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Abstract
Humans learn language by interaction with their environ-

ment and listening to other humans. It should also be possi-

ble for computational models to learn language directly from

speech but so far most approaches require text. We improve on

existing neural network approaches to create visually grounded

embeddings for spoken utterances. Using a combination of a

multi-layer GRU, importance sampling, cyclic learning rates,

ensembling and vectorial self-attention our results show a re-

markable increase in image-caption retrieval performance over

previous work. Furthermore, we investigate which layers in

the model learn to recognise words in the input. We find that

deeper network layers are better at encoding word presence,

although the final layer has slightly lower performance. This

shows that our visually grounded sentence encoder learns to

recognise words from the input even though it is not explicitly

trained for word recognition.

Index Terms: speech recognition, multimodal embeddings,

computational linguistics, deep learning

1. Introduction

Most computational models of natural language processing

(NLP) are based on written language; machine translation, sen-

tence meaning representation and language modelling to name

a few (e.g. [1, 2]). Even if the task inherently involves speech,

such as in automatic speech recognition, models require large

amounts of transcribed speech [3]. Yet, humans are capable

of learning language from raw sensory input, and furthermore

children learn to communicate long before they are able to read.

In fact, many languages have no orthography at all and there are

also languages of which the writing system is not widely used

by its speakers. Text-based models cannot be used for these

languages and applications like search engines and automated

translators cannot serve these populations.

There has been increasing interest in learning language

from more natural input, such as directly from the speech signal,

or multi-modal input (e.g. speech and vision). This has several

advantages such as removing the need for expensive annotation

of speech, being applicable to low resource languages and being

more plausible as a model of human language learning.

An important challenge in learning language from spoken

input is the fact that the input is not presented in neatly seg-

mented tokens. An auditory signal does not contain neat breaks

in between words like the spaces in text. Furthermore, no two

realisations of the same spoken word are ever exactly the same.

As such, spoken input cannot be represented by conventional

word embeddings (e.g. word2vec [4], GloVe [5]). These text-

based embeddings are trained to encode word-level semantic

knowledge and have become a mainstay in work on sentence

representations (e.g. [6, 7]). When we want to learn language

directly from speech, we will have to do so in a more end-to-end

fashion, without prior lexical level knowledge in terms of both

form and semantics.

In previous work [8] we used image-caption retrieval,

where given a written caption the model must return the match-

ing image and vice versa. We trained deep neural networks

(DNNs) to create sentence embeddings without the use of prior

knowledge of lexical semantics (see [7, 9, 10] for other stud-

ies on this task). The visually grounded sentence embeddings

that arose capture semantic information about the sentence as

measured by the Semantic Textual Similarity task (see [11]),

performing comparably to text-only methods that require word

embeddings.

In the current study we present an image-caption retrieval

model that extends our previous work to spoken input. In

[12, 13], the authors adapted text based caption-image retrieval

(e.g. [9]) and showed that it is possible to perform speech-image

retrieval using convolutional neural networks on spectral fea-

tures. Our work is most closely related to the models presented

in [12, 13, 14, 15]. In the current study we improve upon these

previous approaches to visual grounding of speech and present

state-of-the-art image-caption retrieval results.

The work by [12, 13, 14, 15] and the results presented here

are a step towards more cognitively plausible models of lan-

guage learning as it is more natural to learn language without

prior assumptions about the lexical level. For instance, research

indicates that the adult lexicon contains many relatively fixed

multi-word expressions (e.g., ‘how-are-you-doing’) [16]. Fur-

thermore, early during language acquisition the lexicon consists

of entire utterances before a child’s language use becomes more

adult-like [16, 17, 18, 19]. Image to spoken-caption retrieval

models do not know a priori which constituents of the input

are important and have no prior knowledge of lexical level se-

mantics. We probe the resulting model to investigate whether

it learns to recognise lexical units in the input without being

explicitly trained to do so.

We test two types of acoustic features; Mel Frequency Cep-

stral Coefficients (MFCCs) and Multilingual Bottleneck (MBN)

features. MFCCs are features that can be computed for any

speech signal without needing any other data, while the MBN

features are ‘learned’ features that result from training a net-

work on top of MFCCs in order to recognise phoneme states.

While MBN features have been shown to be useful in several

speech recognition tasks (e.g. [20, 21]), learned audio features

face the same issue as word embeddings, as humans learn to ex-

tract useful features from the audio signal as a result of learning

to understand language and not as a separate process. However,

the MBN features can still be useful where system performance

is more important than cognitive plausibility, for instance in a

low resource setting. Furthermore, these features could pro-

vide a clue as to what performance would be possible if we had

more sophisticated models or more data to improve the feature

extraction from the MFCCs in an end-to-end fashion.

In summary, we improve on previous spoken-caption

to image retrieval models and investigate whether it learns

to recognise words in the speech signal. We show that
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our model achieves state-of-the-art results on the Flickr8k

database, outperforming previous models by a large margin

using both MFCCs and MBN features. We find that our

model learns to recognise words in the input signal and show

that the deeper layers are better at encoding this information.

Recognition performance drops a little in the last two lay-

ers as the network abstracts away from the detection of spe-

cific words in the input and learns to map the utterances to

the joint embedding space. We released the code for this

project on github: https://github.com/DannyMerkx/

speech2image/tree/Interspeech19.

2. Image to spoken-caption retrieval

2.1. Materials

Our model is trained on the Flickr8k database [22]. Flickr8k

contains 8,000 images taken from online photo sharing applica-

tion Flickr.com, for which five English captions per image are

available. Annotators were asked to write sentences that de-

scribe the depicted scenes, situations, events and entities (peo-

ple, animals, other objects). Spoken captions for Flickr8k were

collected by [12] by having Amazon Mechanical Turk workers

pronounce the original written captions. We used the data split

provided by [9], with 6,000 images for training and a develop-

ment and test set both of 1,000 images.

2.2. Image and acoustic features

To extract image features, all images are resized such that the

smallest side is 256 pixels while keeping the aspect ratio in-

tact. We take ten 224 by 224 crops of the image: one from each

corner, one from the middle and the same five crops for the mir-

rored image. We use ResNet-152 [23] pretrained on ImageNet

to extract visual features from these ten crops and then aver-

age the features of the ten crops into a single vector with 2,048

features.

We test two types of acoustic features; Mel Frequency Cep-

stral Coefficients (MFCCs) and Multilingual Bottleneck (MBN)

features. The MFCCs were created using 40 Mel-spaced filter-

banks. We use 12 MFCCs and the log energy feature and add

the first and second derivatives resulting in 39-dimensional fea-

ture vectors. We compute the MFCCs using 25 ms analysis

windows with a 5 ms shift.

The MBN features are created using a pre-trained DNN

made available by [21]. In short, the network is trained on

multilingual speech data (11 languages, no English) to classify

phoneme states. The MBN features consist of the outputs of

intermediate network layers where the network is compressed

from 1500 features to 30 features (see [21] for the full details of

the network and training).

2.3. Model architecture

Our multimodal encoder maps images and their correspond-

ing captions to a common embedding space. The idea is to

make matching images and captions lie close together and mis-

matched images and captions lie far apart in the embedding

space. Our model consists of two parts; an image encoder and

a sentence encoder as depicted in Figure 1. The approach is

based on our own text-based model described in [8] and on the

speech-based models described in [13, 15] and we refer to those

studies for more details. Here, we focus on the differences with

previous work.

For the image encoder we use a single-layer linear projec-
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Figure 1: Model architecture: The model consists of two

branches with the image encoder on the left and the caption

encoder on the right. The audio features consist of n features

by t frames and the RNN hidden states by ht/2. Each RNN

hidden state has m features which are concatenated for the for-

ward and backward RNN into 2m dimensional hidden states.

Vectorial attention is applied which weighs and sums the hid-

den states resulting in the caption embedding. At the top we

calculate the cosine similarity between the image and caption

embedding (emb img and emb cap).

tion on top of the pretrained image recognition model, and nor-

malise the result to have unit L2 norm. The image encoder has

2048 input units and 2048 output units.

Our caption encoder consists of three main components.

First we apply a 1-dimensional convolutional layer to the acous-

tic input features. The convolution has a stride of size 2, kernel

size 6 and 64 output channels. This is the only layer where

the model differs from the text-based model, which features a

character embedding layer instead of a convolutional layer. The

resulting features are then fed into a bi-directional Gated Recur-

rent Unit (GRU) followed by a self-attention layer and is lastly

normalised to have unit L2 norm.

We use a 3-layer bi-directional GRU which allows the net-

work to capture long-range dependencies in the acoustic signal

(see [24] for a more detailed description of the GRU). Further-

more, by making the layer bi-directional we let the network pro-

cess the output of the convolutional layer from left to right and

vice versa, allowing the model to capture dependencies in both

directions. We use a GRU with 1024 units, and concatenate the

bidirectional representations resulting in hidden states of size

2048. Finally, the self-attention layer computes a weighted sum

over all the hidden GRU states:

at = softmax(V tanh(Wht + bw) + bv) (1)

Att(h1, ...,ht) =
∑

t

at ◦ ht (2)

where at is the attention vector for hidden state ht and W , V ,

bw, and bv indicate the weights and biases. The applied at-

tention is then the sum over the Hadamard product between all

hidden states (h1, ...,ht) and their attention vector. We use 128

units for W and 2048 units for V .

2.4. Training

Following [8], the model is trained to embed the images and

captions such that the cosine similarity between image and cap-
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tion pairs is larger (by a certain margin) than the similarity be-

tween mismatching pairs. This so called hinge loss L as a func-

tion of the network parameters θ is given by:

L(θ) =
∑

(c,i),(c′,i′)∈B

(

max(0, cos(c, i′)− cos(c, i) + α)+

max(0, cos(i, c′)− cos(i, c) + α)

)

(3)

where (c, i) 6= (c′, i′). B is a minibatch of correct caption-

image pairs (c, i), where the other caption-image pairs in the

batch serve to create mismatched pairs (c, i′) and (c′, i). We

take the cosine similarity cos(x, y) and subtract the similarity

of the mismatched pairs from the matching pairs such that the

loss is only zero when the matching pair is more similar than the

mismatched pairs by a margin α. We use importance sampling

to select the mismatched pairs; rather than using all the other

samples in the mini-batch as mismatched pairs (as done in [8,

15]), we calculate the loss using only the hardest examples (i.e.

mismatched pairs with high cosine similarity). While [10] used

only the single hardest example in the batch for text-captions,

we found that this did not work for the spoken captions. Instead

we found that using the hardest 25 percent worked well.

The networks are trained using Adam [25] with a cyclic

learning rate schedule based on [26]. The learning rate sched-

ule varies the learning rate smoothly between a minimum and

maximum bound which were set to 10−6 and 2× 10−4 respec-

tively. The learning rate schedule causes the network to visit

several local minima during training, allowing us to use snap-

shot ensembling [27]. By saving the network parameters at each

local minimum, we can ensemble the embeddings of multiple

networks at no extra cost. We use a margin α = 0.2 for the

loss function. We train the networks for 32 epochs and take a

snapshot for ensembling at every fourth epoch. For ensembling

we use the two snapshots with the highest performance on the

development data and simply sum their embeddings.

The main differences with the approaches described in

[13, 15] are the use of multi-layered GRUs, importance sam-

pling, the cyclic learning rate, snapshot ensembling and the use

of vectorial rather than scalar attention.

3. Word presence detection

While our model is not explicitly trained to recognise words

or segment the speech signal, previous work has shown that

such information can be extracted by visual grounding models

[15, 28]. [15] use a binary decision task: given a word and a

sentence embedding, decide if the word occurs in the sentence.

Our approach is similar to the spoken-bag-of-words prediction

task described in [28]. Given a sentence embedding created by

our model, a classifier has to decide which of the words in its

vocabulary occur in the sentence.

Based on the original written captions, our database con-

tains 7,374 unique words with a combined occurrence fre-

quency of 324,480. From these we select words that occur

between 50 and a 1,000 times and are over 3 characters long

so that there are enough examples in the data that the model

might actually learn to recognise them, and to filter out punc-

tuation, spelling mistakes, numerals and most function words.

This leaves 460 unique words, mostly verbs and nouns, with a

combined occurrence frequency of 87,020 in our data. We con-

struct a vector for each sentence in Flickr8k indicating which of

Table 1: Image-Caption retrieval results on the Flickr8k test

set. R@N is the percentage of items for which the correct image

or caption was retrieved in the top N (higher is better). Med

r is the median rank of the correct image or caption (lower is

better). We also report the 95 percent confidence interval for

the R@N scores.

Model Caption to Image

R@1 R@5 R@10 med r

[12] - - 17.9±1.1 -

[15] 5.5±0.6 16.3±1.0 25.3±1.2 48

MFCC-GRU 8.4±0.8 25.7±1.2 37.6±1.3 21

MBN-GRU 12.7±0.9 34.9±1.3 48.5±1.4 11

Char-GRU [8] 27.5±1.2 58.2±1.4 70.5±1.3 4

Model Image to Caption

R@1 R@5 R@10 med r

[12] - - 24.3±2.7 -

MFCC-GRU 12.2±2.0 31.9±2.9 45.2±3.1 13

MBN-GRU 16.0±2.5 42.8±3.1 56.1±3.0 8

Char-GRU [8] 38.5±3.0 68.9±2.9 79.3±2.5 2

these words is present. We do not encode multiple occurrences

of the same word in one sentence.

The words described above are used as targets for a neural

network classifier consisting of a single feed forward layer with

460 units. This layer simply takes an embedding vector as input

and maps it to the 460 target words. We then apply the standard

logistic function and calculate the Binary Cross Entropy loss to

train the network.

We train five word detection networks for both the MFCC

and the MBN based caption encoders, in order to see how word

presence is encoded in the different neural network layers. We

train networks for the final output layer, the three intermediate

layers of the GRU and the acoustic features. For the final layer

we simply use the output embedding as input to the word de-

tection network. We apply some post-processing to the acoustic

features and the intermediate layer outputs to ensure that our

word detection inputs are all of the same size. As the intermedi-

ate GRU layers produce 2048 features for each time step in the

signal, we use average-pooling along the temporal dimension

to create a single input vector and normalise the result to have

unit L2 norm. The acoustic features consist of 30 (MBN) or

39 (MFCC) features for each time step, so we apply the convo-

lutional layer followed by an untrained GRU layer to the input

features, use average-pooling and normalise the result to have

unit L2 norm.

The word detection networks are trained for 32 epochs us-

ing Adam [25] with a constant learning rate of 0.001. We use

the same data split that was used for training the multi-modal

encoder, so that we test word presence detection on data that

was not seen by either the encoder or the decoder.

4. Results

Table 1 shows the performance of our models on the image-

caption retrieval task. The caption embeddings are ranked by

cosine distance to the image and vice versa where R@N is the

percentage of test items for which the correct image or cap-

tion was in the top N results. We compare our models to [12]

and [15], and include our own character-based model for com-

parison. [12] is a convolutional approach, whereas [15] is an

approach using recurrent highway networks with scalar atten-
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Figure 2: Plots of the F1 scores for the word presence classifiers

at 20 equally spaced activation thresholds. The top figure shows

the classifiers trained on the MBN model, and the bottom figure

the MFCC model.

tion. The character-based model is similar to the model we

use here and was trained on the original Flickr8k text captions

(see [8] for a full description). Both our MFCC and MBN

based model significantly outperform previous spoken caption-

to-image methods on the Flickr8k dataset. The largest improve-

ment is the MBN model which outperforms the results reported

in [15] by as much as 23.2 percentage points on R@10. The

MFCC model also improves on previous results but scores sig-

nificantly lower than the MBN model across the board, im-

proving as much as 12.3 percentage points over previous work.

There is a large performance gap between the text-caption to

image retrieval results and the spoken-caption to image results,

showing there is still a lot of room for improvement.

The results of the word presence detection task are shown

in Figure 2 and Table 2. Figure 2 shows the F1 score for all the

classifiers at 20 equally spaced detection thresholds (i.e. a word

is classified as ‘present’ if the word detection output is above

this threshold). Table 2 displays the area under the curve for the

receiver operating characteristic. Even though the MBN model

outperforms the MFCC model for all layers we see the same

pattern emerging from both the F1 score and the AUC. The per-

formance on the feature level is not much better than random.

Predicting ‘not present’ for every word would be the best ran-

dom guess as this is a heavy majority class in this task. Inspec-

tion of the predictions shows that the classifier is indeed heavily

biased towards the majority class for the input features. Then

we see the performance increasing for the first layer and peak-

ing at the second layer. The performance then drops slightly for

the third layer and the attention layer.

Table 2: Area under the curve of the receiver operating charac-

teristic for both models.

Model AUC

input layer 1 layer 2 layer 3 attention

MBN .57 .80 .86 .85 .82

MFCC .54 .68 .80 .75 .75

5. Discusion and Conclusion

We trained an image-caption retrieval model on spoken input

and investigated whether it learns to recognise linguistic units

in the input. As improvements over previous work we used a

3-layer GRU and employed importance sampling, cyclic learn-

ing rates, ensembling and vectorial self-attention. Our results

on both MBN and MFCC features are significantly higher than

the previous state-of-the-art. The largest improvement comes

from using the learned MBN features but our approach also im-

proves results for MFCCs, which are the same features as were

used in [15]. The learned MBN features provide better perfor-

mance whereas the MFCCs are more cognitively plausible input

features.

The probing task shows that the model learns to recognise

these words in the input. The system is not explicitly opti-

mised to do so, but our results show that the lower layers learn

to recognise this form related information from the input. Af-

ter layer 2, the performance starts to decrease slightly which

might indicate that these layers learn a more task-specific rep-

resentation and it is to be expected that the final attention layer

specialises in mapping from audio features to the multi-modal

embedding space.

In conclusion, we presented what are, to the best of our

knowledge, the best results on spoken-caption to image re-

trieval. Our results improve significantly over previous ap-

proaches for both untrained and trained audio features. In a

probing task, we show that the model learns to recognise words

in the input speech signal.

We are currently collecting the Semantic Textual Similarity

(STS) database in spoken format and the next step will be to

investigate whether the model presented here also learns to cap-

ture sentence level semantic information and understand lan-

guage in a deeper sense than recognising word presence. The

work presented in [15] has made the first efforts in this regard

and we aim to extend this to a larger database with sentences

from multiple domains. Furthermore, we want to investigate

the linguistic units that our model learns to recognise. In the

current study, we only investigated whether the model learns to

recognise words, but the potential benefit of our model is that it

might learn multi-word statements or might even learn to look

at sub-lexical level information. [14, 29] have recently shown

that the speech-to-image retrieval approach can be used to de-

tect word boundaries and even discover sub-word units. Our

interest is in investigating how these word and sub-word units

develop over training and through the network layers.
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