Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans

Marlene C. S. Dal Colle,[a, b] Giulio Fittolani,[a, b] and Martina Delbianco[a]

NMR spectroscopy is the leading technique for determining glycans’ three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e.g., 13C or 19F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans’ conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.

Introduction

Glycans, a.k.a. polysaccharides, are biopolymers ubiquitous in nature playing important roles as structural materials, for energy storage, and as mediators of many biological processes.[1] To gain a better insight into their function and establish structure-function correlations, it is important to understand glycans’ three-dimensional structure. To date, the chemical complexity of polysaccharides hampered structural studies with standard characterization techniques. Unlike proteins and nucleic acids, glycans are non-linear polymers capable of adopting multiple conformational states separated by low energy gaps.[2,3] Low propensity to form single crystals with suitable dimensions hampers X-ray analysis, sensitivity to electron beam limits the use of electron microscopy (EM), and lack of chromophores prevents the use of circular dichroism (CD).[4,5] Single molecule imaging techniques have provided new tools to explore glycans’ conformational space with sub-nanometer resolution, but to date they remained limited to the gas phase.[6,7]

Nuclear magnetic resonance (NMR) spectroscopy, supported by molecular dynamics (MD) simulations, is the leading technique for the structural characterization of glycans in solution phase.[8] Scalar J-couplings, NOEs, and residual dipolar couplings (RDCs) are NMR observables that are relatively simple to measure and useful for verifying theoretical models or derive experimental conformations.[9] Moreover, several NMR experiments are available to dissect glycans interactions with proteins.[10] Still, the severe chemical shift degeneracy of glycans (i.e., signal overlapping) dramatically complicates the analysis.[11,12]

To facilitate the analysis of glycans by NMR spectroscopy, synthetic probes carrying NMR-active nuclei (e.g., 13C or 19F) or lanthanide tags have been developed.[13,14,15] These strategies permitted to break the chemical shift degeneracy of glycans and revealed important aspects of glycan conformations and interactions. Furthermore, the insertion of NMR labels overcomes the poor sensitivity and resolution of standard NMR spectroscopy.[16] Still, the preparation of broad collections of specifically labeled glycans remains a synthetic challenge, often limiting these studies to small libraries of relatively simple glycans. Here, we discuss some synthetic developments to access specifically labeled glycan probes, highlighting their contribution in the structural and functional characterization of glycans.

13C-Labeled Glycans

The large chemical shift dispersion of 13C is a considerable advantage over 1H for NMR studies. However, the low natural isotopic abundance of 13C (1.1%) imposes the use of 13C-enriched sample. 13C-labeling has minimal impact on the chemical properties of the glycan[17] and it allows for a wide range of NMR experiments in combination with 1H-NMR.[18] For these experiments, the problematic large 13C-1C couplings can be suppressed by virtual decoupling schemes.[19]

13C-labeled glycan probes were prepared using chemical[20,17] and enzymatic[21] synthesis or metabolic[22] approaches. Uniformly labeled as well as site-specific labeled compounds have been reported, revealing important structural features of glycans and providing a detailed description of their interactions with proteins. A uniformly 13C-labeled trimannoside Man, suggested the glycan binding epitope to the antiviral lectin cyanovirin-N.[23] The orientation of each hydroxyl group in the trisaccharide and the hydrogen-bonding pattern between the glycan and the protein in aqueous solution were identified.[24]
13C-labeled glycans offer an additional advantage in binding studies with heavily glycosylated proteins, avoiding interference with signals from the glycans attached to the protein. A α2,3- and α2,6- sialyl N-acetyllactosamine trisaccharides, 13C-labeled at the Neu5Ac and Gal residues, identified the ligand for the spike glycoprotein in SARS-CoV-2 virus and permitted epitope mapping.

While uniformly 13C-labeled glycans fueled the implementation of 13C-NMR spectroscopy to study glycans, spectral overlap of the 13C signals remains a challenge for homo-polysaccharides or highly repetitive glycans. In these cases, the preparation of site-specific labeled compounds is imperative to gain valuable information, but adds synthetic complexity. Site-specific 13C-labeled glycans can be obtained via chemical synthesis[20,17] as well as chemo-enzymatic methods.[21] Automated glycan assembly (AGA)[28] is well-suited to generate collections of related glycans, incorporating 13C-labeled residues in specific positions of the glycan chain (Figure 1A). A collection of linear β(1-6)-linked hexa- and tetra-oligosaccharides, bearing one 13C-labeled Glc unit in different positions of the chain, granted access to J-coupling values, supporting the helical model predicted by MD (Figure 1B).[19] This collection was further expanded to include oligomers with two 13C-labeled Glc units, providing geometrical information on the relative orientation of the Glc residues along the glycan backbone, measured via 13C-H residual dipolar couplings (RDCs) (Figure 1B).[22] A detailed NMR analysis using different aligning media demonstrated the high flexibility of these oligomers.

Site-specific labeled compounds were also exploited to identify the preferred protein binding epitope within a repeating oligomeric glycan (Figure 1C). A collection of 13C-labeled poly-lactosamine hexasaccharides was prepared following a chemo-enzymatic approach. 13C-labeled galactose units were introduced in particular positions of the tri-LacNAc motifs and the analysis of supramolecular carbohydrate assemblies.

Marlene C. S. Dal Colle is a PhD candidate at the Department of Biomolecular Systems, at the Max Planck Institute of Colloids and Interfaces in Potsdam (Germany). She obtained her Bachelor’s degree in Chemistry from Ca’ Foscari University of Venice and then she moved to Padua where she obtained her Master’s degree in Chemistry in 2020. In March 2021 she joined the Carbohydrate Materials group to pursue her PhD under the supervision of Dr. Martina Delbianco. Her current research focuses on the synthesis and characterization of carbohydrate materials.

Giulio Fittolani obtained his BSc and MSc in Industrial Chemistry from the University of Padua (Italy). In 2019, he moved to the Max Planck Institute of Colloids and Interfaces (Germany) as a PhD candidate in the Carbohydrate Materials group under the supervision of Dr. Martina Delbianco. His research focuses on the synthesis of non-natural oligosaccharides and the analysis of supramolecular carbohydrate assemblies.

Dr. Martina Delbianco studied chemistry at the University of Milan (Italy). She then moved to Durham University (UK) to pursue a PhD under the supervision of Prof. David Parker. During her postdoctoral training she worked on carbohydrate chemistry and automated synthesis in the group of Prof. Peter H. Seeberger at MPIKG (Germany). Since 2018, she is the group leader of the Carbohydrate Materials at MPIKG. Her research focuses on the synthesis and structural characterization of glycans and their assemblies.
19F-Labeled Glycans

An attractive chemical modification of carbohydrates is the introduction of 19F. The absence of background signals in biological systems makes 19F-labeled glycans ideal probes for detecting interactions with biomacromolecules. Short acquisition times, high sensitivity and large chemical shift range are additional advantages offered by the 19F nucleus. Hence, (deoxy)fluorination of carbohydrates is an effective approach to study protein-carbohydrate interactions.\(^{19,F}\) Perturbation and line broadening effects in ligand-observed NMR can be exploited to detect binding. Simple spectra analysis offers the possibility of studying events in real-time, with potential applications for in vivo studies\(^{40}\) or to monitor enzymatic reactions.\(^{41}\) Synthesis of site-specific 19F-labeling can also be combined with 13C-labeling to provide additional geometrical information for conformational analysis.\(^{22}\) As drawback, the synthesis of 19F-labeled glycans can be challenging, often demanding different protocols depending on the position(s) to be labeled on the glycan residue.\(^{42,43}\)

![Figure 1](image)

A. The introduction of 13C-labeled residues in specific positions of the oligosaccharide breaks the chemical shift degeneracy of the unlabeled analogue. Site-specific 13C-labeled oligosaccharides can be prepared by AGA using protected monosaccharide building blocks (BB1 and BB2). B. 13C-labeling facilitates glycan conformational studies providing access to local as well as global conformational information (i.e., J-coupling constants and RDCs). C. Site-specific 13C-labeled tri-Lac-Nac hexasaccharides permitted to identify the preferred binding epitopes for a panel of human galectins by STD-HSQC NMR (the 3D model of galectin-9 N is represented, PDB 2d6m). The monosaccharides are represented following the symbol nomenclature for glycans (SNFG). For additional details we refer to Refs. [14, 27, 28].
enzymatic incorporation of 19F-labeled monosaccharides in glycoconjugates is an interesting avenue to access complex glycan probes, but 19F-monomers are not always accepted by enzymes.

In contrast to other isotopic labels, the introduction of 19F can have significant effects on the physicochemical properties of the glycan. The replacement of a hydroxyl group of the ring by a fluorine atom generates a C–F bond, smaller in size compared to the C–OH group. Being the C–F bond highly polarized, the electron density of the whole structure is altered with repercussions on glycan conformation and interactions. In addition, the extent and the site of fluorination can affect the glycan lipophilicity and in vivo stability. Thus, a careful placement of the 19F atom in the glycan is key to avoid interference with the parameter under investigation (e.g., conformation or binding), while preserving excellent sensitivity and spectral resolution.

Recently, a collection of 19F-labeled Lewis type 2 glycan antigens was prepared by AGA and screened against mammalian and bacterial lectins, as well as enzymes, in a simple 19F-NMR assay. Chemical shift perturbations or changes in peak intensity upon addition of the protein allowed to qualitatively assess the strength of the interaction (Figure 2A). The antigens were designed with the 19F reporter in the lactose inner core subunit, distal from the binding site, to minimize the effects of the fluorine atom during the binding event. Control experiments demonstrated that the 19F reporter did not affect the binding (Figure 2B) and could be placed far from the glycan binding site, while preserving excellent sensitivity (Figure 2C).

Deoxyl fluorination implies a drastically weaker H-bond donation ability, compared to the hydroxyl group. Thus, the OH/F exchange could identify the contribution of individual hydroxyl groups engaged in hydrogen bonds with a protein. This strategy was used to pinpoint the hydroxyl groups of Glc, Man, and Gal involved in lectin binding and highlighted those that can be chemically modified without affecting binding. The simultaneous screening of the 19F-monosaccharide library in the presence of a lectin was performed using a 19F-NMR T_2 filtering-based assay. The drastic reduction of the 19F peak intensity in the presence of the protein indicated the bound compounds (Figure 3).

![Figure 2. A. A collection of 19F-labeled Lewis type 2 antigen analogues was prepared by AGA. The F-glycans were screened against proteins, including mammalian and bacterial lectins, as well as enzymes. B. Chemical shift perturbation plot showing that 19F-Lex perturbed resonances similarly to the non-fluorinated Lex. C. Carr-Purcell-Meiboom-Gill (CPMG) NMR spectra of 19F-H type 2 and 19F-C$_2$F$_5$-H type 2 alone (grey) and in presence of the mammalian lectin DC-SIGN (blue). DC-SIGN binds to both 19F-glycans as shown by a decrease in peak intensity in presence of protein (orange lines). The monosaccharides are represented following the symbol nomenclature for glycans (SNFG). Figure adapted from Ref. [46].](https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202200416)
Glycans with Lanthanide Tags

An alternative strategy to isotopic labeling is the use of lanthanide tags. The glycan is functionalized with a tag capable of complexing a paramagnetic ion, which induces significant chemical shift changes in the glycan due to dipolar interactions with the metal unpaired electrons. This strategy increases chemical-shift dispersion facilitating chemical-shift assignment. The PCSs depend on the distance and the angle between the nuclei and the metal; thus, they contain conformational information over a range of 30 Å. Rigid tethers between the glycan and the lanthanide tag, often based on aromatic moieties, are preferred as they minimize paramagnetic averaging effects. The tethers are generally installed at the reducing end of the glycan in a late stage of the synthesis, followed by complexation with the lanthanide ion (e.g., La³⁺, Dy³⁺, Tm³⁺, Tb³⁺). PCS-derived chemical shift changes permitted the discrimination of the individual branches in complex bi-antennary and high-mannose-type N-glycans. The involvement of each individual branch of the tetra-antennary N-glycan in the recognition by two N-acetyl-lactosamine-binding lectins could be described with unprecedented resolution, confirming major interactions between the Gal and GlcNAc residues at the A, C, and D arms with the Datura stramonium seed lectin.

Conclusions and Outlook

NMR spectroscopy is the leading method for determining the three-dimensional structure and dynamic of carbohydrates in solution phase and a fundamental tool to study protein-glycan interactions. However, as molecular mass and complexity increase, NMR spectra become progressively more difficult to interpret and unambiguously assign due to spectral crowding. We demonstrated that labeled glycans or lanthanide tags are valid approaches for addressing these problems and simplify the analysis.

To date, the complexity of glycan synthesis has often limited these NMR studies to small collections of short and relatively simple glycans. Recent advances in synthetic methodologies as well as the advent of automated techniques granted unprecedented access to oligo- polysaccharides. We imagined that these technologies will fuel the production of broad libraries of complex labeled glycans, permitting to monitor a specific site of a glycan within the bigger structure. So far, much effort was directed to the study of mammalian glycans. In the future, we expect that this approach could be extended to explore complex bacterial polysaccharides or glycaminoglycans.

Among all NMR-active nuclei, the F nucleus stands out due to its unique properties. Broad collections of F-glycans with different chemical shifts could be designed for rapid real-time detection of binding to a protein. The installation of F reporters in polysaccharides extracted from natural sources could also be exploited as an alternative strategy to labeling with UV-Vis active chromophores. Furthermore, the absence of F in biological samples could open the way to in cell NMR studies, often hampered by high background signals.

With increasing molecular complexity, the implementation of multiple labels could facilitate the NMR analysis even further. These analyses should be carried out with proper control studies to confirm that the modification, albeit small, does not influence the results. Molecular dynamics simulation could provide some guidelines for such studies. On the other hand,
force fields for MD are in a constant refinement process to overcome the pitfalls (e.g. chair conformational equilibria) and experimental validation is a fundamental tool to improve the accuracy of their prediction.\[46\]

Lastly, labeled glycans could be useful probes for solid state NMR, revealing important aspects of glycan interactions\[67\] and aggregation.\[48\]

Acknowledgements

We thank the Max Planck Society, the MPG-FhG Cooperation Project Glyco3Dplay, the German Federal Ministry of Education and Research (BMBF, grant number 13X51114), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation - SFB 1449-431232613; sub-project C2) for generous financial support. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: glycans · isotopic labeling · NMR spectroscopy · protein-glycan interactions · site-specific labeling
