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Peer Review File

Structural models of genome-wide covariance identify 
multiple common dimensions in autism



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
de Hoyos and colleagues conduct a series of analyses to identify latent genetic dimensions in ASD. 
They first conduct the analyses using SPARK dataset and then using the SSC datasets. They 
identify three genetic latent factors in the SPARK dataset, which they partly replicate in the SSC 
dataset. I have a few comments that I hope the authors can address. 
 
1. The use of GRM-SEM removes several interesting phenotypes due to the lack of significant SNP 
heritability. I wonder, if the authors can comment on why this approach is preferred over a more 
comprehensive SEM at a phenotypic level followed by genetic analyses using GRM, genetic 
correlation, and polygenic score analyses? 
 
2. Linked, it is interesting that very limited number of the canonical diagnostic phenotypes for ASD 
are included in the final model (e.g.,sameness behaviour). To what extent is the model truly 
representative of ASD vs representative of comorbidities including developmental delays? 
 
3. Most of the genetic correlations were not statistically significant. Why did the authors only 
include GRMS that use only genotype data? Why did the authors not expand the analyses to also 
include the more recent release of SPARK datasets (they use data released in 2018)? Both will 
increase statistical power and may allow the inclusion of greater number of phenotypes. 
 
4. I think the second factor represents motor issues rather than developmental issues. This is 
however, semantics. 
 
5. Individuals with ID and or PTV de novo variants may have different factor structure. The SSC is 
enriched for this. How generalisable is the model in individuals with and without ID/de novo PTVs? 
 
6. SCRL and SBEHAV are mentioned either in the text or in Figure 2B. I was not able to follow 
where SCRL is in the figure, and what SBEHAV refers to. 
 
7. In general, the paper is difficult to follow for a general reader. I think quite a lot of it is because 
the methods are highly technical. And while I do not envy the authors in having to explain it, I 
think greater explanation of the terms and models directly in the results can be helpful. 
 
8. Only 17 of the 47 phenotypes were included in the model. What were the phenotypes that were 
excluded? What are the consequences of these exclusions in how we can interpret the results? For 
instance, I do not find very many canonical ASD dimensions in the model. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
In this paper, de Hoyos and colleagues investigated the latent factor structure underlying genetic 
sharing of ASD symptoms in two separate cohorts. This is clearly an interesting topic and the 
authors did a good job backing up their conclusions with empirical evidence. But the paper will 
benefit from putting the discussion in the context of a broader literature and improving how some 
methodological details are reported and discussed. I have some specific comments. 
 
1. Structural equation modeling has gained recent popularity in human genetics due to a series of 
papers which introduced Genomic SEM (or GSEM), a tool with an unfortunately similar name 
compared to the approach used in this paper. It would improve the paper if the authors could 
discuss the the choice of using GRM-SEM instead of GSEM. To be clear, I think there are obvious 
arguments to make such as the expected imprecise h2 and genetic correlation estimates based on 
GWAS summary data given low sample size, and the fact that individual-level data are in fact 
avaialble in this study. Still, since GSEM has become somewhat mainstream in this type of studies, 
it is important to show the rationale of applying GRM-SEM. 



 
2. Related to #1, it appears that GRM-SEM bases its inference on individual-level genotype and 
phenotype data, which inevitably involves modeling the non-genetic contribution on phenotypes. 
In contrast, GSEM completely ignores the non-genetic variance components. Given the fact that 
both genetic and non-genetic variance components are presenting in the model, a question then is 
what it means to have different latent factor structures underlying them for the same set of traits 
(e.g., shown in Fig 3B/E/H). The authors provided some previous work on this choice but it would 
be important to justify this setup and clarify whether this is for model convergence / computational 
convenience only and whether the results can still be interpreted given the setup. A related 
question is whether we would expect to see different results in GRM-SEM applications compared to 
just a SEM exercise based on phenotype data alone. 
 
3. The application involving EA PGS is interesting but is also somewhat different from all other 
analyses done in this study, which is why some additional discussions on applying GRM-SEM to 
PGS data will be helpful. For example, what is the non-genetic factor underlying EA PGS (which I 
think is what E1 in Fig 5D denotes)? How predictive is this PGS and whether its imprecision will 
affect the GRM-SEM results? Also, why not using cognition data in SPARK for this analysis? Is it 
something not measured in SPARK? 
 
4. In addition, the genetic correlation between EA/cognition and ASD is very relevant for the 
discussion about ASD phenotypic and genetic heterogeneity. There are many papers on this topic 
(e.g., PMID: 28504703 and 34493297). It would be helpful if the authors to clarify whether and 
how the results here contribute to our understanding of the positive EA-ASD genetic correlation 
(from GWAS) and the apparent negative cognition-ASD phenotypic correlation. 
 
5. I initially thought the choice of "population representative" is a bizarre choice of phrase to 
describe this study because the authors only included samples with European ancestry in the 
analysis. Then I realized this was meant to contrast the simplex ascertained SSC cohort which the 
authors used for replication. Maybe consider rephrasing this? 
 
6. LRT was used to compare different models. Are the models always nested in this type of 
comparison? If not, is LRT a justified statistical test? Related to this, some LRT p-values were 1 in 
this study which is bizarre because even if the null hypothesis were true or the sample size is very 
small, p-values are still expected to follow a uniform(0,1) distribution. Always having very large p-
values seems to be a sign that the statistical tests were not done properly. 
 
7. In section "Phenotype transformations", the authors stated "For categorical phenotypes and co-
morbid disorders, we constructed deviance residuals as the difference between the logistic model 
fit and the fit of an ideal model". Clarify what an ideal model is here? 
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Response to reviewer comments 

 
We thank the reviewers for this constructive feedback. Please find a detailed point-by-point response to each 
question raised by the reviewers below. 
 
 
Reviewer #1 (Remarks to the Author) 

 
de Hoyos and colleagues conduct a series of analyses to identify latent genetic dimensions in ASD. They first 
conduct the analyses using SPARK dataset and then using the SSC datasets. They identify three genetic latent 
factors in the SPARK dataset, which they partly replicate in the SSC dataset. I have a few comments that I hope 
the authors can address.  
 
We thank the reviewer for their comments. 
 
1.1. The use of GRM-SEM removes several interesting phenotypes due to the lack of significant SNP heritability. 
I wonder, if the authors can comment on why this approach is preferred over a more comprehensive SEM at a 
phenotypic level followed by genetic analyses using GRM, genetic correlation, and polygenic score analyses?  
 
We thank the reviewer for the opportunity to address these questions. Previous research has focused on 
characterising ASD heterogeneity using SEM approaches at the phenotypic level (Warrier et al. 2022). In our 
work, we aim to understand ASD phenotypic heterogeneity, as explained by common genetic variation, studying 
samples of autistic individuals only. We have clarified the difference in strategies in the Introduction (page 3, 
paragraph 3): 
 

“Thus, we model genomic covariance directly, in contrast to previous studies (8,9) that interrogate the genetic 
architecture in ASD-only samples through analyses of phenotypic factor structures.” 

 
Although phenotypic relationships are fair representations of genetic relationships (Cheverud’s conjecture 
(Cheverud 1988)), they do not fully capture genetic links. For the comparison of phenotypic and genetic 
relationships, we have now fitted phenotypic SEM models to the traits included in the final GRM-SEM model 
(see also our detailed response to Reviewer 2, comment #2.2). Overall, when comparing phenotypic and genetic 
model structures, our GRM-SEM models identified genetic links and structures that were not reflected at the 
phenotypic level, highlighting the importance of modelling genomic covariance (Rebuttal Fig. 3 and 4 below). For 
example, in this study, we observe differences in phenotypic and genetic relationships with self-injurious 
behaviour. As such, modelling genomic covariance (as carried out in this work) instead of phenotypic covariance 
ensures the comprehensive representation of underlying common genetic structures.  
We have now adjusted the manuscript as follows: 
 
Results, page 6, paragraph 3: 

“In line with Cheverud’s conjecture (21), which postulates that phenotypic relationships are likely to be fair 
estimates of their genetic counterparts, genetic dimensions largely matched corresponding phenotypic 
dimensions (Supplementary Fig. 6). Nonetheless, several differences between phenotypic and genetic 
structures became evident, such as for age of self-feeding and RBSR self-injurious behaviour. (...) These 
results leverage the importance of a data-driven genomic covariance modelling approach as genetic 
relationships may not be fully reflected by phenotypic relationships, given that the latter are also shaped by 
non-genetic/residual influences.” 

 
Discussion, page 11, paragraph 3: 

“Our study has multiple strengths, but also limitations. First, we developed a data-driven modelling approach 
that utilises directly genotyped genome-wide information and facilitates building accurate multi-dimensional 
models of genomic covariance without the need for summary statistics or the prediction of structure through 
phenotypic SEM. Although phenotypic structures were, overall, fair estimates of genetic structures (21), they 
could not fully capture underlying genetic relationships.” 
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Note that within GRM-SEM, we select measures based on h2
SNP in order to identify phenotypes that are likely to 

have genetic contributions. Therefore, even if non-heritable phenotypes were included in our GRM-SEM 
approach (assuming that such model would converge), they would have little bearing on the identified genomic 
structures, given the lack of genetic contributions. 
 
 
1.2. Linked, it is interesting that very limited number of the canonical diagnostic phenotypes for ASD are included 
in the final model (e.g. sameness behaviour). To what extent is the model truly representative of ASD vs 
representative of comorbidities including developmental delays? 
 
Thank you for this interesting question. In our study, we investigate genetically predictable heterogeneity within 
ASD individuals only (case-only design). The “case-only” design has been previously adopted by several other 
groups (Warrier et al. 2022; Thomas et al. 2022). As we study ASD individuals only, our final model does not 
capture risk of ASD compared to a control group (i.e. case-control design). Only in comparison with a control 
population, we would capture “canonical” diagnostic ASD phenotypes, including difficulties in social 
communication and interactions as well as stereotyped, restricted and repetitive interests and behaviour (as 
defined in the DSM IV (American Psychiatric Association 1994)). Therefore, our study, adopting a case-only 
design, will not capture symptomatic differences between healthy controls and autistic individuals. Instead, our 
study examines and models the phenotypic differences across autistic individuals (phenotypic heterogeneity), 
and is, thus, representative of a spectrum of ASD diagnoses.  
 
As discussed above, non-heritable phenotypes will have little bearing on the identified genomic structures, 
although lack of h2

SNP may have additional interpretations within the context of a case-only study. As outlined 
within our amended manuscript (Results, page 4, paragraph 3):   
 

“Notably, social and affective phenotypes showed little h2
SNP (Supplementary Fig. 2), consistent with either 

phenotypic homogeneity (as social difficulties are present across the entire ASD spectrum), or little 
contributions of common genetic variation to phenotypic variation in an ASD case-only sample, or lack of 
power.” 

 
 
1.3. Most of the genetic correlations were not statistically significant. Why did the authors only include GRMS 
that use only genotype data? Why did the authors not expand the analyses to also include the more recent 
release of SPARK datasets (they use data released in 2018)? Both will increase statistical power and may allow 
the inclusion of greater number of phenotypes.  
(additional clarification, sent separately) They are now clarifying that they would like you to consider both 
imputed and genotyped data when generating GRMs (rather than just genotype data). 
 
Thank you for the opportunity to clarify our modelling approach. To address the reviewer's concern, we have 
now carried out a comparison of our final GRM-SEM model based on GRMs derived from either direct genotype 
or imputed data, in both SPARK and SSC (see Rebuttal Fig. 1 and Rebuttal Fig. 2, respectively). These analyses 
demonstrate the consistency of findings for both models based on genotyped-data GRMs and imputed-data 
GRMs, as captured by overlapping SE and, thus, 95% CIs.  
 
We have now clarified information on SPARK data within our work. Recent papers studying SPARK (Thomas et 
al. 2022; Antaki et al. 2022) have used the same 2019 phenotype data release (SPARK Collection Version 3) as 
investigated in this study. Regarding the genetic data, we used the SPARK 30K release (version 20181105), 
note that this release does not significantly differ from later releases used in recent papers (ver. 20181105 
Nind=27,615, of which 9,843 had ASD diagnosis; ver. 201909112 Nind=27,270, of which 9,765 had an ASD 
diagnosis) (Warrier et al. 2022; Antaki et al. 2022). Given the similarity in SPARK data researched by us and 
other groups (based on recent publications) and the computationally expensive modelling approach applied in 
this work, we adhered to the data sets selected in this study, as we believe that the differences in underlying 
genomic structures will be small.  
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Rebuttal Fig. 1 Comparison of GRM-SEM estimates for the best-fitting model in the SPARK sample. Estimates 
for imputed-data GRMs and genotyped-data GRMs are shown in purple and black, respectively. Error bars 
indicate standard errors. 
 
 

 

Rebuttal Fig. 2 Comparison of GRM-SEM estimates for the best-fitting model in the SSC sample. Estimates for 
imputed-data GRMs and genotyped-data GRMs are shown in purple and black, respectively. Error bars indicate 
standard errors. 
 
 
1.4. I think the second factor represents motor issues rather than developmental issues. This is however, 
semantics.  
 
We agree with the reviewer’s suggestion and amended the manuscript accordingly. Specifically, we have now 
renamed the factor to “developmental motor delay”. 
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1.5. Individuals with ID and or PTV de novo variants may have different factor structure. The SSC is enriched for 
this. How generalisable is the model in individuals with and without ID/de novo PTVs?  
 
We thank the reviewer for raising this point. We have addressed this question in detail as part of our follow-up 
analyses in the SSC. The aim of this analysis was to study the comparability of structures identified in SPARK 
(Fig. 3) and the SSC (Fig. 4). The former is a community ASD sample, whereas the latter is a sample of simplex 
families that were recruited according to strict recruitment criteria. We outlined similarities and differences in 
model structure between SPARK and the SSC in the Discussion (page 9, paragraph 3):  
 

“For SPARK, a community ASD sample, we identified three common genetic factors explaining predominantly 
variation in language performance, developmental motor delay and behavioural problems, respectively. Within 
the SSC, a sample of simplex-only families, we uncovered structural similarities, indicating conceptual 
replication. Hence, our findings not only strengthen the evidence for common genetic contributions to 
phenotypic variation in ASD (8,9,12), but also offer insight into the multi-dimensional genetic architecture. 
Specifically, we show that the majority of h2

SNP in ASD-only samples can be explained by shared genetic 
factors, for most phenotypes investigated. The major difference across cohorts concerned the genetic 
relationship between language and behavioural phenotypes. While genetic factors of language performance 
and behaviour were unrelated in a community ASD sample (SPARK), the underlying phenotypes were strongly 
genetically linked in simplex ASD (SSC) and captured by a single dimension, suggesting ascertainment-
specific association patterns.”  

 
However, it is important to note that differences in identified genetic models within each cohort may not only 
reflect differences in common genetic architectures in individuals with and without ID/de novo PTVs, where the 
latter are enriched in the SSC but also differences in recruitment. As outlined in the Discussion (page 11, 
paragraph 2):  
 

“Simplex ASD, compared to multiplex ASD, is more often related to de novo mutations (11,23). Our findings 
may, therefore, present aetiological differences unique to simplex ASD, consistent with qualitative differences 
in the common genetic architecture of ASD individuals carrying de novo variants (5,6). Alternatively, genetic 
links between behaviour and language phenotypes in the SSC might, to some degree, be a consequence of 
collider bias (33). Simplex families are recruited following strict ascertainment schemes (16). Collider bias can 
arise when two measures, such as behaviour and language/cognition, are independently related to a third 
variable, such as common genetic variation, and that third variable is conditioned upon (33). Here, the 
preferential ascertainment of simplex families depleted for inherited genetic risk (34), including common 
variation, may introduce artificial genetic relationships between behaviour and language/cognition.” 

 
We, furthermore, attempted to stratify SPARK according to individuals with and without ID (with an increased 
likelihood of de novo mutations) in order to repeat GRM-SEM within different subgroups. Within SPARK, out of 
the 5,331 individuals, there are 1,256 individuals without ID and 964 individuals with ID, based on the definition 
of ID from a previous paper using SPARK data (Kuo et al. 2022). However, fitting structural models to individuals 
with and without ID within SPARK is currently not feasible. Given the low sample numbers for these subgroups, 
fitted models resulted in few detectable factor structures (data not shown). However, principal component 
analysis suggested that also within this subgroup there are likely to be three genetic dimensions.  
 
We adjusted the Discussion (page 12, paragraph 1) as follows: 
 

“Similarly, studying subgroups of individuals with and without ID was not yet feasible, given limited power (e.g. 
based on simple GREML models, the power for subgroup analyses with N~1200 and h2

SNP of 0.2, as observed 
in this study, is 0.11). Stratifying GRM-SEM models across common, rare and de novo carriers in sufficiently 
powered samples, accounting for differences between males and females, will shed further light onto the 
complex links between genetic and phenotypic heterogeneity in ASD, as part of future studies.” 
 

However, irrespective of differences between SPARK and the SSC, we uncovered structural similarities across 
cohorts, indicating conceptual replication. 
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Discussion, page 9, paragraph 4: 
“Across both cohorts, we found evidence for an independent language performance factor, as validated 
through association with higher liability to Asperger in SPARK. Although an Asperger ASD subcategory 
diagnosis is not included in the DSM-5 anymore, our findings confirm that autistic individuals differ 
considerably in their language presentation (27). While some children with ASD reach intact structural 
language skills, others are delayed or never master functional spoken language (27). Here, our analyses 
uncovered genomic covariance between (higher) language level and (earlier) age of self-feeding with a spoon, 
an important personal-social developmental milestone which typically developing children master at about 15-
18 months (28,29).” 
 

Discussion, page 10, paragraph 2: 
“We also found robust evidence for a genetic factor that is related to developmental motor delay within SPARK 
and the SSC, explaining genetic variation underlying growth, such as the age of crawling, a developmental 
milestone children typically master between 9-18 months of age (31).” 

 
 
1.6. SCRL and SBEHAV are mentioned either in the text or in Figure 2B. I was not able to follow where SCRL is 
in the figure, and what SBEHAV refers to.  
 
We thank the reviewer for this comment. Within the previous version of our manuscript, we referred to different 
phenotypic subsets that were fitted as part of our modelling approach. To increase clarity, we have now re-
structured the manuscript and moved information about intermediate model-fitting stages to the supplement, 
including subset GRM-SEM models (Supplementary Notes 1 and 2). The main manuscript represents now the 
final models for SPARK and the SSC only.  
 
Given the reviewer’s comment, we would like to note, however, that the abbreviation SBEHAV has not been 
used in our manuscript. Regarding the abbreviation SCRL, this refers to the subset SCRL, which contained 
phenotypes that were consistent with genetic correlations with age of crawling (Supplementary Fig. 3b).  
 
 
1.7. In general, the paper is difficult to follow for a general reader. I think quite a lot of it is because the methods 
are highly technical. And while I do not envy the authors in having to explain it, I think greater explanation of the 
terms and models directly in the results can be helpful.  
 
We agree with the comment of the reviewer. We have now fully re-structured the results section of the main 
manuscript and focussed on the final models in SPARK and the SSC only, moving a large portion of the details 
and intermediate models to either the methods section (“Study design” and “Data-driven genomic covariance 
modelling approach” in Methods) or the supplement (Supplementary Notes 1 and 2).  
 
 
1.8. Only 17 of the 47 phenotypes were included in the model. What were the phenotypes that were excluded? 
What are the consequences of these exclusions in how we can interpret the results? For instance, I do not find 
very many canonical ASD dimensions in the model. 
 
We apologise if this was not clear. We provide a full description of the phenotypes studied in SPARK in 
Supplementary Table 1. We also provide a short description of the domains that were studied in the Methods 
section (“Phenotypes” in Methods) and in the results section (see below): 
 
Results, page 4, paragraph 3: 

“... screening a wide range of language, cognitive, motor, developmental, affective, behavioural and social 
phenotypes (https://www.sfari.org/spark-demographic-and-clinical-information).” 
 

Results, page 4, paragraph 3: 
“From an initial set of 47 phenotypes (Methods, Supplementary Table 1, Supplementary Fig. 1), we retained 
17 phenotypes representing five ASD domains: language/cognition, general behaviour, developmental 
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milestones, motor, and repetitive behavioural features (Fig. 2a). Notably, social and affective phenotypes 
showed little h2

SNP (Supplementary Fig. 2) ...” 
 

Methods, page 13, paragraph 3: 
“We studied 47 parent-reported measures of ASD phenotypes and co-morbid disorders/disabilities spanning 
the domains of language and cognition (9 measures), general behaviour (9 measures), repetitive behaviour 
(7 measures), social (2 measures) and motor abilities (6 measures), as well as affective disorders (3 
measures) and developmental milestones (11 measures). Phenotypes were extracted from the Basic Medical 
Screening Questionnaire (BMS), the Social Communication Questionnaire-Lifetime (SCQ) (36), the SPARK 
Background History Questionnaire (BGHX), the Repetitive Behaviours Scale-Revised (RBSR) (37), and the 
Developmental Coordination Disorder Questionnaire (DCDQ) (38) (Supplementary Fig. 1, Supplementary 
Methods 1).” 

 
The exclusion of phenotypes due to low h2

SNP has little bearing on the presented multi-variate genomic models, 
as phenotypic variation in these measures is not captured by genomic covariance. As outlined above (see 
Reviewer 1, comment #1.2), canonical ASD dimensions are symptoms which are defined with respect to a 
healthy control population. Here, we investigated, however, symptom variations among individuals with ASD 
only.  
 
 
Reviewer #2 (Remarks to the Author): 

 
In this paper, de Hoyos and colleagues investigated the latent factor structure underlying genetic sharing of ASD 
symptoms in two separate cohorts. This is clearly an interesting topic and the authors did a good job backing up 
their conclusions with empirical evidence. But the paper will benefit from putting the discussion in the context of 
a broader literature and improving how some methodological details are reported and discussed. I have some 
specific comments. 
 
We thank the reviewer for their supportive comments. 
 
 
2.1. Structural equation modelling has gained recent popularity in human genetics due to a series of papers 
which introduced Genomic SEM (or GSEM), a tool with an unfortunately similar name compared to the approach 
used in this paper. It would improve the paper if the authors could discuss the choice of using GRM-SEM instead 
of GSEM. To be clear, I think there are obvious arguments to make such as the expected imprecise h2 and 
genetic correlation estimates based on GWAS summary data given low sample size, and the fact that individual-
level data are in fact available in this study. Still, since GSEM has become somewhat mainstream in this type of 
studies, it is important to show the rationale of applying GRM-SEM. 
 
We agree with the reviewer’s suggestion. We have now explained our reasoning to select GRM-SEM and not 
genomic SEM in this paper, and added these details to the Methods section of our manuscript (page 19, 
paragraph 1): 

 
“Comparison of GRM-SEM with alternative methods 
Besides GRM-SEM, multiple other approaches allow the modelling of the genomic covariance structure across 
phenotypes, including techniques such as genomic SEM (50). For this study, we selected GRM-SEM for the 
following reasons: Genomic SEM, a linkage-disequilibrium-score-based technique (51), relies solely on 
genome-wide summary statistics. These statistics have to be powerful enough to identify genetic structure, 
requiring large effective sample sizes >10k (52) that exceed those in SPARK and the SSC. In contrast, GRM-
SEM, similar to GREML (17), uses a GRM derived from direct genotyping data to disentangle the full 
phenotypic covariance into a genetic and residual model part. The method requires similar sample sizes as 
for GREML (>2k) (53), matching those in this study. In addition, the fit of GRM-SEM models, but not genomic 
SEM models, can also be directly assessed against (i) a saturated model (with relative fit indices such as LRT, 
AIC and BIC) and (ii) the phenotypic covariance matrix (with absolute fit indices such as SRMR). Moreover, 
GRM-SEM allows for both genetic and residual covariance modelling, each with different structures, 
enhancing the model fit (14). Lastly, the SE of the genomic covariance matrix can be directly inferred from the 
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fitted GRM-SEM model, while SEs are approximated with jackknife procedures by genomic SEM, affecting 
the prediction accuracy of subsequent EFA analyses. ” 

 
Please note that our group introduced the term GSEM for genomic covariance modelling in 2018 (St Pourcain 
et al. 2018). We have since re-named the approach to GRM-SEM to avoid confusion with the genomic SEM 
approach. 
 
 
2.2. Related to #1, it appears that GRM-SEM bases its inference on individual-level genotype and phenotype 
data, which inevitably involves modelling the non-genetic contribution on phenotypes. In contrast, GSEM 
completely ignores the non-genetic variance components. Given the fact that both genetic and non-genetic 
variance components are presenting in the model, a question then is what it means to have different latent factor 
structures underlying them for the same set of traits (e.g., shown in Fig 3B/E/H). The authors provided some 
previous work on this choice but it would be important to justify this setup and clarify whether this is for model 
convergence / computational convenience only and whether the results can still be interpreted given the setup. 
A related question is whether we would expect to see different results in GRM-SEM applications compared to 
just a SEM exercise based on phenotype data alone. 
 
We thank the reviewer for this insightful question. GRM-SEM dissects multivariate phenotypic covariance similar 
to a GREML approach (Yang et al. 2011), where the residual variation represents the phenotypic variation that 
is unaccounted for by the genetic model. While most researchers focus on the common genetic aspects of the 
model, the residual component captures everything else (rare, non-additive or un-tagged genetic influences, 
environmental risk factors, and random error (Yang et al. 2011)) and is, thus, an intrinsic part of GRM-SEM. 
Therefore, residual variation is not fitted for convenience or model convergence. In fact, the model fit can only 
be accurately assessed once the residual part is taken into account, as both genetic and residual covariance 
contribute to phenotypic covariance. Specifically, within GRM-SEM, we guide model selection through 
comparison against a saturated model fitted to phenotypic data (i.e. using relative fit indices such as LRT, AIC 
and BIC). In addition, we can select models based on measures of absolute fit. For this, we have now 
implemented the Standardised Root Mean Square Residual (SRMR), which captures the similarity in GRM-SEM-
predicted compared to observed phenotypic covariance. Neither approach is feasible in genomic SEM due to 
the lack of raw phenotype information, given the use of summary statistics and. Nevertheless, the genetic 
components of GRM-SEM and genomic SEM can be compared relative to each other.  
 
Results (page 5, paragraph 1): 

“Eventually, this information was used to build a hybrid Independent Pathway/Cholesky (IPC) GRM-SEM 
model, where the structure is only modelled within the genetic part of the data, while the residual part is always 
fitted to a saturated (Cholesky) model (Methods). IPC models have previously been shown to provide a 
superior model fit compared to other a priori-defined models (14)” 

 
Methods (page 18, paragraph 2): 

“The relative goodness-of-fit for each model was evaluated with likelihood ratio tests (LRTs), the Akaike 
information criterion (AIC) and the Bayesian information criterion (BIC) (47). The absolute goodness-of-fit was 
assessed with the standardised root mean square residual (SRMR)(48), as the standardised difference 
between the observed and predicted correlation, accounting for the degrees of freedom in GRM-SEM. SRMR 
values below a cut-off value of 0.08 indicate a good model fit (48).” 
 

Results (page 8, paragraph 3): 
“Second, we corroborated GRM-SEM predicted h2

SNP (Supplementary Fig. 10) and rg (Supplementary Fig. 
11) estimates for the best-fitting GRM-SEM IPC models through comparisons with corresponding GREML 
estimates that showed consistent 95% CIs.(...) Third, we illustrated the superiority in model fit for the best-
fitting GRM-SEM IPC models by comparing their fit with exploratory GRM-SEM models (Supplementary Table 
4), such as one-factor independent pathway and one-factor IPC models (Methods, Supplementary Fig. 12). ” 

 
To address the reviewer’s last question, we have fitted an SEM model to the phenotype data alone. For SPARK, 
we have added the results of this analysis to Supplementary Fig. 6, also shown below (Rebuttal Fig. 3). For the 
SSC, we were not able to fit a phenotypic SEM model using a split-halve approach, due to convergence 
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problems. For SPARK, when comparing genetic (Rebuttal Fig. 4, Fig. 3) with phenotypic (Rebuttal Fig. 3, 
Supplementary Fig. 6) structures, differences in the association between the age of self-feeding with a spoon 
and self-injurious behaviour (Results, page 6, paragraph 3) could be observed:  
 

“In line with Cheverud’s conjecture (21), which postulates that phenotypic relationships are likely to be fair 
estimates of their genetic counterparts, genetic dimensions largely matched corresponding phenotypic 
dimensions (Supplementary Fig. 6). Nonetheless, several differences between phenotypic and genetic 
structures became evident, such as for age of self-feeding and RBSR self-injurious behaviour. For example, 
genetic variation in age of self-feeding was explained by the language performance factor (genetic model: 
λlang=-0.38, SE=0.14, Fig. 3), while phenotypic variation was accounted for by the developmental motor delay 
factor (phenotypic model: λdev=0.50, SE=0.03, Supplementary Fig. 6). Similarly, RBSR self-injurious behaviour 
was genetically linked to the developmental motor delay factor (genetic model: λdev=0.36, SE=0.10, Fig. 3), 
while sharing phenotypic variation with the behavioural problems factor (phenotypic model: λbeh=0.66, 
SE=0.04, Supplementary Fig. 6). These results leverage the importance of a data-driven genomic covariance 
modelling approach as genetic relationships may not be fully reflected by phenotypic relationships, given that 
the latter are also shaped by non-genetic/residual influences. ” 

 

 
Rebuttal Fig. 3 Phenotypic SEM model in the SPARK sample.  
 

 
Rebuttal Fig. 4 GRM-SEM model in the SPARK sample 



9 
 

2.3. The application involving EA PGS is interesting but is also somewhat different from all other analyses done 
in this study, which is why some additional discussions on applying GRM-SEM to PGS data will be helpful. For 
example, what is the non-genetic factor underlying EA PGS (which I think is what E1 in Fig 5D denotes)? How 
predictive is this PGS and whether its imprecision will affect the GRM-SEM results? Also, why not using cognition 
data in SPARK for this analysis? Is it something not measured in SPARK? 
 
As outlined in our manuscript, we added information on Asperger and EA PGS as external reference points to 
guide the interpretation of identified genetic model structures within a study of individuals with ASD only. The 
need for an external reference point arises as we study an ASD-only sample, therefore an external reference 
helps interpret the factor structure compared to a general population sample. For example, individuals with a 
high cognitive load will differ in their comorbid symptom structure when studied within an ASD sample (where 
they correspond largely to individuals with Asperger, based on a DSM-IV diagnosis) compared to a general-
population sample, containing mostly healthy individuals.  
 
Results (page 8, paragraph 1): 

“To enhance the interpretability of identified genetic structures in SPARK, we mapped further variables onto 
the genetic model structure (Methods). Specifically, we investigated the association between the identified 
factors and (i) liability to Asperger (compared to other ASD subcategories) (Fig. 5a-c) and (ii) PGS for 
educational attainment (PGSEA) (Fig. 5d-f). ASD subcategory information (DSM-IV-based) can provide a 
clinical reference to account for different phenotypic presentations in ASD. Here, it can guide the interpretation 
of identified genetic dimensions, as genetic liability to Asperger presents a form of autism without significant 
impairments in language and cognitive development (24). PGSEA presents a genetic correlate of cognitive 
functioning (25), but also socio-economic status, including non-cognitive factors such as health and longevity 
(26).” 

 
To answer the reviewer’s first question, here, we dissect variation of PGSEA into genetic (shared and specific) 
and residual (non-genetic) variation. The residual variance (E1) for PGSEA is very small (E1=0.61%(0.49%)) 
compared to the genetic variance (AS=96.57%(1.91%), Alang=0.24%(0.54%), Adev=0.02%(0.14%), 
Abeh=2.53%(1.98%)). This suggests that some PGSEA variation is unrelated to genetic variance as captured by 
GRMs in ASD samples. For example, it is possible that a small part of PGSEA variance represents noise, or that 
GRMs in ASD samples capture marginally different common variation compared to individuals included in EA 
meta-GWAS discovery analyses (Lee et al. 2018). 
Regarding the reviewer’s second question, mapping PGS onto genetic models, including EA PGS, provides 
information about the structure of PGS that is not detectable with regression-based approaches. Within this 
study, we asked the question of whether identified shared genetic factors in SPARK can explain variation in 
PGSEA. Therefore, we cannot assess the predictive ability of PGS. However, we may assume the reciprocity of 
associations given that variation in PGSEA is near-fully explained by genetic variation. Therefore, an estimate of 
2.79% explained variation in PGSEA through shared factors (by Alang, Adev and Abeh) is consistent with typically 
observed explained variation in trait variance, based on cohorts with similar sample size (Selzam et al. 2017). 
 
The reviewer is correct that information on cognitive performance is available in SPARK. As part of this study, 
we have investigated: intellectual disability, cognitive age level and cognitive impairment (Supplementary Fig. 
2). Among these cognition-related phenotypes, only cognitive age level passed the h2

SNP selection threshold of 
p<0.1. However, cognitive age level was solely related to the language performance factor (Supplementary Fig. 
5b,e, Supplementary Note 2) and highly correlated with the remaining measures (cognitive age level and 
language level: GREML rg=0.87,SE=0.29; cognitive age level and language disorder: GREML rg=-0.92,SE=0.53; 
Supplementary Fig. 3), showing similar association patterns in structural models. To reduce the computational 
burden and collinearity, cognitive age level was therefore proxied by other measures and not included in the 
modelling process nor the final model. We attempted to set up subgroup models for individuals with intellectual 
disability (see Reviewer 1, comment #1.5). However, this was not feasible, as the power of such models was 
low resulting in little detectable genetic structure. 
 
 
2.4. In addition, the genetic correlation between EA/cognition and ASD is very relevant for the discussion about 
ASD phenotypic and genetic heterogeneity. There are many papers on this topic (e.g., PMID: 28504703 and 
34493297). It would be helpful if the authors clarify whether and how the results here contribute to our 
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understanding of the positive EA-ASD genetic correlation (from GWAS) and the apparent negative cognition-
ASD phenotypic correlation. 
 
We thank the reviewer for highlighting this important aspect of our manuscript. However, we are limited in placing 
our findings within the context of research conducted by Weiner and colleagues (PMID: 28504703 (Weiner et al. 
2017)) and local genetic correlation analyses studying risk of ASD as carried out by Zhang and colleagues 
(PMID: 34493297 (Zhang et al. 2021)). Weiner and colleagues showed that common variant risk appears 
similarly relevant to ASD individuals with high and low IQ, and those with and without a strongly acting de novo 
mutation (Weiner et al. 2017). We, therefore, attempted to fit subgroup models for individuals with ID in SPARK. 
These models are, however, not feasible yet, given low power (see Reviewer 1, comment #1.5). Regarding the 
second paper, we are limited by differences in research design. While Zhang and colleagues (Zhang et al. 2021) 
study links between EA and risk of ASD (case-control design), this study adopts a case-only design and, 
therefore, we cannot draw any conclusions about risk of ASD. However, we have integrated our findings within 
the context of research carried out by Warrier and colleagues (Warrier et al. 2022) and Antaki and colleagues 
(Antaki et al. 2022), who also adopted a case-only design.  
 
As outlined in the Results of our manuscript: 
 
Results (page 8, paragraph 2): 

“In contrast, PGSEA were associated with reduced behavioural problems (Fig. 5d, λbeh=-0.16, SE=0.06), 
conditional on the language performance and developmental motor delay dimensions. Consistent with 
previous research (8,9), genetic correlations of PGSEA with behavioural measures such as sameness 
behaviour were inverse (Fig. 5f, GRM-SEM rg=-0.16, SE=0.06), strengthening support for links with repetitive 
behaviour.” 

 
Within the Discussion, we provided further explanation of this finding (page 10, paragraph 3): 

“As in previous research adopting a case-only design (8,9), the behavioural problems factor was inversely 
associated with PGSEA in SPARK. Our analyses demonstrated that this association can be observed 
conditional on genetic links with the language performance or the developmental motor delay factor, neither 
of which were related to PGSEA. Thus, our findings suggest that behavioural problems within a community 
ASD sample vary primarily with non-cognitive correlates of socio-economic status.” 

 
 
2.5. I initially thought the choice of "population representative" is a bizarre choice of phrase to describe this study 
because the authors only included samples with European ancestry in the analysis. Then I realized this was 
meant to contrast the simplex ascertained SSC cohort which the authors used for replication. Maybe consider 
rephrasing this? 
 
We agree with the reviewer’s comment. We have now rephrased the "population representative" with “autism 
community sample” to reflect the spectrum-wide recruitment of ASD patients within the SPARK sample, 
contrasting the simplex-ascertained SSC cohort. 
 
Results (page 4, paragraph 2):  

“... ASD community samples, i.e. unselected ASD samples with a wide demographic, phenotypic and clinical 
spectrum.” 
 

 
2.6. LRT was used to compare different models. Are the models always nested in this type of comparison? If 
not, is LRT a justified statistical test? Related to this, some LRT p-values were 1 in this study which is bizarre 
because even if the null hypothesis were true or the sample size is very small, p-values are still expected to 
follow a uniform(0,1) distribution. Always having very large p-values seems to be a sign that the statistical tests 
were not done properly. 
 
The reviewer is correct that fitted models are nested. It has previously been shown that the independent pathway 
model is nested within the saturated Cholesky model, and, thus, a LRT is justified (Neale and Maes 2004). Using 
a data-driven GRM-SEM approach, we provide GRM-SEM with starting values and constraints that guide model 
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identification. Thus, the model fit of the identified model is close to the saturated model (see Rebuttal Table 1 
and Table 1). As such p-values are not expected to follow a uniform(0,1) distribution. Note that LRT p-values are 
rounded to one given very small differences between the saturated model and the best-fitting model. We have 
now replaced “LRT p=1” with “LRT p>0.99”). Within Rebuttal Table 1 (Supplementary Table 7), it also can be 
seen that for other, a priori-defined models, especially one-factor IP models, the observed model fit is statistically 
different (i.e. worse) compared to the saturated (Cholesky) model. In addition to LRTs, AIC and BIC (i.e. relative 
measures of fit), we have now implemented also absolute measures of fit, i.e. the standardised root mean square 
residual (SRMR), demonstrating the excellent fit of identified models (Table 1). In addition, we carried out 
comparisons with GREML estimates. We adjusted the manuscript as outlined in our reply to Reviewer 2, 
comment #2.2. 
 
LRT p-values near one capture the similarity in fit between a saturated model and our best-fitting models, 
highlighting the strength of our data-driven genomic covariance modelling approach.  
 
 
Rebuttal Table 1. Model fit comparison for final models in SPARK and SSC. Abbreviations: AIC (Akaike 
information criterion); BIC (Bayesian information criterion); IPC (Hybrid Independent Pathway (genetic part) / 
Cholesky (residual part) model); LRT (Likelihood ratio test); Npar (number of parameters), SRMR (standardised 
root mean square residual). 
 

Model Type log-likelihood Npar AIC BIC SRMR LRTCholesky 

       Δχ2(Δdf) p 

SPARK, Ntraits=8, Nind=5279 

Cholesky saturated -15248.61 72 30641.23 31114.37 0.002 - 

IP one-factor -15422.47 32 30908.94 31119.23 0.029 347.71 (40) <10-10 

IPC one-factor -15262.09 52 30628.18 30969.90 0.002 26.96 (20) 0.14 

Bi-factor three-factor -15249.97 62 30623.94 31031.37 0.002 2.71(10) 0.99 

IPC best-fit three-factor -15250.96 53 30607.92 30956.21 0.002 4.69(19) >0.99 

SSC, Ntraits=8, Nind=1940 

Cholesky saturated -6342.50 72 12828.99 13230.07 0.008 - 

IP one-factor -6731.75 32 13527.49 13705.75 0.067 778.50 (40) <10-10 

IPC one-factor -6349.53 52 12803.05 13092.72 0.008 14.06 (20) 0.83 

Bi-factor three-factor -6342.59 63 12811.18 13162.12 0.014 0.19(9) >0.99 

IPC best-fit three-factor -6342.60 53 12791.19 13086.43 0.017 0.20(19) >0.99 

 
 
2.7. In section "Phenotype transformations", the authors stated "For categorical phenotypes and co-morbid 
disorders, we constructed deviance residuals as the difference between the logistic model fit and the fit of an 
ideal model". Clarify what an ideal model is here? 
 
We apologise for this oversight. We have now rephrased “ideal model” into the statically accurate term 
“saturated” model. We have also adapted the “phenotype transformations” section to make clear how we derived 
these scores (page 14, paragraph 4): 
 

“Categorical variables. After adjusting for covariates, deviance residuals were constructed by extracting the 
logistic model residuals using the resid() function (R:stats v4.0.2). Deviance residuals are computed as the 
difference between the logistic model fit to the data against the fit of a saturated model.” 

 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I thank the authors for a comprehensive revision of the manuscript. I'd particularly like to 
commend the authors on making this paper a lot easier to read and more accessible to readers. 
The authors have conducted several additional analyses to bolster their findings. Although I'm 
largely satisfied with the revisions, I still have a few additional comments for the authors to 
consider. 
 
1. With regard to my previous point about comparing phenotypic vs GRM-SEM models, it looks like 
the authors have conducted SEM models using the final list of phenotypes in the GRM-SEM model. 
Whilst this is useful, it does not help us to find out if using SEM on all phenotypes (not just the 
final modelled ones), followed by genetic analyses of the latent structures provides better 
interpretation of the common dimensions in autism. I request the authors to conduct this 
additional analyses to contextualise the utility of GRM-SEM compared to traditional SEM methods 
followed by genetic analyses. 
 
2. The findings with EA are interesting, but potentially complicated by the fact that the vast 
majority of EA GWAS effects act indirectly (Okbay et al., Nature Genetics, 2022). As such, it is 
really unclear how to interpret these findings - are the associations due to the direct effects of the 
child's genotype, an effect of parental genotypes or a combination of both? It will be helpful if the 
authors could acknowledge this in the discussion. 
 
3. The authors have largely used "ASD", although in certain instances, they have used "autism". 
Language is a highly contentious issue within the autism communities. Whilst I don't want to make 
any recommendations on which terms to use, I would like the authors to think a bit more carefully 
about their choice of terms and perhaps a few lines to justify their choice of term to the readers. 
Please note, this is not just with reference to the term "ASD" or "autism" but the wider use of 
terms like risk. 
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Response to reviewer comments 

We thank the reviewer for their positive comments. Please find a detailed point-by-point response to 
each question raised by the reviewer below. 

 

Reviewer #1 (Remarks to the Author) 

I thank the authors for a comprehensive revision of the manuscript. I'd particularly like to commend the 
authors on making this paper a lot easier to read and more accessible to readers. The authors have 
conducted several additional analyses to bolster their findings. Although I'm largely satisfied with the 
revisions, I still have a few additional comments for the authors to consider.  

1. With regard to my previous point about comparing phenotypic vs GRM-SEM models, it looks like the 
authors have conducted SEM models using the final list of phenotypes in the GRM-SEM model. Whilst 
this is useful, it does not help us to find out if using SEM on all phenotypes (not just the final modelled 
ones), followed by genetic analyses of the latent structures provides better interpretation of the common 
dimensions in autism. I request the authors to conduct this additional analyses to contextualise the 
utility of GRM-SEM compared to traditional SEM methods followed by genetic analyses. 

We thank the reviewer for the suggestion.  

We respectfully disagree with the reviewer that the aim of our paper is to find out if using SEM on all 
phenotypes (not just the final modelled ones), followed by genetic analyses of the latent structures 
provides better interpretation of the common dimensions in autism. The aim of our paper is to dissect 
the h2

SNP of ASD phenotypes, in full, in order to understand the underlying multivariate genetic 
architecture as a structure of shared and specific genomic variance contributions. To exemplify this, we 
have visualised Fig. 3c as the proportion of h2

SNP of each phenotype that is explained by the common 
genetic factors for the SPARK model (Rebuttal Fig. 1). 

 

We have clarified our aim in the introduction (page 3, paragraph 3): 

“In this study, we aim to understand whether phenotypic heterogeneity in ASD can be explained by 
heterogeneity in common genetic effects by studying autistic individuals from large ASD cohorts. To 
do so, we fully dissect the h2

SNP of ASD phenotypes into shared and specific genomic variance 
contributions, as implemented in genetic-relationship-matrix (GRM) structural equation modelling 
(GRM-SEM) (13,14). [...] Therefore, GRM-SEM allows the direct modelling of the genomic 
covariance, in contrast to previous studies (8,9) that interrogate the genetic architecture in ASD 
through analyses of phenotypic factor structures followed by genetic association analyses.” 

Rebuttal Fig. 1 Genetic variance plot of the SPARK model (Fig 3). The y-axis represents the proportion of 
each phenotype’s h2

SNP that is explained by the three shared genetic factors (Alang, Adev, Abeh) or their own 

specific genetic factor (AS). 
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Our aim is not compatible with a SEM approach at the phenotypic level due to underlying differences 
in the nature of the identified factors (genetic vs phenotypic). We highlighted inherent differences in 
shared variation extracted by phenotypic SEM and GRM-SEM in Rebuttal Fig. 2. A phenotypic SEM 
approach followed by genetic association analysis will focus on the analysis of phenotypic factor scores 
capturing shared genetic and residual variation only (green tickmark, ✔️), while specific phenotypic 
variation, including genetic variation is lost (red cross, ✖️). Thus, a phenotypic SEM approach followed 
by subsequent genetic analysis of factor scores does not allow dissecting the full h2

SNP of ASD 
phenotypes as specific genetic factors are lost. In addition, the contribution of shared genetic factors to 
shared phenotypic factors is not uniform and will vary across different phenotypes. In contrast, GRM-
SEM allows dissecting the full h2

SNP into shared and specific genetic factors (Rebuttal Fig. 1). More 
specifically, it estimates the contribution of shared genetic variance across multiple genetic dimensions 
in addition to specific genetic variance.  

We agree with the reviewer that finding an interpretation of the latent dimensions in autism across all 
available phenotypes is an interesting research question. However, it has been already implemented in 
two previous studies of the SPARK sample (Warrier et al.1 and Taylor et al.2) 

To address the reviewer’s request and to highlight differences between a genetic and a phenotypic 
SEM approach, we performed a phenotypic factor analysis across the initial set of 47 phenotypes in 
SPARK. Note that we removed DCDQ and RBSR total scores to avoid collinearity with their respective 
subscales.  

Using the pipeline described in our manuscript (“Phenotype SEM models” section, Methods, page 21) 
we identified a 12-factor model with correlated factors and an acceptable model fit (oblimin rotation, CFI 
= 0.93, TLI = 0.92, RMSEA = 0.031, SRMR = 0.068). We extracted factor scores (using lavPredict 
function in lavaan) using information from individuals with less than 50% missingness. Subsequently, 
we carried out a GREML analysis as described in “Univariate and bivariate genetic variance analyses” 
(Methods, page 16). Four out of the 12 factors were heritable (h2

SNP p<0.05). Heritable phenotypic 
factors (Rebuttal Fig. 3) described variation across repetitive behaviours from the RBSR questionnaire 

Rebuttal Fig. 2 Differences between (a) phenotypic SEM and (b) GRM-SEM approach. a, Phenotypic SEM 
approach. When extracting phenotypic factor scores for subsequent genetic analyses, we can only extract the 
information of the shared phenotypic variance component (✔️), while genetic information in the specific 
variance components is lost (✖️). b, GRM-SEM approach, including a genetic and a residual model. Note that 
the residual model has been simplified for clarity. In this study, the residual GRM-SEM model is implemented 
as a Cholesky decomposition.  
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(F3), motor measures from the DCDQ questionnaire (F4), motor developmental milestones from the 
BGHX questionnaire (F5) and language and cognition measures (F11).  

We observed similarities (Rebuttal Fig. 3, Rebuttal Fig. 4) between the heritable phenotypic factors and 
the identified GRM-SEM genetic factors. Phenotypic factor scores and GRM-SEM factors were similar 
for: 

• A language factor: The phenotypic factor underlying language and cognition measures (F11) 
aligns with the language performance genetic factor (Alang).  

• Motor and developmental milestones: The phenotypic factors underlying motor (F4) and motor 
developmental milestones (F5) align with the developmental motor delay genetic factor (Adev). 
Notably, these two phenotypic factors are genetically identical (GREML rgF4,F5= -1.00, 
SE=0.31).  

• A repetitive behaviour factor. The phenotypic factor explaining variation across repetitive 
behaviours (F3) aligns with the behavioural problems genetic factor (Abeh). 

Differences between phenotypic SEM and GRM-SEM analysis may arise due to several reasons:  

(i) The variance modelled in both approaches differs. Phenotypic factors are identified to capture 
using shared phenotypic variation, including shared genetic and residual variation, while 
genetic factors capture shared genetic variation only. 

(ii) Related to (i), as phenotypic factors capture shared genetic + residual variance, they will only 
capture a fraction of shared genetic variance (which can be measured as a factor score’s h2

SNP). 
In contrast, in GRM-SEM genetic factors (specific + shared) explain the entirety of a 
phenotype’s h2

SNP. 

Rebuttal Fig. 3 Phenotypic SEM analysis followed by genetic analysis across the 47 SPARK phenotypes 
included in this study. a GREML analysis of heritable factor scores. Heritability is shown in the diagonal and 
bivariate genetic correlations in the off diagonal. b Confirmatory factor analysis (CFA) factor loadings for 
heritable factors. A black square indicates factor loadings |λ| > 0.3. a,b Values for GREML and CFA analysis 
are shown with their standard error in parenthesis.  

Rebuttal Fig. 4 Phenotypic Pearson correlations between heritable phenotypic factor scores (across the 47 
SPARK phenotypes included in this study, Rebuttal Fig. 3) and phenotypic factor scores from final GRM-SEM 
model (Plang, Pdev and Pbeh, Supplementary Fig. 6).  
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(iii) In GRM-SEM, we can quantify the contributions of each shared genetic factor to both the total 
genetic variance (h2

SNP) and (ii) the total phenotypic variance of each investigated phenotype. 
In contrast, in phenotypic SEM (followed by genetic analysis), the genetic contributions of each 
factor cannot be traced back to the phenotypic variation anymore. Therefore, genetic links 
between phenotypic factor scores cannot be modelled. 

(iv) Genetic variance underlying phenotypes with different residual and genetic components may 

not be uniformly captured in phenotypic SEM3. In contrast, GRM-SEM separates these two (i.e. 
residual and genetic) components and allows for the identification of latent genetic structures 
using direct genotyping information, capturing the full genetic variance of all modelled 
phenotypes.  

(v) Overall, the aims of the analyses are substantially different. Whereas a SEM at the phenotypic 
level aims to identify the shared sources of phenotypic (residual + genetic) variation, a SEM at 
the genetic level aims to investigate the proportion of h2

SNP of each trait that is shared across 
phenotypes. 

For these reasons, a direct comparison of phenotypic SEM factor structures followed by genetic 
analyses and GRM-SEM is not feasible. Therefore, we have not included these analyses into our 
manuscript. 

Irrespective of these inherent methodological differences, both phenotypic SEM (followed by genetic 
analysis) and GRM-SEM indicate that there are several latent dimensions in autism, including 
dimensions related to repetitive behaviours, motor development and language, which have a substantial 
genetic component as explained by common genetic variants. 

2. The findings with EA are interesting, but potentially complicated by the fact that the vast majority of 
EA GWAS effects act indirectly (Okbay et al., Nature Genetics, 2022). As such, it is really unclear how 
to interpret these findings - are the associations due to the direct effects of the child's genotype, an 
effect of parental genotypes or a combination of both? It will be helpful if the authors could acknowledge 
this in the discussion. 

We agree. We have amended the manuscript accordingly. 

Discussion, page 11, paragraph 1: 

“However, it is important to highlight that a large proportion of the PGSEA genetic effects are not due 
to direct effects, but indirect effects (e.g. non-transmitted parental genetic influences), other forms 
of gene-environment correlation or assortative mating (33). Therefore, the nature and causality of 
PGSEA associations cannot be determined from our analysis.” 

3. The authors have largely used "ASD", although in certain instances, they have used "autism". 
Language is a highly contentious issue within the autism communities. Whilst I don't want to make any 
recommendations on which terms to use, I would like the authors to think a bit more carefully about 
their choice of terms and perhaps a few lines to justify their choice of term to the readers. Please note, 
this is not just with reference to the term "ASD" or "autism" but the wider use of terms like risk. 

We agree with the reviewer. To explain our language choice to the readers, we have now added the 
following paragraph to the discussion.  

Discussion, page 12, paragraph 3: 

“Language choice 

We are aware that the choice of language plays an important role in the autism community (36,37). 
While some individuals prefer person-first language (i.e. individuals with autism), others prefer 
identity-first language (i.e. autistic individuals). Based on the preferences of the SPARK community 
(38), we have used person-first (“individuals with autism” “individuals with ASD”) and identity-first 
(“autistic individuals” or “ASD individuals”) terms interchangeably. We acknowledge and respect 
each individual’s preference to identify themselves.” 

Additionally, we have replaced terms like “risk”, “symptoms” and “affected” throughout the manuscript 
to avoid language with negative connotations. There is one instance left of the word “risk” in the 
introduction, where we refer here to “common risk alleles” for disorders (not ASD itself).  
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REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I thank the authors for comprehensively addressing my comments. This is a really nice addition to 
the literature. 
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