Bin-based visualization of cytokine-co-expression patterns of IL-10-producing CD4 T cell subsets

Recently, the dogma representing effector CD4 T cell (Teff) diversity as discrete subsets has been challenged by unsupervised analyses of single-cell RNA sequences. In particular, two studies from Cano-Gmez et al. and Kiner et al. showed that in vivo differentiated Teffs do not cluster into discrete populations but rather form a transcriptional continuum following either a gradient of “effectorness” [1] or a temporal gradient reflecting the kinetics of response to infections [2].

Despite a technologic burst allowing for multiparametric protein expression analysis at single-cell level by flow or mass cytometry [3], gradients of protein expression remain hardly tangible because conventional analyses use successive gating that creates discrete cell subsets. Other methods, using dimensional reduction and clustering like t-SNE or UMAP, require down-sampling and render quantitative comparisons problematic. Here, we tested whether the CD4+ T cell continuum described at the transcriptomic level also existed at the protein level by analyzing flow cytometric data with our new semi-continuous bin-based algorithm for “pattern recognition of immune cells” (PRI) [4]. We took the example of the CD44+CD4+ T memory cells (Tmems) expressing IL-10 and those expressing other cytokines, such as IFN-γ-producing T helper type 1 cells (Th1), IL-21-producing T follicular helper cells (Tfh), or TNF-α+IFN-γ+IL-2+IL-21+ lupus-associated T super helper cells (Tsh) [4], in mouse autoimmunity and aging.

First, we compared IL-10 expression in Tmems relatively to PD-1 and IFN-γ by conventional two-parameter analysis (Fig. 1A; Supporting Information Fig. S1A) and three-parameter bin-plot analysis with PRI (Fig. 1B). Despite lower frequencies of IL-10-producing cells (Fig. 1C) in young wild-type C57BL/6 and pre-lupus NZBxNZW F1 (NZBxW) mice, the IL-10 pattern was conserved independently of age or health status. This pattern characterized by largely overlapping IFN-γ and IL-10 patterns (60% of co-expressers), albeit IL-10+IFN-γ+ cells produced lower IFN-γ level (Fig. 1A, B). The IL-10+ cells mainly clustered in the PD-1+/high/IFN-γ+ area, with minute proportions in the IFN-γhigh and PD-1– areas (Fig. 1B, D). Further analysis with PRI, allowing a more comprehensive analysis of IL-10 level in all (mean signal intensity [MSI]) and IL-10+ cells (positive mean signal intensity [MSI+]) than the “color mapping of dots” in FlowJo software (Supporting Information Fig. S1B), revealed a gradient of IL10 expression originating from the PD-1+/low area and culminating in the PD-1– area (Fig. 1D). The positive correlation between IL-10 and PD-1 expression was most striking in sick NZBxW mice but was also visible in old C57BL/6 mice.

Next, comparing IL-10, TNF-α, IL-2, IL-21, and IFN-γ expression in relation with PD-1 and IFN-γ level showed distinct but partially overlapping patterns that formed a cloud gathering multiple cytokines producers in the PD-1–/low/IFN-γ+ area (Fig. 2A). In particular, the PD-1+IFN-γ+ quadrant contained overlapping IL-21+ and IL-10+ areas. TNF-α and IL-2 displayed similar patterns, modestly overlapping IL-10 pattern. We explored the actual combinatorial expression of IL-10 with the other cytokines by 4-parameter bin-plot analysis (quadru-plots) (Supporting Information Fig. S2A). The largest IL-10+ subset (37.23%) produced exclusively IL-10 (Fig. 2B), while a third of the IL-10+ cells co-expressed an additional cytokine (Fig. 2B and Supporting Information Fig. S2B). Most frequent double- and triple-expressers produced IFN-γ (18.44%) and IL-21 (10.47%), whereas IL-10+IL-2+ and IL10+TNF-α+ cells were scarce. Triple-expressers were mainly IL-10+IFN-γ+IL-21+ cells (8.1%). Finally, in double-, triple-, quadruple- and quintuple-producers, the highest IL-10 intensities were associated with IL-21 and IFN-γ expression (Fig. 2B; vanderbilt with yellow and orange bins), whereas the lowest intensities correlated with IL-2 and TNF-α expression. UMAP approach confirmed little co-expression of IL-10 with TNF-α and IL-2 (Supporting Information Fig. S1C). Further analysis revealed populations of high TNF-α and/or IL-2 producers in the IL-21+ areas, excluded from the IL-10+ quadrants and likely representing Tsh cells. This distribution confirmed negative correlations between IL-10 and TNF-α or IL-2 expression (Fig. 2C).

Altogether, this analysis revealed a continuum between IL-10-producing Tmems and cells with cytokine profiles reminiscent of Th1, Tfh and Tsh cells, with all possible cytokine combinations at single-cell level. The consistency of the cytokine patterns in mice of different age and health status suggests that these may represent conserved programs of CD4 T cell differentiation that vary quantitatively depending on the physiological context. Progressive accumulation of multifunctional Tmems evokes the “effectorness” gradient evidenced by single-cell transcriptomics [1]. Negative correlations between IL-10 and IFN-γ level, and TNF-α and IL-2 expression suggest a repression of these cytokines in IL-10-producing cells. Given the positive correlation between IL-10 and PD-1 expression, this down-regulation could involve PD-1 [5]. Supporting these hypotheses, IL-10 blockade increases TNF-α and IFN-γ production in vitro, and lupus manifestations in mice [6, 7].

The best characterized IL-10+IFN-γ+ cells are Foxp3+ Type 1 regulatory CD4+ T cells with clear suppressive functions [8].
However, IL-10 has been linked to lupus progression [6], while IFN-γ-receptor signaling reduces disease development [9]. Thus, IFN-γ and IL-10 may synergize to achieve higher anti-inflammatory functions. Conversely, IL-21/IL-10 association may promote autoantibody production and aggravate autoimmunity [10]. Therefore, IL-10 could be protective or pathogenic, depending on its association with other cytokines at single-cell level. Further, the amount of cytokines per cell may be significant to disambiguate the biological activity of IL-10-producing Tmems. PRI, integrating the combinatorial and level of protein expression, may help extracting clinically relevant quantitative data.

© 2022 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.
Figure 2. IL-10 co-expression with multiple cytokines. Flow cytometric analysis of ex vivo stimulated C57BL/6 splenocytes (Panel I: Supporting Table S1). (A) IL-10, TNF-α, IL-2, and IL-21 patterns (color-coded frequencies, Z-axis) in Tmems, according to semi-continuous PD-1 (X-axis) and IFN-γ (Y-axis) level. Representative data from a two-year-old C57BL/6 mouse (n = 10, four independent experiments). (B) Pie chart and 100%-stack bar: relative proportions of single(SF-), double(DP-), triple(TP-), quadruple(QuaP)-, and quintuple(QuinP)-cytokine producers in a representative concatenated sample made of equal proportions of IL-10+ Tmems from three mice from a single experiment. Frequencies were analyzed in three- and four-parametric bin-plots (Supporting Information Fig. S2). The numbered vignettes associated to the sectors are quadrants from three-parametric MSI+ bin-plots drawn with the X- and Y-axis level. Representative data from a two-year-old C57BL/6 mouse (n = 10, four independent experiments).

Acknowledgements: We thank Ines Hoppe for bioinformatics support. Work funded by the German Federal Ministry of Education and Research (e:Med MelAutim project #01ZX1905C to JV, RB). Open access funding enabled and organized by Projekt DEAL.

Conflict of interest: The authors have declared no conflict of interests.

Peer review: The peer review history for this article is available at https://publons.com/publon/10.1002/eji.202249829.

Data availability statement: All cytometry files are openly available at http://flowrepository.org/: FR-FCM-ZSEQ; FR-FCM-ZSER, FR-FCM-ZSES.

Elodie Mohr1, Timo Hinnenthal1, Stefanie Gryzik1, Yen Hoang1, Timo Lischke1, Jimmy Retzlaff2, Ariana Mekonnen1, Friedemann Paul3, Angelo Vallerrian4, Andreas Radbruch1,2,4, Julio Vera2 and Ria Baumgrass1,6

1 German Rheumatism Research Center, A Leibniz Institute, Berlin, Germany
2 Systems Tumour Immunology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsklinikum, Erlangen, Germany
3 Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
4 Max Planck Institute of Colloids and Interfaces, Biologisches Forschungszentrum, Potsdam, Germany
5 Charité, Campus Berlin Mitte, Berlin, Germany
6 University of Potsdam, Potsdam, Germany

References

Full correspondence: Elodie Mohr, DRFZ, Charitéplatz 1, 10117 Berlin, Germany
Email: elodie.mohr@gmail.com

Keywords: cytokine • T cells • cytometry • pattern perception • IL-10

Received: 22/1/2022
Revised: 2/9/2022
Accepted: 5/9/2022
Accepted article online: 6/9/2022

Additional supporting information may be found online in the Supporting Information section at the end of the article.