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Significance

Neuroimaging studies of 
language processing usually 
focus on language 
comprehension. This is because 
language production is affected 
by increased motion artifacts and 
is challenging to control 
experimentally. Sentence 
production studies typically rely 
on task designs that impose 
strong constraints on speaking. 
Here, we studied the brain 
responses to syntactic structure 
building during spontaneous 
production and naturalistic 
comprehension. We found brain 
responses to be sensitive to 
structure building in both 
production and comprehension, 
but with different temporal 
profiles in each modality. In 
production, the structure was 
built early in a sentence in an 
anticipatory way, while in 
comprehension structure 
building followed the input and 
was thus integratory. These 
results highlight different 
dynamics of syntactic structure 
building during speaking and 
listening.
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The neural correlates of sentence production are typically studied using task paradigms 
that differ considerably from the experience of speaking outside of an experimental 
setting. In this fMRI study, we aimed to gain a better understanding of syntactic pro-
cessing in spontaneous production versus naturalistic comprehension in three regions of 
interest (BA44, BA45, and left posterior middle temporal gyrus). A group of participants  
(n = 16) was asked to speak about the events of an episode of a TV series in the scanner. 
Another group of participants (n = 36) listened to the spoken recall of a participant from 
the first group. To model syntactic processing, we extracted word-by-word metrics of 
phrase-structure building with a top–down and a bottom–up parser that make different 
hypotheses about the timing of structure building. While the top–down parser antici-
pates syntactic structure, sometimes before it is obvious to the listener, the bottom–up 
parser builds syntactic structure in an integratory way after all of the evidence has been 
presented. In comprehension, neural activity was found to be better modeled by the 
bottom–up parser, while in production, it was better modeled by the top–down parser. 
We additionally modeled structure building in production with two strategies that 
were developed here to make different predictions about the incrementality of structure 
building during speaking. We found evidence for highly incremental and anticipatory 
structure building in production, which was confirmed by a converging analysis of the 
pausing patterns in speech. Overall, this study shows the feasibility of studying the 
neural dynamics of spontaneous language production.

language production | language comprehension | syntax | fMRI | naturalistic

Studies on the neurobiology of language typically use highly controlled experimental 
paradigms that are far removed from the everyday experience of language use. The last 
decade, however, has seen a relative increase in the number of studies investigating natu-
ralistic language processing. These studies are diverse in their methodologies, from the use 
of virtual environments (1, 2), to the auditory presentation of audiobooks or narrative 
reading with neuroimaging (3–7). The increased ecological validity in naturalistic studies 
opens a window into language processing free of the artificiality of task designs, whose 
main goal is to isolate specific features of language (8). In traditional settings, experimental 
control comes at the cost of context, which is reduced to minimize confounds. This con-
trasts with the highly contextual nature of everyday language use, creating a large gap 
between the actual object of study and its realization in experiments. Combining natu-
ralistic stimuli and advanced analysis methods, such as audiobooks and probabilistic 
parsers, has the potential to bring the participant experience during a language experiment 
closer to the experience of everyday language use (4, 9).

In addition to the predominant use of context-reduced experiments, the majority of 
studies on the neurobiology of language focuses on comprehension, while speaking is 
relatively unexplored (e.g., meta-analyses on sentence production and comprehension 
have at least three times as many studies of comprehension (10, 11)). Importantly, while 
naturalistic studies are becoming more common in the field of language comprehension, 
studies of naturalistic production are still rare.* This is problematic because of the large 
gulf between spontaneous production and production in controlled experiments. In spon-
taneous language production, the speaker is by definition in control of what is said. In 
contrast, experimental paradigms attempt to have as much control over participants’ 
speech as possible. This has usually been achieved with picture description experiments 
or with the use of visual probes together with written linguistic stimuli (12–15). While 
these strategies have allowed for controlled investigations of linguistic processing, they 
may be confounded by task requirements that make controlled production very different 
from everyday speaking.

OPEN ACCESS

*Notable exceptions are the studies of Stephens et al. and Silbert et al. (94, 95), who focus on the general process of speaking, 
rather than on specific features of linguistic processing during production and comprehension.D
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In this functional magnetic resonance imaging (fMRI) study, 
we aimed to study syntactic processing in spontaneous production 
and comprehension in order to understand whether and how they 
differ. Peripherally, production and comprehension are obviously 
different as they arguably constitute the opposite ends of linguistic 
processing. Accordingly, they are grounded in two systems, the 
articulatory-motor system and the auditory system, which are 
clearly separate. Aside from these differences in peripheral pro-
cesses, the linguistic items that comprehension and production 
interface with are the same. However, traditionally production 
and comprehension have been thought to be grounded in separate 
processing and neural systems (e.g., refs. 16 and 17), due to dif-
ferent developmental trajectories (18) and linguistic impairments 
following stroke (19, but see refs. 20 and 21). More recent studies 
have found shared neural resources for production and compre-
hension (22, 23) and a similar network for processing syntactic 
complexity across modalities (12, 24), which supports the view 
that syntactic representations are shared across modalities, since 
syntactic priming effects are resistant to modality changes (25) 
and lead to neural adaptation across modalities (23).

Syntactic processing in comprehension has been studied in the 
last decade with word-by-word indices of processing load that 
build syntactic trees from hypothesized syntactic operations (4, 9). 
Increasingly sophisticated approaches that characterize incremen-
tal structure building during listening and reading have made clear 
that left fronto-temporal regions are sensitive to measures of syn-
tactic tree building (26–31). Many of these approaches quantified 
syntactic structure building using a top–down and a bottom–up 
parser strategy (27, 30, 32). These strategies account for the same 
structure but make different hypotheses about the timing of syn-
tactic operations. The top–down parser builds nodes at 
phrase-opening in an anticipatory fashion, sometimes anticipating 
the structure before it is unambiguous to the listener. The bot-
tom–up parser instead builds nodes at phrase-closing in an inte-
gratory fashion, when the structure can be built unambiguously. 
Here, we asked whether these incremental measures of structure 
building would also be able to track neural activity during spon-
taneous production. Given the existing evidence for shared syn-
tactic representations between production and comprehension, 
we hypothesized that these strategies would be suitable for pro-
duction, since similar structures are expected to be built in pro-
duction and comprehension.

It is instead less clear whether the processes that build syntactic 
representations are shared between production and comprehen-
sion. Behavioral evidence in favor of shared processes shows that 
syntactic structure building in production interferes with parsing 
in comprehension, which is argued to be possible only if they rely 
on a common processor (33). It is therefore reasonable to assume 
that similar processes underlie the building of syntactic structure 
in production and comprehension. These shared processes, 
though, may unfold with different temporal dynamics. The con-
text, or amount of knowledge available to the syntactic encoder, 
may differ between modalities. In production, the speaker has 
some knowledge about the upcoming structure, since the structure 
related to the words that are uttered must have been computed 
(34, 35). In comprehension, instead, after accounting for predict-
able continuations, listeners need to wait for the input to fully or 
correctly compute the structure, as shown for example by garden 
path sentences (36–38). This processing difference may have con-
sequences for the way these parsers model neural activity in pro-
duction and comprehension, since effectively they make different 
hypotheses about the timing of structure building. Therefore, we 
hypothesized that the timing of syntactic operations would be the 
critical difference between production and comprehension, due 

to the different requirements and inputs of each modality (39). 
We thus expected neural activity to increase in production in 
relation to anticipatory top–down operations, due to the speaker’s 
planning of upcoming structure. Instead, we expected that bot-
tom–up operations would predict an increase in neural activity in 
comprehension, where listeners need to wait for the input to com-
mit to a structure. In a follow-up exploratory analysis, we assessed 
whether alternative parsing strategies may be more fitting for 
production, since the parser models discussed so far were mainly 
discussed in the context of comprehension and were relatively less 
prevalent in the generation literature (40). In particular, we developed 
two parsers that assume different levels of incremental processing, by 
making different predictions about how early phrase-structure build-
ing operations occur.

Finally, we investigated responses to syntactic processing in three 
regions of interest (ROIs): BA44, BA45 (pars opercularis and pars 
triangularis of the left inferior frontal gyrus (LIFG)), and the left 
posterior middle temporal gyrus (LpMTG). We focused on these 
three regions because of their previously observed involvement in 
syntactic processing and their critical role for syntactic processing 
according to several models (41–44). These regions were all found 
to respond to syntactic manipulations in both modalities in previous 
studies (15, 32, 44–48), sometimes with differences in their sensi-
tivity to each modality (11, 12, 49). In particular, the LIFG was 
found to be more responsive to syntactic manipulations in produc-
tion than comprehension (12, 50), while the LpMTG was more 
responsive during comprehension (12, 49). Although other regions 
may have been responsive to these predictors, as suggested by pre-
vious results (e.g., refs. 27 and 30), we preferred to only include 
ROIs that have been most consistently associated with syntactic 
processing, to preserve interpretability and statistical power. This 
approach made it possible to include ROI as a fixed effect, which 
allowed us to assess differences between ROIs statistically. To sum-
marize, we investigated whether word-by-word indices of syntactic 
processing that were previously seen to track neural activity in com-
prehension would be suitable for production in three ROIs previ-
ously associated with syntactic processing.

Results

Incremental Metrics of Phrase-Structure Building. To obtain 
incremental metrics of syntactic processing, we proceeded in two 
steps. First, we extracted the constituent structure of each sentence 
with a probabilistic context-free phrase-structure grammar (Stanford 
parser (51)). From the extracted constituent parse, we then computed 
the parser operations carried out at each word according to different 
parsing models (52). These parsers incrementally build the syntactic 
structure of a sentence following different strategies, leading to a 
hypothesized number of phrase-structure building operations 
that need to be carried out at each word (52). This results in an 
incremental complexity metric that corresponds to the number of 
nodes that are built with each word. A top–down strategy builds 
the phrase structure from the top of the tree to a given word, 
such that it predicts increased activity when phrases are opened. 
For comprehension, the top–down parser sometimes anticipates 
nodes before they are unambiguous to the listener, for example in 
the presence of adjuncts. Bottom–up parsing instead builds the 
phrase structure only after all the evidence has been heard, that 
is, after all words attached to each node have been met. It thus 
predicts increased activity when phrases are closed. Ultimately, both 
strategies lead to the same node count, but they make different 
predictions about the timing of syntactic operations and thus of 
corresponding neural activation (see Methods for more details, Fig. 1 
A and B). It should be noted that the number of parser operations D
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carried out at each word serves as an index of syntactic processing 
load throughout the sentence, rather than as a hypothesis about 
the actual computations taking place in the ROI.

We also quantified the load of processing complexity on work-
ing memory with an open nodes measure. This measure counts 
the number of nodes that have been opened (i.e., counted by 
the top–down strategy) but have not been closed yet (i.e., 
counted by the bottom–up strategy), tracking the numbers of 
words that need to be kept in working memory until they can 
be merged in a constituent (30). In other words, this complexity 
metric tracks how much of the hypothesized structure needs to 
be confirmed by upcoming input. We expected this index to 
predict an increase in activity in comprehension, following 
Nelson et al. and Uddén et al. (30, 53). In production, it would 
also lead to an activity increase if speakers kept track of the 
structure that remained to be closed. Finally, to make sure that 
the syntactic predictors did not simply track word probabilities 
based on context, we quantified word surprisal from transformer 
model GPT-2 (54).

Distinct Dynamics for Phrase-Structure Building in Language 
Production vs. Comprehension. We compared word-by-
word predictors of syntactic structure building in spontaneous 
production and comprehension using two datasets shared on 
OpenNeuro (55, 56). In the first dataset, participants (n = 16) 
recalled the events of a TV series they had just watched in the 
scanner. This was the production condition. In the second dataset, 
participants (n = 36) listened to the recall of one production 
participant from the first dataset. The linguistic stimuli were thus 

very similar between the production and comprehension datasets, 
but modality was a between-subject variable.

To directly compare the word-by-word predictors with BOLD 
activity with a 1.5-s resolution (thus including several words at 
each fMRI volume), we convolved the linguistic predictors with 
the hemodynamic response function and resampled it to the 1.5 s  
repetition time (see Methods for more details, Fig. 2). We then 
regressed the average BOLD activity in BA44, BA45, and LpMTG 
in subject space against the predicted timeseries for each linguistic 
predictor with a linear mixed-effects model. The model included 
word rate, syllable rate, word frequency, word surprisal, open 
nodes, top–down, bottom–up, language modality, and ROI as 
fixed effects (see SI Appendix, Table S1 for all model results). To 
control for sentence planning and wrap-up effects that were not 
directly related to syntactic structure building, we additionally 
included a regressor for sentence onset and one for sentence offset. 
Word rate, word frequency, and number of syllables significantly 
predicted an increase in BOLD activity. The effect of modality 
was also marginally significant, with production having more pos-
itive activity than comprehension. The effect of modality did not 
interact with the effect of ROI.

Larger word surprisal elicited an increase in BOLD in both 
modalities (Fig. 3, χ2 = 51.9, P < 0.0001). This effect interacted 
with ROI (χ2 = 17.4, P = 0.0002) since BA44 responded signifi-
cantly less to surprisal than BA45 and LpMTG (pairwise estimates 
> 0.1, P < 0.02) in both modalities. Open nodes also had a signif-
icant effect on BOLD activity (Fig. 3, χ2 = 8.5, P = 0.0035). The 
effect interacted with modality and ROI (χ2 = 12.04, P < 0.003). 
It was significant only in comprehension in BA45 and LpMTG 
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Fig. 1.   Node counting following different parsing strategies. The colored circles refer to the nodes that are built at the time point the word in the same color 
is uttered or heard. (A) Colored representation of top–down phrase structure building, with nodes counted from the top of the tree to the word. (B) Colored 
representation of bottom–up phrase structure building, with nodes counted from the bottom of the tree (i.e. the terminal nodes) to the top. Only nodes where 
both daughter nodes have been already met can be counted at each word. (C) Colored representation of early top–down phrase-structure building, assuming 
operations to take place before word onset (production-specific). (D) Colored representation of chunked phrase-structure building, following a less incremental 
strategy (production-specific). This node counting strategy is chunked based on the heads of the dependency parse of the same sentence (shown by the arrows 
below words, also see SI Appendix, Fig. S1). Heads are words from which an arrow originates. The nodes of the same constituent structure used by the other 
strategies are counted here, but they are assigned only to the first word and to subsequent heads. The chunked nature of this parser results in phrase-structure 
building operations assigned to some but not all words in a sentence (SI Appendix). Black words are words that are not assigned any phrase-structure building 
operation (e.g., sentence-final words).
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(estimates > 0.99, P < 0.001), while the estimates approached zero 
in all ROIs in production. Open nodes track the number of nodes 
to be kept in working memory until they can be integrated. It 
thus seems that the amount of structure that needs to be kept in 
working memory to be confirmed with the input leads to a brain 
activity increase in comprehension, but not in production.

Sentence onset and offset predicted the largest variation in brain 
activity, especially in comprehension (Fig. 3). The results indicated 
a main effect for sentence onset (χ2 = 7.5, P < 0.007) and for 
sentence offset (χ2 = 5.7, P = 0.017), a marginally significant 
interaction between sentence-offset and ROI (χ2 = 5.7, P = 0.056), 
an interaction between sentence-offset and modality (χ2 = 6.4,  
P = 0.01), and a three-way interaction between ROI, modality 
and sentence-offset (χ2 = 6.1, P < 0.05). Sentence-onset was related 
to a decrease in activity overall (estimate = −1.4, t = −2.8), while 
sentence-offset was related to an increase in activity (estimate = 1.4, 
t = 2.6) in comprehension (comprehension–production: estimate 
= 2.5, P = 0.011), especially in BA45 and the LpMTG (difference 
estimates: estimates > 4.7, ps < 0.023). Therefore, these results 
suggest that neural activity in these regions tracks sentence bound-
aries in comprehension, while production seems less sensitive to 
sentence boundaries.

We next determined whether incremental metrics of phrase- 
structure building significantly predicted brain-activity in BA44, 
BA45, and LpMTG (Fig. 3). Both top–down and bottom–up parsers 
added significant contributions to the model, in interaction with 
modality and ROI (three-way interaction for top–down, χ2 = 6.6,  
P = 0.036; interaction between modality and bottom–up, χ2 = 11.1, 
P < 0.001; interaction between ROI and bottom–up, χ2 = 5.9, P = 
0.052). Anticipatory top–down node counts predicted a significant 
increase in activity in production relative to comprehension (difference 

estimate = 0.9, P = 0.004). The response to top–down node counts 
in comprehension was negative, and significantly lower in the 
LpMTG than in BA44 and BA45 (difference estimates > 0.83, SE 
= 0.25, ps < 0.003), while there were no significant differences 
among ROIs in production (difference estimates < 0.35, SE = 0.29, 
ps > 0.47). Integratory bottom–up node counts yielded an opposite 
pattern of results. Larger bottom–up counts led to a significantly 
lower response in production than comprehension (difference esti-
mate = 0.58, P = 0.0009). Again, ROIs responded differently to 
bottom–up counts across modalities. In comprehension, the strong-
est response was in LpMTG (difference estimates > 0.47, SE = 0.19, 
ps < 0.043), while in production the responses were negative and 
not significantly different among ROIs (difference estimates < 0.19, 
SE = 0.2, ps > 0.6). Therefore, activity in all ROIs was related to 
structure-building in production, while only the LpMTG tracked 
syntactic structure in comprehension, with opposite dynamics than 
in production. Activity in BA45 was better predicted by 
phrase-structure building in production, while in comprehension 
it was strongly influenced by sentence boundaries. An anonymous 
reviewer inquired about the responses of additional regions (LATL, 
RATL, LIPL, LMFG) for comparability with previous comprehen-
sion studies (27, 28, 30). To expand our theoretically informed 
analysis, we explored the responses of these additional regions in 
SI Appendix, Fig. S3.

The parsers thus revealed marked differences between language 
production and comprehension. Anticipatory node counts led to 
an increase in neural activity during production, but decreased 
activity during comprehension. This suggests that during produc-
tion syntactic structure building dominated at phrase opening. 
The decrease in activity predicted by the bottom–up parser during 
production suggests that, at phrase closing, syntactic processing 
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Fig. 2.   Graphical representation of the analysis procedure to relate word-by-word predictors of linguistic complexity to BOLD activity. (A) Word-by-word predictors 
of syntactic complexity were extracted from the constituent structure of the sentence spoken by a participant and listened to by other participants. The height of 
the bars in (A) represents the number of phrase-structure building operations expected to take place at each word following top–down and bottom–up parsing 
strategies (e.g., at “so” 3 nodes are counted for top–down, 2 for bottom–up). The weights of the syntactic predictors were convolved with the hemodynamic 
response function (B) to get predictor timeseries of BOLD activity at 1.5 s resolution (C). These predictors timeseries were then compared to the brain activity 
of the speaker or the listener (D) in the three ROIs (BA44, BA45, and LpMTG, E) extracted as average BOLD time courses (F).
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load was reduced. In comprehension, instead, the neural activity 
increase for bottom–up node counts suggests that syntactic 
structure building dominated at phrase-closing and was reduced 
at phrase-opening, when the top–down parser predicted a 
decrease in activity. Overall, neural activity increased with syn-
tactic structure building in both modalities, but critically with 
different temporal profiles across the sentences in each modality. 
Syntactic structure building was seen to elicit an increase in 
neural activity at phrase-opening in production and at phrase- 
closing in comprehension.

Phrase-Structure Building in Production Proceeds in a Highly 
Incremental Fashion. The parsing strategies mentioned so far were 
developed in the context of comprehension. This is problematic 
because linguistic operations have been assigned at the time a word 
was said. This is a reasonable assumption in comprehension, where 

processing must follow the input to some extent. However, in 
production, once a word is articulated, the associated grammatical 
and lexical encoding will have already taken place (34, 57). We 
thus explored two production-specific node building strategies 
that might better account for the timing of syntactic encoding in 
production: an early top–down model and a chunked model, both 
modified from the top–down strategy that was seen to better model 
neural activity in production. In both, syntactic structure related 
to a word was assumed to be built at the latest when the previous 
word was articulated. However, the two strategies made different 
predictions about the incrementality of structure building.

The early top–down model predicted structure building to occur 
as the previous word was uttered (i.e., at each word we counted the 
nodes associated with the following word; see Methods for more 
details, Fig. 1C). This strategy leads to an equally incremental node 
building strategy as the original top–down strategy, but, critically, 

Fig. 3.   Beta estimates for the effect of open nodes, word surprisal, sentence-onset, sentence-offset, the top–down and bottom–up parsers on BOLD activity 
in the ROI. Error bars represent SEM.
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builds nodes earlier, more in line with theories of word production 
(57, 58). While more fitting for production in terms of timing, this 
view presupposes a highly incremental syntactic encoder that builds 
nodes associated to each word in incremental steps, without antic-
ipating a verb phrase when the grammatical subject of the sentence 
is said.

Studies of sentence planning in production, however, have long 
debated whether planning is linearly or hierarchically incremental, 
that is, whether the structure is built from each concept separately 
or from the relations between concepts (59). Hierarchical models 
of sentence production consider the verb to be the central node 
for the syntactic structure (34, 35), suggesting that planning pro-
ceeds less incrementally. We thus explored whether a less incre-
mental parser would better account for brain activity than a 
word-by-word incremental parser. We developed a node building 
strategy that counted all the nodes between words that were iden-
tified as heads according to dependency parsing (see Methods for 
more details, Fig. 1D and SI Appendix, Fig. S1). This chunked 
strategy predicts chunks of syntactic processing to happen at focal 
points, in a less incremental way. This approach, by combining 
dependency and constituent structures, is similar to existing syn-
tactic generators that use a top–down strategy to identify focal 
points (“semantic heads”) and build nodes up to that point in a 
bottom–up fashion (40, 60). This generation strategy, called 
“head-driven generation,” diverges from the parsing strategies 
introduced above by focusing on the production problem of hav-
ing to generate a syntactic tree from a semantic structure, rather 
than a sequence of already identified lexical items.

We compared the initial top–down parser used in the previous 
analyses with the early top–down model and the chunked model by 
fitting three linear mixed models to the production data, each with 
one of these different predictors of phrase-structure building. The 
early top–down model led to the best model fit [as measured with 
the Akaike information criterion (AIC), lower values indicate bet-
ter fit: early top–down, 170,803.9; top–down, 170,821.3; chunked, 
170,837.5, SI Appendix, Tables S2–S4].

The top–down model predicted an overall increase in BOLD 
(top–down, χ2 = 7.5, P < 0.007), while the chunked predictor was 
not significant (chunked, χ2 = 2.6, P = 0.109). The early top–down 
main effect was not significant (χ2 = 2.7, P = 0.1), but it interacted 
with ROI (χ2 = 6.2, P < 0.05) (Fig. 4). In particular, early top–down 
counts predicted an increase in BA45 (estimate = 0.44, SE = 0.18, 
P = 0.015), while the effect was absent in LpMTG (estimate = 
0.003, SE = 0.18, P > 0.98). These results were confirmed by 

likelihood ratio tests of a full model that included all three predic-
tors. We found a significant contribution of both the top–down 
predictor (χ2 = 6.17, P = 0.013) and of the interaction of early 
top–down with ROI (χ2 = 6.42, P = 0.011). The involvement of 
the LpMTG thus decreased when phrase-structure building oper-
ations were posited to take place earlier, suggesting that the 
LpMTG responded to node counts later than the LIFG (see 
SI Appendix for converging evidence on the latency of the response 
based on analysis of the temporal derivative, SI Appendix, Fig. S2). 
The LIFG instead responded to structure building operations 
before word onset. The less incremental model of structure build-
ing instead did not model brain activity well, providing evidence 
against the need to plan the structure up to the verb at the start of 
the sentence. This pattern of results, therefore, indicates that, dur-
ing production, phrase-structure building operations preferentially 
took place shortly before word onset in the LIFG in a highly 
incremental fashion. An analysis on the pausing patterns through-
out the speech additionally revealed that top–down node counts 
affected pause length before word articulation, providing converg-
ing evidence for phrase-structure building to happen before word 
onset in production (see SI Appendix, Fig. S4 for the analysis on 
pause length and word duration).

Discussion

In the first study to investigate the neural correlates of syntactic 
processing during spontaneous production, we modeled incre-
mental phrase-structure building with probabilistic parsers and 
used them to predict brain activity in BA44, BA45, and LpMTG. 
We found that phrase-structure operations successfully predicted 
brain activity during naturalistic production and comprehension. 
A central finding was that the timing of phrase-structure opera-
tions differed strongly between production and comprehension. 
The results suggest that phrase-structure building occurs in an 
integratory manner in comprehension. Phrase-structure building 
was instead markedly anticipatory and incremental in production 
(occurring predominantly before word onset), as evidenced by 
anticipatory parser operations predicting pause length before each 
word during speech, and by incremental production parsers that 
best modeled the production data.

Therefore, parser strategies that have been linked to neural activ-
ity in relation to syntactic structure building during sentence 
comprehension were found here to successfully predict neural 
activity also during sentence production. This suggests that the 

Fig. 4.   Beta estimates of the effect of each predictor of phrase-structure building in production on BOLD activity in the ROI. Error bars represent SEM. The early 
top–down model led to the best model fit (AIC, lower values indicate better fit): early top–down, 170803.9; top–down, 170821.3; chunked, 170837.5.D
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syntactic structure built by the parser approximates syntactic pro-
cessing load suitably in both production and comprehension, and 
is consistent with sentence production and comprehension inter-
facing with the same syntactic representations (23, 25). The com-
parison of top–down and bottom–up parsers highlighted critical 
differences in the timing of structure building between modalities. 
Syntactic processing elicited BOLD activity increases in both pro-
duction and comprehension, but critically the temporal profiles 
of brain activity diverged across modalities. Superficially, this dis-
crepancy highlights inherent processing differences between lan-
guage production and comprehension. In production, structure 
building can proceed by establishing the upcoming structure 
before words are uttered, which was confirmed by the better fit of 
the early top–down parser with neural activity, as well as by the 
longer pauses associated with larger numbers of top–down parsing 
operations. In comprehension, instead, phrase-structure building 
proceeded in a more integratory manner, whereby the brain waits 
for the input before committing to a syntactic structure. These 
results fit with previously obtained evidence on BOLD timing 
sensitivity to structure complexity and modality, where BOLD 
peaked earlier with more complex structures in production but 
later in comprehension, relative to easier structures (12, 46) (see 
refs. 61 and 62 for converging evidence on production and com-
prehension dynamics of composition in magneto-encephalography 
(MEG)). Thus, the present results converge with previous con-
trolled experiments in showing early syntactic encoding in pro-
duction relative to later encoding in comprehension (12). This is 
likely due to different processing dynamics in production and 
comprehension, which have opposite inputs, outputs, and map-
pings between linguistic levels (17).

Different processing dynamics, however, might be only a symp-
tom of different processing contexts, rather than different process-
ing algorithms between production and comprehension. During 
syntactic parsing in comprehension, the listener has to resolve 
structural ambiguity in the input (hypothesis management (63)). 
Instead, during syntactic encoding in production, the speaker has 
to make structural decisions to encode the message. Therefore, 
although the context is different, in both syntactic parsing and 
encoding the computational goal is to select a structural rep-
resentation consistent with the input (39). Similarly, Kempen (64) 
argues that the processes of grammatical encoding in production 
and parsing in comprehension can form a single processing mech-
anism used for constructing syntactic structure. The differences 
between parsing and encoding are due to different processing 
contexts, where in production lexico-syntactic information is 
extracted from conceptual structure, while in comprehension the 
lexico-syntactic information is derived from word strings. Under 
this assumption, the different dynamics between modalities sug-
gest that the mapping between the semantic context and lexico- 
syntactic information can happen earlier in production, leading 
to anticipatory structure building. Instead, in comprehension 
structure building follows the mapping from sound sequences to 
lexico-syntactic items. Therefore, diverging dynamics of structure 
building do not necessarily imply separate structure building pro-
cesses during production and comprehension.

Interestingly, there were some regional differences in the sensi-
tivity to syntactic predictors in each modality. In particular, in 
comprehension syntactic processing was related to neural activity 
only in the LpMTG. The activity of BA45 was instead explained 
exclusively by sentence boundaries. This dissociation may be 
explained by BA45 being linked to sentence-level processing tak-
ing place at the end of sentences in a way that is not linearly related 
with the number of nodes. The LpMTG instead seemed to track 
both sentence wrap-up effects and node-related syntactic load. In 

production, there was no significant difference between ROIs in 
how they responded to syntactic operations. However, the results 
of the production-only parsers and an analysis of the temporal 
derivative suggest that the LpMTG was more active in production 
at later latencies. Instead, none of the ROIs were sensitive to sen-
tence boundaries in production, possibly indicating that sentence 
planning was a more continuous process.

These regional differences in the pattern of responses across 
modalities may be reconciled with a shared processing account by 
suggesting that the LpMTG was involved in lexical–syntactic 
retrieval, while the LIFG was involved in sentence-level processing 
that was not purely syntactic. In production, as suggested by the 
top–down parser, the mapping between semantic and syntactic 
structure may have been supported by the LIFG, with sensitivity 
to the amount of structure building, engaging the LpMTG at later 
timescales for lexical–syntactic retrieval. In comprehension, as 
indicated by the bottom–up parser, lexical–syntactic retrieval in 
the LpMTG may have preceded sentence-level processing and 
have appeared at canonical hemodynamic response function 
(HRF) delays, followed by unification in BA45 at sentence offsets 
(41). Finally, the evidence for a different latency in the response 
of the LpMTG and LIFG during production suggests that incon-
sistencies among studies in the regional patterns of responses may 
be due to differences in the activation latencies of these regions 
relative to sentence-level manipulations. The temporal derivative 
and production parser analyses allowed us to uncover the evidence 
for the later involvement of LpMTG in production.

It should be noted that these results only outline coarse pro-
cessing dynamics, given the low temporal resolution of the BOLD 
signal, and that they do not aim to faithfully model all processes 
going on during speaking and listening. For example, these parsers 
are perfect “oracles,” meaning that they always posit phrase-structure 
building operations for the final structure, ignoring potential 
ambiguities in the input (52). Recent evidence has shown that 
modeling syntactic ambiguity improves the fit with brain activity 
(28). In addition, there is substantial evidence that comprehension 
is sensitive to the predictability of the input, such that some 
amount of anticipatory syntactic processing is expected in com-
prehension as well (5, 65–67). Indeed, Brennan et al. (27) found 
a positive relationship between top–down operations, syntactic 
surprisal and BOLD activity in comprehension. Similarly, 
Coopmans (68) found that a top–down parser best modeled brain 
activity during comprehension in MEG. Nelson et al. (30) instead 
found bottom–up counts to better model brain activity (measured 
with electrocorticography) than top–down counts for the com-
prehension of single sentences. It is possible that different charac-
teristics of the speech input led to this difference between studies. 
In our case, the input was spontaneous speech that also included 
disfluencies and corrections, while Brennan et al.’s and Coopmans’s 
linguistic input were audiobook stories. There is evidence that 
lexical predictions can be influenced by reading strategies (69). It 
might have been easier to anticipate the structure in the “cleaner” 
audiobook story than in the spontaneous recall of an unfamiliar 
story. The reduced contextual information available in Nelson 
et al. (30) may also have led to a reduction in anticipatory syntactic 
processing. Future studies with naturalistic comprehension will 
need to clarify to what extent the nature of the input determines 
the strength of anticipatory vs. integratory syntactic structure 
building.

Returning to parser-specific modeling of syntactic processing, 
the parsers discussed so far have usually been discussed in the 
context of syntactic processing specifically in comprehension (52). 
Here we also explored modifications of these parsers that were 
inspired by psycholinguistic findings about syntactic processing D
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in production (17). In production, syntactic processing is thought 
to happen before word articulation (34, 35, 57). There are differ-
ent views on whether lexical access guides the structure, or whether 
the structure encoding the relations between concepts guides the 
order of lexical access (59). While the evidence provides mixed 
support for both accounts, suggesting that syntactic encoding is 
flexible and variable (70–72), several proposals identify the verb 
as a central node in sentence planning, suggesting that the syn-
tactic structure until the verb needs to be computed before speech 
onset (35, 73, 74). Cross-linguistic evidence even suggests that in 
some languages some level of planning happens during the previ-
ous sentence (75). By taking advantage of brain activity as an index 
of processing dynamics, we compared more and less incremental 
models of sentence planning with two parser models that made 
different predictions on the temporal unfolding of syntactic 
structure.

An incremental parser that is more anticipatory than the orig-
inal top–down parser led to the best model fit, suggesting that 
structure building proceeds before word articulation. This was also 
confirmed by converging results on longer pauses before words 
associated with more phrase-structure building operations, in line 
with previous behavioral evidence linking pausing patterns in 
speech with syntactic complexity (76). A less incremental parser 
that always plans the structure for a few chunks of words at a time 
provided the worst fit for brain activity. These results suggest that 
a highly incremental parser may be the more standard planning 
strategy in production, and that the structure up to the verb does 
not need to be planned at the start of the sentence. As a note of 
caution, it is possible that by modeling the chunked parser differ-
ently, we may have found better fit for this model. In particular, 
what our results show is that the structure is not planned early 
and in larger chunks. Modeling word accessibility as well in the 
parsing strategies to account for variability in incrementality may 
prove nonetheless to be beneficial. Additionally, future studies 
may explore strategies that include the semantic structure of the 
sentence in the structure building process as suggested by the 
generation literature (40) or word-by-word predictors derived 
from generators paired with parsers in a way that affords direct 
comparability between production and comprehension (77).

The finding of highly incremental structure building partly 
contrasts with previous behavioral results that found verb access 
in English before speech onset or at least before the production 
of an internal argument (e.g., refs. 73 and 78). It remains open, 
though, whether verb access requires the respective structure build-
ing to be completed at the same time. It is possible that the verb 
is accessed early but the structure is not built until after producing 
the subject. By investigating cross-linguistic differences in the 
incrementality of structure building, we may be able to understand 
to what extent the strong incrementality found here also applies 
to other languages and is directly linked to the latency of verb access 
found in behavioral studies. In comprehension, this approach high-
lighted differences in structure-building preferences between 
Dutch and English, as preference for a top–down strategy was 
found in a comprehension study in Dutch, relative to the better 
fit of left-corner parsing in English (52, 68, 79).

We thus provide neuroimaging evidence addressing the long- 
standing debate on the incrementality of sentence planning. This 
approach could contribute to the understanding of the dynamics 
of sentence planning, by developing models that take into account 
the variability of each sentence, for example by modeling longer 
planning scopes only when the verb follows an internal argument 
(74), or depending on word accessibility (71, 72). The approach 

developed here also has the potential to uncover differences in the 
incrementality of structure building across languages using a more 
naturalistic paradigm.

Finally, previous studies found modality differences in the sen-
sitivity of neural responses to syntactic processing (12, 50). In 
particular, syntactic processing led to stronger responses in pro-
duction than comprehension. This difference could have been 
observed either due to task-related effects or due to modality- 
inherent differences, such as a stronger need in production to fully 
compute the syntactic structure to be able to speak correctly, in 
contrast to good-enough processing in comprehension (36, 80, 
81). While we could not directly address this question with modal-
ity as a between-subject variable, the results indicate that the dif-
ferent modality load on syntactic processing found in previous 
studies may in effect be task-related. In this study, syntactic struc-
ture building elicited a neural activity increase that was quantita-
tively similar across ROIs in both modalities, although with 
different dynamics. This finding is consistent with the view that, 
in contexts where production is spontaneous and unconstrained 
by artificial tasks, and where comprehension is meaningful and as 
a consequence more engaging, syntactic parsing and encoding 
may have a similar load on brain activity.

Importantly, with this study, we demonstrated the feasibility 
and benefits of studying production with spontaneous speech. The 
costs associated with spontaneous production, such as increased 
variability and disfluencies of the linguistic signal, increased 
motion artifacts in fMRI and the slow temporal resolution, are 
outweighed by the many advantages. Spontaneous production 
yields a larger amount of data than controlled tasks. This is the 
case especially in behavioral analysis but also with fMRI, provided 
the speech samples are of sufficient length. In addition, with spon-
taneous speech, the artificiality of the task is largely reduced. 
Although speaking in monologue is not as common as dialogue, 
it is much more ecologically valid than speaking following careful 
instructions with limited acceptable speech output. In addition, 
the probability distributions of linguistic inputs and outputs are 
preserved in spontaneous contexts, in contrast with many exper-
iments (82). Finally, neuroimaging studies on spontaneous pro-
duction allow for potentially new insight into production 
questions that have been so far mostly addressed with psycholin-
guistic studies. One limitation of this study is that production and 
comprehension processes were studied in different participants. 
Future studies specifically designed to address these questions, 
with modality as a within-subject variable and a larger sample, 
will have to confirm the present results. Importantly, the current 
study shows that studying spontaneous production with fMRI is 
feasible. In addition, with this design, the task requirements across 
production and comprehension were better matched than in pre-
vious studies addressing production and comprehension differ-
ences (12, 50).

In summary, we showed that spontaneous production can be 
used to study the neural correlates of linguistic processing, providing 
very rich data that can be directly linked to behavior with the anal-
ysis of pause length and word durations. We found that syntactic 
structure building engages inferior frontal and posterior temporal 
regions in production and comprehension with diverging dynamics. 
Phrase-structure building was anticipatory in production but inte-
gratory in comprehension. Finally, we provided neural evidence for 
incremental models of syntactic encoding in production using 
production-specific parsers. These findings demonstrate the feasi-
bility of studying spontaneous production and begin to uncover the 
dynamics of structure building in speaking and listening.
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Methods

Data Acquisition and Preprocessing.
Production data. The production data used were collected by Chen et al. (55, 83) 
and made available on OpenNeuro (https://openneuro.org/datasets/ds001132/
versions/1.0.0), after participants provided informed written consent before the 
start of the study in accordance with experimental procedures approved by the 
Princeton University Institutional Review Board. In this experiment, participants 
watched an episode of the BBC television series Sherlock and then recalled what 
happened in the episode. Data were originally collected for 22 right-handed 
native English participants (10 female, ages 18 to 26, mean age 20.8). Data for 
five participants were not shared, since they were excluded due to excessive head 
motion (2 participants), because recall was shorter than 10 min (two participants) 
or for falling asleep during the movie (one participant). Data for one participant 
were not shared because of missing data at the end of the movie scan, which left 
us with 16 participants for the current analysis. Speaking led to an average frame-
wise displacement of 0.32 (average per participant, range = 0.13 to 0.54), which 
was higher than the average in the comprehension data (0.22, range = 0.08 to 
0.42) but was corrected for with noise regression (see fMRI data preprocessing 
in SI Appendix for more details).

Participants watched the first 50 min of the first episode of the BBC TV series 
Sherlock, after confirming that they had not watched any episode of Sherlock 
before. Participants were told they would be asked to verbally describe what 
they had seen. After watching the episode, they were immediately instructed 
“to describe what they recalled of the movie in as much detail as they could, 
to try to recount events in the original order they were viewed in, and to speak 
for at least 10 min if possible but that longer was better. They were told that 
completeness and detail were more important than temporal order, and that if 
at any point they realized they had missed something, to return to it. Participants 
were then allowed to speak for as long as they wished, and verbally indicated 
when they were finished (for example, “I'm done”). During this session, they 
were presented with a static black screen with a central white dot (but were not 
asked to, and did not, fixate) (83). Their speech was recorded in the scanner with 
an MRI-compatible microphone.

We also used a second production scan for one of these participants, who 
also recalled an episode of BBC TV series Merlin, as part of the data collected and 
released by Zadbood et al. (84). This speech sample was used as audio stimulus for 
part of the Comprehension data (see below). The procedure and acquisition were 
the same. Therefore, in total, we used 17 speech samples from 16 participants, 
since one participant recalled both Sherlock and Merlin. The 17 recalls were 10 
to 45 min (mean = 22 min, SD = 8.8 min), including on average 2,874 words 
(range = 1,666 to 6,230, SD = 1,299).
Comprehension data. For the comprehension data, we used the data shared 
by Zadbood et  al. (56, 84) on OpenNeuro (https://openneuro.org/datasets/
ds001110/versions/00003), after participants provided informed written con-
sent before the start of the study in accordance with experimental procedures 
approved by the Princeton University Institutional Review Board. In this experi-
ment, participants listened to an audio recording of the recall of one production 
participant from the production data (see above) about either Merlin or Sherlock. 
They also watched an episode of the BBC TV series Merlin or Sherlock (note that 
they listened to and watched different stories), which was not analyzed here. 
Audio recordings were obtained from a participant that watched and recounted 
the two movies, here analyzed as part of the production data. In this dataset, 
52 right-handed native English speakers (age 18 to 45) were scanned. Fifteen 
participants were excluded because of head motion (n = 4), for falling asleep (n 
= 4), due to poor memory (n = 5), for having seen the movie before (n = 2). This 
resulted in 36 shared and analyzed participants, 18 that listened to the Merlin 
recall, and 18 that listened to the Sherlock recall. The audio recall for Merlin was 
14.7 min long and included 2,141 words. The audio recall for Sherlock was 17.5 
min long and included 2,468 words.

Although the production and comprehension datasets were collected as part 
of separate experiments, the datasets were acquired with the same scanning 
parameters (SI Appendix). The task was as similar between modalities as differ-
ences between production and comprehension allow. In particular, in production 
the linguistic output was the spoken recall of a TV episode, and in comprehen-
sion the linguistic input was the recall of a TV episode (produced by one of the 
production participants).

Incremental Complexity Metrics.
Syntactic tree extraction with the Stanford parser. First, we extracted the 
constituent structure of each sentence with a probabilistic context-free phrase-
structure grammar. We used the Stanford parser with CoreNLP in Python 3 via the 
Natural Language Toolkit package (51, 85). The transcript provided in the shared 
dataset was divided in what we considered independent sentences. Since the 
production was very spontaneous and unconstrained, sentence boundaries were 
not objective and self-evident as they are in text. In speech, the boundaries can 
depend on the syntactic structure of the sentence, but also on pausing patterns 
and disfluencies. For example, coordinated clauses may be considered one single 
sentence or divided into two separate sentences based on pause lengths. Also, 
some sentences extend over 30 words or more, with many embedded phrases. 
Participants, however, do not appear to always keep in working memory the orig-
inal syntactic structure, which is revealed by their disfluencies and corrections 
throughout long sentences. In particular, boundaries could be set to track the syn-
tactic structure, also including hesitations and corrections within its boundaries, or 
to track speech patterns and “reset” every time there is a disfluency. After extensive 
exposure to the transcripts, it became clear that shorter boundaries better reflect 
the planning chunks followed by speakers in these monologues without audience 
feedback, but it is to be determined if different approaches work better in other 
contexts. For example, the following text could be considered a single sentence: 
“I believe at this point we're shown this string of three successive suicides which 
are immediately suspicious to the viewer because they're they have their origins 
in these mundane situations.” However, there was a pause of 2.6 s after “because.” 
The sentence was therefore divided into: “I believe at this point we're shown this 
string of three successive suicides which are immediately suspicious to the viewer 
because. They're. They have their origins in these mundane situations.” Now the 
false start is a sentence by itself, which ensures that syntactic processing taking 
place at that time is captured, but it is less likely to affect and possibly confuse the 
full sentence parse. The sentence boundary at “because” is not problematic for 
the parser: the node counts are equivalent, with the difference that the sentence 
starting at “they” is not attached to the previous part. This means that at “situa-
tions” the bottom–up counts refer all the way back to “they” but not “I believe.” 
This is not necessarily problematic, given the long pause between “because” and 
“they,” which makes it unlikely that the speaker was referring back to the original 
S node at “situations.” It should be noted that an initial analysis was run on longer 
sentences, which perhaps better tracked the overarching syntactic structure but 
did not optimally reflect the planning processes of participants. The results were 
similar with both sentence boundaries approaches, but the disfluency-informed 
approach to sentence length was less noisy. The average number of sentences 
per participant was 307 (±168) formed by 9.4 (±1.2) words for the disfluency-
informed approach, and 196 (±115) sentences formed by 14.9 (±2.1) words for 
the initial longer sentence approach.

Since the Stanford parser was trained on newspaper articles, we performed a 
validation procedure to make sure that it was able to appropriately capture the 
syntactic structure of spontaneous and disfluent speech. We randomly selected 10 
sentences per participant (170 sentences and 1,434 words out of the 3,328 sen-
tences and 47,153 words produced in total) and manually corrected the output of 
the parser. From the selected set, 39 out of the 170 reviewed sentences included at 
least one error. Errors most often stemmed from a wrong attachment or wrong part-
of-speech marking and were thus not directly linked to disfluencies. Only four of 
these errors were due to the presence of filled hesitations such as “like” or discourse 
markers like “you know.” We determined parser accuracy as the correlation between 
the parser counts from the original parse and the reviewed parser counts. The cor-
relation between the adjusted top–down counts and the uncorrected top–down 
counts was 0.92. The bottom–up correlation was 0.93. We expect the correlation 
would effectively be higher after convolution with the HRF, since the parsing errors 
usually resulted in nodes being assigned a few words earlier or later, which often 
fall within the same TR. (It was not interesting to convolve the corrected parser 
counts with the HRF, since the corrected sentences were not contiguous in time.) 
We thus considered the performance of the Stanford parser for spontaneous speech 
appropriate for our purposes.
Phrase-structure parsing. Following sentence structure extraction with the 
Stanford constituent parser, we took a measure of syntactic processing with 
incremental complexity metrics derived from the number of syntactic nodes 
that are built with each word. Nodes can be built with different parsing strate-
gies: top–down, bottom–up and left-corner (52). In top–down parsing, nodes D
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are built from the top of the syntactic tree to the terminal node (corresponding 
to a word). In other words, nodes are counted when phrases are opened. This 
strategy can lead to the anticipation of nodes that may not always be known 
to a listener. For example, in the sentence “Mary eats apples daily,” a node 
accounting for the upcoming presence of “daily” is counted already at the 
word “eats.” This anticipation is justifiable in production, where the upcoming 
structure is presumably known to the speaker in advance, but it might reflect 
unjustifiable prediction in comprehension. Nevertheless, this implementation 
of a top–down strategy may be successful in accounting for predictive processes 
in comprehension.

At the other end of the incremental parsing spectrum is bottom–up parsing, 
according to which nodes are built from the bottom of the syntactic tree (i.e., from 
the terminal nodes, corresponding to each word) up to the highest closed nodes, 
i.e., nodes where all daughter nodes have already been met. For example, in 
Fig. 1B, the top node in purple (S) cannot be built until its right-branching node 
VP is built as well, which in this case only happens at the end of the sentence. 
In other words, bottom–up parsing builds nodes when phrases are closed. This 
strategy thus predicts increased syntactic processing at the end of clauses and 
sentences, after all the evidence for the structure is encountered. We expected this 
parsing strategy to better reflect processing in comprehension than production, 
because in the latter the structure is presumably already built before the last 
word is uttered. Neither top–down nor bottom–up parsing strategies fully match 
human performance (52, 79), but they capture aspects of syntactic processing 
that are expected to differ across modalities. Finally, left-corner parsing needs 
less evidence than bottom–up parsing to count nodes, but is not as predictive as 
top–down parsing. After convolving with the hemodynamic response function, 
left-corner was highly correlated with the top–down parser (SI Appendix, Figs. S5 
and S6). Therefore, we decided to only focus on opposite parsing strategies that 
were most expected to differ between production and comprehension, i.e., top–
down and bottom–up.

We also counted the number of nodes that were still open at each word with 
an open nodes measure, similarly to Nelson et al. (30). Open nodes were the 
number of nodes that were open at each word: This measure tracked the number 
of nodes that had been opened up to the word and that had not been closed yet, 
thus providing an index for the number of nodes that need to be kept in working 
memory until they can be merged in a constituent (30).
Production-specific parsing operations. To account for the timing that is specific 
to production, we developed two production-specific parsers. An early top–down 
model counts the nodes that are built for the next word. At the first word of the 
sentence, nodes are counted for the first and second words (even though nodes 
built for the first word would have been built earlier, we preferred this over making 
assumptions on when the nodes would be built before the sentence, which could 
be varying due to different factors). At the second word, nodes are counted for 
the third word, etc.

For the less-incremental chunked parsing, we selected the heads of each 
sentence following dependency parsing (see SI Appendix for more information 
on the analysis on dependency parsing). We considered as heads all words that 
had a dependent relation attached to them (e.g., the verb is head of subject 
and object). We then counted all nodes (of the same constituent structure used 
by the other parsers) encountered from the first word up to and including the 
next head, then from the head up to and including the next head, and so on. 
Chunked parsing, therefore, builds nodes early on for all the upcoming words 
that are dependent relations until the next head. For example, at the start of a 
sentence all the nodes are built for the structure up to and including the verb, 
usually the first head.

It should be noted that top–down, early top–down, and chunked measures 
were highly correlated after convolving with the hemodynamic response function 
(SI Appendix, Figs. S5 and S6). To avoid collinearity, instead of comparing them 
in the same model, we tested models with only one predictor and determined 
which model provided the best fit (see Regression analysis for more details).
Word surprisal. We quantified word surprisal from transformer model GPT-2 (54). 
We used GPT-2 XL via the TensorFlow implementation provided by HuggingFace’s 
Transformers package (86). Each word’s probability was based on a context of at 
least 700 words after the first 700 words of each participant’s recall. Surprisal was 
calculated as the negative logarithm of the conditional probability of the word 
based on context. With word surprisal we aimed to control for effects of context 
on single word processing.

Behavioral Analysis. To determine whether these indices of processing 
complexity had an effect on participants’ speech patterns, we inspected how 
they affected word duration and pause lengths in all the production recalls. 
Recordings were not made available with the Production dataset, but word 
timestamps for each participant’s recall were shared by Janice Chen’s lab avail-
able at (87). Onsets and offsets of each word were obtained with Gentle. We 
ran a linear mixed-effects model with lme4 [version 1.1-26 (88)] in R (version 
4.0.3). We used number of syllables, word frequency, word surprisal, top–down, 
bottom–up and open nodes as predictors for pause length (before the word 
characterized by each predictor) and word duration. This analysis allowed us 
to compare neural effects with behavioral patterns of speech.

fMRI Analysis.
Predictor timeseries. Each word-by-word predictor was mean-centered (except 
for the word rate predictor, and the sentence-onset and -offset predictors) and 
convolved with the canonical hemodynamic response function following SPM’s 
double gamma function as computed in nilearn. We thus obtained predictor 
timeseries temporally resampled to the acquisition TR of 1.5 s, reflecting BOLD 
increases and decreases following predictor weights time-locked to word onset 
(Fig. 2C).
ROI selection. We selected 3 ROIs that have been associated with syntactic pro-
cessing in previous studies: two LIFG ROIs, following the distinction between 
LIFG pars opercularis (BA44) and LIFG pars triangularis (BA45), and LpMTG. After 
preprocessing the fMRI data, we selected the ROIs for each participant in their 
functional space. BA44 and BA45 were extracted following Freesurfer’s label 
creation with the Destrieux Atlas (89) and resampled to functional space with 
bbregister. Freesurfer’s MTG ROI is quite long in extension, following the gyrus 
from very posterior portions to the temporal pole. We therefore extracted this ROI 
and then masked it with a posterior temporal lobe mask (posterior to Heschl’s 
gyrus) based on the Harvard-Oxford cortical atlas. Examples of these ROIs in MNI 
brain can be seen in Fig. 2E.
Timeseries extraction. The BOLD timeseries were extracted with NiftiLabelsMasker 
from nilearn (90), after confound regression, from preprocessed data (SI Appendix). 
Framewise displacement, DVARS (derivative of bulk head motion variance over 
voxels), motion parameters, aCompCor parameters and ICA-AROMA (Independent 
Component Analysis for Automatic Removal of Motion Artifacts) regressors classified 
as noise were used for noise regression, to reduce the impact of motion artifacts 
caused by speaking. The timeseries was extracted from the functional BOLD volumes 
in functional space as an average of the voxels in each ROI mask.
Regression analysis. To determine to what extent each of these continuous 
indices of syntactic processing significantly affected brain activity (average 
BOLD activity in the three ROIs), we used linear mixed-effects models with 
lme4 [version 1.1-26 (88)] in R (version 4.0.3). We used a baseline model 
that included word rate (i.e., a predictor indicating the onset of each word), 
syllable rate, as an index of articulatory rate, log-transformed word frequency, 
and word surprisal. All models additionally included modality and ROI as 
factors. Modality (production vs. comprehension) was contrast-coded with 
deviation coding. We used Helmert coding for ROI, contrasting LIFG with 
LpMTG, and the two LIFG partes with each other. All other factors were con-
tinuous numerical predictors. All models included word surprisal and its 
interaction with ROI and modality. All models also included by-participant 
random slopes for syllable rate, frequency, word surprisal, and other factors of 
interest, excluding by-participant random effects and correlations to allow for 
convergence and avoid singularity issues. In some cases, we had to exclude 
the random slopes for one of these factors, but never for the factor of inter-
est in that model. We computed the contribution of factors to the models 
using car [version 3.0-10 (91)], and pairwise comparisons with the package 
emmeans [version 1.6.1 (92)].

The first model determined the contribution of top–down and bottom–up 
metrics of phrase-structure building to brain activity in the three ROIs and in 
each modality to a baseline model that included word surprisal and open nodes, 
as well as sentence onset and offset regressors to account for sentence planning 
and wrap-up effects that were not related to structure building operations. The 
sentence onset regressor included a “1” at each first word of each sentence, 
while the sentence offset regressor a “1” at the last word of each sentence (and 
0s for all other words). After convolutions with the HRF, these two regressors 
were highly correlated with each other, and negatively correlated with the D
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open nodes predictor, which tends to increase throughout the sentence. The 
interactions of each metric with ROI and modality were also included in the 
model and the significant contribution of the incremental metric in a region 
or modality was determined with pairwise comparisons. With this model, we 
also determined to what extent word surprisal and open nodes affected brain 
activity in each modality.

We then used three models to ask whether metrics of syntactic process-
ing fine-tuned for production would improve model fit. These metrics are 
not realistic for syntactic processing in comprehension, so the models only 
included production data. The baseline models all included word surprisal and 
bottom–up parser operations, and additionally included top–down, or early 
top–down, or chunked predictors of phrase structure building and their relative 
by-participant random slopes. Since the three parsers were highly correlated 
after convolving with the HRF, we separately fitted three linear models. We 
compared model fit with the AIC, where more negative values indicate better 
model fit (93). We additionally tested whether the different predictors added 
significant contributions to the baseline model with all three syntactic predic-
tors using likelihood ratio tests.

Data, Materials, and Software Availability. Word timestamps with lin-
guistic annotations and the analysis code have been deposited in OSF (DOI 
10.17605/OSF.IO/QJMKY). Previously published fMRI data that were used 
for this study are available on OpenNeuro (https://openneuro.org/datasets/
ds001132/versions/1.0.0, https://openneuro.org/datasets/ds001110/versions/​
00003) (55, 56).
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