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A B S T R A C T   

We utilized the N400 effect to investigate the influence of speech register on predictive language processing. 
Participants listened to long stretches (4 – 15 min) of naturalistic speech from different registers (dialogues, news 
broadcasts, and read-aloud books), totalling approximately 50,000 words, while the EEG signal was recorded. 
We estimated the surprisal of words in the speech materials with the aid of a statistical language model in such a 
manner that it reflected different predictive processing strategies; generic, register-specific, or recency-based. 
The N400 amplitude was best predicted with register-specific word surprisal, indicating that the statistics of 
the wider context (i.e., register) influences predictive language processing. Furthermore, adaptation to speech 
register cannot merely be explained by recency effects; instead, listeners adapt their word anticipations to the 
presented speech register.   

1. Introduction 

Human perception of sensory input involves more than passive 
registration. A rich body of research (e.g., Bar, 2007; Friston, 2005, 
2012, 2018; De Lange, 2018) shows that prediction is a core aspect of 
perception. Similarly, humans engaged in reading or listening show 
sensitivity to the statistical structure of the language input (e.g., Ellis, 
2002). Importantly, as studies investigating register variation show (e. 
g., Staples et al., 2015), patterns of language use differ extensively be
tween registers, influencing the statistical distributions of words of the 
different varieties (e.g., Bentum et al., 2019). Consequently, expecta
tions on the occurrences of words that are valid for one register might be 
invalid for a different register. In the current study, we utilize the N400 
effect to investigate whether listeners adapt their word expectations as a 
function of the speech register they are listening to. 

1.1. Register variation 

The three examples below illustrate a range of registers: chatting 
with friends (1), coverage from a news reporter (2) and a novelist telling 
a story (3).  

(1) It just irritated me and then Joanne, Joanne’s like “did you hear 
someone page Dan’s brother-in-law?” I said “he wouldn’t give his 
name.” And she just started laughing. (Barbieri, 2005).  

(2) The leader’s gunshot wounds are taking their toll, complicating 
efforts to persuade him to surrender. (Biber, 1999).  

(3) Last summer, a short time before my son was due to leave home 
for college, my wife woke me in the middle of the night. (Nicholls, 
2014). 

The examples illustrate that language use varies in relation to the 
communicative context (Borrillo, 2000) and purpose (Biber & Conrad, 
2001): Conversational speech is produced in real time, without much 
time to prepare disfluencies are prevalent, and it is characterized by a 
lower type-token ratio and a frequent use of pronouns. News reportage is 
typically prepared and intended to convey information about a certain 
event, which results in frequent use of time and place adverbials as well 
as proper nouns. A novel is typically written with ample time to revise 
and refine the language use, affording a rich vocabulary and complex 
sentence structure. 

Differences in language use between registers are well documented 
(see Biber & Conrad, 2009, for an overview). For example, word choice 
differences (Biber, 1999), such as the use of like in (1) is typical of 
informal conversation (Barbieri, 2005). Variation in grammatical 
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constructions (Staples et al., 2015), such as the retention of the 
complementizer in that-clauses, as in (4), which differs between 
conversational speech and academic prose. In conversation that-omis
sion is typical, while academic prose typically retains it (Biber, 1999).  

(4) I hope [that] Paul tells him off. (Staples et al., 2015). 

The lexical and grammatical variation between registers gives rise to 
register-specific word co-occurrence statistics. Bentum et al. (2019a) 
indeed found that word predictability differs between speech registers. 
The probability of a word thus not only depends on the directly pre
ceding words but also on the wider context of register. This raises the 
research question of the current paper, namely, whether listeners adapt 
their word expectations based on the register of the speech input. 

1.2. Predictive language processing and the N400 effect 

Evidence for predictive language processing is well established in the 
literature (see e.g. Elman, 2009; Huettig, 2015; Kuperberg & Jaeger, 
2016; Pickering & Gambi, 2018 for overviews). Importantly, there is 
converging evidence from many different experimental paradigms. For 
example, self-paced reading studies show that unlikely words are read 
more slowly compared to more likely words (Rayner, 1998; Kliegl et al., 
2006). The visual word paradigm used in eye-tracking studies shows 
that listeners more often gaze in anticipation to a picture that matches 
the verb of the sentence, among multiple objects (e.g., they more often 
look at a picture of a cake when they hear The boy eats compared to The 
boy moves; Altmann & Kamide, 1999). 

The so-called N400 effect is also associated with anticipatory lan
guage processing (see Kutas & Federmeier, 2011 for an overview). The 
N400 is a negative deflection of the event related potential (ERP), which 
peaks about 400 ms after word onset at central posterior electrode sites. 
When participants read short sentences, such as (5) and (6), with oc
casionally an anomalous final word, as in (6), the semantically incon
gruous word (here socks) results in a more negative deflection of the ERP 
compared to the congruent word (here work; Kutas & Hillyard, 1980).  

(5) It was his first day at work.  
(6) He smeared the warm bread with socks. 

Later experiments revealed that semantic incongruency is not 
required for an N400 effect (e.g. Hagoort & Brown, 1994). For example, 
constraining sentence pairs such as (7), which raise a strong expectation 
for a specific word (i.e., palms), elicit a graded N400 effect, with the 
unexpected but semantically related word pines resulting in an attenu
ated N400 amplitude compared to the unexpected and unrelated tulips 
(Federmeier & Kutas, 1999). Importantly, the different sentence final 
words (i.e., palms, pines and tulips) are all possible non-anomalous end
ings, indicating the N400 effect is not dependent on semantic anomaly.  

(7) They wanted to make the hotel look more like a tropical resort. 
So, along the driveway, they planted rows of [palms / pines / 

tulips]. 

Several experiments document that the N400 also provides evidence 
for anticipatory activation of words (e.g., Wicha et al., 2004; Van Ber
kum et al., 2005). These experiments use a paradigm where the antici
patory effects are measured before the expected word is presented. For 
example, when participants read sentence (8), the determiner an resul
ted in a more negative deflection of the N400 waveform compared to a, 
indicating that readers expected the following word to start with a 
consonant (DeLong et al., 2005; see also Yan et al., 2017, and Nieuwland 
et al., 2018). Furthermore, they found that word predictability (as 
estimated with a cloze test) correlates with the N400 amplitude, indi
cating that people generate probabilistic expectations of upcoming 
language input.  

(8) The day was breezy so the boy went outside to fly [a kite / an 
airplane] …. 

The findings for the determiner reported in DeLong et al. (2005) 
failed to be replicated in a large-scale study conducted by nine different 
labs, reported in Nieuwland et al. (2018). Nieuwland et al. (2018) argue 
that this failure to replicate challenges an empirical cornerstone of the 
‘strong prediction’ view (i.e. people pre-activate words at all levels of 
representation in a routine and implicit fashion, and pre-activation is 
thus not limited to a word’s meaning but includes its grammatical fea
tures and orthographic or phonological form). Yan et al. (2017) discuss 
both Delong et al. (2005) and a preprint version of Nieuwland’s study 
and argue that the findings from this replication study can also be 
interpreted as in line with a prediction account; for example, the cor
relation between cloze values and the N400 was replicated. We interpret 
the combined literature (see also Wicha et al., 2004; Van Berkum et al., 
2005) as supportive of anticipatory processing, especially because new 
evidence supporting phonological pre-activation can be found in Ben
tum et al. (2019b); see also Poulton & Nieuwland (2022) for a critical 
view). 

Despite the wealth of evidence, predictive language processing re
mains (to some extent) controversial. For example, Huettig (2015) notes 
that much evidence for prediction is based on studies that only use the 
extremes of predictability and questions whether prediction plays an 
important role during natural language perception across the entire 
range of word probabilities. For example, the N400 effect is typically 
elicited by comparing highly likely versus highly unlikely words (e.g., 
Hagoort & Brown, 2000), which does not reflect normal language use. 

We follow Kuperberg & Jaeger (2016) and use prediction to mean 
graded probabilistic prediction, whereby multiple candidates (e.g., words) 
have probabilities assigned based on the preceding context. In our 
interpretation, predictive language processing at the lexical level can be 
conceived of as generating a probability distribution over all words in 
the mental lexicon. Consequently, there will (almost) always be pre
diction error since not all probability is assigned to a single word. This 
prediction error is indexed by the N400-effect. For example, it is well 
attested that even with highly constraining sentences (e.g., Federmeier 
& Kutas, 1999), words other than the expected word show an attenuated 
N400 compared to unrelated words. 

1.3. Word predictability estimation, cloze tests, and statistical language 
modeling 

Word predictability is typically established with cloze tests, whereby 
participants fill in blanks in sentences, such as So, along the driveway, 
they planted rows of … The percentage of participants that fill in a specific 
word, such as palms, is referred to as the word’s cloze probability. This 
percentage measures the ‘expectedness’ of a word given the context. 
This approach has two drawbacks: It is labor intensive to gather cloze 
probabilities and the method cannot distinguish among the predict
ability of low cloze probability words (Yan et al., 2017). 

A different approach to estimate word predictability is the use of 
statistical language modelling. Work on statistical language modelling 
shows that, given a set of n preceding words, it is possible to assign a 
probability to each word to be the next word (e.g., Chen & Goodman, 
1999; Och & Ney, 2003; Kilgarriff, 2001). In their most basic imple
mentation, a statistical language model (SLM) is based on counting 
‘word n-grams’ (henceforth n-gram) in corpora. An n-gram is a sequence 
of n consecutive units. For example, the fast horse is a word trigram with 
the bigrams the fast and fast horse; and the unigrams the, fast and horse. 
Based on counts of these n-grams in a large body of text, context- 
dependent word probabilities can be estimated: 

P(Wi) = P(Wi|Wi− n,⋯,Wi− 1)

P denotes the conditional probability of word Wi given a sequence of 
n preceding words. The automation of word predictability estimation 
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allows for the investigation of predictability effects for many words 
across the whole predictability spectrum. For example, Smith & Levy 
(2013) used this approach to determine that reading time is log-linearly 
related to the probability of a word on the basis of a dataset of 
approximately 50,000 words. 

The log-linear relation between word probability and reading time 
fits well with Surprisal Theory of language processing (Hale, 2001; Levy, 
2008), according to which language processing costs relate to surprisal. 
Surprisal is an information theoretic measure that captures the amount 
of Shannon information an item (i.e., word) in a message conveys. It is 
defined as the negative logarithm of the probability of a word given its 
pre-context and can informally be thought of as the ‘unexpectedness’ of 
a word given its pre-context. Frank et al. (2015) used statistical language 
modelling to estimate word surprisal for all content words in sentences 
from several novels. In this manner they could analyze a large set of 
approximately 30,000 word tokens. They used these sentences in an EEG 
experiment. Participants read sentences word-by-word while their EEG 
was recorded. Less expected words (i.e., words yielding high surprisal) 
elicited a larger negative amplitude in the N400 time window compared 
to more expected words. 

Pickering & Gambi (2018) argue that surprisal effects (e.g. Smith & 
Levy, 2013; Frank et al., 2015) do not constitute evidence of predictive 
language processing, since surprisal and experimentally correlated ef
fects are found on the perceived word. We disagree with this interpre
tation. Word surprisal is based on the preceding context (i.e. words), by 
computing the probability for each word in a lexicon to follow that 
context. The surprisal value is therefore not a static attribute of a specific 
word but a value derived from preceding context with respect to all 
words in the lexicon. The prediction consists of distributing probability 
over all words in the lexicon. In the ‘activation’ vernacular, each word in 
the mental lexicon is ‘pre-activated’ to the extent the context makes the 
word a probable continuation. 

1.4. Discourse based ERP research 

Most ERP studies investigating language processing use sentences 
presented in isolation. However, there have been discourse-level studies, 
whereby discourse is typically interpreted as anything more than one 
sentence, for example, short narratives such as (9 & 10).  

(9) The brave knight saw that the dragon threatened the benevolent 
sorcerer. 

He quickly reached for a [sword / lance] ….  
(10) The benevolent sorcerer saw that the dragon threatened the brave 

knight. 
He quickly reached for a [sword / lance] … (Van Berkum, 

2012). 

The short narratives were carefully matched on prime words. In the 
examples (9) and (10), only brave knight and benevolent sorcerer switched 
position. The sentence He quickly reached for a … by itself does not 
constrain in favor of either sword or lance. The preceding sentence in (9) 
favors sword while in (10) it does not. The unexpected words (e.g., lance 
in (9)) resulted in a larger N400 effect than the expected words (e.g., 
sword in (9)), whereas the words elicited similar N400s in less con
straining sentences (e.g., 10) (Otten & Van Berkum, 2007). This and 
other results (see Van Berkum, 2012 for an overview) show that readers 
and listeners use the wider context of discourse to build up predictions of 
upcoming input. 

One understudied aspect of predictive language is the effect of 
discourse beyond multi-sentence short narratives. In more natural 
communication situations, readers or listeners are engaged with reading 
or listening within a much wider context, which is itself modulated by 
the register. In the following section, we explain how we studied the 
influence of register variation on listeners’ language processing. 

1.5. Current study 

In the current study we investigate whether listeners’ word antici
pations are influenced by speech register information. We test long 
stretches (4 – 15 min) of natural speech from different registers. 
Following Frank et al. (2015), we use statistical language modeling to 
estimate the word surprisal of all content words in our language mate
rials and use word surprisal to predict the N400 amplitude for the 
content words. We estimate and compare four different ‘types’ of word 
surprisal: register-specific, register-mismatch, generic, and recency-based 
word surprisal. 

The different ‘types’ of word surprisal reflect different processing 
strategies, which we compare to investigate the role of register in pre
dictive language processing. Register-specific surprisal reflects the word 
predictability in a specific register. We hypothesize that if listeners adapt 
their word expectations based on register information, this register- 
specific surprisal will best predict the N400 amplitude. Register-mismatch 
word surprisal is used as a sanity check and reflects the word predict
ability based on an incorrect (mismatching) register. It should therefore 
predict the N400 amplitude less accurately than a register-specific 
model if listeners adapt their predictions to the register at hand. 
Generic word surprisal reflects the word predictability of register- 
unspecific, average language use. If listeners do not adapt to a regis
ter, this word surprisal should perform at least on par with register- 
specific word surprisal. Finally, recency-based word surprisal reflects 
generic word surprisal updated with information on recent words, of 
which the likelihood of recurring is temporarily boosted. If listeners do 
not use register characteristics, but instead recent language input, 
recency-based word surprisal may better predict the N400 amplitude. 

The different word surprisal ‘types’ can be estimated by training 
SLMs on a specific set of language materials, as the estimated word 
surprisal depends crucially on the selected language materials the SLM is 
trained on. For example, an SLM trained on a book corpus will perform 
worse when tested on news materials as compared to when tested on an 
unseen book corpus. We therefore train SLMs on register-specific lan
guage materials to estimate register-specific word surprisal. Register- 
mismatch word surprisal is estimated by using an SLM trained on lan
guage materials from a mismatching register (see Section 2.2). 

Generic word surprisal is more difficult to operationalize, because 
sampling language materials always introduces bias in some manner 
(Kilgarriff, 2007; Biber & Conrad, 2001); i.e., there is no ‘general’ corpus 
to train a bias-free SLM. To address this issue, we train an SLM on a large 
corpus (see Section 2.1.1) that does not overlap with the register-specific 
language materials. The resulting SLM can be considered generic (reg
ister-unspecific) to the extent that the register-specific SLMs are ex
pected to show improved performance on the register-specific materials, 
i.e., the register-specific SLMs can be expected to assign overall higher 
probabilities to the next words in register-specific texts as compared to 
the generic SLM. Lastly, we estimate recency-based word surprisal with 
a cached SLM, a standard extension of the generic SLM, whereby the 
SLM is updated with the most recent n unigrams (i.e., words). 

The current study also tests whether the effect that word surprisal 
predicts the N400 amplitude (for reading, Frank et al., 2015) generalizes 
to a listening study. There are two methodological reasons why this effect 
may be difficult to detect in a listening study. First, word onsets are 
harder to accurately determine in connected speech compared to the 
onsets of visually presented words. The uncertainty in word onset 
determination could potentially lead to temporal ‘smearing’ of the ERP 
(Van Berkum et al., 2005) and thereby to less clear temporal patterning 
of ERP components. Second, while it is possible to use fixed-paced 
presentation for a reading experiment (with a predetermined pause 
between words), this is neither feasible nor desirable with auditory 
presentation of natural speech. For example, due to co-articulation in 
speech, it would sound wholly unnatural to insert pauses between the 
words of a recorded sentence. The continuous nature of speech therefore 
likely results in overlapping, temporally smeared word effects in the 
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EEG signal. As a result, the N400 could be attenuated when this ERP is 
elicited with all content words in long stretches of natural connected 
speech. 

To counterbalance the issue of smaller expected effect sizes, we 
collected a large amount of data. We used audio recordings of speech 
from three different speech registers: dialogues, (read-aloud) books, and 
(broadcast) news. The registers were selected to be distinct in word 
predictability, based on the findings by Bentum et al. (2019a), and were 
assigned to three separate experiments. The reasons for conducting 
separate experiments are twofold. First, an experiment dedicated to one 
register allows the participant to adapt their anticipations to that speech 
register. Second, it is possible to present more materials of each register 
by spreading them over three experiments, fulfilling our requirement of 
a large dataset.1 

In summary, in this study we test whether listeners anticipate words 
in long stretches (4 – 15 min) of natural speech, sampled from three 
speech registers. We estimate word surprisal and test whether this pre
dicts the N400 amplitude and compare how well register-specific, reg
ister-mismatched, generic, and recency-based word surprisal estimates 
predict the N400 amplitude. With this comparison, we test whether 
listeners adapt their anticipations of upcoming words based on speech 
register; i.e., whether register-specific word surprisal is a better pre
dictor of the N400 amplitude compared to the other word surprisal 
estimates. 

2. Methods 

2.1. Participants 

Forty-eight neurologically unimpaired right-handed native speakers 
of Dutch (18–29 years, mean age = 21.7 years), 14 men and 34 women, 
participated in the three EEG experiments of the study. All participants 
gave informed consent for the experiments and the subsequent publi
cation of the EEG recordings. They were paid 80 Euros for their 
participation. 

2.1.1. Materials 
The stimuli for the EEG experiments consisted of audio recordings of 

Dutch speech from different registers, with approximately 90 min of 
speech materials for each register. The recordings were extracted from 
two corpora: the Spoken Dutch Corpus (Oostdijk, 2001) and the Institute 
of Phonetic Sciences Amsterdam Dialogue Video Corpus, henceforth IFADV 
(Van Son et al., 2008), see also Section 2.2.1). The books and the news 
speech materials were extracted from the Spoken Dutch Corpus, the 
dialogues were extracted from IFADV. 

Six distinct dialogues of approximately 15 min each were included 
for the dialogues experiment. Each dialogue was between two well- 
acquainted interlocutors (e.g., friends, colleagues), who freely talked 
about any topic that came to mind (see Van Son et al., 2008, for details). 
Seven 12-minute excerpts from read-aloud Dutch books were included 
in the books experiment. Finally, the news experiment consisted of 21 
sections of approximately-four minutes long. Each section contains 
multiple news items presented by the same broadcaster. We inserted 0.9 
s of silence between news items and combined the four-minute sections 
into seven 12-minute blocks. 

All recordings used in the experiments were orthographically and 
phonemically annotated, which allowed for the time-locking of each 
individual word to the EEG-recording. All recordings were equalized at 
60 dB with Praat (Boersma & Weenink, 2018). See Table 1 for an 
overview of the speech materials presented in the EEG experiments. 

2.2. Estimating generic, register-mismatch, recency and register-specific 
word surprisal 

2.2.1. Training and test materials 
To estimate word surprisal of each content word in the experimental 

materials we trained and applied multiple statistical language models 
(SLMs). To train these SLMs, we used language materials from four 
corpora, NLCOW14, SoNaR, the Spoken Dutch Corpus, and IFADV. The 
NLCOW14 corpus, henceforth COW (Schäfer, 2015; Schäfer & Bildha
uer, 2012), is a collection of web-crawled Dutch texts consisting of 
approximately 4,7 billion words. The SoNaR corpus (Oostdijk et al., 
2013) is a collection of written Dutch texts of approximately 500 million 
words. From this corpus, we used a subset of the Dutch teleprompt texts 
(SoNaR news) and Dutch books (SoNar books). The Spoken Dutch 
Corpus (Oostdijk, 2001) is a corpus of recorded and transcribed Dutch 
speech from different registers containing approximately 10 million 
word tokens. We used three components from the Spoken Dutch Corpus: 
the spontaneous dialogue component (CGN dialogues), the news 
broadcasts (CGN news) and the read-aloud books (CGN books). Finally, 
we used the IFADV corpus (Van Son et al., 2008), a collection of 
recorded and transcribed dialogues, containing approximately 70,000 
word tokens. 

We preprocessed the COW corpus by excluding sentences with three 
or more word or character repetitions, or with characters not used in 
standard Dutch orthography. The following preprocessing steps were 
performed for all language materials from all corpora. We replaced 
characters with diacritics to the equivalent characters without diacritics, 
and mapped all numbers, websites and tagged words (e.g., #tag#) to 
special word codes. We removed punctuations, except for commas. We 
normalized shortened words with apostrophes to a standard spelling (e. 
g., ‘t’ becomes het ‘the’). For an overview of the processed text materials 
see Table 2. 

IFADV, CGN news and CGN books contain language materials used in 
the EEG experiment. For the purpose of SLM training, we removed these 
particular materials. Subsequently, we created register-specific sets by 
combining CGN dialogues with IFADV, CGN books with SoNaR books 
and, finally, CGN news with SoNaR news. We will refer to these sets as 
dialogues, books, and news respectively. Each set was split randomly into 
a training set with 80 % of the materials and a test set with the remaining 
20 % of the text materials. We used all preprocessed materials from COW 
for training purposes. 

Table 1 
Overview of the materials per speech style. The table shows the number of word 
tokens and types per register (word type is defined as the orthographic surface 
form), the average word duration in milliseconds, the number of speakers and 
the speakers’ age range.  

speech 
register 

word tokens 
(word types) 

average word 
duration 

speakers 
(male) 

Speaker age 
range 

Dialogues 21,718 (2,435) 206 ms 11 (2) 20 – 62 years 
news 15,350 (3,526) 289 ms 8 (7) 23 – 46 years 
Books 13,209 (2,349) 256 ms 7 (3) 38 – 75 years 
Total 50,277 (5,866) 245 ms 26 (13) 20 – 75 years  

Table 2 
Overview of the text materials for SLMs training. Word count lists the number of 
words used for training and testing and Source describes the source of the text 
materials.  

Copus Words tokens Source 

COW 1 billion web crawled text 
SoNaR books 17 million excerpts from books 
SoNaR news 2.5 million news broadcast transcripts 
CGN dialogues 1.7 million transcribed dialogues 
CGN books 500 thousand transcribed read aloud books 
CGN news 200 thousand transcribed radio and television news 

broadcasts 
IFADV 50 thousand transcribed dialogues  

1 This dataset will be made freely available as the EEG Speech Register 
Corpus, ESRC for short. 
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2.2.2. Statistical language modeling 
We trained the SLMs with the aid of the SRILM toolkit (Stolcke, 

2002) and used the same settings for each language model; a tetragram 
SLM with Kneser-Ney discounting (Chen & Goodman, 1999) for 
smoothing. 

We trained separate SLMs on the following training materials: COW, 
dialogues, news, and books. The SLM trained on the COW materials will 
be referred to as the generic SLM. This SLM was also used for the 
computation of the recency-based SLM and as the background language 
model which we interpolated with the SLMs trained on the dialogues, 
news and book training materials to create register-specific SLMs. 

To find the best interpolation weights for the register-specific SLMs, 
we interpolated each with the background SLM (trained on the COW 
corpus) and tested a series of weights. We chose the weight resulting in 
the lowest perplexity on the register-specific held-out test materials 
(perplexity is a performance metric for SLMs whereby a lower score 
indicates better performance). The optimal weights for the background 
model were 0.3 for both news and books and 0.13 for the dialogues 
model. 

Finally, we created a recency-based SLM, based on the generic model 
trained on the COW materials. We determined the optimal cache size 
(number of preceding words used to update the SLM) by testing different 
sizes (i.e., 2, 4, 8, …, 512, 1024 words) on the test materials of the 
different registers. The SLM performance asymptotes quickly with 
increasing cache sizes and we therefore selected a cache size of 64. 

Table 3 shows an overview of the perplexity scores for each SLM on 
the materials used in the EEG experiment and (between brackets) the 
score on the test materials. We observe that each register-specific model 
performs better on the corresponding register material compared to the 
other materials (the mismatching register materials), and the recency- 

based model performs better still. The book SLM performed worse on 
the materials used in the EEG experiment than the testing materials, 
indicating a discrepancy between the training and test materials and the 
language materials used in the EEG experiment. However, this model is 
still better than the generic SLM (i.e., 714 versus 1736). 

2.2.3. Word surprisal estimation 
To estimate word surprisal, we used the generic, recency-based, and 

register-specific SLMs described in Section 2.2.2. The different SLMs 
were used to estimate the surprisal of each word in the experimental 
speech materials. We used the generic and recency-based SLM to esti
mate generic and recency-based word surprisal, respectively. The register- 
specific SLMs were used to compute register-specific word surprisal for 

Table 3 
Performance of SLMs expressed as the rounded perplexity score on the experi
mental and (test) materials. Lower scores indicate better performance in terms of 
perplexity. Best performance per register (column) in bold face, second best 
underlined.  

SLM dialogues news books 

Generic 3943 (4340) 807 (1312) 1736 (1834) 
Recency-based 328 (453) 287 (325) 343 (371) 
Dialogues 454 (460) 723 (955) 722 (923) 
News 1188 (1384) 314 (327) 828 (639) 
Books 1463 (1775) 601 (623) 714 (417)  

Fig. 1. (left) Grand average plot of the ERP response averaged over all content words, participants and channel set. The blue shaded area indicates the analysis 
window (300 – 500 ms from word onset). X-axis shows time in milliseconds and y-axis amplitude in µvolt. The solid line shows the average of words with highest 
tertile generic word surprisal, the dotted line the lowest tertile. (right) Topographic difference plot between content words with the highest tertile generic word 
surprisal values versus words in the lowest tertile. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 4 
Comparisons between the generic, register-mismatch, recency probability esti
mates on the one hand and the register-specific word probability estimates on 
the other hand, based on the AIC of LME models (AIC difference between 
parenthesis). The p-value indicates the probability that a model with generic, 
mismatch, or recency estimates is a better fit than the register-specific word 
surprisal.  

LME model relative likelihood (Δ AIC) register-specific 

generic p <.001 (74) 
register-mismatch p <.001 (99) 
recency-based p <.001 (31)  

Table 5 
Overview of the fixed effects of the linear mixed effect model with the N400 as 
dependent variable. For each fixed effect, its name, the beta (β), the standard 
error (SE β) and the t-value (t) are reported. The predictor of interest (register- 
specific word surprisal) is bolded.  

fixed effect β SE β t 

intercept  − 0.378  0.044  − 8.65 
baseline  5.364  0.009  582.58 
log word frequency  0.140  0.030  4.70 
experiment news  0.371  0.029  12.72 
experiment books  0.256  0.026  9.76 
surprisal  ¡0.171  0.029  ¡5.83 
word duration  0.083  0.017  4.98 
word position in sentence  0.183  0.010  17.91 
exp. news: surprisal  0.183  0.033  5.46 
exp. books: surprisal  0.038  0.029  1.30  
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the different register-specific materials, i.e., the dialogues SLM was used 
to estimate word surprisal in the dialogue materials, etcetera. Finally, 
we used mismatching pairs of registers, e.g., books SLM to estimate 
probability for words in the news materials. We used the following 
mismatch pairs: books-news, news-dialogues, news-books. We refer to 
this as register-mismatch word surprisal. 

2.3. Procedure 

Participants came to the lab on three separate occasions. Consecutive 
visits were a week or more apart. Participants were fitted with the 
correct size electrode cap and the electrodes were placed. The partici
pants were seated in a sound-attenuating booth and listened to 
approximately 90 min of speech from a specific register (i.e., dialogues, 
books, or news), 270 min in total for the three experiments. The order of 

the speech registers was counterbalanced across participants. The audio 
materials were presented via in-earphones (Etymōtic ER1) at a 
comfortable listening volume. To this end, a short speech fragment 
(corresponding to the register but not part of the further experiment) 
was played to check the volume. When necessary, the ear-plugs or vol
ume were adjusted. The participants were asked to sit still and keep eye 
movements and blinks to a minimum. 

The audio materials were presented in blocks of approximately 15 
min. The order of block presentation was counterbalanced across par
ticipants. After each block, the participant could take a break before the 
experiment continued. 

To ensure participants listened attentively, yes–no comprehension 
questions were visually presented during breaks in the experiment and 
participants responded with a button box. For example, a participant 
could be asked: Heeft ze het British Museum bezocht? ‘Did she visit the 
British Museum?’ For both the dialogues and books the questions were 
presented at the end of each block. For the news experiment the ques
tions were present at approximately 4-minute intervals, to compensate 
the higher information density of the materials compared to the other 
registers. During the dialogues, books and news experiments 36, 42 and 
84 yes–no comprehension questions were presented, respectively. 

Fig. 2. Grand average plots of the ERP response averaged over all content words, participants and channel set, but split between speech registers: dialogues, books 
and news. The solid line shows the average of words with highest tertile register-specific surprisal, dotted line the lowest tertile. The blue shaded areas indicate the 
analysis window (300 – 500 ms from word onset). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table B1 
Number of words, word types and median duration of words in milliseconds in 
the final dataset.  

Experiment # words # word 
types 

median duration in 
milliseconds 

word in 
sentence 
median  
(max) 

Dialogues 258,971 1,600 210 5 (20) 
Books 175,880 1,814 302 4 (16) 
News 134,080 1,428 289 5 (18) 
All 568,931 3,423 254 5 (20)  

Table B2 
Number of word types overlapping between experiments in the final dataset. 
Percentage overlap is computed based on the total number of word types of an 
experiment of a given row.   

Dialogues Books News 

Dialogues (1,600)  653 (41 %) 569 (36 %) 
Books (1,814) 653 (36 %)  593 (33 %) 
News (1,428) 569 (40 %) 593 (42 %)   

Table B3 
Number of word tokens overlapping between experiments in the final dataset. 
Percentage overlap is computed based on the total number of words of an 
experiment of a given row.   

Dialogues Books News 

Dialogues (258,971)  212,936 (82 %) 191,684 (74 %) 
Books (175,880) 123,818 (70 %)  113,359 (65 %) 
News (134,080) 90,427 (67 %) 91,620 (68 %)   

Table B4 
Twenty most common words per experiment, with approximate English trans
lations and the number of occurrences in the final dataset.  

Dialogues  

(word count) 

Books  

(word count) 

News  

(word count) 

is ‘is’ (8,445) niet ‘not’ (5,103) is ‘is’ (5,772) 
wel ‘good’ (7,966) is ‘is’ (3,856) zijn ‘be’ (3,133) 
ook ‘also’ (7,945) was ‘was’ (3,345) niet ‘not’ (2,993) 
niet ‘not’ (6,947) had ‘had’ (2,581) jaar ‘year’ (2,493) 
zo ‘later’ (6,357) nog ‘still’ (2,271) nog ‘still’ (2,037) 
dan ‘than’ (6,315) wel ‘good’ (1,736) heeft ‘has’ (1,990) 
was ‘was’ (5,724) ook ‘also’ (1,,724) worden ‘become’ (1,835) 
nog ‘still’ (4,241) zo ‘later’ (1,699) ook ‘also’ (1,317) 
echt ‘really’ (4,185) vader ‘father’ (1,673) mensen ‘people’ (1,302) 
gewoon ‘just’ (3,889) heeft ‘has’ (1,611) al ‘already’ (1,274) 
heb ‘have’ (3,601) zijn ‘be’ (1,468) wordt ‘becomes’ (1,195) 
heel ‘whole’ (3,400) nu ‘now’ (1,369) was ‘was’ (1,175) 
dus ‘so’ (3,034) al ‘already’ (1,317) hebben ‘have’ (1,003) 
nou ‘well’ (2,855) moeder ‘mother’ (1,281) nieuwe ‘new’ (898) 
beetje ‘just’ (2,747) toch ‘however’ (1,196) kunnen ‘can’ (879) 
zijn ‘be’ (2,710) dan ‘than’ (1,050) weer ‘again’ (862) 
maar ‘but’ (2,609) heb ‘have’ (1,043) gaan ‘go’ (832) 
goed ‘good’ (2,608) huis ‘house’ (996) moeten ‘must’ (816) 
toen ‘then’ (2,353) eens ‘once’ (992) procent ‘percentage’ (788) 
had ‘had’ (2,338) weer ‘again’ (955) wil ‘want’ (768)  
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2.4. EEG recording 

The electroencephalogram (EEG) was recorded from 26 silver- 
chloride cap-mounted electrodes. The electrodes were placed accord
ing to the Standard International 10–20 System (Fp2, Fz, F3, F4, F7, F8, 
FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8, P3, Pz, P4, P7, P8, CP1, CP2, 
CP5, CP6, O1, O2). Four additional electrodes were used to monitor eye- 
related artifacts (eye movements and blinks), placed at the outer left and 
right canthi, and below and above the left eye (converted off line to 
horizontal and vertical electro-oculogram (EOG) signals). Two addi
tional electrodes were placed on the left and right mastoids. All elec
trodes were referenced to the left mastoid electrode and electrode 
impedances were below 15 kΩ before recording started. The EEG-data 
was amplified with an Easycap system and band-pass filtered with 
0.01 and 100 Hz cut off frequencies and digitized at a 1000 Hz sample 
frequency. 

2.5. Preprocessing 

The data were re-referenced off-line to the mean of the left and right 
mastoids and filtered with a 5th order Butterworth bandpass filter with 
cut-off frequencies at 0.05 and 30 Hz. We removed sections containing 
artefacts from the data in a semi-automatic fashion. To automatically 
detect artefacts in the EEG materials, we first manually annotated 60 
hours (out of a total of 207 hours) of EEG materials for artefacts. Based 
on the manual annotations we trained a convolutional neural network 
classifier with Tensorflow (Abadi et al., 2016) to detect these artefacts. 
The classifier was trained such that it was very sensitive to artefacts, 
erring on the side of classifying more EEG materials as artefact to find as 
many as possible. The classifier achieved an F1 score of 0.89 on unseen 
EEG materials. We used this classifier to classify all EEG materials for 
artefacts. Subsequently, we manually checked all found artefacts and 
made corrections when needed. 

Individual channels were removed when a channel was contami
nated with artefacts for minimally 40 % of an experimental block. 
Otherwise, we removed the section (all channels) where one or more 
channels showed artefact corruption. The Fp2 channel was removed for 
all recordings, due to poor overall signal quality. 

After artefact removal, independent component analysis (ICA) was 
used to filter out activity related to eye blinks and eye movement. 
Following Winkler et al. (2015), the ICA was computed on the EEG data 
band-passed filtered at cut off frequencies of 1–30 Hz. Subsequently, 
components were selected that reflected eye blinks and eye movements 
based on visual inspection of topographic and time-course plots. The ICA 
solution was then used to recompose the EEG data (band-pass filtered at 
cut off frequencies of 0.05–30 Hz) without the eye-activity-related 
components. This approach attenuates the sensitivity of ICA to slow 
drift (Winkler et al., 2015) without adversely affecting ERP analysis (see 
Tanner et al., 2015). 

We extracted EEG-data in the time window − 300 to 1000 ms relative 
to word onset, for each content word (i.e., nouns, verbs, adverbs and 
adjectives) in our dataset. We used the following exclusion criteria to 
construct the dataset. We excluded items which overlapped with arte
factual EEG data or if the signal exceeded ± 75 μV in the previously 
defined time window of the word. We excluded all data from nine par
ticipants because less than 40 % of the data remained after artefact 
removal. We excluded all words from a stop list of words (see Appendix 
A), and excluded words that occurred in overlapping speech (only 
relevant in the dialogues experiment). We excluded the first word of 
each sentence, to lower the correlation between word surprisal and word 
frequency (a covariate in our statistical model, see below). We excluded 
words shorter than 50 ms or longer than 700 ms and words that occurred 
less than 24 times in the dataset, to lower the number of word types in 
the experiment (from 5,866 to 3,423). A smaller set of word types was 
needed to achieve convergence of the statistical model. Across all ex
periments, these steps resulted in a dataset of 568,931 word epochs. 

No participants were excluded based on the yes–no comprehension 
results that were not already excluded based on the EEG data quality. 
Overall, the participants performed well on the yes–no comprehension 
question: with 83 % correct for the news experiment, 96 % correct for 
the books experiment and 94 % correct for the dialogues experiment. 

2.6. Analysis 

Based on previous literature (see Frank et al., 2015), we defined the 
N400 amplitude as the average of the channel set C3, C4, Cz, CP5, CP1, 
CP2, CP6, P7, P3, Pz, P4, P8, O1, O2 within the time window 300 – 500 
ms after word onset. Following Frank et al. (2015), we did not subtract 
the baseline from the ERP. Instead, the baseline was used as a covariate 
in the statistical model. We computed the baseline by averaging the 
amplitude over the time window − 150 – 0 ms (relative to word onset) 
and the same channel set. 

We estimated several linear mixed effect (LME) models (Bates et al., 
2015) with the statistical package R (R Core team, 2015) to predict the 
N400 amplitude. We first estimated a null LME model with the following 
standardized covariates: the aforementioned baseline, the log word fre
quency (based on the COW corpus), the word duration, the word position 
in the sentence and finally a factor for experiment (with three levels, one 
for each register). In addition, we added participant and word as random 
effects with random slopes for surprisal for both participant and word. 

The predictor of interest (word surprisal) was added to the null 
model to create a generic, recency-based, register-specific, and register- 
mismatch LME model, based on the corresponding word surprisal type (i. 
e., generic word surprisal corresponds with a generic LME model). We 
also added an interaction term between word surprisal and experiment 
to allow for differences between speech registers. We considered to 
include a random slope for word surprisal by participant but this 
resulted in convergence issues. 

3. Results 

Model comparison with the anova likelihood-ratio test revealed that 
the LME model with generic word surprisal improved compared to the 
null model (χ2 = 553.46, p <.001). The N400 amplitude is more nega
tive with increasing values of word surprisal (see Fig. 1). 

Subsequently we compared the generic, register-mismatch, recency- 
based, and register-specific LME models. For these comparisons, we 
were precluded from using the anova likelihood-ratio test since these 
models were not nested versions of each other. We therefore compared 
the AIC of each LME model and computed the corresponding relative 
likelihood. This comparison revealed that the register-specific word 
surprisal values best predict the N400 amplitude (see Table 4, left). The 
recency-based model performed better than the generic model, and the 
register-mismatch model. 

In the register-specific LME model (see Table 5), the interaction term 
for the news materials and word surprisal has a t-value of 5.46. To 
further investigate this interaction effect, we split the data according to 
register (dialogues, books and news) and fitted LME models to each 
subset. The LME models for the news materials failed to converge. We 
therefore computed the news LME models without random slopes for 
surprisal for participant and words. Model comparison with the anova 
likelihood-ratio test revealed that the LME model with register-specific 
word surprisal improved compared to the null model for both di
alogues (χ2 = 260.73, p <.001) and books (χ2 = 279.97, p <.001), while 
this was not the case for the news materials (χ2 = 0, see also Fig. 2). 

4. Discussion 

In the current study, we recorded the EEG signal from participants 
who listened to long (4 – 15 min) stretches of natural speech sampled 
form different speech registers: dialogues, news broadcasts, and read- 
aloud books. The speech materials were analyzed with statistical 
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language models (SLM) estimating word surprisal. We found that the 
N400 amplitude was more negative for words with higher surprisal (i.e., 
unexpected words). 

We investigated the influence of speech register on prediction in 
speech comprehension by estimating and comparing different word 
surprisal ‘types’. We compared generic with register-specific word sur
prisal and found that register-specific word surprisal best predicted the 
N400 amplitude. This finding indicates that listeners are sensitive to the 
specific statistical structure of the speech register they listen to, and that 
they adjust their anticipations accordingly. To test whether the adap
tation of word anticipations was the result of register, we also compared 
register-specific word surprisal with register-mismatch word surprisal. 
This comparison provided a sanity check to test whether any ‘specific’ 
word surprisal would better predict the N400 amplitude compared to 
generic word surprisal. Register mismatch was defined as the surprisal 
estimated on mismatching register materials, e.g., the SLM was trained 
on books but used to estimate surprisal for the news materials. We found 
that register-mismatch word surprisal did not improve upon generic 
word surprisal, providing further evidence that register-specific infor
mation influenced participants’ word expectations. 

Furthermore, we tested whether the register-specific effects could be 
explained merely by tracking recent input. In theory, listeners could 
adapt their expectations not based on register characteristics, but just on 
recent language input. We therefore also compared the register-specific 
word surprisal to recency-based word surprisal. The recency-based word 
surprisal is computed by updating the generic SLM with caching of a 
number (n = 64) of recent words. As Table 4 shows, the recency-based 
word surprisal better predicts the N400 amplitude compared to the 
generic word surprisal. Importantly, the register-specific word surprisal 
does better still. This finding indicates that listeners do not only use 
recent language input to adjust their predictions of upcoming words but 
also register information. Listeners may have stored representations of 
the statistical structure of registers, whereby different expectations are 
generated when listening to a story than when listening to a dialogue. 

Our results are also relevant for the question whether prediction 
occurs during normal language processing (Huettig, 2015; Nieuwland 
et al., 2018). In our experiments, we used long stretches (4 – 15 min) of 
naturalistic speech. Therefore, there are no artificial pauses between the 
presentation of words, which could potentially influence predictive 
processing (Luka & Van Petten, 2014). Our finding shows that listeners 
anticipate words in normally-paced language input. Furthermore, we 
investigated most words in the speech materials, which allows for the 
investigation of predictive language processing across the whole prob
ability spectrum, from very unexpected to highly expected words. This is 
relevant in light of Huettig’s (2015) criticism that most evidence for 
prediction comes from comparing extremes of predictability. 

Do the presented results provide evidence for prediction? Pickering 
& Gambi (2018) note that effects found on the target word, such as 
surprisal effects, can alternatively be explained by an integration ac
count. This interpretation might be influenced by the traditional 
assumption that prediction entails one or at most a few words. However, 
we argue that surprisal effects should be interpreted in a different way 
(leading, in our opinion, to a clearer interpretation of the underlying 
mechanism). The surprisal value is not a static attribute of a single word. 
Instead, it derives from a probability distribution that is computed over 
an entire lexicon based on the preceding context. The prediction is not a 
specific word or small set of words. The prediction is the specific proba
bility distribution over the lexicon. To state it differently, each word in the 
mental lexicon is ‘pre-activated’ to the extent it is a probable continu
ation given the preceding context. 

In our experiment, each target word (with corresponding surprisal 
value) samples the predicted probability distribution of the lexicon. The 
word does not have this surprisal value in isolation, a probability can 
only be defined over a set of options, in this case a lexicon. Sampling 
these predicted probability distributions explains variance in the 
amplitude of the N400: it is more negative for when sampling less 

probable continuations and more positive when sampling more probable 
continuations. Therefore, our results can be interpreted as evidence for 
these predicted word probability distributions, and we propose that our 
data are therefore best explained by a predictive account. 

Furthermore, probability effects found during language perception, 
especially those found over a wide probability spectrum such as Smith & 
Levy (2013), Frank et al. (2015), and the effects reported in this article, 
fit comfortability within more general and well attested predictive 
perception framework, such as predictive coding (Friston, 2005; 2012), 
in which top-down predictions result in prediction error from bottom-up 
input. And while it might be a logical possibility that an integration 
account could explain these specific effects, it would need further 
specification beyond the bare claim that more probable words are easier 
to integrate (see Pickering & Gambi, 2018). Furthermore, if we apply 
Occam’s razor, a predictive account is preferable, since it is more 
parsimonious when we assume language perception is similar to more 
general perception mechanisms. 

We want to emphasize that the preceding argument does not exclude 
the N400 effect as an index for integration mechanisms. Indeed, several 
studies (e.g. Frank & Willems, 2017; Nieuwland et al., 2020 ) suggest 
that these processes are dissociable, where the variance of the N400 
effect is partly captured by word predictability and partly by semantic 
plausibility operationalized by either participant rating tests or auto
matic techniques such as latent semantic analysis. 

The current results do show that listeners engage in predictive lan
guage processing while listening to natural everyday speech (without 
artificially constraining sentences). This result is in line with the results 
reported for reading by Smith & Levy (2013) and Frank et al. (2015). 
Interestingly, a recent article by Heilbron et al. (2022), reported similar 
findings with speech materials using a state of the art GTP-2 language 
model (i.e. a language model based neural networks). 

We found an unexpected difference between the speech registers: we 
did not observe an N400 effect for the news broadcast speech materials 
(see Fig. 2). It is unlikely that this difference was caused by news 
broadcasts being less predictable than the other speech materials: The 
perplexity scores for SLMs tested on news materials were comparable to 
scores for dialogues and books (see Table 3), indicating that the SLMs 
could predict upcoming words in the news materials with performance 
similar to for the other register materials. If news broadcasts were less 
predictable, the SLMs performance should drop accordingly. 

An explanation for the interaction effect between word surprisal and 
register could be participants’ attention to the speech materials. Par
ticipants possibly found it harder to concentrate on the news materials 
compared to dialogues and book materials. Attention difficulties for the 
news materials could be caused by the high topic density in this register. 
The news materials consisted of sequences of short news items on many 
different topics. In fact, because of this high density of topics, we 
decided to segment the news materials into 4-minute sections, while 
books and dialogues materials were segmented into 12- and 15-minute 
sections, respectively. Still the participants performed worse on 
average for the comprehension questions on news (83 % correct) than on 
books (96 % correct) and dialogues (94 % correct), indicating that they 
indeed found it harder to pay attention to the news materials. There is 
evidence that attention can modulate the N400 (for a discussion, see 
Kutas & Federmeier, 2011), but it is unclear to what extent lack of 
attention would completely suppress the N400 effect. 

We found an unexpectedly high correlation between word surprisal 
and log word frequency. A high correlation between the predictor of 
interest (word surprisal) and a covariate make statistical results less 
reliable (e.g., effects can flip, because the variance can be ascribed to 
either of the variables). An explanation for the unexpectedly high cor
relation is related to the first word in a sentence. The dialogues materials 
contain a high number of very short sentences resulting in a relatively 
high proportion of first words. Statistical language models (SLM) 
generally do not use cross-sentence-boundary pre-context. Therefore, 
the word surprisal of the first word in a sentence will tend to the 
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frequency of that word. We therefore removed the first word of each 
sentence for our analyses. In future studies, it would be interesting to test 
whether SLMs could be used that take cross-sentence-boundary pre- 
context into account. 

Our study raises questions for future research. First, how do listeners 
adjust their expectations to a specific register? Our results show that 
simply using the most recent words to adjust anticipations does worse in 
modelling N400 amplitude in listeners compared to using register- 
specific information. This indicates that listeners do not merely use 
recent context to adjust expectations, and could imply that registers are 
represented in the listener’s mind in some form and can be utilized to 
adapt expectations to upcoming input. This could mean that multiple 
generative models (e.g., registers, schema’s) are represented and lan
guage perceivers switch between these models (see also Kuperberg, 
2016). 

A second question for future research is whether speech register 
provides the correct level of granularity for a predictive model of lan
guage? The current study found evidence that listeners can use register- 
specific information to adjust their anticipations. However, register is a 
high-level construct that correlates with, for example, topic. It could be 
that topic differences are also an important factor in structuring lan
guage perceivers’ expectations. 

Third, how to interpret the success of SLMs in modelling language 
perceivers’ processing costs? SLMs are an implausible cognitive model 
for language prediction. For example, an SLM could not model predic
tion effects produced by humans with sentences 9 & 10 (Section 1.4), 
because these effects are based on long range dependencies. What as
pects of predictive human language processing do SLM capture that 
make them successful in modelling processing costs and when would 
they fail? 

5. Conclusion 

We analyzed ERPs elicited with spoken words from long stretches 

(4–15 min) of naturalistic speech and found that word surprisal predicts 
the N400 amplitude. Listeners anticipate words while listening to nat
ural speech that is not highly constrained nor limited to very likely or 
very unlikely words. Moreover, by comparing generic, recency-based, 
and register-specific word surprisal, we showed that listeners broadly 
adapt their expectations to the register of the speech they are perceiving, 
which indicates that listeners also use cues from the wider context to 
predict upcoming words. 
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Appendix A 

Stop word list, a list of words to be excluded from the dataset.   

w single letter word in transcription 
i single letter word in transcription 
l single letter word in transcription 
e single letter word in transcription 
n single letter word in transcription 
c single letter word in transcription 
k single letter word in transcription 
a single letter word in transcription 
r single letter word in transcription 
b single letter word in transcription 
j single letter word in transcription 
uh interjection, mislabeled by tagger 
wo abbreviation 
ah interjection, mislabeled by tagger 
za abbreviation 
ha interjection, mislabeled by tagger 
uhm interjection, mislabeled by tagger 
tvs typo in transcription 
tja interjection, mislabeled by tagger 
goh interjection, mislabeled by tagger 
kof typo in transcription 
des typo in transcription 
hot English word 
kch typo in transcription 
cnv abbreviation 
joh interjection, mislabeled by tagger 
geg typo in transcription 
war typo in transcription 

(continued on next page) 
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(continued ) 

bah interjection, mislabeled by tagger 
bad English word 
fol unknown, typo in transcription 
hum interjection, mislabeled by tagger 
pub English word 
wow interjection, mislabeled by tagger 
oll typo in transcription) 
ggg transcription code for uninterpretable speech 
jee typo in transcription 
oke ‘ok’ 
hup interjection, mislabeled by tagger 
mina typo in transcription 
juno name 
datis unknown, typo in transcription 
cd-rom abbreviation 
ns-top abbreviation 
marjak typo in transcription 
molsla typo in transcription 
eu-top abbreviation 
do-door typo in transcription 
wao’ers abbreviation 
hondsdr typo in transcription 
thijsen name 
ge-goed typo in transcription 
ing-bank abbreviation 
esf-geld abbreviation 
ex-beatle ‘ex beatle’ 
barteling name 
mkz-virus abbreviation 
fnv-leden abbreviation 
mkz-crisis abbreviation 
mkz-boeren abbreviation 
ij-kantine name 
knsm-eiland abbreviation 
cbs-cijfers abbreviation 
eu-collegas abbreviation 
ns-stations abbreviation 
ns-directie abbreviation 
lufthansa-piloten name 
lockheed-affaire name 
mkz-gebieden abbreviation 
radio-1-journaal name 
vn-klimaattop abbreviation 
encarta-encyclopedie name 
vn-vluchtelingenverdrag abbreviation 
landbouw-uh-universiteit stuttering 
endemol-aandelen name 
mkz-problemen abbreviation 
vn-klimaatconferentie abbreviation 
klauwzeercontroles old and very specific word 
nipo-enquete abbreviation 
kyotoafspraken name 
cao-onderhandelingen abbreviation 
asterix-stripalbum comic book name 
nipo-onderzoek abbreviation 
mkz-maatregelen (abbreviation 
xtc-laboratorium abbreviation 
pvda-partijleider abbreviation 
gsm-abonnement abbreviation 
mkz-uitbraken abbreviation 
cda-fractieleider abbreviation 
pvda-politicus abbreviation  

Appendix B 

Descriptive statistics for the language materials in the dataset. 
See Tables B1-B4. 
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