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Abstract
We survey some recent results in sequential decision making under uncertainty, where there is
an information asymmetry among the decision-makers. We consider two versions of the problem:
persuasion and mechanism design. In persuasion, a more-informed principal influences the actions
of a less-informed agent by signaling information. In mechanism design, a less-informed principal
incentivizes a more-informed agent to reveal information by committing to a mechanism, so that the
principal can make more informed decisions. We define Markov persuasion processes and Markov
mechanism processes that model persuasion and mechanism design into dynamic models. Then
we survey results on optimal persuasion and optimal mechanism design on myopic and far-sighted
agents. These problems are solvable in polynomial time for myopic agents but hard for far-sighted
agents.
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1 Introduction

Sequential decision making under uncertainty is a fundamental problem in modeling and
analysis of systems. In concurrency theory and formal verification, many such models have
been studied extensively. In Markov decision processes (MDPs), a single agent observes
the state of the world, picks an action, and the new state of the world is determined by an
uncertain transition relation. The goal of the agent is to find a policy that optimizes her
expected utility, usually over an infinite horizon. In partially observable MDPs (POMDPs),
the state is no longer perfectly observed; the agent gets a signal about the state of the world
and has to find a policy with partial information about the world. Finally, in stochastic
games, multiple agents play against each other. The objectives of the agents can be zero-sum
(the two player, purely adversarial situation) or non-zero sum. The complexity landscape of
these models have been studied extensively. Broadly, full information settings (MDPs) are
polynomial time solvable [14], partial observation settings are undecidable [20, 4], and games
are intermediate in complexity [6, 13, 5].
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4:2 Sequential Decision Making with Information Asymmetry

There are a number of applications of sequential decision making where the interaction
between agents and the world involve information asymmetry. These are games of imperfect
information on one side, in which one agent influences the behavior of another by selectively
signaling additional information about the state of the world, or incentivizes the other to
provide accurate information about the world. These models have been largely studied in the
economics and artificial intelligence literature, as problems of persuasion or of mechanism
design, but have not received attention in the concurrency theory literature.

In persuasion (also called information design), a knowledgeable principal knows some
aspects of the state of the world and interacts with an agent who does not. However, only the
agent has the capacity to take an action. Since the objectives of the principal and the agent
may be misaligned, the agent may not do the principal’s bidding. The goal of the principal
is to strategically reveal information about the world, through a process of signaling, so that
the agent’s actions optimize the principal’s own interests.

In mechanism design, one or more agents know the state of the world; the principal can
take an action based on the report from the agents. Again, it is possible that the agent
misrepresents the state of the world to optimize their own payoff. The goal of the principal
is to design incentive mechanisms to elicit the agent’s private information about the state of
the world, so as to make more informed decisions.

If the principal and the agent are completely aligned in their utilities, the signals or the
mechanisms involve revealing the unknown information; the more interesting case is when
the objectives are misaligned. Persuasion and mechanism design problems in the sequential
setting involve partial information and strategic interaction but have not been considered in
the concurrency theory literature. The goals of this paper are to provide an introduction to
these models, describe some basic results and pointers to the literature, and to point out
open problems in the domain.

Persuasion. Kamenica and Gentzkow [17] introduced a fundamental and very influential
model of Bayesian persuasion as a formal model for persuasion problems. They consider a
two player game between a principal and an agent. The players share a common prior on the
state of the world, but only the principal observes the realization. The principal commits
to a signaling strategy before the game starts. On observing the realization, the principal
signals the agent and the agent picks an action based on the signal. They each receive a
payoff dependent on the realized state of the world and the action. Kamenica and Gentzkow
characterize the optimal signaling strategy of the principal.

Since the publication of this work [17], Bayesian persuasion has seen many applications
in the field of economics and algorithmic game theory. The basic model has also been
extended in many ways. We refer the reader to the comprehensive survey [16] for pointers
to the literature. Our focus in this survey is on algorithmic problems in dynamic models,
where persuasion is performed repeatedly over time. Work in this direction is fairly new
[12, 23, 15, 26].

Mechanism Design. In automated mechanism design, we consider models where the roles
of the players are reversed: now, the principal is the receiver of information, and commits
to a mechanism that specifies the action they will take upon receiving each signal. The
agent is the signal sender and, knowing the principal’s mechanism, sends signals optimally
in response. Intuitively, to design a good mechanism requires balancing between the goals
of eliciting more information from the agent and of acting optimally based on the elicited
information. The principal aims to find a mechanism that maximizes their overall utility
from the interaction.
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The model follows the line of work on automated mechanism design, initiated by Conitzer
and Sandholm [7, 8]. It is shown in their work that the problem of computing an optimal
mechanism is NP-hard in general, in settings that allow restrictions to be placed on what
signals can be sent given the true state of the world. We consider models without such
restrictions, which are less expressive in this regard but arguably also captures a wide range
of applications. Following the seminal work of Conitzer and Sandholm, variants of their
model have been proposed and studied [24, 18, 19, 27, 28]. A recent work of Zhang and
Conitzer [28] introduces a dynamic model of automated mechanism design, and studies some
fundamental algorithmic questions for this model. There is a broader literature on various
forms of dynamic mechanism design in economics. We refer the reader to the comprehensive
surveys [22, 2].

Dynamic Models. Most problems in persuasion and mechanism design were studied in the
one-shot setting. More recently, dynamic versions of these models have been introduced to
capture persuasion and mechanism design in sequential decision making [12, 23, 26, 3, 15, 28].
Dynamic models generalize MDPs from a single agent to settings in which a principal and
an agent interact, with an information asymmetry between them. The game is played
over a state space. In addition, there is an external parameter, chosen from a known prior
distribution, that is the source of information asymmetry. In a Markov persuasion process
(MPP), in each step, the principal observes the realizations of the external parameters and
signals the agent to elicit a favorable action. The agent picks the action based on the current
state of the MPP and the signal, both the principal and the agent receive a reward, and
the game moves to the next state based on a probabilistic transition relation. In a Markov
mechanism process (MMP), in each step, the agent observes the realizations of the external
parameters. The agent is incentivized by the principal to provide true information by a
mechanism – a precommitment to act in a certain way. The agent reports the external
parameters as a best response to the precommitment, and the principal chooses an action
based on this information. Both principal and agent receive a reward, and the game moves
to a new state based on the current state and the chosen action.

Dynamic models of persuasion and mechanism design are special cases of stochastic games
of incomplete information [1, 25] and many fundamental insights in characterizing optimal
strategies carry over. By focusing on the subclass of games with persuasion and mechanism
design as the central aspects, we are able to provide specialized algorithmic results that are
applicable to many problems of practical interest.

Myopic and Far-sighted Agents. A new aspect in the study of dynamic persuasion and
mechanism design problems is the nature of the agent. In models of concurrency, we usually
assume that all players are long-lived, that is, survive throughout the game. In MPPs and
MMPs, we distinguish between far-sighted and myopic agents. A far-sighted agent is long
lived and optimizes their expected utility in the long run – it is the “usual case” we study in
concurrent games.

In contrast, a myopic agent is short-lived, and only interested in optimizing the payoff
in the current stage of the game. In a game with myopic agents, the long-lived principal
interacts with a sequence of independent myopic agents, one for each time step. As we shall
see, decision problems often become easier when we deal with myopic agents.

There is good motivation for studying myopic agents in both persuasion and mechanism
design problems. As an example of a dynamic persuasion problem with myopic agents,
consider a ride-sharing app, where the application developer is the long-running principal,
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4:4 Sequential Decision Making with Information Asymmetry

and users of the app can be seen as myopic agents. The users are interested in optimizing
their current commute times. The application developer may have a different goal, that
of minimizing congestion. The application developer may provide a noisy signal about the
status of roads to persuade the commuters to choose routes that minimize overall congestion.

As an example of a dynamic mechanism design problem with myopic agents, consider a
firm that consults with a research organization to decide upon a product strategy [28]. Each
year, the research organization presents its market research. The firm decides to invest in
certain directions based on the reports. The goal of the firm is to have a strong long term
business while keeping costs low. On the other hand, the research organization’s goal can be
myopic – to generate as much revenue from the firm each year, by possibly misrepresenting
market conditions. A mechanism in this case is a compensation strategy of the firm that
ensures each research report truthfully represents market conditions.

Current Status. In this article, we summarize some recent decidability and complexity
results for MPPs and MMPs [15, 28, 26]. We shall see that the principal’s optimal signaling
strategy and optimal mechanism design problems can be solved in polynomial-time in
the infinite horizon setting, against myopic agents. In contrast, we can only show some
intractability for these problems against far-sighted agents but a complete characterization
remains open.

We have collected the basic results of persuasion and mechanism design in this article and
we hope it can serve as the starting point for investigating the specification and verification
of dynamic models with information asymmetry in the context of concurrency theory.

2 Persuasion: Principal Observes, Agents Act

2.1 One-shot Bayesian Persuasion
The basic persuasion model by Kamenica and Gentzkow [17] considers two agents: Sender
and Receiver (who are the principal and agent, respectively). Receiver has a utility function
u(a, ω) that depends on her action a from a fixed set A of available actions, as well as a state
of the world ω from a set Ω (chosen by nature). Sender has a utility function v(a, ω), that
also depends on the receiver’s action a and ω. Both players share a common prior µ0 on Ω.
Sender does not influence the world by picking an action himself, but influences Receiver by
transmitting a signal.

A signal, broadly construed, is some information about the state of the world that Sender
can transmit to Receiver. Let G be a sufficiently large space of signal realizations. A signaling
strategy π : Ω → ∆(G) of Sender is a map that associates each realization of the state of
the world to a distribution over G. Using π, Sender will send a signal g to Receiver with
probability π(ω, g) whenever ω is observed. Intuitively, the strategy specifies a statistical
relationship between the state of the world and Receiver’s observed data.

For example, one simple signaling strategy is to always reveal the true information, which
always sends a deterministic signal gω associated with the observed ω (i.e., gω is a message
saying “The current state of the world is ω.”, and π(ω) is a Dirac delta distribution at gω).
In contrast, if the same signal is sent irrespective of the realized ω, i.e., π(ω) = π(ω′) for all
ω, ω′ ∈ Ω, then the signaling strategy is completely uninformative: observing the signal gives
Receiver no information about the current realization of ω.

The steps of Bayesian persuasion are as follows.
1. Sender and Receiver share a prior µ0.
2. Sender picks a signaling strategy π : Ω → ∆(G) and commits to it; Receiver observes π.
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3. Nature picks ω ∼ µ0 and reveals it to Sender.
4. Sender picks g ∼ π(ω) according to his commitment.
5. Receiver observes the realized g, and takes some action a ∈ A (we describe below how

the action is chosen).
6. Sender receives utility v(a, ω) and Receiver receives u(a, ω).

Upon receiving a signal g, Receiver updates her posterior belief about the state of the
world using the Bayes’ rule, whereby the following conditional probability is derived:

Pr(ω | g, π) = µ0(ω)·π(ω,g)∑
ω′∈Ω

µ0(ω′)·π(ω′,g)
. (1)

Receiver picks an action a∗(Pr(· | g, π)) that maximizes Eω∼Pr(·|g,π)[u(a, ω)]. By convention,
we assume that Receiver breaks ties in favor of Sender when there are multiple optimal
actions. Given the choice of Receiver, Sender solves

max
π∈Π

Eω∼µ0Eg∼π(ω)v(a∗(Pr(· | g, π)), ω) (2)

to optimize her expected utility, where Π is the set of all signaling strategies.
The optimization problem seems complicated at a first glance, since the space G of signals

can be arbitrary, and the choice of π influences the utility of Sender both by influencing how
the signal realizations are distributed and by influencing the action that Receiver picks based
on the signal realization. However, we shall show that the problem can be reduced to an
optimization problem of a simpler form.

2.2 The Revelation Principle and Action Advice

According to a standard argument via the revelation principle [21, 17], we can restrict
attention to signaling strategies in the form of action advice without any loss of generality.
Specifically, for any signaling strategy in an arbitrary space of signals, there exists an
equivalent strategy π that uses only a finite set GA := {ga : a ∈ A} of signal realizations,
where each signal ga corresponds to an action a ∈ A. With the signal ga, Sender “advises”
Receiver to play a. Moreover, we can additionally ensure that π is incentive compatible (IC),
which means that Receiver is indeed incentivized to take the corresponding action a upon
receiving ga. Formally, π ensures that

Eω∼Pr(·|ga,π)u(a, ω) ≥ Eω∼Pr(·|ga,π)u(a′, ω)

for all a′ ∈ A, or equivalently:∑
ω∈Ω

Pr(ω | ga, π)· (u(a, ω) − u(a′, ω)) ≥ 0 for all a′ ∈ A. (3)

In other words, π signals which action Receiver should take and it is designed in a way such
that Receiver cannot be better off deviating from the advised action with respect to the
posterior belief. (Again, we assume that Receiver breaks ties in favor of Sender, which means
following the advice in this case.) We call a signaling strategy that only uses signals in GA

an action advice, and call it an IC action advice if it also satisfies (3).
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4:6 Sequential Decision Making with Information Asymmetry

In case A and Ω are finite sets, we can write Sender’s optimization problem as a linear
program (LP) with variables {π(ω, ga) | ω ∈ Ω, a ∈ A} (see, e.g., [11, 10]):

max
∑
ω∈Ω

∑
a∈A

µ0(ω) · π(ω, ga) · v(a, ω) (4)

subject to
∑
ω∈Ω

µ0(ω) · π(ω, ga) · (u(a, ω) − u(a′, ω)) ≥ 0, for a, a′ ∈ A (5)∑
a∈A

π(ω, ga) = 1, for ω ∈ Ω (6)

π(ω, ga) ≥ 0, for ω ∈ Ω, a ∈ A (7)

The variable π(ω, ga) denotes the conditional probability of recommending action a when
the state of the world is ω. The LP maximizes the expected utility of Sender over the joint
distribution of ω and a, subject to incentive compatibility (i.e., (5), where Pr(ω | ga, π) in
(3) is replaced by µ0(ω) · π(ω, ga) according to (1)). Since linear programming can be solved
in polynomial time, the above formulation shows that one-shot persuasion can be solved in
polynomial time when the actions and the external parameters are given explicitly.

▶ Theorem 2.1 [11]. Sender’s optimization problem can be solved in polynomial time in |A|
and |Ω|.

More generally, Kamenica and Gentzkow showed a characterization of the optimal function
for compact action spaces and payoff functions that are continuous in the action [17].

Given a signal, each signal realization ga induces a posterior belief µa ∈ ∆(Ω). The
marginal probability of signal realization ga is Pr[ga] =

∑
ω∈Ω µ0(ω)·π(ω, a) and the posterior

distribution Pr(ω | ga, π) = µ0(ω)·π(ω,ga)
Pr[ga] .

Thus, we can think of a feasible solution of the LP as a distribution over posteriors (an
element of ∆(∆(Ω))), one per signal realization, whose expectation equals the prior µ0 (such
a distribution of posteriors is called Bayes plausible). Thus, if µ0 is represented as a point
in the simplex ∆(Ω), then the signal corresponds to writing µ0 as a convex combination of
posterior distributions in ∆(Ω). The incentive compatibility constraints ensure that action a

is preferred by Receiver on the posterior distribution on Ω induced by a.
Each posterior distribution µ ∈ ∆(Ω) is associated with a preferred action a∗(µ) for

Receiver, i.e., the action that maximizes Eω∼µu(a, ω). We can plot Sender’s utility as a
function V : ∆(Ω) → R of the posterior: V (µ) = Eω∼µv(a∗(µ), ω). Define cav(V ) as the
concavification of V : the pointwise smallest concave function that is an upper bound for V .
Equivalently,

cav(V )(µ) = sup{z : (µ, z) ∈ co(V )} (8)

where co(V ) is the convex hull of the graph of V . The convex hull co(V ) is the set of pairs
(µ, z) such that if the prior is µ, there exists a signal with value z. Thus, cav(V )(µ0) is the
optimal utility that Sender can achieve when the prior is µ0.

This is a very general result, holding also for compact spaces of actions and continuous
reward functions. It also follows from an older result on games of imperfect information
studied by Aumann and Maschler [1].

Note that if V is already concave, then Sender reveals no information. For example, in the
zero-sum case when the utility functions of Sender and Receiver sum to zero, V is concave.
On the other hand, if the Sender and Receiver have completely aligned utility functions, V

is convex and Sender reveals all information.
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In general, we do not know how to compute the concavification of an arbitrary function
V : ∆(Ω) → R. If the graph of V is semi-algebraic (defined by a Boolean combination
of polynomial inequalities), we can use techniques from the theory of reals, using the
characterization that the concavification of V evaluated at µ is sup{z | (µ, z) ∈ co(V )} and
that co(V ) is a semi-algebraic set if the graph of V is semi-algebraic.

The above LP assumes that the world is given explicitly. In case the world is given
symbolically, as valuations to a set of variables, it still works if we assume that the prior
has small (polynomial-size in the size of the problem) support. The optimization problem
can sometimes be solved even when this assumption is not true. Consider the case in
which u(a, ω) and v(a, ω) are real-valued random variables that can be arbitrarily correlated.
We say actions are independent if u(a) = u(a, ω) and u(a′) = u(a′, ω) are independent
random variables for distinct actions a ̸= a′, and the same is true for v(a) = v(a, ω) and
v(a′) = v(a′, ω). Then, the distribution µ0 is fully specified by the marginal distribution of
the pair (u(a), v(a)) for each action a. We assume that each action’s marginal distribution
has finite support, and refer to each element of the support as a type.

Dughmi and Xu [11] show that in case u(a) and u(a′) are independent and identically
distributed (IID) for a ̸= a′, and v(a) and v(a′) are also IID, Sender’s optimization problem
can be solved in polynomial time in the number of actions n and the number of types m.
This is non-trivial, since the above LP has exponentially many (mn) states of the world. On
the other hand, the problem becomes #P-hard if the distributions are arbitrary.

2.3 Examples
Prosecution. Kamenica and Gentzkow [17] give an example of Bayesian persuasion in a
courtroom setting. A prosecutor (Sender) is trying to convince a judge (Receiver) that a
defendant is guity. When the defendant is guilty, revealing all the evidence will help the
prosecutor, but when the defendant is innocent, revealing all the evidence will likely hurt the
prosecutor’s case. Kamenica and Gentzkow show that when the prosecutor and the judge
are rational Bayesian, a prosecutor can organize their argument to increase the probability
of conviction.

Concretely, assume that the judge has two actions: acquit or convict. The states of the
world correspond to the defendant’s status: guilty or innocent. The judge gets a utility of 1
for choosing the just action (convict the guilty and acquit the innocent) and utility 0 for
the unjust action. The prosecutor gets a utility of 1 if the judge convicts and 0 otherwise
– regardless of the defendant’s status. Assume that the prior Pr[guilty] = 0.3 is common
knowledge.

We model the prosecutor’s possible investigations into the case as distributions π(· | guilty)
and π(· | innocent). The prosecutor has to pick π and truthfully report the realization to
the judge (the commitment step). (It is required by law that the prosecutor cannot hide
evidence, even it makes a conviction unlikely.)

If there is no communication, e.g., if the investigation is completely uninformative, the
judge always acquits, since innocence is more likely than guilt according to the prior. If
the investigation is fully informative, i.e., reveals the defendant’s status with probability 1,
then the judge convicts 30% of the time. However, suppose that the prosecutor picks an
investigation as follows:

π(acquit | innocent) = 4
7 π(acquit | guilty) = 0

π(convict | innocent) = 3
7 π(convict | guilty) = 1

CONCUR 2022



4:8 Sequential Decision Making with Information Asymmetry

This constitutes an IC action advice for the judge. Notice that the judge convicts with
probability 60% (Bayes’ rule!). This is true even though the judge knows that 70% of
defendants are innocent and even though the judge is fully aware that the prosecutor’s advice
(the signal) is designed to maximize the probability of conviction!

Traffic Control. Das et al. [9] describe a simple example of persuasion to improve congestion
in uncertain traffic conditions. Imagine a traffic network with two paths between a source
and an origin. Travel time on Path I is independent of the number of agents using it, but
depends on an uncertain state of nature (e.g., Path I is a highway that is prone to repair).
Travel time on Path II depends on the number of agents taking the path: the more agents
take the path, the more time it takes. The goal of Sender (a social planner) is to signal
the state of Path I to the agents so that the congestion on Path II is reduced to a social
optimum. Hence, each agent is an individual Receiver, and they are modeled as non-atomic
players, who individually is a zero-measure and have negligible influence to the system (but
collectively their influence integrates).

Let us be more precise. There are two paths P1 and P2, and the state of the world is
ω ∈ {0, 1}, both states are equally likely. The travel times are given by c(P1) = ω and
c(P2) = 1

3 + 2s. Agents seek to minimize their travel costs.
If Sender can mandate how everyone drives, the socially optimum cost is calculated as

follows. If ω = 0, everyone uses P1 and the total cost is zero. If ω = 1, the socially optimum
move is to send 1

6 of the agents to P2 so that the aggregate cost is 17
18 . Thus, the expected

aggregate travel cost is 17
36 .

Suppose Sender provides exact information. Then, when ω = 1, agents will crowd P2
until the costs of the two paths are equalized: 1

3 + 2s = 1, or s = 1
3 . The aggregate cost is 1

and therefore the expected aggregate cost is 1
2 , which is worse than the optimum.

Now consider the following signaling strategy.

π(take P1 | ω = 0) = 1 π(take P2 | ω = 0) = 0

π(take P1 | ω = 1) = 5
6 π(take P2 | ω = 1) = 1

6

(Namely, when ω = 1, we send the message “take P1” to 5/6 of the agents and “take P2” to
the rest.) Then, when ω = 0, everyone takes P1 and the cost is zero. When ω = 1, we expect
1
6 fraction to go on P2. The overall expected cost is the same as the optimal: 17

36 . Thus, the
social planner persuades some fraction of people to take P1.

We observe that the signal is incentive compatible. Upon seeing the advice “take P1” the
expectation of the cost of P1 is

Pr[ω = 1 | take P1] · 1 =
5
6

5
6 + 1

= 5
11

(where Pr[ω = 1 | take P1] is the posterior belief given π) and the expectation of the cost of
P2 is

1
3 + 2

(
Pr[ω = 0 | take P1] · 0 + Pr[ω = 1 | take P1] · 1

6

)
= 16

33 >
5
11

Thus, the agent should pick P1. Similarly, on seeing “take P2”, the expectation of P1 is 1
and the expectation of P2 is 2

3 < 1. Thus, the agent should again pick P2.
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2.4 Markov Persuasion Processes
We now extend the model of Bayesian persuasion to the sequential setting. Our formal
model, called Markov persuasion processes (MPP),1 is an MDP with reward uncertainties,
given by a tuple

M = ⟨S, A, P, Ω, (µs)s∈S , u, v⟩ (9)

that represents the repeated interaction between Sender and Receiver.
Similar to a standard MDP, S is a finite state space; A is a finite action space available to

Receiver; P : S×A×S → [0, 1] is the transition dynamics of the state. When the environment
is in state s and Receiver takes action a, the state transitions to s′ with probability P (s, a, s′);
both Sender and Receiver are aware of the state throughout. Meanwhile, rewards are generated
for both Sender and Receiver, and are specified by the reward functions u : S × Ω × A → R
and v : S × Ω × A → R, respectively. That is, unlike in a standard MDP, the rewards in our
setting also depend on an external parameter ω ∈ Ω (akin to the state of the world in the
basic model). This parameter captures an additional layer of uncertainty of the environment.
At each state s ∈ S, we assume that the parameter follows a distribution µs ∈ ∆(Ω) and is
drawn anew every time the state changes. µs is common prior knowledge shared between
Sender and Receiver, but only Sender has access to the realization of ω.

Since the actions are taken only by Receiver, Sender does not directly influence the
state. As in Bayesian persuasion, Sender influences Receiver’s action by signaling. We only
consider Markovian signaling strategies, whereby signals only depend on the current state
(independent of the history). As in the one-shot case, a revelation theorem argument shows
that Sender only needs to consider IC action advice at each state.

Formally, a signaling strategy π = (πs)s∈S of Sender consists of a function πs : Ω → ∆(GA)
for each state s ∈ S. Sender will commit to a strategy before the start of play. In every
step, upon observing the realization of the external parameter ω, Sender will send an action
advice sampled from πs(ω) when the current state is s.

2.5 Optimal Signaling Problem
Similarly to the one-shot setting, we take Sender’s point of view and investigate the problem
of optimal signaling strategy design: given M, find a signaling strategy π that maximizes
Sender’s (discounted) cumulative reward. The cumulative reward is defined as

E

[
T∑

t=0
γt · v(st, at, ωt)

∣∣∣∣∣ z, π, P

]
, (10)

where z = (zs)s∈S is the distribution of the starting state, γ ∈ [0, 1) is a discount factor, T is
a given horizon, and the expectation is taken over the trajectory (st, ωt, at)T

t=0 induced by z,
the signaling strategy π, and the dynamics P . If T is finite, we call the problem the finite
horizon setting, and if T is infinite, we call the setting infinite horizon.

Finally, we introduce a behavioral model for Receiver. We will consider two major types
of Receivers – myopic and far-sighted. A myopic Receiver only cares about their instant
reward in each step, whereas a far-sighted Receiver considers the cumulative reward with
respect to a discount factor γ̃ > 0 (which need not be equal to γ).

1 The nomenclature comes from [26].
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4:10 Sequential Decision Making with Information Asymmetry

In summary, the game proceeds as follows. At the beginning, Sender commits to a
signaling strategy π and announces it to Receiver. Then in each step, an external parameter
ω ∼ µs is drawn (by nature) according to the state s ∈ S of the MPP; Sender observes
ω ∈ ω, samples an action advice g ∼ πs(ω), and sends g to Receiver. Receiver receives g,
updates their belief about ω and decides an action a ∈ A to take. Sender receives v(s, ω, a)
and Receiver receives u(s, ω, a). The state then transitions to s′ ∼ P (s, a, ·), which both
players observe. The game proceeds until the horizon T (or forever, if T = ∞).

2.6 Solving the Optimal Signaling Problem
2.6.1 Myopic Receiver
We first consider the case where Receiver is myopic. In this case, Receiver aims to maximize
her reward in each individual step. Upon receiving a signal g in state s, Receiver takes a
best action a ∈ A, which maximizes the immediate expected reward Eω∼Pr(·|g,πs)u(s, a, ω).
Think of a myopic Receiver as a sequence of “short-lived” Receivers, one for each time step.
Receiver in step t plays a one-shot Bayesian persuasion game with Sender, collects their
reward, and disappears.

We consider the problem of computing an optimal signaling strategy in an infinite-horizon
MPP (T = ∞) with a myopic Receiver. We call this problem OptimalSignaling∞-myopic.

▶ Theorem 2.2 [15]. OptimalSignaling∞-myopic can be solved in polynomial time.

The proof of Theorem 2.2 is via a reduction from the problem to linear programming.
The approach is as follows.

We can easily characterize the outcome of an IC action advice π: at each state s, since
Receiver is incentivized to follow the advice, with probability ϕπ

s (ω, a) := µs(ω) · πs(ω, ga)
they will take action a when the realized external parameter is ω. Thus, ϕπ

s is a distribution
over Ω × A.

We then define the following set As ⊆ ∆(Θ × A), which contains all such distributions
that can be induced by some IC action advice:

As = {ϕπ
s ∈ ∆(Ω × A) : π is an IC action advice} .

We can now view the problem facing Sender as an (single-agent) MDP

M∗ = ⟨S, (As)s∈S , P ∗, v∗⟩ ,

where S is the same state space in M; As defines an (possibly infinite) action space for
each s; the transition dynamics P ∗ : S × ∆(Ω × A) × S → [0, 1] and reward function
v∗ : S × ∆(Ω × A) → R are such that

P ∗(s, x, s′) = E(ω,a)∼xP (s, a, s′) and v∗(s, x) = E(ω,a)∼xv(s, a, ω)

for any x ∈ As. Namely, M∗ is defined as if Sender can choose actions (which are (ω, a)
pairs) freely from As, whereas the choice is actually realized through persuasion. A policy σ

for M∗ maps each state s to an action x ∈ As, and it corresponds to an IC action advice
π in M, with ϕπ

s = σ(s) for all s. The problem of designing an optimal action advice then
translates to computing an optimal policy for M∗.

The standard approach to computing an optimal policy for an MDP is to compute a
value function V : S → R that satisfies the Bellman equation:

V (s) = max
x∈As

[
v∗(s, x) + γ ·

∑
s′∈S

P ∗(s, x, s′) · V (s′)
]

for all s ∈ S.
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There exists a unique solution to the above system of constraints, from which an optimal
policy can be extracted. The solution is posed as the following linear program over variables
{V (s) : s ∈ S}:

min
∑
s∈S

zs · V (s) (11)

subject to V (s) ≥ v∗(s, x) + γ ·
∑
s′∈S

P ∗(s, x, s′) · V (s′) for all s ∈ S, x ∈ As (12)

The optimal value of this LP directly gives the cumulative reward of optimal policies under
a given initial state distribution z.

The issue with this LP formulation is that there may be infinitely many constraints as
(12) must hold for all x ∈ As. This is unlike MDPs with a finite action space, where there
are a finite number of constraints, one for each action.

Gan et al. [15] show that LP (11) can nevertheless be solved in polynomial time by using
the ellipsoid method. The key to this approach is to implement the separation oracle in
polynomial time. For any given value assignment of the variables (in the above LP, values of
V (s)), the oracle should decide correctly whether all the constraints of the LP are satisfied
or not and, if not, output a violated one.

Implementing the separation oracle for the LP requires solving maxx∈As v∗(s, x) + γ ·∑
s′∈S P ∗(s, x, s′) · V (s′) − V (s) for all s ∈ S: by checking if the maximum value is positive,

we can identify if (12) is violated for some x ∈ As. Indeed, the set of IC action advice
can be characterized by (5)–(7). Hence, we obtain the following LP implementation of the
separation oracle, where {x(ω, a) : ω ∈ Ω, a ∈ A} and {πs(ω, ga) : ω ∈ Ω, a ∈ A} are the
variables.

max v∗(s, x) + γ ·
∑
s′∈S

P ∗(s, x, s′) · V (s′) − V (s)

s.t. x(ω, a) = µs(ω) · πs(ω, ga) for all ω ∈ Ω, a ∈ A, s ∈ S∑
ω∈Ω

µs(ω) · πs(ω, ga) · (u(s, a, ω) − u(s, a′, ω)) ≥ 0, for a, a′ ∈ A, s ∈ S∑
a∈A

πs(ω, ga) = 1, for ω ∈ Ω, s ∈ S

πs(ω, ga) ≥ 0, for ω ∈ Ω, a ∈ A, s ∈ S

Since the ellipsoid method runs in polynomial time, the tractability of
OptimalSignaling∞-myopic follows immediately. By exploiting the duality of linear
programming, one can provide a different, “direct” encoding into a linear programming
problem as well (see [15]).
▶ Remark 2.3 Finite Horizon. When the horizon is finite, one can set up the Bellman equation
and evaluate it by backward induction. Each step in the process solves a one-shot persuasion
problem using the linear programming formulation. This gives a polynomial time algorithm
when the time horizon is given in unary. Wu et al. [26] study several variants of this problem,
as well as the setting of reinforcement learning.
▶ Remark 2.4. In the reachability problem for Markov persuasion processes, there is a subset
of marked states and Sender receives a unit reward if and only if one of these states is
reached along a trajectory. The reachability problem asks what is the expected probability
that the subset is reached. The above linear programming formulation can be used to solve
the reachability problem against myopic Receivers. Since the reachability problem is at the
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4:12 Sequential Decision Making with Information Asymmetry

core of model checking logics on MDPs, we should be able to build up a logic on Markov
persuasion processes and obtain efficient model checking algorithms in case of myopic agents.
We leave the design of appropriate logics and model checking, as well as the computation of
optimal signals for omega-regular properties, as future work.

2.6.2 Far-sighted Receiver
A far-sighted (FS) Receiver looks beyond the immediate reward and optimizes the cumulative
reward

E

[
T∑

t=0
γ̃t · u(st, at, ωt)

∣∣∣∣∣ z, π, P

]
, (13)

where, as in (10), z = (zs)s∈S is the distribution of the starting state, γ̃ ∈ [0, 1) is a discount
factor possibly different from Sender’s discount factor, T is the horizon, and the expectation
is taken over the trajectory (st, at, ωt)T

t=0 induced by the initial distribution z, the signaling
strategy π, and the dynamics P .

When facing an FS Receiver, we cannot define a set As independently for each state.
Sender needs to take a global view and aim to induce Receiver to use a policy that benefits
Sender. We consider the problem of optimal signaling strategy design in an infinite horizon
setting against an FS Receiver, called OptimalSignaling∞-FS.

At this point, we know very little about the decidability and complexity of this problem
or a characterization of optimal strategies. For example, we know that Sender can do better
with history-dependent signaling. We also know that the problem is hard.

▶ Theorem 2.5 [15]. Assuming that P ̸= NP, OptimalSignaling∞-FS does not admit
any polynomial-time 1

λ1−ϵ -approximation algorithm for any constant ϵ > 0, where λ is the
number of states s ∈ S in which the prior distribution µs is non-deterministic (i.e., supported
on at least two external parameters). This holds even when |Θ| = 2 and the discount factors
γ, γ̃ ∈ (0, 1) are fixed.

The proof of Theorem 2.5 is via a reduction from the Maximum Independent Set
problem, which is known to be NP-hard to approximate [29].

2.6.3 Advice-myopic Receiver
Between the tractable (myopic) Receivers and the intractable (FS) Receivers lie the advice-
myopic Receivers. An advice-myopic (AM) Receiver accounts for the cumulative future
rewards just as an FS Receiver, but behaves myopically in ignoring the future signals of
Sender. In other words, an AM Receiver always assumes that Sender will disappear in the
next step and relies only on their own prior knowledge to estimate any future payoff.

▶ Theorem 2.6 [15]. OptimalSignaling∞-AM is solvable in polynomial time.

The idea is that, since an AM Receiver does not consider future signals, their future
reward is independent of Sender’s signaling strategy. One can compute the future payoff in
polynomial time by fixing the uninformative signal for Sender and solving the resulting MDP.
This payoff is added to the reward function of the AM Receiver, but now we can consider
Receiver to be myopic since the future payoffs have been taken into account.

The interest in AM Receiver is that an optimal signaling policy of Sender assuming an
AM Receiver can be used to define a strategy against an arbitrary FS Receiver. The idea
is to provide a threat: if Receiver ever deviates from the action advice, Sender will forever
provide only uninformative signals. One can show that this threat strategy enables Sender
to get an expected payoff that is at least as much against any AM Receiver.
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s0

s1

s2

a

b

a (0, 0)

b
(0.1, 10)

c (0.1, 0)

External parameter
ωa ωb

a (1, 1) (−1, 0)
b (−1, 0) (1, 1)

Figure 1 A simple example from [15].

The threat strategy uses one bit of memory (to remember if Receiver had deviated
from the advice). However, this threat-based strategy may not be an optimal one-memory
strategy. Indeed, for any positive integer k, the problem of computing an optimal k-memory
strategy against FS Receivers is inapproximable (via an adapted version of the reduction for
proving Theorem 2.5). In contrast, in the myopic and advice-myopic settings, since Receiver’s
behavior is Markovian, the optimal signaling strategies we designed remain optimal even
when we are allowed to use memory-based strategies.

2.7 Example
Figure 1 shows a simple example to distinguish myopic, far-sighted, and advice-myopic
Receivers. In the MPP, Sender wishes to reach s2 while maximizing rewards. Transitions
are deterministic. Each edge is labeled with the corresponding action and (in the brackets)
rewards for Receiver and Sender, respectively. The rewards for state-action pairs (s0, a) and
(s0, b) (dashed edges) also depend on the 2-valued state of the world {ωa, ωb}, as specified
in the table. The state of the world is sampled uniformly at random at each step. Assume
discount factor 1

2 both for Sender and for Receivers.
With no signaling, Receiver will always take action c in s0, so Sender will obtain payoff 0.

Sender can reveal information about the external parameter to attract Receiver to move to
s1. If Receiver is myopic, Sender can reveal full information, which leads to Receiver moving
to s1, taking action b, and ending in s2. As a result, Sender obtains payoff 6.

However, if Receiver is FS, this strategy will not work. Receiver will loop between s0
and s1, resulting in overall payoff 4/3 for Sender. To improve, Sender can choose to be less
informative in s0, e.g., advising Receiver to take the more profitable action 10% of the time
and a uniformly sampled action in {a, b} the remaining 90% of the time. Receiver will move
to s1 under this signaling, breaking ties in favor of Sender. Sender’s expected payoff is 5.55.

Alternatively, Sender can also use the following threat-based strategy, which again yields
a payoff of 6. Sender always reveals the true information in s0, advises Receiver to take b in
s1, and threatens to stop providing any information if Receiver does not follow the advice.
The outcome of this strategy coincides with how an advice-myopic Receiver behaves. Such a
Receiver will choose b at s1 as future disclosures are not considered.

2.8 Extensions to the Model
In our model of MPPs thus far, the external parameter ω is picked independently at each
step. We can envision a more general model, in which the external parameter also evolves
according to a stochastic process. For example, we can assume that the external parameter
evolves according to a Markov chain. Such extensions have been studied [12, 23], but we do
not know of any general algorithmic results.
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One can show that against myopic Receivers, the optimal value can be calculated on a
Markov process on the space of distributions in S × ∆(Ω); the initial belief is the initial
distribution of the state of the world and the value function maps beliefs to values and is the
fixpoint of a functional mapping beliefs to beliefs. The functional is a contraction map on a
suitable topological space, and therefore the fixpoint exists and is unique. While one can
approximately evaluate the fixpoint numerically, we do not know how to characterize the
complexity of the decision problem. Since the belief space ∆(Ω) is infinite, we can no longer
set up a (finite) linear programming problem nor argue about termination of the iterations.

3 Mechanism: Agent Observes, Principal Acts

A dual scenario of persuasion is one where Receiver is the principal and Sender is the agent.
In this case Receiver can commit to a mechanism to influence Sender’s signaling behavior.
A mechanism σ : G → ∆(A) is a map from Sender’s signal space G to a distribution over
the action space A, which specifies how Receiver will act, upon receiving each signal from
Sender.

3.1 One-shot Mechanism Design
In the one-shot setting, the steps in this scenario are as follows.
1. Sender and Receiver share a prior µ0.
2. Receiver picks a mechanism σ : G → ∆(A) and commits to it; Sender observes σ.
3. Nature picks ω ∼ µ0 and reveals it to Sender.
4. Sender observes ω and sends a signal g ∈ G (we describe below how this signal is chosen).
5. Receiver observes g and takes an action a ∼ σ(g) according to her commitment.
6. Sender receives utility v(a, ω) and Receiver receives u(a, ω).

In Step 4, as a rational player, Sender best-responds to the mechanism σ, sending a signal
so that the action taken by Receiver in Step 5 maximizes Sender’s payoff in expectation.
Namely, the following signal is sent:

g ∈ arg max
g∈G

Ea∼σ(g)v(a, ω). (14)

Here, one subtlety, similar to the one in the persuasion setting, is that there is actually no
predefined signal space or one that is agreed upon between the two players, so the mechanism
is not well-defined if Sender picks a signal outside of G. The revelation principle then comes
in again, which now says that it is without loss of generality to consider direct mechanisms,
whereby the signal space is restricted to a finite set GΩ := {gω : ω ∈ Ω}; each signal gω ∈ GΩ
corresponds to a realization of the state of the world. In other words, the interaction in
Step 4 can be viewed as an information elicitation process, where Receiver asks Sender: what
is the realization of the external parameter? Sender answers ω by sending the corresponding
signal gω.

Specifically, given an arbitrary mechanism σ : G → ∆(A), an equivalent mechanism
ς : GΩ → ∆(A) can be constructed by letting ς(gω) = σ (f(ω)) for all ω ∈ Ω, where f : Ω → G

is a map defined by (14) (by fixing an arbitrary tie-breaking rule to select g in case there are
multiple optimal signals). It is not hard to see that ς induces an equivalent signaling behavior
of Sender and the same payoffs in Step 6. Moreover, it also elicits truthful information from
Sender, incentivizing Sender to send gω whenever the realization is ω.
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In summary, the revelation principle indicates that it is without loss of generality to
consider mechanisms that are both direct and IC. Given this result, the problem of computing
an optimal mechanism for Receiver can be formulated as the following LP with variables
{σ(gω, a) : ω ∈ Ω, a ∈ A}, i.e., σ(gω, a) is the probability of Receiver taking action a upon
receiving gω.

max
∑
ω∈Ω

∑
a∈A

µ0(ω) · σ(gω, a) · u(a, ω) (15)

subject to
∑
a∈A

σ(gω, a) · v(a, ω) ≥
∑
a∈A

σ(gω′ , a) · v(a, ω), for ω, ω′ ∈ A (16)∑
a∈A

σ(gω, a) = 1, for a ∈ A (17)

σ(gω, a) ≥ 0 for ω ∈ Ω, a ∈ A (18)

The formulation takes a form symmetric to LP (4). The first constraint requires σ to be IC.

3.2 Markov Mechanism Process
Moving to the dynamic setting, we consider the same MDP M = ⟨S, A, P, Ω, (µs)s∈S , u, v⟩
as in (9). Receiver commits to a state-dependent mechanism σs : GΩ → ∆(A). At every step,
both players observes the state s of M, and nature samples an external parameter ω ∼ µs.
Sender observes ω and sends a signal g to Receiver. Receiver plays an action a ∼ σs(g)
according to a pre-committed state-dependent mechanism. Consequently, rewards v(s, a, ω)
and u(s, a, ω) are generated for the players, and M transitions to a next state s′ ∼ P (s, a, ·).
We ask the infinite-horizon optimal mechanism design problem from Receiver’s prospective. In
what follows we present a polynomial-time algorithm for this problem when Sender is myopic.
The approach is similar to the LP-based algorithm for OptimalSignaling∞-myopic.

3.3 Optimal Mechanism Design for Myopic Sender
Call the optimal mechanism design problem OptimalMechanism∞-myopic when Sender
is myopic.

▶ Theorem 3.1. OptimalMechanism∞-myopic can be solved in polynomial time.

The proof is similar to that of Theorem 2.2. We reduce the problem to linear programming
and use the ellipsoid method. We define the set of possible outcomes of a direct IC mechanism
σ as follows:

As = {ϕσ
s ∈ ∆(Ω × A) : σ is a direct IC mechanism} ,

where ϕσ
s is a distribution with ϕσ

s (ω, a) := µs(ω)·σs(gω, a) being the probability that Receiver
takes action a while the realized external parameter is ω. The problem facing Receiver
then reduces to an (single-agent) MDP M∗ = ⟨S, (As)s∈S , P ∗, u∗⟩, where the transition
dynamics P ∗ and reward function u∗ are such that P ∗(s, x, s′) = E(ω,a)∼xP (s, a, s′), and
u∗(s, x) = E(ω,a)∼xu(s, ω, a) for any x ∈ As. The follwoing LP, similar to LP (11), is then
devised to compute an optimal mechanism (with variables {V (s) : s ∈ S}).

min
∑
s∈S

zs · V (s) (19)

subject to V (s) ≥ u∗(s, x) + γ ·
∑
s′∈S

P ∗(s, x, s′) · V (s′) for s ∈ S, x ∈ As (20)
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The separation oracle of this LP can further be implemented by solving the following LP for
all s ∈ S, where {x(ω, a) : ω ∈ Ω, a ∈ A} and {σs(gω, a) : ω ∈ Ω, a ∈ A} are the variables.

max u∗(s, x) + γ ·
∑
s′∈S

P ∗(s, x, s′) · V (s′) − V (s)

subject to x(ω, a) = µs(ω) · σs(gω, a) for s ∈ S, ω ∈ Ω, a ∈ A∑
a∈A

σs(gω, a) · v(s, a, ω) ≥
∑
a∈A

σs(gω′ , a) · v(s, a, ω), for ω, ω′ ∈ A, s ∈ S∑
a∈A

σs(gω, a) = 1, for a ∈ A, s ∈ S

σs(gω, a) ≥ 0 for ω ∈ Ω, a ∈ A, s ∈ S

▶ Remark 3.2. Zhang and Conitzer [28] studied a more general model in the finite-horizon
case and consider history-dependent mechanisms. In their model, Receiver cannot observe
the state of the MDP and has to rely on Sender to make observations; essentially, the state
is equivalent to the external parameter in our model but follows a stochastic process. They
show that the problem is polynomial time solvable in the finite horizon case when Sender is
myopic, but NP-hard to approximate when Sender is FS. They also characterize optimal
mechanisms and show that the optimal mechanism against an FS sender depends on the
history of state-action trajectories, as well as the current state. Note that the NP-hardness
does not imply the hardness of the optimal mechanism design problem we defined against
an FS Sender, where the goal is to compute an optimal Markov mechanism for an infinite
horizon, whereas the external parameter is sampled independently in each step. We leave
the complexity of this problem open for future work.

4 Conclusion

We have described some basic results in the theory of Markov decision processes with
information asymmetry. We show that in the two settings we study, persuasion and mechanism
design, one can obtain optimal signaling policy and optimal mechanism design in polynomial
time against myopic agents. As we point out throughout the article, many algorithmic
questions in these domains remain open. While the models have been applied to many
problems in economics and game theory, their applications to system design have not been
explored so far. We hope our article can act as a starting point for studying these models
and their algorithmic properties, in the context of concurrency theory and system design.
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