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Structural models of genome-wide
covariance identify multiple common
dimensions in autism

Lucía de Hoyos 1, Maria T. Barendse 1,2, Fenja Schlag1,
Marjolein M. J. van Donkelaar1, Ellen Verhoef 1, Chin Yang Shapland 3,4,
Alexander Klassmann 5, Jan Buitelaar 6,7,8, Brad Verhulst 9,
Simon E. Fisher 1,6, Dheeraj Rai4,10,11 & Beate St Pourcain 1,3,6

Common genetic variation has been associated with multiple phenotypic
features in Autism Spectrum Disorder (ASD). However, our knowledge of
shared genetic factor structures contributing to this highly heterogeneous
phenotypic spectrum is limited. Here, we developed and implemented a
structural equation modelling framework to directly model genomic covar-
iance across core and non-core ASD phenotypes, studying autistic individuals
of European descent with a case-only design. We identified three independent
genetic factors most strongly linked to language performance, behaviour and
developmental motor delay, respectively, studying an autism community
sample (N = 5331). The three-factorial structure was largely confirmed in
independent ASD-simplex families (N = 1946), although we uncovered, in
addition, simplex-specific genetic overlap between behaviour and language
phenotypes. Multivariate models across cohorts revealed novel associations,
including links between language and earlymasteringof self-feeding. Thus, the
common genetic architecture in ASD is multi-dimensional with overarching
genetic factors contributing, in combination with ascertainment-specific pat-
terns, to phenotypic heterogeneity.

Autism spectrum disorder (ASD) is a complex neurodevelopmental
condition with considerable phenotypic and genetic heterogeneity1,2.
Core phenotypes in ASD implicate difficulties in social interaction and
communication, as well as restricted, repetitive behavioural patterns
and sensory abnormalities3. However, the phenotypic presentation is
broad and variable (phenotypic heterogeneity). More than 70% of
individuals with ASD are diagnosed with co-occurring conditions4, and

individuals differ in phenotypic presentation, especially cognitive
functioning2,4. At the genetic level, additive genetic effects of rare and
common genetic factors contribute to ASD liability1,5–10 (genetic het-
erogeneity). Common variation explainsmost genetic variance in ASD,
accounting for 12 to 65% of liability1,5,11. However, even common
genetic variation is highly heterogenous in ASD5,6,8, and differences in
underlying shared genetic factors are only partially understood.
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Depending on an individual’s genetic architecture, common var-
iants act through partially distinct aetiological mechanisms6. For
example, autistic individuals with intellectual disability (ID), compared
to those without, carry a higher rate of contributing de novo variants6

and show qualitative differences in their common genetic
architecture5. In addition, polygenic scores (PGS) for different dis-
orders, aggregating common risk alleles, show distinct association
profiles with phenotypic factor structures in groups comprising only
autistic individuals8,12. Thus, also common variation may present
genetic factor structures linking phenotypic domains, although the
number of factors and their nature is unknown.

In this study, we aim to understand whether phenotypic hetero-
geneity in ASD can be explained by heterogeneity in common genetic
effects by studying autistic individuals from large ASD cohorts. To do
so, we fully dissect the single nucleotide polymorphism heritability
(h2

SNP) of ASD phenotypes into shared and specific genomic variance
contributions, as implemented in genetic-relationship-matrix (GRM)
structural equation modelling (GRM-SEM)13,14. GRM-SEM, a genetic
confirmatory factor analysis technique, leverages the genetic related-
ness between individuals, as measured by direct genome-wide geno-
typing data, to model genetic and residual factor structures13,14 in a
multivariate setting. Therefore, GRM-SEM allows the direct modelling
of the genomic covariance, in contrast to previous studies8,9 that
interrogate the genetic architecture in ASD through analyses of phe-
notypic factor structures followed by genetic association analyses. By
examining core and non-core ASD phenotypes, we estimate the
number of shared genetic dimensions and elucidate their underlying
structure with a novel data-driven genomic covariance modelling
approach, building on previous GRM-SEM efforts13,14. Using a case-only
design, we investigate 5331 autistic individuals from the Simons

Foundation Powering Autism Research for Knowledge (SPARK)
sample15, as part of discovery analyses. We conceptually replicate our
results on 1,946 autistic individuals from the Simon Simplex Collection
(SSC)16. Our study provides new insights into the multi-dimensional
common genetic architecture of ASD and shows that phenotypic
heterogeneity can, largely, be captured by shared genetic factors.

Results
Multi-dimensional genetic analyses in community-based ASD
Genetic heterogeneity, as explained by common variation, and phe-
notypic heterogeneity will be most prominent in ASD community
samples, i.e. unselected ASD samples with a wide demographic, phe-
notypic and clinical spectrum. Here, we conducted discovery analyses
in SPARK15, a cohort that represents autistic individuals from the Uni-
ted States from multiplex and simplex families with rich phenotypic
information.

To identify shared genetic factors, we implemented a multi-stage
approach (Fig. 1a, Methods). During the first stage (Stage I, Fig. 1a), we
identified phenotypes that likely have genetic contributions (h2

SNP,
p ≤0.1) using Genomic Restricted Maximum Likelihood (GREML)17,18,
screening a wide range of language, cognitive, motor, developmental,
affective, behavioural and social phenotypes (https://www.sfari.org/
spark-demographic-and-clinical-information). This increases power
and ensures model convergence, as not all phenotypes may have
common genetic contributions. From an initial set of 47 phenotypes
(Methods, SupplementaryData 1, Supplementary Fig. 1), we retained 17
phenotypes representing five ASD domains: language/cognition, gen-
eral behaviour, developmental milestones, motor, and repetitive
behavioural features (Fig. 2a). Notably, social and affective phenotypes
showed little h2

SNP (Supplementary Fig. 2), consistent with either

Fig. 1 | Workflow of the study. a Multi-stage study design. Multivariate discovery
analyseswere carried out in the Simons Powering AutismResearch (SPARK) sample
(Stages I-III) and the best-fitting model in SPARK was followed-up in the Simons
Simplex Collection (SSC, Stage IV). b Data-driven genomic covariance modelling

approach, including a step-wise combination of principal component analysis
(PCA), exploratory factor analysis (EFA) and Genetic-relationship-matrix structural
equation modelling (GRM-SEM), as described in the Methods.
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phenotypic homogeneity (as social difficulties are present across the
entire ASD spectrum), or little contributions of common genetic var-
iation to phenotypic variation in an ASD case-only sample, or lack of
power. These findings corroborate previous analyses in SPARK, where
phenotypic factor scores underlying social phenotypes showed little
evidence for h2

SNP
8. Next, we identified phenotypes that may share

common genetic variation (GREML rg p ≤0.1, Supplementary Fig. 3) to
enable the identification of overarching genetic factors and combined
them into genetically related phenotype subsets (Stage II, Supple-
mentary Data 2, Supplementary Note 1, Supplementary Fig. 3). To
describe the genomic covariance within each phenotype subset, we
developed and implemented a data-drivenmodelling approach (Stage
III, Fig. 1b, Methods). Phenotype subsets with robustly identified
genetic structures were eventually combined and a final GRM-SEM
model fitted to the data (Supplementary Note 2). Note that in the
presence of collinearity problems, genetically highly correlated mea-
sures were replaced by a single proxy phenotype (Supplemen-
tary Note 1).

In short, our data-driven modelling approach (Fig. 1b, Methods)
included a step-wise combination of principal component analysis
(PCA), exploratory factor analysis (EFA) and GRM-SEM (Fig. 1b, steps i-
vii). Specifically, we estimated the total genomic covariance, as derived

from a saturated GRM-SEM model (Methods, Supplementary Note 2,
Supplementary Fig. 4, Supplementary Fig. 5, Supplementary Data 3).
From this estimate, we predicted the number of genetic factors (based
on PCA eigenvalues) and their underlying genetic structure (based on
EFA). Eventually, this information was used to build a hybrid Inde-
pendent Pathway/Cholesky (IPC) GRM-SEM model, where the struc-
ture is only modelled within the genetic part of the data, while the
residual part is always fitted to a saturated (Cholesky) model (Meth-
ods). IPC models have previously been shown to provide a superior
model fit compared to other a priori-defined models14, which was
confirmed as part of sensitivity analysis (shown below, Methods,
Table 1, Supplementary Data 3, Supplementary Data 4).

The final and best-fitting GRM-SEM IPC model in SPARK (Table 1),
representing all phenotypic subsets, had three independent factors
(Fig. 3), corresponding to (1) better language performance (Alang); (2)
developmental motor delay (Adev); and (3) behavioural problems
(Abeh). Jointly these factors covered one core (repetitive behavioural
features) and four non-core (language/cognition, general behaviour,
developmental, and motor) ASD phenotype domains. The model fit
was highly comparable to a saturated model (Table 1, pLRT > 0.99) and
the model-predicted covariance closely matched the observed phe-
notypic covariance (SRMR=0.002). Sensitivity analyses confirmed the
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Fig. 2 | GREML heritability estimates for SPARK and SSC phenotypes. a GREML
h2

SNP of continuous and categorical ASD phenotypes with p ≤0.1 in the SPARK
sample (N≤ 5132). A complete figure of all analysed phenotypes is shown in Sup-
plementary Fig. 2. Information on phenotype description, sample size and exact
heritability and p-values is available in Supplementary Data 1. b GREML h2

SNP of
continuous and categorical ASD phenotypes in the SSC sample (N≤ 1940). Infor-
mation on phenotypedescription, sample size and exact heritability and p-values is
available in Supplementary Data 6. The error bars represent standard errors.

Evidence for GREML h2
SNP estimates was based on likelihood ratio tests. No

adjustments for multiple-testing were carried out. Estimates were based on trans-
formed scores: deviance residuals (for categorical phenotypes) or rank-
transformed residuals (for continuous phenotypes). DCDQ (Developmental Coor-
dination Disorder Questionnaire), GREML (Genome-based restricted maximum
likelihood), h2

SNP (Single nucleotide polymorphism-based heritability), ODD
(oppositional defiant disorder), RBSR (Repetitive Behaviour Scale-Revised).
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independence of factors (bi-factor models, Table 1) and the compar-
ability of estimates with GREML (shown below). To interpret the
identified factor structure, we focused on standardised genetic factor
loadings accounting for ~10% phenotypic or liability variation
(|λ| ≥0.319).

The language performance factor (Alang) was most strongly rela-
ted to higher language level (λlang = 0.46, SE = 0.08), lower liability to
language disorder (λlang = −0.35, SE = 0.09) and earlier age of self-
feeding (λlang = −0.38, SE = 0.14) and accounted for at least half of the
trait h2

SNP estimates (50–100%, Supplementary Data 5). Variation in the
language performance factor was also positively associated with cog-
nitive functioning as measured by cognitive age level (Supplementary
Fig. 5b, e). Notably, the language performance factor also uncovered
inverse correlations between children’s language ability (e.g. language
level) and the age of self-feeding (GRM-SEM rg = −0.71, SE = 0.25,
Fig. 3d). The developmental motor delay factor (Adev) captured a later
age of crawling (λdev = 0.47, SE = 0.10), less motor control (DCDQ
control during movement, λdev = −0.33, SE = 0.13) and more RBSR self-
injurious behaviour (λdev = 0.36, SE = 0.10), explaining a considerable
proportion of genetic variance (44–84% of the h2

SNP, Supplementary
Data 5). The behavioural problems factor (Abeh) was linked to RBSR
sameness behaviour (λbeh = 0.38, SE = 0.12) and liability to ODD
(λbeh = 0.45, SE = 0.09) and almost fully explained the h2

SNP of these
phenotypes (~100%, Supplementary Data 5).

Specifically, each phenotype had a meaningful genetic factor
loading (|λ|>0.3) for one factor only. Still, we detected minor genetic
heterogeneity for liability to language disorder, with cross-loadings
(p<0.05) of all three factors (λlang =−0.35, SE =0.09; λdev =−0.20, SE =
0.10; λbeh =−0.20, SE =0.10). Given the broad phenotypic definition of
developmental language delay and disorder, identified genetic links
across independent genetic dimensions may arise due to the broad
phenotypic definition capturing multiple underlying aetiologies20.

Eventually, we compared identified genetic factors in SPARK
(Fig. 3) with phenotypic factors identified using an analogous data-
driven modelling approach (Methods). In line with Cheverud’s
conjecture21, which postulates that phenotypic relationships are likely
to be fair estimates of their genetic counterparts, genetic dimensions
largely matched corresponding phenotypic dimensions (Supplemen-
tary Fig. 6). Nonetheless, several differences between phenotypic and
genetic structures became evident, such as for age of self-feeding and
RBSR self-injurious behaviour. For example, genetic variation in age of
self-feeding was explained by the language performance factor
(genetic model: λlang = −0.38, SE = 0.14, Fig. 3), while phenotypic var-
iation was accounted for by the developmental motor delay factor
(phenotypic model: λdev = 0.50, SE = 0.03, Supplementary Fig. 6).
Similarly, RBSR self-injurious behaviour was genetically linked to the
developmental motor delay factor (genetic model: λdev = 0.36, SE =

0.10, Fig. 3), while sharing phenotypic variation with the behavioural
problems factor (phenotypic model: λbeh = 0.66, SE = 0.04, Supple-
mentary Fig. 6). These results leverage the importance of a data-driven
genomic covariance modelling approach as genetic relationships may
not be fully reflected by phenotypic relationships, given that the latter
are also shaped by non-genetic/residual influences.

Multi-dimensional genetic analyses in simplex ASD
The genetic architecture of ASD is distinctly different in multiplex
families withmultiple familymembers with ASD, compared to simplex
families with only one childwith ASD22. ASD liability in simplex families
is considerablymore often related to de novomutations11,23. Therefore,
also common genetic factor structures may differ between exclusively
simplex and community ASD samples. To investigate the consistency
of latent genetic structures in ASD, we attempted to reproduce the
identified best-fitting model from SPARK (Fig. 3) in autistic individuals
from SSC simplex families (Fig. 1a, Stage IV). To do so, we selected
comparable measures in the SSC (Supplementary Fig. 7, Supplemen-
tary Data 6) and applied a data-driven modelling approach (Fig. 1b) to
describe the genetic structure.

Matching SSC phenotypes showed little evidence for h2
SNP

(Fig. 2b), as expected given the smaller sample size. In particular, both
motor (DCDQ scores) and self-injurious behaviour (RBSR) scores had
to be excluded from the SSC sample due to convergence problems
because of little h2

SNP. These twomeasures were replaced with further
language and developmental phenotypes to allow for an empirical
identification of three genetic dimensions. As in SPARK, a three-factor
model of independent genetic factors fitted the data best (Fig. 4).
Sensitivity analyses confirmed the independence of factors (bi-factor
models, Table 1, see below). Fit indices indicated a good model fit,
comparable to a saturated model (Table 1, pLRT > 0.99), and a close
match of model-predicted and observed phenotypic covariance
(SRMR=0.017).

The first two genetic factors corresponded to (1) better language
performance (AF1) and (2) developmental motor delay (AF2), matching
the SPARK factor structures, Alang and Adev, respectively (Fig. 3). In
particular, the first genetic factor (AF1) accounted for variation in lan-
guage age level (λF1 = 0.33,SE = 0.14) and age of self-feeding
(λF1 = −0.46,SE = 0.19), explaining 21–100% of the h2

SNP (Supplemen-
tary Data 7). Note, within SPARK, language level (i.e. an individual’s
everyday language skills) and language age level (i.e. an individual’s
spoken language for their age level) are strongly correlated (GREML
rg = 1.00, SE =0.24, Supplementary Fig. 3) and showed, whenmodelled
together, similar association patterns. The second genetic factor (AF2)
described delays in motor development, with the strongest factor
loading for ageofwalking (λF2 = 0.62, SE = 0.14), capturing up to93%of
h2

SNP (Supplementary Data 7).

Table 1 | Model fit comparison

Model Type Log-likelihood Npar AIC BIC SRMR LRTCholesky LRTBi-factor

Δχ2(Δdf) p Δχ2(Δdf) p

SPARK, Ntraits = 8, Nind = 5279

Cholesky saturated −15248.61 72 30641.23 31114.37 0.002 – –

Bi-factor three-factor −15249.97 62 30623.94 31031.37 0.002 2.71(10) 0.99 –

IPC best-fit three-factor −15250.96 53 30607.92 30956.21 0.002 4.69(19) >0.99 1.98(9) >0.99

SSC, Ntraits =8, Nind = 1940

Cholesky saturated −6342.50 72 12828.99 13230.07 0.008 – –

Bi-factor three-factor −6342.59 63 12811.18 13162.12 0.014 0.19(9) >0.99 –

IPC best-fit three-factor −6342.60 53 12791.19 13086.43 0.017 0.20(19) >0.99 0.01(10) >0.99

The genomic covariance structure across SPARK and SSC phenotypes was modelled using saturated, bi-factor and multi-factor GRM-SEM IPC models (additional comparisons with one-factor IPC
models are shown in Supplementary Data 4). The fit across models was compared with likelihood ratio tests (LRT), AIC and BIC. The lowest AIC and BIC values are shown in bold.
AICAkaike information criterion, BIC Bayesian information criterion, IPCHybrid Independent Pathway (genetic part)/Cholesky (residual part) model),Npar number of parameters, SRMR standardised
root mean square residual.
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The third genetic factor in SSC (AF3) showed a different structure
compared to SPARK (Fig. 4b). This factor (AF3) explained shared
genetic variation across language performance and repetitive (RBSR
sameness) behaviour, capturing the majority of their h2

SNP (75–100%,
Supplementary Data 7). The strongest factor loadings were observed
for language age level (λF3 = 0.61, SE = 0.10), language disorder
(λF3 = −0.51, SE = 0.11), language level (λF3 = 0.37, SE = 0.07), but also
RBSR sameness behaviour (λF3 = 0.51, SE = 0.12). This cross-trait
genetic dimension in the SSC accounted for strong positive genetic

correlations between language and repetitive behaviour (e.g. language
level, RBSR samenessbehaviour: GRM-SEM rg = 0.97, SE = 0.07, Fig. 4d)
which were absent in SPARK (language level, RBSR sameness beha-
viour: GRM-SEM rg = 0, Fig. 3d). A comparison of genetic and pheno-
typic factor structures was not possible in the SSC, as the phenotypic
model was empirically unidentified using a split-half data-driven
modelling approach (Methods) due to convergence problems.

Overall, the consistency of findings in SPARK and the SSC implied
a high level of reproducibility of genetic factor structures across
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comparisons was carried out. c Corresponding standardised genetic variance
(GRM-SEM h2
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Revised).
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distinct genetic architectures in ASD, especially for the language per-
formance and developmental motor domains.

Characterisation of identified genetic factor structures
To enhance the interpretability of identified genetic structures in
SPARK, wemapped further variables onto the genetic model structure
(Methods). Specifically, we investigated the association between the
identified factors and (i) liability to Asperger (compared to other ASD
subcategories) (Fig. 5a–c) and (ii) PGS for educational attainment
(PGSEA) (Fig. 5d–f). ASD subcategory information (DSM-IV-based) can

provide a clinical reference to account for different phenotypic pre-
sentations in ASD. Here, it can guide the interpretation of identified
genetic dimensions, as genetic liability to Asperger presents a form of
autism without significant impairments in language and cognitive
development24. PGSEA presents a genetic correlate of cognitive
functioning25, but also socio-economic status, including non-cognitive
factors such as health and longevity26. Given low h2

SNP in the SSC
(Fig. 2b), analyses were restricted to SPARK only.

For the best-fitting model in SPARK, liability to Asperger was
genetically associated with the language performance factor (Fig. 5a,
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λlang = 0.36, SE = 0.15). Genetic correlations between liability to
Asperger and language level (Fig. 5c, GRM-SEM rg = 0.90, SE =0.19)
werepositive, consistentwith the absenceof languageproblems in this
ASD subcategory3. In contrast, PGSEA were associated with reduced
behavioural problems (Fig. 5d, λbeh = −0.16, SE = 0.06), conditional on
the language performance and developmental motor delay dimen-
sions. Consistent with previous research8,9, genetic correlations of
PGSEA with behavioural measures such as sameness behaviour were
inverse (Fig. 5f, GRM-SEM rg = −0.16, SE = 0.06), strengthening support
for links with repetitive behaviour.

Sensitivity analyses
We carried out a series of sensitivity analyses. Across both cohorts, we,
first, confirmed the independence of identified genetic factors by
comparing the best-fitting GRM-SEM IPC models with GRM-SEM bi-
factor models (Methods), which showed a similar fit and model
structure (pLRT ≥0.94, Table 1, Supplementary Fig. 8, Supplementary
Fig. 9). Second, we corroborated GRM-SEM predicted h2

SNP (Supple-
mentary Fig. 10) and rg (Supplementary Fig. 11) estimates for the best-
fittingGRM-SEM IPCmodels through comparisonswith corresponding
GREML estimates that showed consistent 95%-confidence intervals.
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Fig. 5 | Characterisation of identified genetic factor structures in SPARK. a Path
diagram of an extended GRM-SEM IPC model mapping liability to Asperger
(reference: Asperger against other ASD subcategories) onto themodel structure of
the best-fitting model in SPARK. b Corresponding standardised genetic variance
(GRM-SEM h2

SNP) plot. SEs for GRM-SEM h2
SNP contributions have been omitted for

clarity. c Genetic correlations with liability to Asperger. d Path diagram of an
extended GRM-SEM IPC model mapping polygenic scores for educational attain-
ment (PGSEA) onto the model structure of the best-fitting model in SPARK.
eCorresponding standardisedgenetic variance (GRM-SEMh2

SNP) plot. SEs forGRM-
SEM h2

SNP contributions have been omitted for clarity. f Genetic correlations with
PGSEA. a, d Observed measures are represented by squares and latent variables by
circles (Alang/Adev/Abeh: shared genetic factor, AS: specific genetic factor, E: residual
factor). Single-headed arrows define factor loadings (shown with their

corresponding SEs). The genetic part of the model has been modelled using an
Independent Pathwaymodel. Grey dotted and coloured solid arrows define shared
genetic factor loadings with p >0.05 and p ≤0.05, respectively. Black dotted lines
define specific genetic factor loadings with p >0.05. Factor loadings for the map-
ping variable are shown in blue (dotted: p >0.05; solid p ≤0.05). The residual part
has been modelled using a Cholesky model (grey). Evidence for GRM-SEM factor
loadings was assessed with Wald tests (two-sided). Given the multivariate design,
no adjustment for multiple comparisons was carried out. Alang (genetic language
performance factor), Adev (genetic developmental motor delay factor), Abeh

(genetic behavioural-problems factor), DCDQ (Developmental Coordination Dis-
order Questionnaire), h2

SNP (single nucleotide polymorphism-based heritability),
IPC (Independent Pathway-Cholesky GRM-SEMmodel), ODD (Oppositional Defiant
Disorder), RBSR (Repetitive Behaviours Scale-Revised), rg (genetic correlation).
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Note that GREML rg estimates could not be fitted in the SSC given low
h2

SNP. Third, we illustrated the superiority in model fit for the best-
fitting GRM-SEM IPC models by comparing their fit with exploratory
GRM-SEM models (Supplementary Data 4), such as one-factor inde-
pendent pathway and one-factor IPC models (Methods, Supplemen-
tary Fig. 12). Fourth, we validated the predictive value of the
implemented data-driven genomic covariance modelling approach.
Specifically, we demonstrated the interchangeability of different EFA
algorithms (Supplementary Data 8) and the strong correlation
between EFA-predicted and GRM-SEM-predicted (best-fitting model)
factor loadings (SPARK: Pearson r >0.986, SSC: Pearson r >0.992,
Supplementary Data 9, Supplementary Fig. 13). Lastly, to exemplify the
robustness of our modelling approach, we performed proof-of-
principle simulations (Supplementary Note 3) that exhibited suffi-
cient 95%-confidence interval estimate coverage and provided little
evidence for bias (Supplementary Data 10–13, Supplementary
Figs. 14–15). Together, these analyses demonstrate that multivariate
genetic methods are required to accurately depict the common
genetic architecture in ASD and, potentially, other complex traits. Our
findings emphasise that simplistic a priori-defined models are insuffi-
cient to capture the complexity of genetic effects.

Discussion
Investigating genomic covariance across a broad spectrum of pheno-
types in ASD using SEM-based techniques, this case-only study of two
large autism cohorts demonstrates that the common genetic archi-
tecture of ASD ismulti-dimensional. Here, we identified evidence for at
least three independent common genetic dimensions associated with
phenotypic heterogeneity in ASD.

For SPARK, a community ASD sample, we identified three com-
mon genetic factors explaining predominantly variation in language
performance, developmental motor delay and behavioural problems,
respectively. Within the SSC, a sample of simplex-only families, we
uncovered structural similarities, indicating conceptual replication.
Hence, our findings not only strengthen the evidence for common
genetic contributions to phenotypic variation inASD8,9,12, but also offer
insight into the multi-dimensional genetic architecture. Specifically,
we show that the majority of h2

SNP in ASD-only samples can be
explainedby sharedgenetic factors, formost phenotypes investigated.
The major difference across cohorts concerned the genetic relation-
ship between language and behavioural phenotypes. While genetic
factors of language performance and behaviour were unrelated in a
community ASD sample (SPARK), the underlying phenotypes were
strongly genetically linked in simplex ASD (SSC) and captured by a
single dimension, suggesting ascertainment-specific association
patterns.

Across both cohorts, we found evidence for an independent lan-
guage performance factor, as validated through association with
higher liability to Asperger in SPARK. Although an Asperger ASD sub-
category diagnosis is not included in the DSM-5 anymore, our findings
confirm that autistic individuals differ considerably in their language
presentation27. While some children with ASD reach intact structural
language skills, others are delayed or never master functional spoken
language27. Here, our analyses uncovered genomic covariance
between (higher) language level and (earlier) age of self-feeding with a
spoon, an important personal-social developmental milestone which
typically developing children master at about 15–18 months28,29.
Notably, the genetic influences contributing to the age by which chil-
dren self-feed with a spoon were distinct from genetic factors under-
lying other motor developmental achievements, such as crawling,
sitting or walking, when studied in SPARK. Infant autonomy in feeding,
especially eating with the family, has been related to more advanced
child language production and comprehension30. Especially within
SPARK, age of self-feeding with a spoon showed moderate to strong
relationships with multiple language-related phenotypes and may

present an early marker of cognitive and language development in
ASD. As the language performance factor captured, by proxy, also
variation in cognitive age level, as shown for a smaller phenotypic
subset, it is likely that this genetic factor is representative of a joint
language/cognitive domain.

We also found robust evidence for a genetic factor that is related
to developmental motor delay within SPARK and the SSC, explaining
genetic variation underlying growth, such as the age of crawling, a
developmental milestone children typically master between 9 and
18months of age31.Within SPARK, genetic variation contributing to the
age of crawling (a proxy of the age of walking and sitting) was also
shared with DCDQmotor control during movement (a proxy of DCDQ
total score and fine motor handwriting), language disorder and RBSR
self-injurious behaviour. These findings support the contribution of
common genetic influences to variation in motor abilities, beyond
association with de novo mutations9. The spectrum of genetically
linked developmental phenotypes, furthermore, extends reports of
genetic associations between ASD polygenic liability and later age of
walking in population-based samples32.

Genetic relationships between language/cognition phenotypes
and behaviour across cohorts were heterogeneous, highlighting
ascertainment-specific patterns. Within SPARK, the behavioural
genetic dimension was independent of the language performance
dimension. The behavioural-problems factor explained liability to
ODD and variation in repetitive behaviour, especially RBSR sameness
behaviour, which is a proxy of RBSR total scores and ritualistic beha-
viour, but not self-injurious behaviour. Thisfindingmatches previously
reported distinct phenotypic factor structures between self-injurious
and other types of repetitive behaviours8. Consequently, self-injurious
actions may, at least partially, be aetiologically distinct from other
forms of repetitive behaviour. As in previous research adopting a case-
only design8,9, the behavioural problems factor was inversely asso-
ciated with PGSEA in SPARK. Our analyses demonstrated that this
association can be observed conditional on genetic links with the
language performance or the developmental motor delay factor, nei-
ther of which were related to PGSEA. Thus, our findings suggest that
behavioural problems within a community ASD sample vary primarily
with non-cognitive correlates of socio-economic status. However, it is
important to highlight that a large proportion of the PGSEA genetic
effects are not due to direct effects, but indirect effects (e.g. non-
transmitted parental genetic influences), other forms of gene-
environment correlation or assortative mating33. Therefore, the nat-
ure and causality of PGSEA associations cannot bedetermined fromour
analysis.

In contrast, within the SSC, we observed substantial genetic
overlap between most language-related phenotypes and RBSR same-
ness behaviour. Simplex ASD, compared to multiplex ASD, is more
often related to de novo mutations11,23. Our findings may, therefore,
present aetiological differences unique to simplex ASD, consistent
with qualitative differences in the commongenetic architectureofASD
individuals carrying de novo variants5,6. Alternatively, genetic links
between behaviour and language phenotypes in the SSC might, to
some degree, be a consequence of collider bias34. Simplex families are
recruited following strict ascertainment schemes16. Collider bias can
arise when two measures, such as behaviour and language/cognition,
are independently related to a third variable, such as common genetic
variation, and that third variable is conditioned upon34. Here, the
preferential ascertainment of simplex families depleted for inherited
genetic variation35, including common variation, may introduce artifi-
cial genetic relationships between behaviour and language/cognition.

Our study has multiple strengths, but also limitations. First, we
developed a data-driven modelling approach that utilises directly
genotyped genome-wide information and facilitates building accurate
multi-dimensionalmodels of genomic covariancewithout the need for
summary statistics or the prediction of structure through phenotypic
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SEM. Although phenotypic structures were, overall, fair estimates of
genetic structures21, they could not fully capture underlying genetic
relationships. Second, our multivariate analysis approach allowed for
the detection of multiple genetic dimensions in ASD, providing suffi-
cient statistical identifiability (i.e. degrees of freedom). Third, we
mapped external references, such as liability to Asperger and PGSEA,
onto genetic relationships observed within individuals of ASD to aid
the interpretation of genetic structures across different research
designs. However, GRM-SEMmodels rely, fourth, on population-based
assumptions (e.g. Hardy-Weinberg equilibrium of genotype distribu-
tions) and we may have excluded individuals or genetic variation that
do not meet these expectations. Fifth, we studied transformed scores
to aidmodel simplicity andmodel convergence and, therefore, cannot
exclude bias. However, it is unlikely that data transformations have
profoundly changed underlying genetic relationships, given the
robustness of sensitivity analyses and the consistency of results with
previous findings. Sixth, our study cannot yet address sex-specific
differences in common genetic architectures, as previously reported9,
especially across non-European ancestry backgrounds. Because the
prevalence of ASD is higher in males, the sex distribution in both
SPARK and SSC is skewed and our results may, therefore, be less
generalisable for females. Similarly, studying subgroups of individuals
with and without ID was not yet feasible, given limited power (e.g.
based on simpleGREMLmodels, the power for subgroup analyseswith
N ~ 1200 and h2

SNP of 0.2, as observed in this study, is 0.11). Stratifying
GRM-SEM models across common, rare and de novo carriers in suffi-
ciently powered samples, accounting for differences between males
and females, will shed further light onto the complex links between
genetic andphenotypic heterogeneity inASD, as part of future studies.

Together our results describe phenotypic variation in ASD as
complex traits that are, at least partially, genetically linked due to
commongenetic factors that are augmentedby ascertainment-specific
patterns. More generally, the implementation of a data-driven geno-
mic covariance modelling approach demonstrates that multi-
dimensional common genetic architectures can be accurately identi-
fied using direct genome-wide genotyping data.

Language choice
Weare aware that the choice of language plays an important role in the
autism community36,37. While some individuals prefer person-first lan-
guage (i.e. individuals with autism), others prefer identity-first lan-
guage (i.e. autistic individuals). Based on the preferences of the SPARK
community38, we have used person-first (“individuals with autism”

or “individuals with ASD”) and identity-first (“autistic individuals” or
“ASD individuals”) terms interchangeably. We acknowledge and
respect each individual’s preference to identify themselves.

Methods
Samples
The SPARK cohort (https://sparkforautism.org/)15 is a nationwide aut-
ism study across the United States including simplex and multiplex
families. We studied SPARK phenotype (SPARK Collection Version 3)
and genome-wide (SPARK 30K release) data. This data freeze includes
59,218 individuals between ages 1 and 85, who received a professional
diagnosis of ASD/autism (85% < 18 years; 79% male), their biological
parents, and, if available, one unaffected control sibling as well as all
autistic siblings for multiplex families (21,689 trios (including simplex
families); 6552 multiplex families). Written informed consent was
completed by the parent or legal guardianof the children participating
in the study.

The SSC cohort (https://www.sfari.org/resource/simons-simplex-
collection/)16 is a collection of simplex families from the United States.
We investigated phenotype (version 15.3) and genome-wide (whole-
genome 2 data release) data. This data freeze represents 2591 autistic
children aged 4 to 17 years 11 months, including 2643 simplex families

with one (and only one) child with ASD and their unaffected biological
parents and unaffected siblings. Informed consent and assent were
provided for all participants.

We received ethical approval to access and analyse pre-collected
de-identified genotype and phenotype data from these cohorts from
the Radboud University Ethics Committee Social Science. All analyses
were restricted to individuals with ASD with phenotypic and genetic
information.

Genotype information
SPARK. Genotyping was performed using the InfiniumGlobal Screening
Array-24 v.1.0. After individual and variant quality control (QC), we
included in this study 5331 unrelated individuals (79.85% males, median
age: 9 years) of European ancestry, with an ASD diagnosis, and with
genetic and phenotype information available (Supplementary Fig. 1,
SupplementaryMethods 1). Individuals were excluded due to confirmed
genetic syndromes/conditions, birth complications (i.e. birth defects,
foetal alcohol syndrome, bleeding into the brain, insufficient oxygen at
birth), other cognitive impairments or a brain injury (i.e. brain infection,
lead poisoning, traumatic brain injury). A GRM17 based on directly gen-
otypedmarkers (NSNPs = 450,491) was created in PLINK (v1.9)39, applying
a relationship cut-off of 0.05.

SSC. Genotyping was performed using three arrays: Illumina
Human1M v1.0, Illumina Human1M-Duov3 and Illumina Huma-
nOmni2.5. For each array, individual and variant QC was performed
separately (Supplementary Methods 2). Subsequently, genotype data
were merged across the three arrays and again subjected to individual
and variant-based QC. After QC, 1946 unrelated individuals (86.33%
males,median age: 9 years) of European ancestry, diagnosedwith ASD,
and with genetic and phenotype information were included in the
study (Supplementary Fig. 7). Individuals were excluded because of
premature birth, brain injury/damage/abnormality, prenatal/birth
complications, confirmed genetic syndromes/conditions, severe sen-
sory/motor difficulties or nutritional/psychological deprivation. A
GRM17 based on directly genotyped markers (NSNPs = 457,961) was
created in PLINK (v1.9)39, applying a relationship cut-off of 0.05.

Phenotypes
SPARK. We studied 47 parent-reported measures of ASD phenotypes
and co-morbid disorders/disabilities spanning the domains of lan-
guage and cognition (nine measures), general behaviour (nine mea-
sures), repetitive behaviour (seven measures), social (two measures)
and motor abilities (six measures), as well as affective disorders (three
measures) and developmental milestones (11 measures). Phenotypes
were extracted from theBasicMedical ScreeningQuestionnaire (BMS),
the Social Communication Questionnaire-Lifetime (SCQ)40, the SPARK
Background History Questionnaire (BGHX), the Repetitive Behaviours
Scale-Revised (RBSR)41, and the Developmental Coordination Disorder
Questionnaire (DCDQ)42 (Supplementary Fig. 1, Supplementary Meth-
ods 1). The selectedphenotypes included21 categorical (within-sample
prevalence of at least 5%) and 26 continuous phenotypes. At least 2910
autistic individuals had phenotype and genotype data per trait (Sup-
plementary Data 1). Among all the studied individuals in the SPARK
sample, information on ASD subcategories was available for only 1754
individuals: Asperger (Nind = 716, 79.05%males, age range: 2–60 years),
childhood autism (Nind = 624, 81.57%males, age range: 1–55 years) and
PervasiveDevelopmental DisorderNotOtherwiseSpecified (PDD-NOS,
Nind = 414, males=80.67% males, age range: 2–45 years).

SSC. For follow-up analyses, we studied 17 parent-reported measures
of language and cognition (five measures), general behaviour (one
measure), repetitive behaviour (four measures), and motor abilities
(threemeasures), as well as developmentalmilestones (fourmeasures)
that were comparable to SPARK measures. Phenotypes were selected
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from the SSC BGHX, the SSC Diagnosis Summary Form, the SSC
Medical History Interview, RBSR41, DCDQ42, the Child Behavior
Checklist (CBCL 6–18)43, and the Autism Diagnostic Observation Scale
(ADOS)44 (Supplementary Fig. 7, Supplementary Methods 2). The
selected phenotypes included three categorical (within-sample pre-
valence of at least 5%) and 14 continuous measures, and at least 1449
autistic individuals had phenotype and genotype data (Supplemen-
tary Data 6).

Phenotype transformations
To adjust for covariates, all phenotypes were regressed against sex,
age, age squared, and ten ancestry-informative principal
components45, where the latter corrected for subtle ancestry differ-
ences among individuals of Caucasian ancestry. This was performed
using ordinary least square regression for continuous variables and
binary logistic regression for categorical variables.

Categorical variables. After adjusting for covariates, deviance resi-
dualswere constructedby extracting the logisticmodel residuals using
the resid function (R:stats v4.0.2). Deviance residuals are computed as
the difference between the logistic model fit to the data against the fit
of a saturated model.

Continuous variables. After adjusting for covariates, model residuals
were rank-transformed and regressed again on covariates to achieve
normality of transformed scoreswithout a re-introduction of covariate
effects (fully-adjusted two-stage rank normalisation)46.

To ensure the validity of the transformed scores, we carried out
extensive sensitivity analyses. For this purpose, we compared GREML
h2

SNP estimations (Supplementary Fig. 2, Supplementary Fig. 16) and
phenotypic correlations for untransformed and transformed scores
(Supplementary Fig. 17, Supplementary Fig. 18). Pertinent to this work,
analyses were conducted with transformed scores to ease the model-
ling process, i.e. deviance residuals for categorical phenotypes and
rank-transformed scores for continuous phenotypes.

Study design
We developed a multi-stage SEM-based modelling design to identify
and characterise shared genetic factor structures (Fig. 1a).

Stage I. Univariate and bivariate genetic variance analyses
in SPARK. Within stage I, we screened for, by trend, heritable and
genetically interrelated clusters of phenotypes across the hetero-
genous genetic spectrum in SPARK, facilitating model-building con-
vergence. Univariate (h2

SNP) andbivariate (rg) genetic variance analyses
were carried out with GREML using Genome-wide Complex Trait
Analysis (GCTA)17 (see below).

Stage II. Phenotype selection in SPARK. Phenotype subsets were
identified based on genetic correlations (GREML rg, p≤0.1). Phenotype
subsets were selected to successively construct a comprehensive GRM-
SEMmodel (Supplementary Note 1, Supplementary Data 2). We adopted
this strategy as GRM-SEM models are computationally expensive13. For
example, a Cholesky decomposition model for 8 traits, as fitted within
this study, can require up to 6 weeks of computing time even on a
system incorporating at least four parallel cores of 3GHz, and requiring
up to 40Gb (max vmem) memory. Therefore, building a model from
smaller phenotype subsets ensures the robustness of identified struc-
tures and reduces the computational burden. Where item scales of the
same instrument were genetically redundant (GRM-SEM rg = 1), we
retained a single representativemeasure (or proxy) only (Supplementary
Note 1, Supplementary Fig. 4) to avoid collinearity that can affect model
convergence. The selection of proxies for measures of the same ques-
tionnaire (i.e. BGHX, DCDQ and RBSR) was guided by uni-dimensional
GRM-SEM models (Supplementary Note 1, Supplementary Fig. 4).

Stage III. Multivariate modelling of genomic covariance in SPARK.
As part of stage III, we aimed to identify the best-fitting multi-dimen-
sional GRM-SEM models for the selected phenotype subsets and,
eventually, a combined set of measures (Supplementary Note 2). We
fitted a series of GRM-SEM saturated (Cholesky) models, PCA models,
EFA models, and, finally, GRM-SEM multi-factor models as well as a
priori-defined GRM-SEM models. Our step-wise data-driven genomic
covariance modelling approach (Fig. 1b) is described in detail below.

Stage IV. Multivariate modelling of genomic covariance in SSC.
During Stage IV, the best-fitting SPARK model was followed-up in
autistic individuals from simplex families (SSC).

Univariate and bivariate genetic variance analyses
Univariate (h2

SNP) and bivariate (rg) analyses were carried out with
GREML18, as implemented in GCTA (v1.93) software17. Note that h2

SNP

reflects the proportion of phenotypic variance among autistic indivi-
duals as explained by genotyped variants (SNPs) and rg reflects the
extent to which two phenotypes are influenced by the same genetic
factors. GRMs were constructed from genome-wide genotyping
information (Supplementary Methods 1, Supplementary Methods 2).

Genetic relationship matrix structural equation modelling
We modelled the multivariate genetic variance structure of ASD phe-
notypes using GRM-SEM as implemented in grmsem (R:grmsem, v1.1.2,
https://gitlab.gwdg.de/beate.stpourcain/grmsem) previously known
as gsem13,14.

GRM-SEM applies structural equation modelling techniques to
analysegenomic covariance in samples of unrelated individuals using a
maximum likelihood approach13. We define a multivariate normal
phenotype Y (for 1…k traits), where each individual i follows Yi ~ Nk (μ,
ΣV).We define ΣV, the expected phenotypic variance of Y, as the sumof
the expected genetic and residual variance components, ΣA and ΣE:

ΣV =ΣA +ΣE ð1Þ

where ΣV, ΣA and ΣE are symmetric k × kmatrices. The residual variance
component, potentially, includes environmental factors, random
error, non-additive genetic variance, rare variance or any other genetic
influence not captured by the GRM13,14,17. WithinGRM-SEM, genetic and
environmental influences are modelled as latent variables. The
phenotypic variance for each measure Y can be dissected into genetic
and residual influences (AE model), analogous to twin research47:

ΣV =ΛAΨAΛ
T
A � G+ΛEΨEΛ

T
E � I ð2Þ

where ΛA and ΛE are matrices of genetic and residual factor loadings
with dimensions k × p, where p is the number of factor loadings.ΨA and
ΨE are p × p matrices of genetic and residual factor variances, respec-
tively.G is a n × nGRMmatrix for all pairs ofn independent individuals17

constructed from the variants presented on a genome-wide genotyping
chip, and I is a n × n identity matrix. The symbol ⊗ denotes the
Kronecker product. Thus, we assume besides structured genetic
covariance also structured residual covariance that can contribute to
phenotypic covariance patterns14. In this work, ΨA and ΨE have been
restricted to an identity matrix, given modest EFA-predicted genetic
correlations between latent variables (Supplementary Data 8, Supple-
mentary Note 2). Bi-factor models were fitted to confirm the
independence of genetic factor structures (see below). We, further-
more, assume that common genetic variance in ASD individuals can be
modelled according to population-based principles and that by
expressing the phenotype of each individual i as a deviation from the
mean (Z scores), the estimation of means can be omitted.

We fitted the following multivariate models13,14 as implemented
into our multi-stage modelling design (Fig. 1, see below):
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i. Cholesky model: The Cholesky decomposition model (Supple-
mentary Fig. 12a) is a saturated i.e. fully parametrised descriptive
model without any restrictions on the structure of latent genetic
and residual influences. This model is fitted to the data through
the decomposition of both the genetic variance and residual
variance into as many latent variables (factors) as there are
observed variables. Here, ΛA and ΛE are k × k lower diagonal
matrices. Note that other saturated models, such as direct sym-
metric models48, were not fitted due to convergence problems
with multicollinear data (not shown).

ii. Independent pathway model: The independent pathway model
(Supplementary Fig. 12b) specifies one or more shared genetic
and one ormore shared residual factors, where nAC is the number
of shared genetic factors andnEC is the number of residual factors,
in addition to trait-specific genetic and residual influences, one for
each trait. ΛA and ΛE have the dimensions k × pa and k × pe,
respectively, where pa is the sum of nAC + k, and pe is the sum of
nEC + k. Pertinent to this study, we fitted one-factor models only
(nAC = nEC = 1).

iii. Hybrid Independent Pathway/Cholesky model (IPC). The IPCmodel
(Supplementary Fig. 12c) structures the genetic variance as an
independent pathway model (consisting of shared and
measurement-specific influences where ΛA has a dimension of
k × (nAC + k)) and the residual variance as aCholeskymodel (where
ΛE is a lower diagonal k × k matrix). In this study, we fitted one-
factor (nAC = 1; ktraits ≥ 3) and multi-factor (nAC=2, k ≥ 6; nAC = 3;
k ≥ 8) IPC models.

iv. Bi-factor IPC model. The bi-factor model49 consists of a general
factor and one or more grouping factors, where each trait loads
on the general factor, assuming statistical independence between
these latent genetic dimensions. Given the bi-factor parametrisa-
tion, the model benefits from rotational invariance and unlimited
dimensionality50.

The relative goodness-of-fit for each model was evaluated with
likelihood ratio tests (LRTs), the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC)51. The absolute goodness-of-fit
was assessed with the standardised rootmean square residual (SRMR)52,
as the standardised difference between the observed and predicted
correlation, accounting for the degrees of freedom in GRM-SEM. SRMR
values below a cut-off value of 0.08 indicate a good model fit52.

Evidence for GRM-SEM factor loadings was assessed using Wald
tests, based on unstandardised scores, while reported coefficients λ
represent standardised factor loadings (setting the phenotypic var-
iance to unit variance).

For the best-fitting GRM-SEM models, we estimated heritability
(h2

SNP), genetic correlations (rg), and factorial co-heritabilities (f 2g , i.e.
the proportion of total trait genetic variance explained by a specific
genetic factor). We defined bivariate genetic correlation between
traits, measuring the extent to which two traits share genetic factors
(ranging from −1 to 1)53 according to

rg =
σg12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
g1σ

2
g2

q ð3Þ

where σg12 is the genetic covariance between two traits 1 and 2, and σ2
g1

and σ2
g2 are their respective genetic variances. In addition, we estimate

the factorial co-heritability f 2g as the relative contribution of a genetic
factor to the genetic variance of a trait, defined as:

f 2g =
σ2
gjt

P

σ2
gjt

=
σ2
gjt

σ2
gt

ð4Þ

where σ2
gjt

is the genetic variance of the genetic factor j contributing to
trait t, and σ2

gt
the total genetic variance of trait t, based on

standardised factor loadings. Corresponding SEs were derived using
the Delta method.

Comparison of GRM-SEM with alternative methods
Besides GRM-SEM, multiple other approaches allow the modelling of
the genomic covariance structure across phenotypes, including tech-
niques such as genomic SEM54. For this study, we selected GRM-SEM
for the following reasons: Genomic SEM, a linkage-disequilibrium-
score-based technique55, relies solely on genome-wide summary sta-
tistics. These statistics have to be powerful enough to identify genetic
structure, requiring large effective sample sizes >10,00056 that exceed
those in SPARKand the SSC. In contrast, GRM-SEM, similar to GREML17,
uses a GRMderived fromdirect genotyping data to disentangle the full
phenotypic covariance into a genetic and residual model part. The
method requires similar sample sizes as for GREML (>2000)57,
matching those in this study. In addition, the fit of GRM-SEM models,
but not genomic SEMmodels, can also bedirectly assessed against (i) a
saturatedmodel (with relative fit indices such as LRT, AIC and BIC) and
(ii) the phenotypic covariancematrix (with absolute fit indices such as
SRMR). Moreover, GRM-SEM allows for both genetic and residual
covariance modelling, each with different structures, enhancing the
model fit14. Lastly, the SE of the genomic covariance matrix can be
directly inferred from the fitted GRM-SEM model, while SEs are
approximated with jackknife procedures by genomic SEM, affecting
the prediction accuracy of subsequent EFA analyses.

Data-driven genomic covariance modelling approach
Step (i): Describe full genetic architecture. To describe the full
genetic architecture, we fitted a saturated (Cholesky) model to the
data in GRM-SEM.

Step (ii): Predict the number of shared genetic factors. Cholesky-
derived genetic trait correlations provided input data to estimate nAC,
i.e. the number of genetic factors, using PCA via spectral
decomposition58 (R:base, v4.0.2). Eigenvalues of this genetic PCA were
plotted as a scree plot and nAC was, eventually, estimated according to
the Optimal Coordinate criterion (R:nFactors, v2.4.1)59, applying a joint
Kaiser’s rule (eigenvalue > 1)60,61 and Cattell’s scree test62.

Step (iii): Approximate genetic factor structure. Given evidence for
multiple genetic factors (nAC > 1), we carried out EFA63, predicting
underlying genetic factor structures with lavaan64 (R:lavaan, v0.6-10)
software. As genetic trait covariance is not directly observable, we
analysed the predicted genetic covariance matrix derived from a
Cholesky model (step i). Factor solutions for this genetic EFA were
estimated using a Diagonally Weighted Least Squares (DWLS)
algorithm65, i.e. a robust Weighted Least Squares (WLS) method that
can be applied to skewed data where the likelihood function for any
parameter θ is given as

lðθÞ= 1
2
tr½ðS� ΣðθÞÞW�1� ð5Þ

where S is the observed (here Cholesky predicted genetic covariance
matrix) and Σ the EFA model-implied genetic covariance matrix.
Inverse weighting was carried out with a diagonal weight matrix W,
based on the estimated variance Ṽ of the genetic covariance VA, as
derived with a Cholesky model, where W = diag(Ṽ(VA)). For
comparison, we also carried out an unweighted least square estima-
tion, where the identity matrix replaces W. Factors in lavaan were
rotated using either (varimax) orthogonal or (oblimin) oblique
rotation techniques. We opted for an EFA varimax model if the
predicted genetic correlation between genetic factors by an EFA
oblimin model was modest (i.e. r ≤0.3219 and thus ignorable) or if the
EFA oblimin model produced a similar pattern of loadings as EFA
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varimax19 (Supplementary Data 8). In other words, when the EFA
oblimin solution did not increase the simplicity of the model19. For
sensitivity analyses, we also compared estimates of EFA lavaan with
estimates of other EFA software (Supplementary Data 8) such as the fa
function (R:psych, v2.2.3), which does not allow for inverseweighting66.

Step (iv): Define multi-factor models. Using GRM-SEM, we fitted a
multi-factor IPC model. Specifically, the factor loadings of the
respective EFA model (step iii) were used to define starting values and
constraints in the corresponding genetic part of the GRM-SEM. As a
rule of thumb, GRM-SEM zero loadings (constraints) were defined
based on EFA factor loadings of |λ| < 0.1019,67. Once fitted, we further
trimmed the model by removing specific genetic GRM-SEM factor
loadings near zero (|λ| < 0.01). The residual part of themodel remained
unchanged andwasfitted as a Choleskymodel. Note that an evaluation
of EFA models based on model fit criteria established in observational
research is not meaningful here, as the studied genetic covariance
matrix (Cholesky) is estimatedwith an error thatmay result in negative
uniqueness of the predicted genetic variance, violating modelling
assumptions (known as a Heywood case)68. To confirm the indepen-
dence of shared genetic factors,wefitted abi-factormodel. Thismodel
had a similar structure as the described multi-factor IPCmodel except
that one factor was allowed to load on all phenotypes (see above).

Step (v): Defineone-factormodels. For sensitivity analysis, wefitteda
priori-defined one-factor GRM-SEM IP and one-factor GRM-SEM IPC
models (see above).

Step (vi): Identify the best-fitting model. We compared saturated
(Cholesky), one-factor, bi-factor and multi-factor GRM-SEM models.
The relative goodness-of-fit of each model, especially against the
saturated model, was evaluated with LRT, AIC, and BIC fit indices and
the absolute goodness-of-fit with SRMR indices (see above).

Step (vii): Characterise identified shared genetic factors. If com-
putationally feasible, we added a mapping variable to characterise the
factor structure of the best-fitting GRM-SEM model. In this study, the
following mapping variables were available in SPARK.

• Liability to Asperger. We dichotomised ASD subcategory infor-
mation in SPARK using Asperger as reference, as it was the ASD
subcategory with the biggest sample size (see above). Indivi-
duals with Asperger diagnosis were coded as 1, individuals with
childhood autism or PDD-NOS diagnosis were coded as 0, and
individuals without an assigned subcategory were coded as
missing. This variable was then transformed using deviance
residuals.Note that lowsample numbers and/or lowh2

SNP ofASD
liability prevented a more comprehensive modelling (Supple-
mentary Fig. 19).

• PGSEA mapping. Consistent with current guidelines69, we con-
structed PGS for EA within SPARK based on high-quality
genome-wide imputed SNPs (Supplementary Methods 3), using
available summary statistics from recent EA3 meta-GWAS70. For
this purpose, we used PRS-CS software71, which applies
continuous-shrinkage parameters to adjust SNP effect sizes for
linkage disequilibrium. Once SNP effect sizes were calculated in
PRS-CS, PGSEA scores were calculated in PLINK39 and, subse-
quently, Z-standardised.

Phenotype SEM models
To compare genetic and phenotypic factor structures, we fitted a phe-
notypic SEM to the phenotypes included in the best-fitting GRM-SEM
models. Adopting a data-driven modelling approach, analogous to our
genetic pipeline (Fig. 1b), we first identified the number of phenotypic
factors using eigenvalue decomposition of the phenotypic correlation
matrix of the full sample. Using a split-half design (with two random

subsamples matched for sex and phenotype missingness), we subse-
quently conducted EFA on one half of the sample. Next, we retained
factor loadings |λ| > 0.10 and confirmed the structure using CFA within
the remaining half of the sample.We assessed themodel fit based on the
comparative fit index (CFI), the Tucker–Lewis index (TLI) and root mean
square error of approximation (RMSEA) parameters52. Given goodmodel
fit52 (i.e. CFI >0.95, TLI >0.95, RMSEA<0.06), both halves of the cohort
were combined again and a CFA model was fitted to the full sample.

Simulation study
To evaluate the robustness of our data-driven genomic covariance
modelling approach (see above, Fig. 1b), we carried out simulations.
We assessed bias by comparing true values with GRM-SEM IPC factor
loadings, as described in detail in the supplement (Supplementary
Note 3, Supplementary Data 10–13). In brief, assuming multivariate
normality, we simulated six-variate traits with either two shared
genetic factors without correlation or two shared genetic factors with
cross-loading as detailed by pathmodels in Supplementary Fig. 14 and
Supplementary Fig. 15, respectively, across 20 replicates. Each six-
variate trait was based on Z-standardised phenotypes with 2000
individuals per phenotype and (for simplicity) 5000 causal loci, to
increase power. Besides the median estimate, simulation performance
measures included the median bias, the median empirical standard
error (empSE) and coverage of 95%-confidence intervals (such that the
estimated 95%-confidence interval contains the true value), and the
respective Monte Carlo SEs (MCSE).

Multiple testing
A correction for multiple testing of estimated GRM-SEM factor load-
ings of our analysis is not directly applicable. We jointly analyse mul-
tiple phenotypes using a multivariate approach to comprehensively
represent all shared genetic factors across the studiedASDphenotypic
spectrum. GREML estimates for h2

SNP and rg within Stage I are not
individually interpreted, given the preliminary character of these
analyses. However, if a multiple testing adjustment for individual
measures reported during Stage I was considered, an experiment-wide
threshold of p <0.0015 (0.05/34 independent measures) would need
to be applied, as estimated with Matrix Spectral Decomposition
(matSpD)72, based on phenotypic score correlations.

Reporting summary
Further information on the research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Genotype and phenotype data from the SPARK and SSC cohorts are
available upon application and approval from the Simons Foundation
Autism Research Initiative (SFARI) (https://www.sfari.org/resource/
autism-cohorts/). Approved researchers can obtain the SPARKand SSC
population dataset described in this study by applying at https://base.
sfari.org. Detailed reasons for controlled access and details of any
restrictions imposed on data use via data use agreements have been
outlined in the RESEARCHER DISTRIBUTION AGREEMENT of the
SimonsCollection (https://s3.amazonaws.com/sf-web-assets-prod/wp-
content/uploads/sites/2/2021/06/15165956/SFARI_RDA.pdf) to ensure
compliance with data-protection. The timeframe for response of the
SFARI Collection to data requests is rapid (usually <2 months). GWAS
summary statistics for educational attainment (EA3, Lee et al. 2018)
were accessed through the Social Science Genetic Association Con-
sortium (SSGAC, https://thessgac.com/papers/3).

Code availability
This study used openly available software and codes, specifically PLINK
(PLINK v1.9, https://www.cog-genomics.org/plink/1.9/), PRScs (https://
github.com/getian107/PRScs), GCTA-GREML (GCTA v1.93, https://
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cnsgenomics.com/). We used the following R packages: stats 4.0.2, base
4.0.2, nFactors 2.4.1, psych 2.2.3, lavaan 0.6-10, grmsem 1.1.2 (https://
gitlab.gwdg.de/beate.stpourcain/grmsem). Scripts used in this study are
available in GitLab (https://gitlab.gwdg.de/pghc/disentangling-asd-
heterogeneity-using-grm-sem/nature-communications-2023).
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