>
<td>9.82</td>
<td>153,127</td>
<td>0.41</td>
<td>0.39</td>
<td>0.52</td>
<td>0.24</td>
</tr>
<tr>
<td>US-BZF</td>
<td>45</td>
<td>C₃</td>
<td>6.65</td>
<td>86,400</td>
<td>1.30</td>
<td>0.5</td>
<td>0.20</td>
<td>0.38</td>
</tr>
<tr>
<td>RU-CHE</td>
<td>40</td>
<td>C₃</td>
<td>1.02</td>
<td>97,695</td>
<td>2.23</td>
<td>1.07</td>
<td>0.11</td>
<td>0.41</td>
</tr>
<tr>
<td>US-BES</td>
<td>40</td>
<td>C₃ + moss</td>
<td>2.00</td>
<td>161,472</td>
<td>3.71</td>
<td>0.70</td>
<td>0.39</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Note: The parameters related to CH₄ processes are optimized using the ORCHIDAS.
gradient-based approaches when optimizing key ORCHIDEE model parameters. Calibrated parameters include \(k \) (methanogenesis rate relative to the oxic decomposition); for example, \(k \) of 2 represents the CO\(_2\) and CH\(_4\) maximum production ratio of 2:1; ranging from 1 to 10; Khvorostyanov et al., 2008; Wania et al., 2010; W meteorological measurements were not available, they were substituted by CRUNCEP v8 for the corresponding grid cell for the site-specific observation measurements were carried out with the observed rising atmospheric \(\text{CO}_2 \) for each site with the sequential drying. When WT and fluxes were measured at multiple locations within the study site (chamber-based method), we used the average WT for one representative simulation of that site. In addition, we excluded sub-plots, which experienced significant tree growth following drying (two sub-plots were excluded out of six in the case of FI-LAK).

2.5 | Model-observation comparison and statistical analysis

Model simulation errors against observations were estimated: RMSE, and the squared of its two partitioned components, squared difference of standard deviations (SDSD) and the lack of positive correlation weighted by the standard deviation (LCS) following Kobayashi and Salam (2000). They measure the magnitudes, for example, maximum and minimum seasonal flux rates, and patterns of fluctuations, for example, seasonality, respectively. We also estimated MEF for each site and treatment. When the model simulation is fully matching with the observation, RMSE, SDSD, and LCS are 0 and MEF is 1.

To compare the flux sensitivity to drying, we fitted exponential equations for NEE (net ecosystem CO\(_2\) exchange; \(R_{\text{eco}} = \text{GPP} \)) and CH\(_4\) for each site with the sequential drying.

\[
\text{NEE or CH}_4 = a \times e^{(b \cdot \text{WT})}
\]

using the nls fit function in R (R Development Core Team, 2013).

2.6 | Combined effects of CO\(_2\) and CH\(_4\)

Using the new global warming potential metrics (GWP*: Allen et al., 2018; Cain et al., 2019; Lynch et al., 2020), we estimated the combined effects of CO\(_2\) and CH\(_4\) flux changes. Different from the conventional GWP, GWP* considers the removal of short-lived gases over time, for example, the removal of CH\(_4\) from the atmosphere after the residence time of 12 years. Thus, its application can be especially beneficial when the CH\(_4\) emission is stable or decreasing over time.

3 | RESULTS

3.1 | Comparison between observations and simulations

The model simulated soil temperature profiles well (Figure S1). Although peat pore CO\(_2\) and CH\(_4\) concentrations can vary with WT and site-specific characteristics, simulated concentrations (ca. 3–40 g CH\(_4\) m\(^{-2}\)) were comparable with those of the previous studies (Saarnio et al., 1997; Waddington et al., 2009). Together with the prescribed WT, reasonable soil temperature and pore gas concentrations, and calibration of flux-related parameters, model simulations and observations of daily CO\(_2\) and CH\(_4\) fluxes agreed well
for both NEE (average RMSE: 1.04 g C–CO₂ m⁻² d⁻¹ and MEF: -0.36, Table S1 and Figures 1, 2 and Figure S3) and CH₄ (average RMSE: 0.03 g CH₄ m⁻² d⁻¹ and MEF: -8.27, Table S1: Figures 1, 2 and Figure S3) for control and drying treatments (for NEE, average RMSE: 1.20 g C–CO₂ m⁻² d⁻¹ and MEF: -2.05; for CH₄, average RMSE: 0.03 g CH₄ m⁻² d⁻¹ and MEF: -2.84, Table S1: Figures 1, 2 and Figure S3). The model was calibrated using observations from control treatments, and similar model performance for the drying treatment implies that the model can capture the response of C flux to WT variations well (Tables S1 and S2). Fluxes of some sites

FIGURE 1 Comparison of NEE (a, e), CH₄ (b, f), Reco (c, g), and GPP (d, h) between the model simulations (X-axis) and the observations (Y-axis) for control (a–d) and dry (e–h) treatments after the calibration for each site. Lines are drawn for 1:1 comparisons (solid) and regressions (dashed). Asterisks next to the site name indicate non-permafrost peatlands.
showed opposite differences between the simulated and observed dynamics. For example, in the case of US-BZF, drying reduced CH$_4$ emissions in simulations but the observed data showed increases in CH$_4$ emissions. These differences were related to measurements being made at multiple plots with high heterogeneity. Across most sites and fluxes model errors were due to seasonal patterns rather
than magnitude, as inferred from larger LCS than SDSD (Table S1; Figures 1, 2 and Figure S3). The drying treatment (deeper WT) of RU-CHE showed that errors from magnitude were larger than those from the seasonality for CO₂ fluxes, where drying decreased GPP in simulation but increased GPP in observations. With a good agreement between simulations and observations, we described the results based on the simulations from here.

3.2 | Response of C fluxes to drying

With the initial WT of the control treatment (simulation during the observation years), NEE ranged from −133 g C−CO₂ m⁻² year⁻¹ (US-BZF) to −21 g C−CO₂ m⁻² year⁻¹ (US-BES; Figure 5a). Across all sites dying reduced the net CO₂ uptake (i.e., less negative NEE) by 16 g C−CO₂ m⁻² year⁻¹ on average, with the smallest uptake decrease in US-HEA by 1 g C−CO₂ m⁻² year⁻¹ (with the smallest drying intensity) and the largest uptake decrease in RU-CHE by 50 g C−CO₂ m⁻² year⁻¹ (with the largest drying intensity). The change in NEE was driven primarily by reduced GPP (11 g C−CO₂ m⁻² year⁻¹ on average) and increased Reco (5 g C−CO₂ m⁻² year⁻¹ on average). The annual CH₄ emissions were largest at US-BZF (19 g C−CH₄ m⁻² year⁻¹) and smallest at US-HEA (0.1 g C−CH₄ m⁻² year⁻¹) for the control treatment (Figure 5b). CH₄ emissions decreased by 2 g C−CH₄ m⁻² year⁻¹ on average due to the drying treatment, with the smallest decrease in US-HEA by 0.003 g C−CH₄ m⁻² year⁻¹ and the largest decrease in RU-CHE by 5 g C−CH₄ m⁻² year⁻¹.

The drying intensity (change in WT) and the number of years since the start of the drainage differed among sites. To analyze the C flux sensitivity to drying by site, we compared C flux responses to sequential decrease of the WT by 5, 10, 20, and 50 cm compared to the control simulation. As WT draws down, net CO₂ uptake decreased (Figure 3a). This decreased uptake was driven both by reduced GPP and increased Reco (Figure S4). The response of NEE to a change of the WT was large when the initial WT was close to the soil surface, and insignificant and almost linear when the initial WT was below 10 cm (Figure 3a and Figure S4). The average decrease in the CO₂ sink was 13 ± 15 g C−CO₂ m⁻² year⁻¹ with 10 cm decrease in WT, ranging from 0 to 36 g C−CO₂ m⁻² year⁻¹. A similar response was found for CH₄ emissions. They decreased sharply when the initial WT was close to zero cm but showed negligible changes when the initial WT was below 10 cm (Figure 3b and Figure S4). The average decrease in the CH₄ emissions due to 10 cm lower WT cm was 4 ± 4 g CH₄ m⁻² year⁻¹ with the range between 0 and 9 g CH₄ m⁻² year⁻¹. These responses were mostly driven by reduced CH₄ production and CH₄ transport by plants, while CH₄ oxidation was decreased (US-HEA, RU-CHE, and US-BES), increased (FI-SAR and FI-LAK), or unchanged (US-BZF) with lowered WT (Figure S5).

Permafrost peatlands showed smaller net CO₂ uptake and lower CH₄ emissions compared to the non-permafrost peatlands (Figure 3; note that “ indicates non-permafrost sites), which was also represented by larger and smaller coefficient values of ‘a’ of the exponential fits for NEE and CH₄, respectively (Figure S6). Despite smaller net CO₂ uptake due to drying, the average NEE remained negative during the 100 years of simulation, indicating the persistence of peatland C sinks, even under drier conditions. Two permafrost underlain peatlands (RU-CHE and US-BES), which show low net CO₂ uptake due to the existence of permafrost and large response to drying due to high initial WT, showed net CO₂ emission in some years (Figure 3a), indicating reduced C sinks and the potential switch to C sources.

3.3 | Carbon stock changes due to drying

Although CH₄ emissions decreased in response to drying, larger decreases in net CO₂ uptake (less negative NEE) resulted in lower soil C stocks compared to the control (Figure 4a,b). When subjected to a lowered WT by 10 cm, peatlands still accumulate C but the rate of accumulation is lower by 0.2 ± 0.2 kg Cm⁻² over 100 years. We found that most of this reduction in C accumulation came from the active (lable) C pool (Figure 4d). Larger decreases in the active C pool and C stock were observed in US-BZF and RU-CHE, where the initial WT is close to 0 and the NEE response to drying was stronger than at other sites (Figure 4a,b). The most significant reduction in C stock (over 2 kg Cm⁻²) was observed at US-BZF with 50 cm lower WT, where permafrost does not exist (Figure 4a). Increasing photosynthetic uptake due to drying (increasing Vcmax by 10%) reduced the differences in GPP between simulation and observation at US-BZF and RU-CHE, where drying increased GPP (Table S2). Because of the larger C input to soil, increased GPP increased C stock compared to the control treatment in most sites (Figure 4c), out-compensating the C loss by drying. However, it was not the case for US-BZF when dried by > 10 cm, that additional C input due to increased productivity was not enough to offset enhanced Rf.

3.4 | Net GHG balance change

When comparing C fluxes between control and a lower WT by 10 cm over 100 years, drying reduced net CO₂ uptake (Figure 5a,d), but decreased CH₄ emissions (Figure 5b,e). These contrasting effects are combined using GWP*, with the following patterns observed across the study sites: control treatments of US-BZF and RU-CHE acted as net CO₂eq sinks, FI-SAR, US-HEA, and US-BES as CO₂eq sources, and FI-LAK switched from a CO₂eq source to sink after 50 years (Figure 5c). Lowering the WT by 10 cm reduced CO₂eq emissions by 310 ± 360 g CO₂eq m⁻² year⁻¹ because reduced CH₄ emissions played a larger role than the reduced CO₂ uptake (Figure 5f). It is noteworthy that when the initial CH₄ emission rates were high, as in the case of US-BZF, the peatland still acted as a net CO₂eq source after drying (Figure 5c). Peatlands that had the initial WT close to the soil surface showed larger responses than those that experienced a lower WT (Figure 5). Similar trends were shown for drying by 5 cm and 20 cm, but we observed smaller reductions in CO₂eq emissions with smaller drying intensity (Figure S7).
DISCUSSION

4.1 Responses of CO$_2$ and CH$_4$ fluxes to drying

Carbon sequestration and storage is one of the vital climate regulating services provided by peatlands; however, the C storage capacity of peatlands may be greatly altered under changing climatic conditions. We showed that drying of peatlands by lowering WT resulted in less C sequestration. First, lowered WT decreased C input into soil, due to reduced photosynthetic activity (i.e., GPP) under decreased water availability in shallow soil layers, where most roots exist. This response can be, however, different depending upon plant species. For example, vascular plants show higher productivity with lowered WT, while mosses show lower productivity (Sulman et al., 2010). In addition to the instant responses of GPP to WT variations, plant composition can shift (Breeuwer et al., 2009; Potvin et al., 2015) and GPP may decrease (Churchill et al., 2014; McPartland et al., 2019) or increase (Kittler et al., 2016) when WT in peatlands persistently lowers. Increasing productivity due to drying can compensate the C loss, but may not be enough under intense drying as shown in Figure 4c.

In addition to reduced photosynthesis, peatland drying generally increased peat C loss through heterotrophic respiration (R_h) despite decreased autotrophic respiration (R_a) offsetting this change. Respiration rates are higher under aerobic conditions compared to water-saturated conditions (Moyano et al., 2013), and this mechanistic relationship is well represented in the model. Although drying did not significantly affect soil temperatures in the simulation, drying reduced deep soil temperature at US-HEA and RU-CHE in the observations because of insulation effects of drier peat at the surface (Kwon et al., 2019). This implies that the respiration response of deep soil layers to drying can be limited as compared to the surface soil layers. The combined effects of drying on GPP and R_{eco}, thus the direction of C gain or loss, are largely dependent on the response of the plant productivity to drying, as shown in the reversed C stock change with the increased productivity in most sites (Figure 4a,c). The initial WT also plays a role that higher initial WT with a large proportion of labile C can show a stronger R_h response to drying, driving the net CO$_2$ response toward a larger loss.

In contrast to the reduced net CO$_2$ uptake following peatland drying, CH$_4$ emissions decreased with lowered WT with similar decreasing rates to those of the previous studies (Evans et al., 2021; Huang et al., 2021; Kuhn et al., 2021; Nykänen et al., 1998; Olesfeldt et al., 2013). This exponential decrease with lower WT (Figure 3b) can be attributed to thinner anaerobic peat layers at deep soil layers and thicker aerobic peat layers at the surface (Kuhn et al., 2021; Kwon et al., 2017; Olesfeldt et al., 2013). Although atmospheric CH$_4$ can be oxidized in top soils by high-affinity methanotrophs, thereby reducing net CH$_4$ emission to the atmosphere (Oh et al., 2020), the response of CH$_4$ emissions

FIGURE 4 Carbon stock change due to decreasing WT by 5, 10, 20, and 50 cm compared to the control treatment. Total C change (a), total C change in % (b), total C change when $V_{\text{max},25}$ is increased by 10% (c), and C change by pool (d). Negative (positive) values represent C loss (gain) or smaller (larger) C accumulation compared to the control treatment. Positive values of WT denote WT above the soil surface. Asterisks next to the site name indicate non-permafrost peatlands.
to WT was largely driven by CH$_4$ production because most CH$_4$ is oxidized by low-affinity methanotrophs when abundant CH$_4$ exists in peat soils (Kwon et al., 2017, 2021). The initial WT, thus, largely affected CH$_4$ emissions through the rate of methanogenesis (aerobic respiration to methanogenesis ratio; k) and methanotrophy (k_{MT}; turnover time of methanotrophy; Figure S8). For example, a low ratio of aerobic respiration to methanogenesis (smaller k; higher CH$_4$ production potential) in RU-CHE and US-BES compared to other sites can be attributed to higher average WT and smaller temporal variations (Figure S1), which kept the soil more anaerobic than other sites. The variations in these optimized parameters among sites may represent other environmental status that the model does not include, such as substrate status (Chang et al., 2020; Roy Chowdhury et al., 2021).

4.2 Variations in sensitivity to drying

The fluxes of CO$_2$ and CH$_4$ were sensitive to drying when the initial WT was close to 0. Unless there had been an abrupt hydrological change before the observations, the current WT can be represented as the long-term WT. Water-saturated peatlands, which are less exposed to aerobic conditions, have a large fraction of partially decomposed C in the topsoil compared to peatlands with lower WT, the topsoil of which has already been largely decomposed. Thus, a large fraction of remaining labile C can be rapidly decomposed to CO$_2$ instead of CH$_4$ when WT lowers, thus showing a stronger drying response. Non-permafrost peatland with high initial WT in US-BZF showed the strongest response to drying up to 50 cm, with $>$2 kg C m$^{-2}$ less C accumulating over
100 years compared to the initial WT condition. In contrast, peatlands with low initial WT may show no or subtle responses to drying due to less available labile C in deeper soil layers (Huang et al., 2021; Muhr et al., 2011). Larger temperature fluctuations in shallow layers compared to deeper layers may contribute to these stronger responses (Kwon et al., 2017). Fluctuations in WT can also affect the magnitude of the responses: Although the largest response was observed in US-BZF because of the combination of high WT and a large C stock, temporal lowering of WT resulted in a smaller slope change than in RU-CHE (Figure 3 and Figure S6), where WT was constantly high.

Permafrost underlain peatlands showed lower CO₂ and CH₄ fluxes compared to the other sites, as shown in previous studies (Kuhn et al., 2021; Olefeldt et al., 2013; Treat et al., 2018). This is mainly because permafrost limits the plant rooting depth and productivity, subsequently leading to reduced C input to soils, and reduced decomposition. However, the responses to drying in terms of direction and magnitude were similar between permafrost and non-permafrost peatlands. Low absolute C fluxes in permafrost peatlands affected the variations, leading to almost no response in C fluxes and stock to drying in US-HEA, where initial WT is low and the existence of permafrost retards deep soil processes. Furthermore, low absolute CO₂ fluxes in RU-CHE and US-BES resulted in a temporal switch from net CO₂ uptake to net CO₂ emission in response to drying.

The simulated exponential decrease in CH₄ fluxes as a function of WT was very similar to previous observations in natural (Huang et al., 2021; Kuhn et al., 2021; Nykänen et al., 1998; Olefeldt et al., 2013) and managed peatlands (Evans et al., 2021). However, our simulations showed exponentially decreasing NEE to near-neutral NEE with lowered WT, in contrast to the linear relationship between WT and NEE in the managed peatlands of Evans et al. (2021). The difference can be attributed to the management (harvest): Fens and bogs without harvest hardly showed the net CO₂ emissions with low WT, but grasslands and croplands showed net CO₂ emissions with low WT possibly because of different biogeochemical processes from natural peatlands, for example, disturbance and nutrient status (Evans et al., 2021). Nevertheless, we can further investigate whether natural peatlands can act as the net CO₂ source with extremely low WT by including more sites and more years with climate variability (Fenner & Freeman, 2011; Qiu et al., 2022).

4.3 C stock change and warming effects

Stronger decreases in the net CO₂ uptake than decreases in CH₄ emission resulted in smaller C accumulation in dry peatlands. Also, water-saturated peatlands were more vulnerable to C loss in response to drying compared to peatlands with initially lower WT. Furthermore, a significant C loss was observed in non-permafrost peatlands and a possible switch from C sink to source in permafrost peatlands. It is challenging to detect the change in SOC in field manipulation experiments since the soil C pool changes slowly, but we can infer from a large accumulation of C in peatlands that wet conditions are favorable for slower turnover and higher C accumulation in soils (Hugelius et al., 2020; MacDonald et al., 2006). Whether these C sinks become C sources or not is highly uncertain, but it is likely that C sink capacity decreases or even turns into a C source (Hugelius et al., 2020), combined with higher risk of peat fire may make these C stocks more vulnerable to future warming (Turetsky et al., 2011; Witze, 2020). Günther et al. (2020) showed that peatland drying has a net warming effect due to larger increases in long-lived CO₂ emission than decreases in short-lived CH₄ emission, which contrasts with this present study. Günther et al. (2020) used emission factors to estimate warming effects, with much larger CO₂ emission rates than CH₄ in temperate and tropical zones compared to the smaller warming effects reported here for the drying response of boreal peatlands. As both CO₂ and CH₄ fluxes are responding non-linearly to a lower WT and the relative changes between CO₂ and CH₄ fluxes differ by site combined with temperature sensitivity (Chen et al., 2021), more thorough analyses are needed to quantify the compound effects of warming and drying on peatland C.

We did not include climate change other than WT drawdown in this study, but WT dynamics are tightly connected with climate change. For example, warming itself can increase evapotranspiration and warming-induced increases in plant biomass can accelerate this change (Helbig et al., 2020), further lowering WT in peatlands. In addition, drier peatlands with lower water availability can increase sensible heat flux, which can warm lower atmosphere (Gökçekede et al., 2017). Changing precipitation patterns can modify WT of peatlands in the local and regional scales (Qiu et al., 2022). Because of high uncertainty and large temporal and spatial variations in the relationship among temperature, precipitation, and peatland WT, it is challenging to forecast the direction and magnitude of C response of northern peatlands and their feedback with climate. However, studies including climate change predict that northern peatlands will reduce their C sink capacity (Chaudhary et al., 2020) or lose C (Treat et al., 2021; Wu et al., 2013) especially under strong warming scenarios (Chaudhary et al., 2022; Qiu et al., 2022). Although the magnitude of C loss in response to WT changes in our study is less than the previously studied temperature and precipitation responses, our results indicate that drying may exacerbate C loss due warming of northern peatlands.

4.4 Limitations and future directions

Despite well simulated fluxes after optimizing the model parameters, some processes can be added for further improvement. For example, our model does not differentiate peatland types, such as fens and bogs, which have distinguishable hydrologic connectivity to groundwater and nutrient supply (Charman, 2009). Greater parameter value (V₉₅ₐ₅₂) for plant productivity in US-BZF (fen) than other sites could have represented different nutrient supply, but different seasonality among peatland types may not be captured depending on the relative importance of hydrologic connectivity on the C cycle. Furthermore, processes in the standing water in fens, such as CH₄
oxidation in the water column (Ward et al., 2020), contribution of algae (Kane et al., 2021) and predation (Wyatt et al., 2021), can be incorporated.

Our current model has one peatland-representative plant functional type and does not distinguish multiple peatland plant species, such as sedges, mosses, shrubs, and trees, which can respond differently to short-term hydrological changes (Sulman et al., 2010), and their potential compositional change following long-term hydrological changes (Bureauw et al., 2009). We did not include peatland forestry in this study, but intensive drainage that results in significant tree growth can be an aspect to consider, which may increase (Krüger et al., 2016; Minkkinen et al., 1999; Simola et al., 2012) or decrease (Krüger et al., 2016; Minkkinen et al., 1999; Nykänen et al., 2020; Simola et al., 2012) soil C but increase plant biomass and total terrestrial C stock (Minkkinen et al., 1999). Furthermore, potentially deepening rooting depth (priming effects) may accelerate C loss as well in deeper soils (Keuper et al., 2020). In addition, our current model has constant peatland surface elevation, although peatland surfaces are not static and changes in their physical properties can alter soil biogeochemical properties: Persistent dry conditions can change the peat properties, such as bulk density, which can subsequently influence hydraulic and thermal properties, decomposition rates, and plant composition (Kreyling et al., 2021; Nykänen et al., 1998; Turetsky et al., 2014). After a substantial portion of the dry peat at the surface is decomposed and becomes compact, the surface subsides and the relative WT becomes higher (hydrological self-regulation of peatlands; Belyea & Baird, 2006; Dise, 2009; Waddington et al., 2015). We prescribed the WT with the observations (relative to the surface), and short-term responses up to the observation point were well simulated. However, without dynamic surface elevation (e.g., subsidence) represented in the current model, WT drawdown and its effect on the C cycle can be overestimated in the long-term especially in non-permafrost peatlands (Nijp et al., 2017). This overestimation can be less of a concern in permafrost peatlands, because permafrost and ground ice block or retard the vertical and lateral water drainage, and permafrost thaw and ground ice melt will remove surface water that connects the hydrological feedback process. The intensity of this change can be also species specific and can be strong at the surface, where abundant macro-pores exist (McCarter et al., 2020). Additional model development to take into account these short term and long term as well as aboveground and belowground factors could further reduce the uncertainty of the direction and magnitude of C stock changes.

With a finely calibrated land surface model with a multilayer soil module, we demonstrated decreasing CO₂ sink strength and CH₄ emissions in response to drying, and these responses were stronger when initial WT conditions were close to the soil surface. There is limitation in upscaling this response to the whole northern peatlands based on the results from only six northern peatlands. For example, US-BZF showed the highest CH₄ fluxes among all six sites of this study, but its CH₄ flux rate is comparatively lower than other northern peatlands (Kuhn et al., 2021) possibly because methanogens are outcompeted by reducers of alternative electron acceptors (Kane et al., 2013; Rupp et al., 2021). Variations in parameters that are associated with methanogenesis (k) partially represent redox status, yet such processes can be included. Using averaged parameters for the whole region can over- or underestimate fluxes (Qiu et al., 2018; Salmon et al., 2021; Treat et al., 2018), or converge to the average fluxes. In addition, despite several available peatland/wetland maps (Hugelius et al., 2020; Olefeldt et al., 2021; Xu et al., 2018) and possible usage of precipitation minus evapotranspiration as a proxy of relative WT variations (Gulev et al., 2021), the lack of highly heterogeneous local WT data in the northern peatlands will not allow us to accurately assess the current responses of northern peatlands to changes in water balance. In addition to the high uncertainty in the temporal and spatial variations in WT depending on climate and anthropogenic activities, permafrost-thaw-related changes add more complexity to evaluation of long-term trends. When excessive ground ice melts, it can induce further hydrological changes (Andersen et al., 2020; Lewis et al., 2012; Nitzbon et al., 2020; Rodenhizer et al., 2020). Thus, the inclusion of ground ice dynamics and the associated topographic and hydrological change in the model are essential to constrain C flux and stock change in permafrost peatlands (Cai et al., 2020; O’Neill et al., 2019).

Although peatland drying reduced the net CO₂eq fluxes, it decreased C accumulation, which is one of the crucial functions of northern peatlands. In particular, peatlands with a high WT are more vulnerable to C loss, including a large potential C loss in non-permafrost peatlands and a possible switch from C sink to source in permafrost peatlands. Human-induced drainage can be avoided to reduce this C loss, but climate-driven peatland drying, including permafrost-thaw related drying, cannot be prevented without strong climate change mitigation. Furthermore, re-wetting does not necessarily restore peatlands to pre-drying conditions (Harris et al., 2020; Kreyling et al., 2021), and the intact wet conditions are critical for maximizing C storing function of peatlands.

ACKNOWLEDGMENTS

This research was supported by the l’Agence Nationale de la Recherche (Make Our Planet Great Again; ANR-18-MPGA-0007). Chunjing Qiu has been supported by the ANR (CLAND Convergence Institute; ANR-16-CONV-0003). Elodie Salmon has been supported by Horizon 2020 (CRESCEndo grant no. 641816), and Labex VOLTAIRE (ANR-10-LABX-100-01). Bertrand Guenet has been supported by the grant (Holistic management practices, modelling and monitoring for European forest soils [H2020 grant agreement No. 101000289]). Eugénie S. Euskirchen acknowledges funding provided by the US Geological Survey, Research Work Order 224 to the University of Alaska Fairbanks, the Bonanza Creek Long-Term Ecological Research Program funded by the National Science Foundation (NSF DEB-1026415, DEB-1636476) and the NSF Long-Term Research in Environmental

REFERENCES

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.