Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-induced fluorescence

To cite this article before publication: Rui Cheng et al 2022 Environ. Res. Lett.

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2022 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.
Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-induced fluorescence

Rui Chenga,m, Troy S. Magneyb, Erica L. Orcuttb, Zoe Pierratb, Philipp Köhlerc, David R. Bowlingd, Marion Syndonia Bret-Hartee, Eugénie S. Euskirchend, Martin Jungd, Hideki Kobayashif, Adrian V. Rochag, Oliver Sonnentagh, Jochen Stutzh, Sophia Waltherh, Donatella Zonai, Christian Frankenberga, l

aDivision of Geological and Planetary Sciences California Institute of Technology, Pasadena, California, USA, 91125
bDepartment of Plant Sciences, University of California, Davis, California, USA, 95616
cSchool of Biological Sciences, University of Utah, Salt Lake City, Utah, USA, 84112
dInstitute of Arctic Biology and Department of Biology and Wildlife, University of Alaska, Fairbanks, Alaska, USA, 99775
eDepartment of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany, 07745
fJAMSTEC-Japan Agency for Marine-Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, Japan, 236-0001
gDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA, 90095
hDepartment of Biology, University of Notre Dame, Notre Dame, Indiana, USA, 46556
iDépartement de géographie, Université de Montréal, Montreal, Québec, Canada, H2V 2B8
jDivision of Biological and Environmental Sciences, University of California, Los Angeles, California, USA, 90095
kDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139

Abstract

Photosynthesis of terrestrial ecosystems in the Arctic-Boreal region is a critical part of the global carbon cycle. Solar-Induced chlorophyll Fluorescence (SIF), a promising proxy for photosynthesis with physiological insight, has been used to track Gross Primary Production (GPP) at regional scales. Recent studies have constructed empirical relationships between SIF and eddy covariance-derived GPP as a first step to predicting global GPP. However, high latitudes pose two specific challenges: 1) Unique plant species and land cover types in the Arctic-Boreal region are not included in the generalized SIF-GPP relationship from lower latitudes, and 2) the complex terrain and sub-pixel land cover further complicate the interpretation of the SIF-GPP relationship. In this study, we focused on the Arctic-Boreal Vulnerability Experiment (ABoVE) domain and evaluated the empirical relationships between SIF for high latitudes from the TROPospheric Monitoring Instrument (TROPOMI) and a state-of-the-art machine learning GPP product (FluxCom). For the first time, we report the regression slope, linear correlation coefficient, and the goodness of the fit of SIF-GPP relationships for Arctic-Boreal land cover types with extensive spatial coverage. We found several potential issues specific to the Arctic-Boreal region that should be considered: 1) unrealistically high FluxCom GPP due to the presence of snow and water at the subpixel scale; 2) changing biomass distribution and SIF-GPP relationship along elevational gradients, and 3) limited perspective and misrepresentation of heterogeneous land cover across spatial resolutions. Taken together, our results will help improve the estimation of GPP using SIF in terrestrial biosphere models and cope with model-data uncertainties in the Arctic-Boreal region.
Keywords: solar-induced chlorophyll fluorescence (SIF), FluxCom GPP, snow, surface water, Arctic land cover, topography

1. Introduction

As a critical part of the global carbon cycle and land carbon sink for atmospheric CO$_2$, terrestrial photosynthesis in the Arctic-Boreal region can play a key role in mitigating global climate change (Mishra and Riley, 2012; Beer et al., 2010). Due to exceedingly high warming trends at high latitudes (Walsh and Brettschneider, 2019; Post et al., 2019), Arctic-Boreal ecosystems are undergoing more rapid changes than the rest of the world (Canadell et al., 2021; Box et al., 2019), such as in photosynthetic productivity, growing season phenology, and vegetation composition (Myers-Smith et al., 2020). As a result, the future direction and magnitude of terrestrial ecosystem change in these systems has become highly uncertain (Zona et al., 2022; Loisel et al., 2021; McGuire et al., 2009). To better evaluate climate impacts on the Arctic-Boreal region and understand vegetation-climate feedbacks, monitoring the status of Arctic-Boreal terrestrial photosynthesis is essential (Fisher et al., 2014).

Plant carbon uptake via photosynthesis at the ecosystem scale, Gross Primary Production (GPP), can only be estimated indirectly from the ground or space. On the ground, tower-based Eddy Covariance (EC) techniques directly measure net ecosystem CO$_2$ exchange (Baldocchi, 2003), which is then partitioned into GPP and ecosystem respiration. EC towers in the Arctic-Boreal region are unevenly and sparsely distributed in space (Figure 1, Table 1), which make it difficult to represent the spatial variability of GPP across heterogeneous land cover in the Arctic-Boreal region (Pallandt et al., 2022; Curasi et al., 2022). EC techniques are also prone to error in complex terrain, which plays an important role in above-ground biomass distributions in the Arctic-Boreal region (Riihim¨aki et al., 2017; Dobrowski, 2011; Bruun et al., 2006).

Similar to EC towers, satellite remote sensing techniques indirectly infer GPP. An advantage of satellite remote sensing techniques is a more extensive spatial coverage, enabling the comparison of GPP across heterogeneous land cover (Roland et al., 2021; Funk et al., 2004) and complex Arctic-Boreal terrain (Roland et al., 2019). However, satellite remote sensing techniques also have higher uncertainties due to more assumptions made in the derivation of GPP (Ryu et al., 2019; Tramontana et al., 2015).

Remote sensing techniques often rely on canopy optical properties that can approximate Absorbed Photosynthetic Active Radiation (APAR) by vegetation. The fraction of APAR used for photosynthesis is referred to as Light Use Efficiency (LUE). So, GPP can be derived as

\[\text{GPP} = \text{APAR} \times \text{LUE}. \] (1)

Remote sensing GPP products, such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Running et al., 2004; Zhao et al., 2005), are primarily derived from the normalized difference in the surface reflectance between red and near-infrared regions, which is a proxy for the fraction of incoming light absorbed by the canopy, or APAR. However, APAR changes alone are not representative of the seasonal cycle in boreal evergreen ecosystems well, as

Email address: rui.cheng@caltech.edu (Rui Cheng)

Accepted by Environmental Research Letters October 17, 2022
vegetation photosynthetic activity ceases while maintaining light absorbing chlorophyll throughout the season (Cheng et al., 2020; Magney et al., 2019; Bowling et al., 2018). Thus, quantifying variations in LUE is crucial for accurately estimating Arctic-Boreal GPP. Remote sensing of Solar-Induced chlorophyll Fluorescence (SIF) from space opens up a new possibility to infer GPP remotely (Frankenberg et al., 2011; Guanter et al., 2012; Sun et al., 2017; Turner et al., 2021; Li et al., 2018; Li and Xiao, 2022; Zhang et al., 2020). SIF is a small amount of energy emitted from leaf chlorophyll, which is driven by APAR. SIF appears to be a good indicator of the partitioning of APAR between photochemical quenching for photosynthesis and non-photochemical quenching, i.e. LUE (Pierrat et al., 2022; Magney et al., 2019), especially in challenging environments that are snowy or have low solar angles (Walther et al., 2016, 2018). Thus, satellite-based SIF is a promising tool for inferring GPP at the regional scale in the Arctic-Boreal region.

Similar to Equation 1, SIF can be conceptualized as:

\[
SIF = APAR \times \Phi_F \times f_{esc},
\]

(2)

where \(\Phi_F\) is the quantum yield of fluorescence, and \(f_{esc}\) is the escape ratio of SIF from the canopy (Zeng et al., 2019; Guanter et al., 2014). To predict GPP using SIF, recent studies (Li and Xiao, 2022; Zhang et al., 2020; Turner et al., 2021) have built an empirical linear model between daily mean GPP from EC towers and daily mean SIF (SIF\(_{dc}\)) from the TROPOspheric Monitoring Instrument (TROPOMI; Köhler et al. 2018) assuming linearity between SIF\(_{dc}\) and GPP (Turner et al., 2021; Liu et al., 2022):

\[
GPP = k \cdot SIF_{dc}.
\]

(3)

Thus, the regression slope \(k\) can be generalized in different plant functional types to account for varying photosynthetic yields, SIF yields, and canopy structures since it is a function of LUE, \(\Phi_F\), and \(f_{esc}\):

\[
k = \frac{\text{LUE}}{\Phi_F \times f_{esc}}.
\]

(4)

Solving and categorizing \(k\) by plant functional types has improved the ability of biosphere models to simulate GPP in temperate regions (Wu et al., 2021; Delaria et al., 2021). However, the resulting \(k\) values from previous studies (Turner et al., 2021; Liu et al., 2022; Li and Xiao, 2022) lack representativeness in the Arctic-Boreal region because they are categorized by general definitions of plant functional types at the global scale, rather than being tuned to the unique vegetation composition and land cover in the Arctic-Boreal region.

Hence, the goal of this study is to quantitatively evaluate the empirical SIF-GPP relationship (Equation 3) and its uncertainty in the context of the Arctic-Boreal region at the regional scale using remote sensing techniques. We chose to focus on the core region Arctic-Boreal Vulnerability Experiment (ABoVE) domain (www.above.nasa.com; Goetz et al. 2011; Griffith et al. 2017), where land cover types have been defined and validated in the context of Arctic-Boreal species and canopy structures (Figure 1a; Wang et al. 2019). To obtain extensive spatial coverage we fit the empirical SIF-GPP relationship and solved for \(k\) using TROPOMI SIF\(_{dc}\) and a state-of-the-art machine learning gridded GPP product (FluxCom RS; Jung et al. 2020). To help biosphere modelers cope with the model-data uncertainties (Keenan et al., 2011; Xiao et al., 2014), we evaluated the goodness of empirically fitted SIF-GPP relationships with Pearson’s \(r^2\) values and reduced \(\chi^2\) given the uncertainties in both FluxCom GPP and TROPOMI SIF\(_{dc}\).
Even though the gridded products are advantageous at regional scales in the Arctic-Boreal regions, the potential systematic biases of gridded products can complicate the understanding of the SIF-GPP relationship (Sun et al., 2017). Thus, we addressed four other sources of uncertainties in the SIF-GPP relationship: 1) selection of gridded products, 2) snow contamination in remote sensing products, 3) changing biomass distribution along elevational gradients, and 4) limited perspective and misrepresentation of heterogeneous land cover across spatial resolutions. Here, we present the opportunities and limitations of remote sensing and machine learning tools for studying GPP in the Arctic-Boreal region (Section 4.1).

2. Data and Methods

2.1. Gridded datasets and their uncertainties

2.1.1. FluxCom GPP

We used the ensemble median of 2018-2019 8-day GPP from the FluxCom Remote Sensing (RS) ensembles (Jung et al., 2020; Tramontana et al., 2016) with a spatial resolution of 0.08333° × 0.08333°. FluxCom RS ensembles include 18 members from 9 machine learning models and 2 GPP flux partitioning methods. Using GPP from EC towers as training data (Tramontana et al., 2016), all ensemble members of different methods predict GPP with the same set of predictors, including land surface temperature, land cover, the fraction of absorbed photosynthetically active radiation, and Normalized Difference Vegetation Index (NDVI) from MODIS land products. We took the standard deviation of the predicted GPP of all ensembles as the uncertainty of FluxCom GPP.

Because the FluxCom RS GPP is predicted by remote sensing products, snow contamination in MODIS products (Cihlar, 1996) can propagate into FluxCom GPP. To evaluate the impact of snow contamination on the SIF-GPP relationship, we compared the seasonal trajectory of FluxCom GPP with and without snow filtering. We used the 2018-2019 8-day MODIS L3 0.05° global snow cover product MOD10C2 (Hall and Riggs, 2021) as a snow filter, which reports the area fraction of snow cover (dimensionless) in each grid cell. The snow cover data in the study area were regridded to the same spatial and temporal resolution as the FluxCom GPP product. Here, we define FluxCom GPP as snow-free when the snow cover is less than 0.1 (Figure B.6).

Additionally, the uncertainty of FluxCom GPP can be also due to the extrapolation of trained parameters due to limited EC towers sampling. Jung et al. (2020) has developed an Extrapolation Index (EI) to address this issue by illustrating the total distance of an extrapolated point to the nearest training data in the space of all predictors. Here, we reproduced the multi-year average (2001-2018) of annual mean EI and its seasonal range in the study domain to qualitatively examine the representativeness of FluxCom GPP.

2.1.2. TROPOMI SIF

We gridded individual SIF soundings from TROPOMI at 740 nm between 2018 and 2019 in the study area to the same spatial and temporal resolutions as FluxCom GPP (Appendix A). Because satellite-based SIF is an instantaneous value indicative of the light condition at the time of measurement, the daily mean SIF, SIF_{dc}, was scaled from the instantaneous measurement using a length-of-day correction factor based on the diurnal cycle of solar radiation (Köhler et al., 2018). To account for varying numbers of soundings across grids, we took the standard error of SIF_{dc} from individual soundings falling in each grid cell as the uncertainty of TROPOMI SIF, which is derived as the standard deviation divided by the square root of the number of soundings.
2.1.3. Orthogonal distance regression

With snow-free FluxCom GPP and TROPOMI SIF$_{dc}$ as well as their uncertainties, we fit the linear model in equation 3 without an intercept using the orthogonal distance regression (Boggs et al., 1992) for each grid cell, where the regression slope k, Pearson’s r^2, and reduced χ^2 were computed.

Previous studies (Liu et al., 2022; Wu et al., 2022) have often used Pearson’s r^2 as the only metric for explanatory power even though measurement noise can reduce Pearson’s r^2, although the measurements themselves might be accurate but just less precise. Thus, we use both Pearson’s r^2 and reduced χ^2 together to evaluate the linear empirical model between GPP and SIF$_{dc}$ from the perspective of correlation (Pearson’s r^2) as well as the goodness of the fit (reduced χ^2). High reduced χ^2 suggests the linear model is underfitting the data. When reduced χ^2 is lower than 1, it suggests that the linear model is overfitting the given uncertainties on FluxCom GPP and grid TROPOMI SIF$_{dc}$. A reduced χ^2 around 1 represents a good fit, regardless of Pearson’s r^2 value.

2.1.4. Arctic-Boreal land cover map

In the context of Arctic-Boreal species and canopy structures, we categorized the fitted k, Pearson’s r^2, and reduced χ^2 by 15 Arctic-Boreal land cover types based on 2014 ABoVE Land Cover dataset from Wang et al. (2019). The original spatial resolution of the land cover dataset is 30 m × 30 m (LC30M), which we aggregated into 0.08333° × 0.08333° (LC008333D) grids to align with FluxCom GPP. The land cover pixels of LC30M were counted within each LC008333D grid. The land cover type with the maximal area fraction in the LC008333D grid is defined as the dominant land cover type (Figure 1a), while the maximal area fraction is defined as the dominant land cover fraction (Figure 1b). Heterogeneous land cover is associated with a lower dominant land cover fraction.

Surface water is common in Arctic-Boreal ecosystems (Muster et al., 2013; Stow et al., 2004). However, NDVI obtained from mixed pixels including both vegetation and water surface is often close to that of vegetation only. Because water surfaces are very dark (Jiang et al., 2005), few of the reflected photons measured from space emanate from water surfaces. To estimate the influence of the underestimated surface water on FluxCom GPP which uses NDVI (Tramontana et al., 2016), we calculated the area fraction per LC008333D grid occupied by wetland land cover types including Fen, Bog, and Water. Here, we neglected Shallows/littoral land cover type as it is non-vegetation dominated and dominates less than 0.1% of all LC008333D grids.
Figure 1: In the study area (core region of the Arctic-Boreal Vulnerability Experiment (ABoVE) domain) and the resolution of 0.08333° × 0.08333°: (a) the dominant land cover types (Wang et al., 2019); (b) the area fraction of grid taken by the dominant land cover types in panel (a); (c) the 95 percentile of SIF_{dc} (mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$); (d) the 95 percentile of snow-free FluxCom GPP (gC m$^{-2}$ day$^{-1}$); (e) the day of year when SIF_{dc} peaks; and (f) the day of year when GPP peaks. The black cross scatters show the locations of EC towers with GPP data within the ABoVE land cover map. The triangle scatter denotes the location of CA-Obs which has both GPP data and tower-based SIF data. In (a) the triangle scatter is colored in dark green to show that the land cover type of CA-Obs footprint is Evergreen Forest. In (c)-(f), the maps are extended to the area surrounding CA-Obs since data are available. The 95 percentiles were chosen based on the relationship of ranking, percentile, and the number of samples.
2.2. Topography

We decomposed the resulting k, Pearson’s r^2, and reduced χ^2 as a function of elevation. The elevation data in the study area were obtained from the USGS Global 30 Arc-Second elevation dataset (GTOPO30; Earth Resources Observation And Science (EROS) Center 2017). We regrided the elevation data to the same spatial resolution as FluxCom GPP using Google Earth Engine (Gorelick et al. 2017).

2.3. Ground-level GPP and SIF

Due to highly heterogeneous land cover (Myers-Smith et al. 2020; Wang et al. 2020) in the Arctic-Boreal region, the SIF-GPP relationships at different observational scales can vary. Satellite footprints often cover a larger area than the footprints of EC towers so the dominant land cover of the two scales may not match despite the satellite footprints centering on the location of towers. To address the difference and correspondence across scales, we compared the observations from towers against satellite pixels of the same land cover types.

We used half-hourly gap-filled GPP data of EC towers from Principal Investigators (PIs) and the Fluxnet2015 dataset (Papale et al. 2015; Table I) in the study area and calculated the daily mean EC GPP. Because of various temporal ranges for different towers, we calculated the multi-year average of daily mean EC GPP at the 8-day interval aligned with the temporal interval of FluxCom GPP. We defined the land cover types for EC towers based on the description of tower footprints from site PIs.

We evaluated the TROPOMI SIF$_{dc}$ data against a tower-based SIF product in CA-Obs (Pierrat et al. 2022; Pierrat and Stutz 2022), which is close to our study area but outside the LC map. A 2-D scanning telescope measures SIF at 745-758nm across a canopy representative loop that repeats every half hour, from which we calculated daily mean SIF at 8-day intervals. The International Geosphere-Biosphere Programme (IGBP) classification of CA-Obs is Evergreen Needleleaf Forests (ENF). Thus, we used it to benchmark FluxCom GPP and gridded TROPOMI SIF$_{dc}$ in Evergreen Forest.
Table 1: EC towers with GPP data used in this study. LC30M is the land cover type based on the original spatial resolution (30 m × 30 m) of Wang et al. (2019). LC008333D is the dominant land cover type in the resolution of 0.08333° × 0.08333°, which is aggregated from LC30M. IGBP is the land cover type reported by principal investigators based on the International Geosphere-Biosphere Programme (IGBP). ENF, OSH, WET are evergreen needle leaf forests, open shrublands, and permanent wetlands, respectively. Footprint LC is the estimated dominant land cover in the EC tower footprints in the scheme of Wang et al. (2019) based on the description from PIs and previous studies.

<table>
<thead>
<tr>
<th>Name</th>
<th>LC30M</th>
<th>LC008333D</th>
<th>IGBP</th>
<th>tower footprint LC</th>
<th>mean canopy height (m)</th>
<th>elevation (m)</th>
<th>start month</th>
<th>end month</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-HPC</td>
<td>Fen</td>
<td>ENF</td>
<td>Woodland</td>
<td>Low Shrub</td>
<td>3.93</td>
<td>80</td>
<td>2017.4</td>
<td>2017.11</td>
<td>Sonnentag and Marsh (2021a)</td>
</tr>
<tr>
<td>CA-Obs</td>
<td>ENF</td>
<td>Woodland</td>
<td>ENF</td>
<td></td>
<td>4</td>
<td>629</td>
<td>2019.7</td>
<td>2020.12</td>
<td>Pieriat and Stutz (2022)</td>
</tr>
<tr>
<td>CA-SMC</td>
<td>Woodland</td>
<td>Water</td>
<td>ENF</td>
<td>Evergreen Forest</td>
<td>6.15</td>
<td>150</td>
<td>2017.7</td>
<td>2017.11</td>
<td>Sonnentag (2021)</td>
</tr>
<tr>
<td>CA-TVc</td>
<td>Herbaceous</td>
<td>Low Shrub</td>
<td>Low Shrub</td>
<td></td>
<td>0.25</td>
<td>85</td>
<td>2017.5</td>
<td>2017.10</td>
<td>Sonnentag and Marsh (2021b)</td>
</tr>
<tr>
<td>DEJU</td>
<td>Evergreen Forest</td>
<td>Woodland</td>
<td>ENF</td>
<td>Evergreen Forest</td>
<td>10</td>
<td>529</td>
<td>2018.1</td>
<td>2021.9</td>
<td>NEON (2021)</td>
</tr>
<tr>
<td>US-An1</td>
<td>Sparsely Vegetated</td>
<td>Tussock Tundra</td>
<td>OSH</td>
<td>Sparsely Vegetated</td>
<td>0.6</td>
<td>600</td>
<td>2017.6</td>
<td>2017.8</td>
<td>Rocha et al. (2016a)</td>
</tr>
<tr>
<td>US-An3</td>
<td>Tussock Tundra</td>
<td>Tussock Tundra</td>
<td>OSH</td>
<td>Tussock Tundra</td>
<td>0.2</td>
<td>600</td>
<td>2017.6</td>
<td>2017.8</td>
<td>Rocha et al. (2016a)</td>
</tr>
<tr>
<td>US-BZS</td>
<td>Woodland</td>
<td>Deciduous Forest</td>
<td>ENF</td>
<td>Evergreen Forest</td>
<td>2.5</td>
<td>100</td>
<td>2017.1</td>
<td>2017.12</td>
<td>Euskirchen et al. (2016a)</td>
</tr>
<tr>
<td>US-IC6</td>
<td>Low Shrub</td>
<td>Tussock Tundra</td>
<td>OSH</td>
<td>Low Shrub</td>
<td>0.1</td>
<td>940</td>
<td>2017.1</td>
<td>2017.12</td>
<td>Euskirchen et al. (2016a)</td>
</tr>
<tr>
<td>US-IC6</td>
<td>Tussock Tundra</td>
<td>Tussock Tundra</td>
<td>WET</td>
<td>Tussock Tundra</td>
<td>0.1</td>
<td>920</td>
<td>2017.1</td>
<td>2017.12</td>
<td>Euskirchen et al. (2016c)</td>
</tr>
</tbody>
</table>
3. Results

3.1. Annualized relationship of SIF and GPP

The 95th percentiles of TROPOMI SIF$_{dc}$ and snow-free FluxCom GPP are not consistent across space (Figure 1d), suggesting that the regression slope k is not homogeneous in the Arctic-Boreal region. Tussock Tundra on the North Slope of the Brooks Range has a higher 95th percentile of SIF$_{dc}$ than the surrounding area, while the 95th percentile of GPP is similar to the surrounding area. The 95th percentile of SIF$_{dc}$ is high in the southern portion of our study area, which may be attributed to agricultural land located in southern Alberta and Saskatchewan (Guanter et al., 2014).

The dynamic ranges of GPP and SIF$_{dc}$ vary with land covers (Figure 2). The growing season maximal GPP is lowest in land covers with lower statures, such as Low Shrub and Tussock Tundra. The growing season maximal SIF$_{dc}$ is often lower than 0.5 mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$ except in Deciduous Forest, Woodland, Tall Shrub, and Herbaceous.

In Woodland, the linear SIF$_{dc}$-GPP relationship splits (Figure 2d) because Woodland is a heterogeneous land cover type coexisting with other land covers (Wang et al., 2019). Thus, the SIF$_{dc}$-GPP relationship of Woodland contains the features of both high- and low-statured land cover types.

The linear correlation of GPP and SIF$_{dc}$ from gridded products is comparable to tower-based measurements (Figure 2). Except for Evergreen Forest and Fen, where the maximum EC GPP is lower than FluxCom GPP, FluxCom GPP may be overestimated. EC GPP can be negative during winter, which is an artifact of the flux partitioning (Wutzler et al., 2018; Hagen et al., 2006). The daily mean SIF from the tower-based instrument in CA-Obs nicely falls in the dynamic range of TROPOMI SIF$_{dc}$ (Figure 2c; Figure C.7).

On average, the highest regression slope k among the vegetation dominated land cover types occurs in Evergreen Forest (33.84 (gC m$^{-2}$ day$^{-1}$)/(mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$)), while the lowest k value is in Tussock Tundra (12.89 (gC m$^{-2}$ day$^{-1}$)/(mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$)).
Figure 2: The hexbins are pixels categorized by the dominant land cover types in Figure 1a based on all data of 2018-2019 8-day TROPOMI SIF$_{dc}$ (mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$) and FluxCom GPP (gC m$^{-2}$ day$^{-1}$) in the study area. The color of hexbins represents the pixel recurrence at a given pair of SIF$_{dc}$ and GPP bins. The white solid contours are the 95 percentile of the recurrence when the snow cover is less than 0.1 (snow-free). The white dashed contours are the 95 percentile of the recurrence when the snow cover is greater than 0.1. The dotted white contour in (d) is the 95 percentile of grids where the dominant land cover (a.k.a Woodland) fraction is greater than 80%. The gray line is the mean SIF-GPP relationship with the math expression noted in each land cover type. The blue triangles are the multi-year average of 8-day tower-based daily mean SIF and daily mean EC GPP from CA-Obs, whose regression slope k is written in blue. The green crosses are the multi-year average of 8-day TROPOMI SIF$_{dc}$ and daily mean EC GPP from all other EC towers according to land cover types. The range of regression slopes of green crosses from different towers is written in green. Panel (o) shows the area fraction occupied by Fen, Bog, and Water.

3.2. Spatial patterns of the SIF-GPP relationship

The spatial distribution of the resulting regression slope k (Figure 3a) is primarily a function of land cover types (Figure 1a). Similar to Figure 2, k is higher in Evergreen Forest, which is in the southwest part of the study area, and lower in Tussock Tundra on the North Slope of the
Brooks Range.

The correlation between SIF and GPP (Pearson’s r^2; Figure 3b) depends on the synchrony of the seasonal trajectories of SIF$_{dc}$ and GPP. Most of our study area has moderate to high Pearson’s r^2 (Figure 3b), where SIF$_{dc}$ and GPP peak simultaneously across our study area (Figure 1ef).

In the Sparsely Vegetated northeastern part of the study area, Pearson’s r^2 is low, and the annual mean EI (Figure 3) is high, indicating that the FluxCom models predict GPP in this region with few training samples and thus yield higher uncertainties. The high seasonal range in EI (Figure 3d) suggests the extrapolation is more severe in winter than in summer.

The reduced χ^2 is much higher than 1 near glacial lakes in Northern Canada (Figure 3a) and Deciduous Forest, indicating the empirically fitted SIF-GPP relationship is underestimated and does not fully capture the seasonal trajectories in SIF$_{dc}$ and GPP. One possible reason is that most training samples used by FluxCom models in the Arctic-Boreal are not Deciduous Forest (Figure 3a and 1a). Thus, the FluxCom models have to extrapolate from training samples that are less similar to the environment of the region so that the FluxCom GPP has a higher error in Deciduous Forest.
Figure 3: Maps of (a) resulting regression slope k, (b) Pearson’s R^2, (c) reduced χ^2 from fitting snow-free FluxCom GPP and TROPOMI SIF. Panel (e) is the elevation map of the study region. The scatters in (a-c) and (e) are the EC towers with ground-level GPP data and/or SIF measurements, which are used in Figure 2. Panels (d) and (f) are the multi-year average of the seasonal range (winter (January and February) - summer (June and July)) and the annual mean of Extrapolation Index (EI) from Jung et al. (2020). The scatters in (d) and (f) are the EC towers used to train FluxCom models. The maps are extended to the area surrounding CA-Obs since data are available.
3.3. Overestimated FluxCom GPP in wetlands

Similar to other reflectance-based GPP products (Joiner et al., 2018), we found FluxCom GPP may be overestimated in wetlands. In Fen, FluxCom GPP is substantially higher than EC GPP (Figure 2k) and other non-wetland herbaceous land cover types (Figure 2). In Bog and Water, FluxCom GPP is also unrealistically high while SIF$_{dc}$ is around 0. These results suggest a potential overestimation of FluxCom GPP in wetlands.

This bias caused by water is more significant in the area with a high fraction of wetlands (Figure 2b), where the annual mean and seasonal range of EI are also high (Figure 3lf).

3.4. Topographic impact on the SIF-GPP relationship

There is a topographic dependence of k and Pearson’s r^2. k (Pearson’s r^2) is higher (lower) along the Brooks Range, the Mackenzie River, the Alaska Range, and the north end of the Rocky Mountains (Figure 5bce). Meanwhile, the reduced χ^2 is mostly around 1 across topography, suggesting the fitted SIF-GPP relationship is reliable.

The resulting k of Evergreen Forest shows a strong dependence on elevation as the dominant land cover fraction varies (Figure 4a, Roland et al., 2021; Funk et al., 2004). For example, when Evergreen Forest becomes more abundant, k is higher between 1000-1500 m in elevation. Above the tree line (~1500m), k drops as the fraction of grid composed of Evergreen Forest reduces.

The highest k in Evergreen Forest is obtained at a 2000 m elevation which can be noisy because the reduced χ^2 is much less than 1 suggesting the linear model overfits the data.
Figure 4: The resulting k, Pearson’s r^2, reduced χ^2 and the dominant land cover fraction categorized by dominant land cover types as a function of surface elevation. The color lines are the results from snow-free data (snow cover is less than 0.1). The gray dashed lines are the results from snow-contaminated data (snow cover is greater than 0.1). The shades are the interquartile range of the results from all grid-time in each dominant land cover type. Bog has too few grids to show the dependence on elevation. Barren and Water land cover types are omitted since they are not vegetation dominated.
3.5. Snow contamination and snow impact on the SIF-GPP relationship

FluxCom GPP is occasionally unrealistically high during winters, when SIFdc is around zero (Figure 2). We found that this is a sign of snow contamination, especially in the land cover types with lower canopy heights, such as Low shrub, Herbaceous, and Tussock Tundra (Figure 2(hi)). After snowy pixels were filtered, the distribution of TROPOMI SIFdc and FluxCom GPP is more towards linear.

Although the change in resulting k due to snow filtering is small, snow filtering has substantially improved the goodness of fit by increasing Pearson’s r^2 and/or pushing the reduced χ^2 towards 1 (Figure B.6) across all land cover types and all elevations, especially in low-statured land covers, such as Low shrub, Herbaceous, and Tussock Tundra (Figure 4(hi)) where the split distribution pattern due to snow contamination is observed in Figure 4. In forests (Figure 4(bc)), although Pearson’s r^2 decreases, the reduced χ^2 has been improved by approaching 1.

4. Discussion

4.1. Opportunities for remotely evaluating GPP seasonality in the Arctic-Boreal region

We reported and evaluated the SIF-GPP relationship in the context of Arctic-Boreal land cover types at the regional scale. The extensive spatial coverage of our study and validation from EC GPP and tower-based SIF data underscores the potential of using remote sensing and machine learning techniques in the Arctic-Boreal region if remote sensing data are carefully filtered for snow contamination.

Benefiting from the extensive spatial coverage, FluxCom GPP and TROPOMI SIF fill the gaps in land cover types that are too remote to be extensively sampled by ground-based measurements (Virkkala et al., 2022) or in complex terrain where eddy-covariance techniques are challenging to apply (Paw U et al., 2000; Baldocchi, 2003).

4.2. Uncertainties in the SIF-GPP relationship in the Arctic-Boreal region

Contrasting to a universal k for all land cover types solved in Sun et al. (2017), Li et al. (2018), and Li and Xiao (2022), we found it is challenging to find a one-model-fits-all approach to estimate GPP using SIFdc in the Arctic-Boreal region, especially across multiple land cover types or even within the same dominant land cover types. The heterogeneous land cover and complex terrain in the Arctic-Boreal region further complicate interpreting the fitted SIF-GPP relationship and resulting k values. The elevational and spatial gradients of sub-pixel land cover contribute to the uncertainties of k among the pixels of the same dominant land cover types. For future studies, comprehensive sampling of the physiological traits (such as LUE, Φ_F, and f_{esc}; Equation 4) across land covers can help mechanistically explain the variations in k.

Another source of uncertainties in the SIF-GPP relationship is the temporal variability due to seasonally biased sampling of remotely sensed SIF and GPP. Because both TROPOMI SIF and MODIS data used in FluxCom GPP are derived from optical measurements, the large seasonal fluctuations of the solar radiation in the Arctic-Boreal regions lead to seasonal variabilities of valid soundings and uncertainties. Our study provided both Pearson’s r^2 and reduced χ^2 to help biosphere modelers use the resulting k judiciously considering the uncertainty of both SIF and GPP as well as the linearity between SIF and GPP.

The asynchrony of SIF and GPP can also deteriorate the linearity of SIF-GPP relationship. Because SIF contains the information of both APAR and LUE, the seasonal trajectory of SIF may deviate from the reflectance/APAR-based GPP products (such as FluxCom GPP) (Walther...
et al., 2016, 2018; Maguire et al., 2021). Long-term and continuous EC GPP can help better constrain the temporal uncertainty in remote sensing-based GPP products.

It is worth noting that complex terrain may cause high uncertainties in TROPOMI measurements (Turner et al., 2020) and inaccurate length-of-day correction factors in SIFdc (Köhler et al., 2018), leading to larger uncertainties in the SIF-GPP relationship. Fortunately, these impacts are negligible in this study since there are no missing samples due to topography (Figure A.5), and the footprint of TROPOMI soundings (5 km × 3.5 km at nadir, or up to 14 km at the edges of the swath) are large enough to average out the topographic impact on the length-of-day correction factor.

4.3. Variability of k values across latitudes and data products

Due to the non-uniform spectral shape of SIF, our k values are only suitable for estimating GPP with SIF measurements at 740 nm and not comparable to the k values evaluated by SIF at different wavelengths (Ganter et al., 2012; Sun et al., 2017; Li et al., 2018; Zhang et al., 2020).

Compared to the studies using the same TROPOMI SIF (Li and Xiao, 2022; Turner et al., 2021; Liu et al., 2022), our study yields much higher k values, especially in high-statured land cover types. Since those previous studies (Li and Xiao, 2022; Turner et al., 2021; Liu et al., 2022) mostly focus on lower latitudes, the disagreement in k of the same land cover types may indicate different vegetation composition, photosynthetic productivity, fluorescence yield, sub-pixel variability, and/or canopy openness across latitudes (Crous et al., 2022; Kreyling, 2020; Prock and Körner, 1996) as suggested in Equation 4.

The different k across spatial scales (Figure 2 and Figure C.7) and between our results and previous studies (Li and Xiao, 2022; Turner et al., 2021; Liu et al., 2022) can also be attributed to the inconsistency between FluxCom and EC GPP (Sun et al., 2017). Next, we will discuss the potential biases in FluxCom GPP.

4.4. Limitations in FluxCom GPP

4.4.1. Snow contamination

Although the original FluxCom GPP product has already removed some snowy pixels by using MODIS quality flags (Jung et al., 2020), we found some snow contamination still exists (Figure 2). In this study, we used a more conservative snow filter (<0.1) to showcase the snow contamination in FluxCom GPP propagated from remote sensing products (Myers-Smith et al., 2020; Jin et al., 2017). More importantly, our results suggest that quantitative and standalone information on snow coverage in addition to quality flags is helpful for improving future machine learning products (Chen et al., 2018).

Snow contamination does not impact all land cover types equally. Low-statured land cover types are more likely to have unrealistically high FluxCom GPP before the growing season starts (Figure 2). Thus, the universal snow filter we used in this study may be too conservative. For future studies, rigorous validation of snow measurements at regional scales will greatly improve canopy radiative transfer simulations and optical remote sensing retrievals at the Arctic-Boreal region (Chen et al., 2018; Kobayashi and Iwabuchi, 2008; Kobayashi et al., 2007).

4.4.2. Underrepresented water

Contrary to attributing the high k values in wetlands to underestimated SIF (Chen et al., 2021), our results suggest the unrealistically high FluxCom GPP is the reason for high k values in wetland land cover types. FluxCom GPP has been overestimated because NDVI of water surface
in mixed pixels with both vegetation and water surface is understated (Jiang et al., 2005, 2006).
Using near-infrared reflectance of vegetation (NIRv) for FluxCom models may better account
for the dark surface water reflectance than NDVI and improve the SIF-GPP relationship (Badgley
et al., 2019).
This bias further compounds the uncertainty due to a lack of sampling as high EI and high
wetland area fractions collocate. Taken together, these two issues can limit the application of
FluxCom GPP in the Arctic-Boreal region (Figure 2p; Muster et al. 2013; Stow et al. 2004).

4.4.3. Extrapolation of training data
Because the spread in FluxCom GPP ensembles may not fully represent the disagreement
between FluxCom and EC GPP when there are few EC towers as training samples for FluxCom
(Pallandt et al., 2022), the resulting k values may be more reliable where FluxCom and EC GPP
are similar (such as Tussock Tundra and Low Shrub; Figure 2a) than the ones where the FluxCom
GPP is substantially overestimated (such as Evergreen Forest and Fen; Figure 2k).
Nevertheless, there is a time mismatch between FluxCom GPP and EC GPP (Table 1) in this
study, where the inter-annual variability of GPP seasonality is ignored. In future studies, more
active EC towers with long-term record of GPP are needed to improve FluxCom GPP.

4.5. Limitations from heterogeneous sub-pixel land cover
We showed that land cover in the Arctic-Boreal region is highly heterogeneous at sub-pixel.
The dominant vegetated land cover types on average occupy less than 50% of the area in each
0.08333° × 0.08333° grid (Figure 1). Because heterogeneous land cover can blur the distinct
SIF-GPP relationship of each individual land cover type (Zhang et al., 2020), it is challenging to
unmix the contribution of subpixel land cover types at the current spatial scale. This results in
a few notable limitations in our study: 1) The land cover definitions of EC towers are different
according to 30-m vicinity (LC30M), 0.08333° vicinity (LC008333D), and the actual footprint of
towers based on PI’s descriptions (tower footprint land cover in table 1). The observed vegetation
composition and determining factor (physiology vs. light absorption) for SIF variability may
also shift across spatial scales (Maguire et al., 2021), even though the dynamic range of SIFdc
amplitude in our study is consistent from ground level to satellite level (Figure C.7). As a result,
there may be a mismatch of land cover types when we benchmark across spatial scales. 2) As
discussed in Sect. 4.4.2, the presence of surface water contributes to the sub-pixel variations in
other dominant land cover types and adds to the ambiguity of our results (Myers-Smith et al.,
2020). 3) The land cover definition used here does not consider agricultural land cover, which is
not negligible in southern Alberta and Saskatchewan (Guanter et al., 2014) and yields a different
SIF-GPP relationship than the non-agriculture land cover types. And 4) Given the rapid changes
in the Arctic-Boreal region (Canadell et al., 2021; Curasi et al., 2022; Wang et al., 2020; Box
et al., 2019; Hobbie et al., 2017), our land cover information from 2014 (Wang et al., 2019) can
be outdated, which will impact our definition of dominant land cover types and the classification
of results.

5. Conclusions
In this study, we evaluated the empirical linear relationship of SIF$_{dc}$ and GPP across the
Arctic-Boreal region from the perspectives of Pearson’s r^2 and the goodness of fit. Our results
show the promise of monitoring Arctic-Boreal vegetation using novel remote sensing tools after
careful quality control. For the first time, our study reports the fitted regression slope k as well as
the uncertainties of fitted SIF$_{dc}$-GPP relationship for the land cover types that are unique to the
Arctic-Boreal region. The resulting k, Pearson’s r^2, and reduced χ^2 together can help biosphere
modelers improve the estimation of GPP in the Arctic-Boreal regions and cope with model-data
uncertainties.

6. Acknowledgement

This research is supported by the NASA ABoVE (award 80NSSC19M0129) and OCO Sci-
ence team projects (award 80NSSC18K0895). This material is also based upon work supported
by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-
1650604 and DGE-2034835. We use a Julia gridding package from [https://github.com/
cfranken/gridding](https://github.com/cfranken/gridding) All resulting data from the regression analysis and the climatology of EC
tower data can be downloaded from https://data.caltech.edu/records/20216.

Appendix A. Gridding TROPOMI SIF

We gridded individual soundings into an 8-day temporal resolution and a spatial resolution of
0.0833° × 0.0833°. The soundings were filtered with cloud fractions smaller than 0.8, which also
includes additional retrieval quality filter criteria and is the suggested standard filter for public
use of SIF data ([Köhler et al., 2018](https://doi.org/10.5194/amt-11-4819-2018)). Even though the viewing geometry of individual sounding
varies, the effect viewing geometry over the 8-day period can be negligible. On average, there are
more than five soundings falling in each 0.0833° × 0.0833° grid cell in our study region (Figure
A.5).
Appendix B. Snow filters

We also tested different snow covers as thresholds. We found the snow filter works well for removing snow-contaminated FluxCom GPP and improving the goodness of the fit of the SIF-GPP relationship. For example, US-ICT, a *Tussock Tundra* site, represents the lower-stature canopies that benefit from the snow filter. Snow filters remove snow-contaminated FluxCom GPP during the growth onset, which has a higher error bar. In this example, a strict snow filter (a smaller value of snow cover) includes fewer data for the regression but improves the goodness of the fit by increasing Pearson’s r^2 and pushing the reduced χ^2 towards 1.
Figure B.6: a) Time series of TROPOMI SIFdc and FluxCom GPP at US-ICt in 2019. b) The filtered data (blue dots) based on snow covers (MOD10C2). c)-e) The resulting k, Pearson’s r^2, and reduced χ^2 as a function of snow filter (snow cover).

Appendix C. Spatial upscaling

For CA-Obs, where we have observations (climatology) of SIFdc and GPP at both tower and gridded scales, we compared the measurements across spatial scales (Figure C.7). The seasonality and magnitude of SIFdc across spatial scales are mostly consistent, while FluxCom GPP and EC GPP are not consistent and entirely synchronized. The difference in both the amplitude and timing of seasons between the two SIF products may be attributed to the deciduous trees and understory, which are more visible from space (TROPOMI) than the tower instrument (PhotoSpec) due to the shallower view angles of PhotoSpec.
Figure C.7: In CA-Obs, comparing the climatology of SIF\textsubscript{dc} and GPP across spatial scales. a) TROPOMI SIF\textsubscript{dc} vs. PhotoSpec daily mean SIF b) FluxCom GPP vs. EC GPP. c) Timeseries of TROPOMI SIF\textsubscript{dc} and PhotoSpec daily mean SIF. D) Timeseries of FluxCom GPP and EC GPP. The climatology of TROPOMI SIF\textsubscript{dc} and FluxCom GPP is averaged from 2018-2019. The climatology of PhotoSpec daily mean SIF and EC GPP is averaged from July 2019 to December 2020.

References

\textsubscript{dc}} scale from site to globe. Global Change Biology 25, 3731–3740. URL: \url{https://onlinelibrary.wiley.com/}

Baldocchi, D.D., 2008. Assimilating the eddy covariance technique for evaluating carbon dioxide exchange rates of
ecosystems: past, present and future. \textit{CARBON BALANCE and EDDY COVARIANCE}. Global Change Bi-

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D.,
Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson,
Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 1184984URL: http://science.sciencemag.org/content/early/2010/07/05/science.1184984
doi:10.1126/science.1184984

Black, T.A., 2016. FLUXNET2015 CA-Ob Saskatchewan - Western Boreal, Mature Black Spruce. URL: https://
www.osti.gov/servlets/purl/1440044/

orthogonal distance regression.

P.D., Eriksson, D.P., 2018. Limitations to winter and spring photosynthesis of a Rocky Mountain subalpine forest.

Agricultural and Forest Meteorology 252, 241–255. URL: https://linkinghub.elsevier.com/retrieve/pii/S016819231830025X
doi:10.1016/j.agrformet.2018.01.025

Box, J.E., Colgan, W.T., Christensen, T.R., Schmidt, N.M., Lund, M., Parmentier, F.W., Brown, R., Bhatt, U.S., Euskirchen,
E.S., Romanovsky, V.E., Walsh, J.E., Overland, J.E., Wang, M., Corell, R.W., Meehl, W.N., Weiters, B.,
Environmental Research Letters 14, 045010. URL: https://iopscience.iop.org/article/10.1088/1748-9326/aacfb1
doi:10.1088/1748-9326/aacfb1

phy on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Sci-

Canadell, J. G., Monteiro, P.M.S., Costa, M.H., 2021. Global Carbon and other Biogeochemical Cycles and Feed-
backs, in: Climate Change 5 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assess-

ratios and their climatic determinants across the Northern Hemisphere. Global Change Biology 27, 5186–5197. URL:
doi:10.1111/gcb.15775

Chen, N., Li, W., Gatebe, C., Tamkawa, T., Hon, M., Shnida, K., Aoki, T., Stennes, K., 2018. New neural network
cloud mask algorithm based on radiative transfer simulations. Remote Sensing of Environment 219, 62–71. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0034425718304474

Cheuvront, M., Magney, T., Dutta, D., Bowling, D.R., Logan, B.A., Burns, S.P., Blanken, P.D., Grossmann, K., Lopez, S.,
Richardson, A., Stutz, J., Frankenberg, C., 2020. Decomposing reflectance spectra to track gross primary production
in a subalpine evergreen forest. Biogeosciences 17, 4523–4544. URL: https://bg.copernicus.org/articles/
17/4523/2020/

doi:10.1016/0034-4257(95)00190-5

com/doi/10.1111/nph.17951
doi:10.1111/nph.17951

Curassi, S.R., Fetcher, N., Hewitt, K.E., Lalaur, P.M., Loranty, M.M., Mack, M.C., May, J.L., Myers-Smith, I.H., Natali,
Range shifts in a foundation sedge potentially induce large Arctic ecosystem carbon losses and gains. Environmental
doi:10.1088/1748-9326/ac6005

orescence Canopy Conductance Model and its Application to Stomatal Reactive Nitrogen Deposition. ACS Earth and
Space Chemistry 5, 3414–3428. URL: https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00260
doi:10.1021/acsearthspacechem.1c00260

10.1111/j.1365-2486.2010.02263.x
doi:10.1111/j.1365-2486.2010.02263.x

Earth Resources Observation And Science (EROS) Center, 2017. Global 30 Arc-
Second Elevation (GTOPO30). URL: https://www.usgs.gov/centers/eros/science/
usgs-eros-archive-digital-elevation-30-arc-second-elevation-gtopo30?qt-science_center_objects=0
type: dataset.

gov/servlets/purl/1773401/

Euskirchen, E., Shaver, G., Bret-Harte, S., 2016a. AmeriFlux AmeriFlux US-ICh Imnavait Creek Watershed Heath Tun-
Yokota, T., 2011. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence
with gross primary productivity: CHLOROPHYLL FLUORESCENCE FROM SPACE. Geophysical Research Letters
springer.com/10.1023/B:WETL.0000034074.81373.65 doi:10.1023/B:WETL.0000034074.81373.65
doi:10.1029/2011EO180002
elsevier.com/retrieve/pii/S0034425717302906 doi:10.1016/j.rse.2017.06.031
harvard.edu/abs/2012AGUFM.B21D0381G conference Name: AGU Fall Meeting Abstracts ADS Bibcode:
2012AGUFM.B21D0381G
Retrieval and global assessment of terrestrial chlorophyll fluorescence from MODIS satellite measurements.
23

doi:10.1002/ecs2.3485

doi:10.1002/ecs2.3485

Sonnenfag, O., March, P. 2021a. AmeriFlux AmeriFlux CA-HPC Hikavik Creek. URL: https://www.osti.gov/servlets/purl/1773392/

Sonnenfag, O., March, P. 2021b. AmeriFlux AmeriFlux CA-TVC Trail Valley Creek. URL: https://www.osti.gov/servlets/purl/1768317/

doi:10.1016/j.rse.2015.07.015

