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1. Introduction

The Standard Model of particle physics (SM) has been, together with General Relativity, one

of the most succesful theories in physics. The SM mixes relativistic quantum mechanics with

continuum field theory; it describes the behavior of elementary particles and their interactions

[1]. The interactions of particles are described through the principle of gauge invariance, which

emerge as consequence of the study of fundamental symmetries satisfied by particle fields. The

easiest example of gauge invariance comes from electromagnetism where the 4-potential, Aµ, can

be transformed by the means of Equation 1.1, such that the electric and magnetic fields remain

the same.

Aµ → A′µ = Aµ + ∂µλ (1.1)

The choice of a given λ fixes the gauge and implies that some components of the potential could

vanish. One example of this is the Lorenz gauge, where we set ∂µA
µ = 0. This basic symmetry

of the potential can be understood in terms of Lie groups [2], namely the U(1) group, where its

elements can be understood as continuous phase rotations. If we generalize the fact that each

interaction should follow some gauge invariance, under a certain Lie group, we will be able to

construct a field theory for that interaction. Furthermore, if we now quantize the interaction

fields, we will have a Quantum Field Theory (QFT) for it.

The SM is the most complete Lorentz and gauge invariant theory to describe the quantum

realm. It includes three of the four main interactions and associates to them vector bosons, such as

γ,W±, Z0, gi. The W±, γ and Z0 are the three gauge bosons associated with the weak interaction,

and arise from the SU(2)L×U(1)Y symmetry, while the gi are the eight gluons associated with the

strong interaction, and arise from the SU(3)C Lie group. It is worth noticing that the subscripts

L, Y and C arise from the conserved isospin, hypercharge and color quantum numbers. Therefore,

the SM can be written in a single gauge group as

GSM = SU(3)C × SU(2)L × U(1)Y , (1.2)

where the fermion fields transform in the fundamental representation, while the gauge fields trans-

form in the adjoint representation. However, at high energies the electroweak SU(2)L × U(1)Y
gauge group behave as a single interaction, breaking to the U(1)Q group. 1. This symmetry break-

ing occurs by the means of the so called Higgs mechanism, whose interactions with matter give

rise to mass terms that violate gauge invariance under transformations of the electroweak gauge

group.

Even though the SM has been successful in explaining a broad variety of phenomena, there

are some experimental and phenomenological observations that cannot be explained within its

formalism, leaving many open questions related to topics such as quantum triviality[3], Higgs

boson mass finiteness [4], matter-antimatter asymmetry [5], neutrino oscillations and mass [6],

1The subscript Q denotes electric charge
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quantum gravity [7], etc.

Many theories have been proposed to explain each of these problems, from Supersymmetric

Models [8] and Grand Unified Theories [9] (GUTs) to String Theory [10]. Some of these theories,

specially those explaining neutrino masses, include a U(1) extension to the theory that predicts the

existence of massive right-handed neutrinos, whose mass can be explained within three possible

mechanisms, referred to as Seesaw mechanisms [11]. As there are many possible U(1) extensions

of the SM, we focus on scenarios where the so called B-L symmetry is conserved. For exam-

ple, this type of models can explain the observed matter-anti-matter asymmetry in the universe

(leptogenisis) [12].

One of the simplest theories to explain the generation of neutrino masses, is the Singlet Majoron

Model [13]. In this model, one introduces a singlet scalar field, ϕ, that couples only to fields charged

under U(1)B−L symmetry group. After Spontaneous Symmetry Breaking, it is possible to use a

Kibble parametrization for the scalar field, such that [14]

ϕ =
1√
2

(f + A+ iJ) (1.3)

In Equation 1.3 A and J are real scalar fields. In this project we focus on how the Goldstone mode

of ϕ, J, couples to matter. Additionally, a preliminary feasibility study for the production of this

process at the CERN’s Large Hadron Collider (LHC) is presented.

The right-handed neutrino states have been object of study at many particle physics experi-

ments such as IceCube [15], as well as the CMS [16] and ATLAS [17] experiments at CERN’s Large

Hadron Collider (LHC). The most recent experimental searches have considered Heavy Neutrino

(HN) production via Drell-Yan (DY) mechanisms as the main production mechanism. However, no

signal of these neutrinos has been found until now [1]. Since in no signs of physics beyond the SM

has been observed yet at the LHC, theoretical and phenomenological studies have been published

in recent years [18, 19, 20], proposing new models and analysis techniques to detect new particles.

For example, the Vector Boson Fusion (VBF) topology, has been proposed in several articles as

an alternative and interesting mechanism to study regions of difficult experimental access at the

LHC [21, 22, 23].

The VBF process result from the fusion of two vector bosons (γ, Z0,W±) radiated from two

quarks. The main experimental features VBF process are the production of two energetic jets

with a large pseudorapidity gap, located on opposite hemispheres of the cilindrical-shaped parti-

cle detector, with large reconstructed dijet mass. The associated production cross sections VBF

processes are 10−1 − 103 smaller with respect to standard DY production. Nevertheless, the re-

quirement of VBF topology allows a background suppression ranging from 10−3−10−6, depending

on the background, allowing VBF to be competitive with respect respect to other searches consid-

ering standard Drell-Yan or W-meadiated production mechanisms. n this dissertation we study

the hypothetical production of unstable HN in association with Majorons at the LHC. We con-

sider two possible production mechanisms, through W-mediated process and through VBF. In the

model, we consider the Majoron as a stable radiated boson from the HN, becoming a canonical

Dark Matter (DM) candidate. A representative Feynman diagram for the production of the signal
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model under study through VBF is presented in 1.12.

Figure 1.1: Production of a Majoron via indirect VBF

As the Majoron, J, origins from theories that extend the SM to explain neutrino masses, its

finding can be an important target at the CMS and ATLAS experiments, as it can become, together

with the new neutrino states, a perfect DM candidate. Nevertheless, the production of this particle

at colliders has not been largely studied. The work presented in this disertation aims to be a first

theoretical and phenomenological approach to calculate both matrix elements and cross sections

for the J production via DY, W and VBF channels.

2Feynman diagrams are made using the online tool https://feynman.aivazis.com
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2. Theoretical Framework

The Standard Model of particle physics (SM) is a relativistic quantum field theory that encap-

sulates our knowledge and understanding of the fundamental particles and how they interact by

the means of the electromagnetic, strong and weak interactions. Within this formalism particles

are modeled as quanta of fields that permeate space-time and, according to their spin values, are

divided into two families: Fermions and bosons. In the SM fermions are spin-1
2

particles that con-

stitute matter and interact via boson exchange [24]. These bosonic exchanges arise as consequence

of gauge invariance of the fermion Lagrangian under the gauge group

SU(3)C × SU(2)L ⊗ U(1)Y , (2.1)

where the subscripts C, L and Y denote the color charge, left-handed chirality and weak hyper-

charge respectively. Additionally, the SM describes how the electromagnetic and weak interactions

unify into the electroweak interaction, the origins of quarks due to color interactions and also how

particles gain mass via Spontaneous Symmetry Breaking (SSB).

To fully understand all these concepts mentioned before, it is useful to make a brief reminder

of the theory underlying the SM, starting with Quantum Electrodynamics (QED) and Quantum

Chromodynamics (QCD) before making a longer summary of the weak interaction and SSB.

2.1 Quantum Electrodynamics

Before the discovery of QED Dirac discovered that the dynamics of spin-1
2

particles, which are

modeled by a 4-component spinor ψ, are dictated by the equation that now holds his name [25]

iγµ∂µψ −mψ = 0, (2.2)

where γµ are the four 4× 4 matrices that arise from the Clifford algebra given in Equation 2.3.

{γµ, γν} = 2ηµν (2.3)

The most general solution of Equation 2.2 is given by plane superposition and positive energy

spinors u, v which are associated to particles and antiparticles respectively. These solutions take

the form

ψ(x) =
2∑
r=1

∫
d3p

(2π)3
1√
2Ep

[cr(p)ur(p)e
−ipx + d∗r(p)vr(p)e

ipx], (2.4)

where r is an index indicating the two positive energy spinors for u and v [26]. In addition to ψ, it

was later found that one can construct an additional, linearly independent field given by ψ̄ = ψ†γ0.
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With these two fields, one can construct a Lagrangian for a free Dirac spinor [27]

L = iψ̄γµ∂µψ −mψ̄ψ. (2.5)

Then, it is straightforward to note that this Lagrangian remains invariant under global U(1)

transformations given by

ψ → ψ′ =eiθψ

ψ̄ → ψ̄′ =e−iθψ̄.
(2.6)

One can then use Noether’s theorem to obtain a conserved current [28], which is given by

Jµ = ieψ̄γµψ (2.7)

Now that a conserved current has been found, one can promote the U(1) transformations to a local

set up [29]. In other words, the maps

ψ → eiθ(x)ψ =(1 + iθ(x))ψ

ψ̄ → e−iθ(x)ψ̄ =(1− iθ(x))ψ̄
(2.8)

have to be considered. With these transformations, one obtains that the mass term of the La-

grangian remains invariant while the kinetic term breaks it as the derivative does not transform

properly as seen in Equation 2.10.

∂µψ
′ =eiθ(x)(i∂µθ)ψ + eiθ∂µψ (2.9)

6=eiθ (2.10)

To solve this problem one introduces a U(1) covariant derivative, which introduces a vector field

Aµ such that one can replace

∂µ → Dµ = ∂µ − eiAµ, (2.11)

while the vector field simultaneously transforms in the adjoint representation

Aµ → Aµ −
1

e
∂µθ(x) (2.12)

This being said, one can check that the conserved current given in Equation 2.7 arises naturally

from the Lagrangian

L =iψ̄γµDµψ −mψ̄ψ (2.13)

=iψ̄γµ∂µψ −mψ̄ψ − eψ̄γµψAµ (2.14)
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but coupled to the field Aµ. It is important to note that both fields ψ̄ and ψ describe electrically

charged fields, such that the last term in Equation 2.14 can be easily understood as the electro-

magnetic interaction of these fields mediated by the field Aµ [30]. Hence, one can infer that this

vector field is the electromagnetic field, whose dynamics is governed by the Lagrangian given in

Equation 2.15.

L = −1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ (2.15)

Thus, if one wants to have a general U(1) gauge invariant Lagrangian that contains the dynamics

for both fermions and the photon, one has to add the terms on Equations 2.14 and 2.15. This

Lagrangian describes the whole theory underlying QED and is given by

L = iψ̄γµ∂µψ −mψ̄ψ −
1

4
FµνF

µν − ψ̄γµψAµ (2.16)

From this Lagrangian, one can obtain all possible electromagnetic phenomena after introducing

the interacting term into the expression for the S matrix [31],

S(1) = exp

[
− ie

∫
d4xT (ψ̄γµAµψ)

]
, (2.17)

and performing a Taylor expansion of the exponential, as well as the corresponding Wick contrac-

tions [32]. From this expansion, one can deduce a simple set of rules that help to build the matrix

elements associated to the electromagnetic phenomena at all orders in the expansion. These set

of rules were first discovered by Richard Feynman and are referred to as Feynman rules [33]. For

QED we obtain the following set of rules:

• For every incoming fermion assign a spinor us(p)

Figure 2.1: Incoming fermion.

• For every incoming antifermion assign a spinor v̄s(p)

Figure 2.2: Incoming antifermion.

• For every incoming boson assign a polarization vector εµr (p)

Figure 2.3: Incoming boson.
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• For every outgoing fermion assing a spinor ūs(p)

Figure 2.4: Outgoing fermion.

• For every outgoing antifermion assign a spinor vs(p)

Figure 2.5: Outgoing antifermion.

• For every outgoing boson assign a polarization vector ε∗µr(p)

Figure 2.6: Outgoing boson.

• All particles connect into a vertex. This vertex has a momentum space function given by

−ieγµ.

• For each internal fermion line assign a propagator iSF (q) = i(γµqµ+m)

q2−m2+iε

Figure 2.7: Fermion internal line

• For each internal photon line assign a propagator iDµν(q) =

−i

(
ηµν−(ξ−1)

qµqν

q2

)
q2+iε

. For simplicity

we choose the Feynman gauge, such that the second term in the propagator vanishes.

Figure 2.8: Photon internal line

Note that there is an extra iε factor in the propagators of both fermions and photons, and arises

to ensure causality in the theory. In addition to these basic rules, it is possible to obtain an extra
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one which arises from higher order terms. These terms generate diagrams like

that contain extra internal lines and are known as loop diagrams. The momenta of the particles

present in the loop are then integrated, giving us the final rule:

• For each loop present in a diagram, integrate over the momenta of the additional particle∫
d4k
(2π)4

.

However, these loop diagrams are divergent and require renormalization and regularization

processes to take out these divergencies [34]. Additional topics like field quantization and the

Gupta-Bleuler condition exceed the depth of this summary and references [28, 35] are recommended

if the reader is interested.

2.2 Quantum Chromodynamics

Even though QED became the first quantum field theory that describes the electromagnetic inter-

actions of fermions, it did not explain neither how quarks constitute nucleons nor how they hold

together in the atomic nucleus or the origins of hadrons. The first approach to a correct theory

was made by Gell-Mann, Nishijima and Pais when they introduced the Eightfold Way, an SU(3)

gauge invariant theory that was based in flavor conservation to explain the origin of all hadrons.

Nevertheless, their theory was quickly discarded after the discovery of the ∆++ and Ω− resonances,

as they explicitly violated the exclusion principle due to their quark content as seen in Equation

2.18, as well as from the discovery of the J/ψ resonance that indicated the presence of the charm

quark [36, 37]. ∣∣∆++
〉

= |uuu〉
∣∣Ω−〉 = |sss〉 (2.18)

Based on the clear incompatibility of the SU(3) flavor symmetry with the experimental data Nambu

proposed the existence of a new quantum number, the color charge. This new symmetry modeled

quarks as colour triplets of the form [38]

|ψ〉 =
∑
i

aiCi |ψ(p)〉 ; C1 = r =

1

0

0

 C2 = g =

0

1

0

 C3 = b =

0

0

1

 (2.19)
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such that hadrons can be considered to be color singlets. It is then straightforward to note that

the color vectors span a 3D Hilbert space whose unitary transformations are given by SU(3)C
1[39].

Hence, it is required to construct a SU(3)C gauge theory for quarks to explain the whole

phenomena associated with the strong interaction. First, one has to note that SU(3) is a non

abelian Lie group, contrary to the QED case, with Lie algebra

[Ti, Tj] = ifijkTk, (2.20)

where fijk are the skew-symmetric structure constants and Ti are the 8 generators of the algebra2.

In the fundamental representation these generators are proportional to the Gell-Mann matrices

via Ti = 1
2
λi. These matrices are given in Equation 2.21.

λ1 =

0 1 0

1 0 0

0 0 0

 λ2 =

0 −i 0

i 0 0

0 0 0

 λ3 =

1 0 0

0 −1 0

0 0 0

 λ4 =

0 0 1

0 0 0

1 0 0


λ5 =

0 0 −i
0 0 0

i 0 0

 λ6 =

0 0 0

0 0 1

0 1 0

 λ7 =

0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0

0 1 0

0 0 −2


(2.21)

As quarks are modelled as fermionic particles, their dynamics are contained in the Lagrangian 3

[40] given in Equation 2.22.

L = iψ̄fc γ
µ∂µψ

f
c −mψ̄fcψfc (2.22)

If one then considers the triplet behavior of quarks, one can obviate the color index such that the

Lagrangian takes

L = iψ̄fγ
µ∂µψf −mψ̄fψf (2.23)

With this Lagrangian it is then mandatory to check global invariance under SU(3)C transforma-

tions by considering the maps

ψf → eiαaTaψf ψ̄f → ψ̄fe
−iαaTa (2.24)

As αa are space-time independent parameters, the Lagrangian will remain invariant. Thus, after

using Noether’s theorem one obtains eight conserved currents which are given by Equation 2.25.

Jµa = ψ̄fγ
µTaψf (2.25)

After checking that Equation 2.22 is invariant under global SU(3)C transformations, it is then

1C denotes color charge.
2The structure constants take the role of the Levi-Civita density for SU(2).
3Here, Einstein summation convention has been used over the flavor (f) and color (c) indices.
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mandatory to promote the symmetry transformations to a local setting. Hence, one maps

ψf → exp(igsαa(x)Ta)ψf ψ̄f → ψ̄f exp(−igsα(x)Ta), (2.26)

and notes that the derivative term is non invariant. Following the same procedure done in QED,

one defines the covariant derivative

Dµ = ∂µ + igsTaAaµ, (2.27)

where the Aa are the eight gauge bosons mediating the strong interaction, which are known as

gluons. These gluons must transform via Equation 2.28. Note that there is an extra term in this

transformation and can be explained by the non abelian behavior of the gauge group [14].

Aaµ → Aaµ +
1

gs
∂µαa − fabcαbAcµ (2.28)

Additionally, one needs to introduce the gluon strength tensor to add a dynamical term for

them in the total Lagrangian of the theory, which we call Quantum Chromodynamics (QCD) .

This tensor takes the form

F µν
a = ∂µAνa + ∂νAµa + gsfabcA

µ
bA

ν
c , (2.29)

such that the total QCD Lagrangian reads [30]

L = iψ̄fγ
µ∂µψf −mψ̄fψf + gsJ

µ
aAaµ −

1

4
F µν
a F a

µν (2.30)

This Lagrangian describes all possible dynamics for processes regarding quarks and their inter-

actions. However, the quantization procedure can be very complicated due to the non abelian

behavior of the gluon field. Hence, one needs to introduce functional integral quantization and

Faddeev-Popov ghost fields. For more insight on these topics, as well as renormalization of non

abelian theories and asymptotic freedom, see [14, 31, 34, 41][ref:amateur,srednicki, schwartz, klein-

ert]. Given this Lagrangian, one can follow the same procedure than in QED to obtain the following

set of Feynman rules [42, 43]

• Gluon propagator

• Quark propagator
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• 3 Gluon vertex factor

• 4 Gluon vertex

• Quark-Gluon vertex factor

2.3 The Weak Interaction

In the 1930’s Fermi proposed that weak processes such as β decay could be explained by the means

of two currents that interact in a single point as seen in Figure 2.9

Figure 2.9: Graphical representation of Fermi’s point-like interaction.

However, experimental phenomena proved that the interaction was not point-like and had to

be mediated through a massive vector boson, contrary to QED. Around the 1950’s Gell-Mann
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and Nishijima formulated the quark model, based on Isospin and hypercharge conservation. This

allowed physicists to understand the β decay as the process

d→ u+ e− + ν̄e (2.31)

Inspired by the isospin model, which was not exact for quarks, Fermi attempted to build an SU(2)

gauge invariant theory for the weak interaction, where β decay is just one possible manifestation

of it. He argumented that quarks and leptons could be arranged into isospin doublets as mu ≈ md

and me << mu (thus can be taken as negligible). These doublets are given by

q =

(
u

d

)
` =

(
νe
e

)
(2.32)

The isospin assignation for each element of the doublets is then 4

T3 |u〉 =
1

2
|u〉 T3 |νe〉 =

1

2
|νe〉 T3 |d〉 =

−1

2
|d〉 T3

∣∣e−〉 =
−1

2

∣∣e−〉 (2.33)

Based on Fermi’s point-like interacting currents, a possible Lagrangian that describes the β

decay can be taken to be

L = iq̄γµ∂µq + i¯̀γµ∂µ`−mq q̄q −m`
¯̀̀ +

GF√
2
u†de†νe, (2.34)

where GF is the Fermi coupling constant 5

Nevertheless, in 1956 Yang and Lee proposed that as there was no experimental evidence

showing the weak interaction to be invariant under parity transformations, a parity violating

theory must not be discarded 6. Their idea, though polemical and disregarded by physicists like

Pauli, was proved right by Wu in 1957 after studying the decay of 60Co isotopes under a magnetic

field [44]. She observed an excess of decay events on one specific direction of the applied magnetic

field, contrary to the expected symmetrical distribution, implying that the weak interaction does

not conserve parity.

The preference of an specific direction of decay in the weak interaction caused many physicists to

look for solutions. Perhaps the most successful one was proposed by Feynman, where he considered

that the theory could be explained via the introduction of vector-axial, or (V-A), currents as they

are the only ones matching the experimental data given by Wu. The proposed currents take the

form [45]

Jµ =
GF√

2
ψ̄γµPLψ; PL =

1

2
(1− γ5) (2.35)

4This assignation was later extended to up-like quarks (u, s, t), down-like quarks (d, c, b), electron-like leptons
(e, µ, τ) and their corresponding neutrinos (νe, νµ, ντ ).

5This constant was later understood as the weak coupling constant of an effective theory at low energies.
6We understand a parity transformation as mapping ~x→ −~x and ~p→ −~p.
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Note that using these (V-A) currents, obligates us to use a new representation of the gamma

matrices, namely the Weyl (or chiral) representation, where they are given by [31, 42]

γ0 =

(
0 1
1 0

)
γi =

(
0 σi
−σi 0

)
γ5 =

(
−1 0

0 1

)
(2.36)

As γ5 is diagonal, one can decompose a Dirac spinor in terms of the eigenstates of this matrix,

known as left-handed and right-handed chiralities

ψ = ψL + ψR (2.37)

As these eigenstates form a basis of the spinor space, one can define projectors as

PL =
1

2
(1− γ5)PR =

1

2
(1 + γ5)→ PLPR = 0 P 2

L/R = PL/R (2.38)

Based on this projections, one can check that (V-A) currents imply that only left-handed chiralities

participate on the weak interaction7. Thus, the doublets previously defined in Equations 2.32 and

2.33 are only formed by these left-handed states. This being said, if we replace Dirac spinors in

terms of Equation 2.37 we obtain that spinor dynamics is given now by

L = iψ̄Lγ
µ∂µψL + iψ̄Rγ

µ∂µψR −mψ̄RψL −mψ̄LψR (2.39)

Note that an SU(2) transformation like

ψL → ψ′L ∝ exp(iαγ5)ψL

will not leave the mass terms invariant, one says then that mass terms break gauge invariance.

Additionally, note that as neutrinos only participate in weak processes, they can only posses left-

handed chirality which means that they are massless.

As mass terms break gauge invariance, physicists like Weinberg, Salam, Feynman and Glashow

started studying an analogous theory of the one originally proposed by Fermi, without including

mass terms. In other words, they considered Lagrangians like

L = iψ̄Lγ
µ∂µψL + iψ̄Rγ

µ∂µψR (2.40)

where the left-handed chiralities are SU(2)L doublets 8 and the right-handed states are singlets.

Hence, based on Equation 2.34 quark and lepton dynamics are given by

L = iq̄Lγ
µ∂µqL + i¯̀Lγ

µ∂µ`L + iūRγ
µ∂µuR + id̄Rγ

µ∂µdR + iēRγ
µ∂µeR (2.41)

where uR, dR and eR are right-handed singlets for the up-like quarks, down-like quarks and charged

7In other words, SU(2) will only act on left-handed states
8The subscript L denotes the chirality on which this group acts
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leptons respectively.

As doublets are the ones interacting via weak processes, a global SU(2)L transformation, for a

general doublet ψL, takes the form [30]

ψL → exp

(
− igwθa

τa
2

)
ψL ψ̄L → ψ̄L exp

(
igwθa

τa
2

)
(2.42)

where a = 1, 2, 3, gw is the weak coupling constant and τa are the Pauli matrices a. If the θa
are space-time independent, the Lagrangian will be gauge invariant. Hence, by using Noether’s

theorem it is possible to obtain three conserved currents which are given by

Jµa = gwψ̄Lγ
µ τa

2
ψL (2.43)

To see the structure of these currents let us, without loss of generality, take ψL to be a lepton

doublet, such that

Jµ1 =
gw
2

(ν̄eLγ
µeL + ēLγ

µνeL) (2.44)

Jµ2 = −igw
2

(ν̄eLγ
µeL − ēLγµνeL) (2.45)

Jµ3 =
gw
2

(ν̄eLγ
µνeL − ēLγµeL) (2.46)

Note that J3 takes a very familiar form, namely that of a neutral current like the one we obtained

from QED 9:

JµEM = Qēγµe (2.47)

Now that a theory which is globally invariant is obtained, this allows to consider local gauge

transformations. I.e the fields map to

ψL → exp(−igwθa(x)Ta)ψL ψ̄L → ψ̄L exp(igwθa(x)Ta); Ta =
1

2
τa (2.48)

Note that making θa to be space-time dependent will break gauge invariance as

∂µψL → −igw(∂µθa)Tae
−igwθa(x)TaψL + e−igwθa(x)Ta∂µψL

Thus, inspired by QED results, one introduces the SU(2)L covariant derivative

Dµ = ∂µ + igwTaW
µ
a , (2.49)

where the Wa are the three vector fields that mediate weak interactions. Additionally, these bosons

9This fact would inspire Weinberg, Glashow and Salam to think of electromagnetism as a consequence of another
phenomenon.
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transform as [14]

W µ
a → W µ

a +
1

gw
∂µθa − εabcW µ

b θc(x), (2.50)

where there last term arises from the non abelian behavior of SU(2).

In a similar way as for gluons, one introduces the field strength tensor as

F a
µν = ∂µW

a
ν − ∂νW a

µ + gw
∑
b,c

εbcdW c
µW

d
ν (2.51)

With this definition, the total SU(2)L gauge invariant Lagrangian is given by

L = iψ̄Lγ
µDµψL −

1

4
F a
µνF

µν
a (2.52)

Note that the kinetic term for the W bosons will introduce 4-point and 3-point diagrams like those

given in Figures 2.10 and 2.11

Figure 2.10: 4-Point diagram arising from W boson Lagrangian

Figure 2.11: 3-Point diagram arising from W boson Lagrangian

As Equation 2.33 implies that T 2 and T3 are diagonal, it is possible to define ladder operators
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in analogy SU(2)-based spin in non relativistic quantum mechanics 10 [24, 27]

T± = T1 ± iT2 (2.53)

This will then induce the construction of gauge bosons associated to these new degrees of freedom,

namely [30]

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), (2.54)

as well as new charged currents given by

Jµ± =
1

2
(Jµ1 ± iJ

µ
2 ) (2.55)

Expanding for the lepton doublets, these currents take form 11 As a SU(2)L invariant Lagrangian

was obtained, one could then try to get the Feynman rules at tree level for the weak interaction.

However, the theory possess an additional symmetry which arises from the Dirac behavior of the

spinors, just like they do in QED. In other words, by taking spinors to be Dirac-like one obtains

an extra U(1) symmetry, referred as the hypercharge symmetry 12

This new U(1)Y symmetry, when taken as global, maps the left-handed and right-handed states

via Equations 2.56 and 2.57

ψL → exp

(
− i

2
g′YLθ

)
ψL (2.56)

ψR → exp

(
i

2
g′YRθ

)
ψR (2.57)

where g’ is the U(1)Y coupling constant. Note that both left and right handed spinors are not

forced to have the same hypercharge values, this is due to their doublet and singlet behavior under

SU(2)L. As the Lagrangian is gauge invariant under these new global transformations, one obtains

two different Noether currents, one from each chirality, namely

JYLL/Rµ =
g′

2
YL/Rψ̄L/Rγ

µψL/R, (2.58)

which for left-handed leptons becomes

JYLµ =
g′

2
YL(ν̄LγµνL + ēLγµeL) (2.59)

Following the same procedure as in QED it is possible to find that the derivative term breaks gauge

invariance under local transformations, such that the introduction of two covariant derivatives (one

10This is also known as the spherical basis of SU(2)
11Experiments have shown that these linear combinations are the physical currents and gauge bosons.
12Thus, one adds a subscript Y to the U(1) group to distinguish from QED.
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for each chirality) is needed

DL/R
µ = ∂µ + ig′YL/RBµ, (2.60)

such that the gauge field Bµ transforms just like in Equation 2.12 as U(1)Y is abelian13 The presence

of the new U(1)Y gauge symmetry, together with SU(2)L, in the weak interaction means that the

total gauge group is SU(2)L × U(1)Y . By acting simultaneously with both transformations, one

obtains that the interacting Lagrangian is given by [42]14

L ⊃ −JYRµ Bµ − JYLµ Bµ − Jµ3W 3
µ − J

µ
+W

+
µ − J

µ
−W

−
µ (2.61)

For left-handed leptons, the neutral part of the Lagrangian reads

L ⊃ −1

2
[(g′YLB

µ + gwW
µ
3 )ν̄Lγ

µνL + (g′YLB
µ − gwW µ

3 )ēLγµeL] (2.62)

This inspired Steven Weinberg, Glashow and Salam to realize that the B and W3 fields were not

the physical fields, but rather a superposition of them. Weinberg noticed that the structure of

the interaction take a form similar to that of QED, namely QAµJµ, inspiring his colleagues to

confirm that the electromagnetic interaction, as well as the weak interaction, arise from a unified

electroweak interaction. Additionally, he noticed that the matrix that takes the gauge fields to

the physical fields must be a rotation to preserve unitarity in the weak interaction. Weinberg’s

rotation matrix is defined by (
Bµ

W µ
3

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Aµ

Zµ

)
, (2.63)

where Zµ is a new vector boson that mediates neutral currents and Aµ is the photon field. The

weak mixing angle or Weinberg angle is then defined by 15

− g
′

gw
= tan θw (2.64)

If one now replaces Equation 2.63 into 2.62, the neutral interaction Lagrangian will read

L ⊃−
[
YL
g′

2
cos θw −

gw
2

sin θw

]
ν̄Lγ

µνLA
µ −

[
YL
g′

2
cos θw +

gw
2

sin θw

]
ēLγ

µeLAµ

−
[
YL
g′

2
sin θw +

gw
2

cos θw

]
ν̄Lγ

µνLZµ −
[
YL
g′

2
sin θw −

gw
2

cos θw

]
ēLγ

µeLZµ

(2.65)

From the currents coupled to the photon, it is straightforward to show that the electric charge can

13From now on this document will only focus in the interacting part of the Lagrangian.
14The ⊃ indicates that the terms on the right-hand side are part of the total Lagrangian.
15Experimental measurements have shown that sin2 θw = 0.231 [46]
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be written in terms of the weak coupling constants as

Q = YL
g′

2
cos θw +

gw
2

sin θw (2.66)

As neutrinos are postulated as neutral particles, its coupling with the photon must vanish. This

means

YL
g′

2
cos θw =

gw
2

sin θw, (2.67)

which reduces to YL = −1 after using Equation 2.6416. Additionally, note that YL = −1 along

with Equation 2.64 imply that Q = gw sin θw.

After replacing the electric charge and the hypercharge the neutral Lagrangian becomes

L = −QēLγµeLAµ −
gw

2 cos θw
ν̄Lγ

µνLZµ +
gw

2 cos θw
cos(2θw)ēLγ

µeLZµ (2.68)

When reading this Lagrangian, one notes that that neutrinos and leptons behave differently when

interacting with the Z boson. This fact was indeed seen at experiments such as LEP [47] and

TEVATRON [48], where the branching fraction of the Z boson to leptons and neutrinos are ap-

proximately 10% and 20% respectively [46]. Furthermore, note that the definition of the electric

charge in terms of both hypercharge and couplings to the W3 boson imply that the Gell-Mann-

Nishijima formula holds in the electroweak interaction due to the SU(2) ⊗ U(1) structure of the

gauge group, namely

Q = T3 +
1

2
YL/R

If one now follows the same procedure with the right-handed states, it can be found that YR(νR) =

0, YR(eR) = −2, YR(uR) = 4
3

and YR(dR) = −2
3
. Using Gell-Mann-Nishijima formula, one rewrites

the Z boson Lagrangian, for a generic spinor ψ, as

L ⊃ −gw
2 cos θw

[T3 −Q sin2 θw]ψ̄γµψZµ (2.69)

As the Z boson is a superposition of both B and W3, it couples differently to each component of

the (V-A) currents that participate in the weak interaction, namely

L = − gw
2 cos θw

ψ̄γµ(cv − caγ5)ψZµ, (2.70)

where cv = T3L − Q sin2 θw and ca = T3L. Hence, the total Lagrangian, up to ghost field terms,

16This value only holds for leptons. For quarks one obtains YL(u) = 1
3 and YL(d) = 1

3 [24]
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will now be

L = iψγµ∂µψ −
1

4
FµνF

µν − 1

4
ZµνZ

µν − 1

4
WµνW

µν − Jµ±W±
µ −Qψ̄γµψAµ −

gw
2 cos θw

ψ̄γµ(cv − caγ5)ψZµ,

(2.71)

such that one obtains the following Feynman rules

• Lepton-Neutrino coupling with W boson

• Quark coupling with W boson 17

• Fermion coupling with the Z boson

17Here the Vab is the CKM quark mixing matrix, which arises from the experimental observation of CP violation
in Kaon decay [27].
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• Vector boson propagator

• W boson coupling with Z boson

• W boson coupling with the photon

• 4 vector boson coupling

• W boson-Photon 4 point interaction
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For the remaining Feynman rules see [24, 27, 30]

2.4 The Higgs Mechanism

In the last section a gauge invariant theory for fermions, interacting via weak processes, was

found. However, one had to set vector boson and fermion masses to zero in order to preserve

guauge invariance under the electroweak gauge group. Setting masses to zero was a problem that

needed a solution to give a proper prescription of the behavior of fermions.

The mass problem in the electroweak interaction was solved by Higgs, Englert, Kibble, Guralnik

and other physicists after they analyzed how photons gain mass terms after Spontaneous Symmetry

Breaking (SSB) in Ginzburg-Landau theory, giving rise to superconductivity and superfluidity.

Based on this theory, they introduced a complex scalar doublet φ, whose dynamics are contained

in the following Lagrangian 18

L = (∂µφ)∗(∂µφ)− V (φ∗φ) (2.72)

where V is a self-interacting potential. n order to preserve gauge invariance and renormalizability,

the potential must be given by [14]

V (φ∗φ) = µ2φ∗φ+
λ

4
(φ∗φ)2→ φ =

(
φ1

φ2

)
(2.73)

Note that if µ2 > 0 the potential will be symmetric, as seen in Figure 2.12, such that the minimum

of the potential will be located at φ0 = 0.

18This doublet has T3 = 1
2 and Y=1
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Figure 2.12: Interaction potential if µ2 > 0.

However, if µ2 value becomes less than zero, for example due to a decreasing temperature, the

symmetry of the potential due to this spontaneous change of sign 19 as seen in Figure 2.13

Figure 2.13: Interaction potential if µ2 < 0.

with minima occurring at |φ0|2 = −2µ2
λ

. Nevertheless, note that the minima are not unique and

that a phase transition such as,

φ0 → e−iαφ0 (2.74)

will also be a minimum of the potential, leaving the dynamics of the field invariant. Thus, there

is an infinite number of available minima, or vacuum expectation values, and that choosing one of

19That is why it is called an SSB. Note that it is also a phase transition.
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them will break the symmetry of the potential.

Suppose now that nature chooses one of these minima, namely v. As the base of the potential

is, topologically speaking, a circle no extra energy is required for moving around it, introducing

redundancies known as Goldstone bosons [14] 20. As choose of a minimum has been done, it is

possible to expand the doublet in terms of angular and radial modes (Goldstone and Higgs fields

respectively) as 21

φ =

(
G±

v+h+iG0
√
2

)
(2.75)

To eliminate the presence of Goldstone modes one uses the so called Unitary Gauge, such that the

doublet becomes [49]

φ =

(
0
v+h√

2

)
(2.76)

To preserve the local SU(2) × U(1) gauge invariance of the doublet Lagrangian, one introduces

the covariant derivative

Dµ = ∂µ + igwTaW
a
µ + i

g′

2
Bµ, (2.77)

such that the gauge invariant Lagrangian is

L = (Dµφ)∗(Dµφ)− µ2φ∗φ− λ

4
(φ∗φ)2 (2.78)

Now, from this Lagrangian one can take the part that only considers vector bosons and no inter-

actions with the Higgs field, h, reads [14]

(Dµφ)∗(Dµφ) ⊃

∣∣∣∣∣
(
∂µ + igwTaW

a
µ + i

g′

2
Bµ

)
× 1√

2

(
0

v

)∣∣∣∣∣
2

(2.79)

=
v2

8

∣∣∣∣∣
(
gwτaW

a
µ + g′Bµ1

)(
0

1

)∣∣∣∣∣ (2.80)

Expanding the sum over a in terms of the Pauli matrices one obtains

(Dµφ)∗(Dµφ) ⊃v
2

8

∣∣∣∣∣
(
gwW

µ
1 − igwW

µ
2

−gwW µ
3 + g′Bµ

)∣∣∣∣∣
2

(2.81)

=
v2

8
[g2(W µ

1 W
1
µ +W µ

2 W
2
µ) + (gwW

µ
3 − g′Bµ)2] (2.82)

20Formally speaking, Goldstone bosons are redundant degrees of freedom in a local gauge theory, whereas they
become relevant at global symmetry breaking of gauge theories.

21This parametrization is known as Higgs-Kibble or Kibble parametrization.
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By replacing the W bosons in terms of the ± fields, as well as W3 and B in terms of Equation

2.63, the Lagrangian becomes

(Dµφ)∗(Dµφ) ⊃1

2

(
gwv

2

)2

WµW
µ +

1

2

v2(g2w + g′2)

4
ZµZ

µ (2.83)

=
1

2
m2
wWµW

µ +
1

2
m2
zZµZ

µ (2.84)

This result is one of the most important in physics as it explains how gauge bosons gain mass due

to SSB, thus explaining why the weak interaction is short ranged. Note that there is no mass term

for photons, as the terms related to its linear combination cancel out.

To explain fermion masses one then considers Yukawa couplings with the Higgs field [34]

LY uk = Γuij q̄Liφ̃uRj + Γdij q̄LiφdRj + Γeij ēLiφeRj; φ̃ = iτ2φ
∗, (2.85)

where the Γ matrices are the couplings between fermions and the Higgs doublet (or its conjugated

version φ̃). Note that the Yukawa couplings to be between left-handed and right-handed states have

been conveniently constructed, as mass terms arise as a direct coupling between them according

to Equation 2.39.

For simplicity, and without loss of generality, consider only one lepton family. Now, if φ gets

a vacuum expectation value, it is parametrize it using Equation 2.75, such that the Lagrangian

reads

L ⊃feēL
(
v + h√

2

)
eR (2.86)

=
fev√

2
ēLeR +

fe√
2
ēLheR (2.87)

Hence, one defines the lepton mass as me = fev√
2
. With this definition, the Lagrangian becomes

L ⊃ mēLeR +
m

v
ēLheR (2.88)

recovering fermion masses within the formalism.

So, mass terms for fermions, based on SSB and couplings with the Higgs boson, have been

obtained . This being said, one can write a total gauge group for the strong and electroweak

interactions, without unifying them yet. To see this recall that quarks interact under the SI and

also under the electroweak interaction, acting as color triplets, left-handed doublets and right-

handed singlets respectively. Thus, one can say that a total gauge theory for quarks is invariant

under the gauge group given in Equation 1.2

Additionally, this group also describes a gauge theory of leptons as experiments have shown

that leptons do not participate in the SI, therefore they are considered color singlets. Hence, note

that a local Lorentz invariant gauge theory that describes three of the fundamental forces of nature

has been obtained.
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3. State of The Art

The SM, together with General Relativity (GR), is one of the most precise theories in physics,

as it describes the electromagnetic coupling constant ge with 12 significative figures of precision

[46]. The SM is describes how the electromagnetic, weak, and strong interactions among fermions

are mediated by spin-1 bosons. In addition to this, the SM gives mass terms to all particles,

except neutrinos, via Spontaneous Symmetry Breaking (SSB) of the electroweak gauge group

SU(2)× U(1).

Nevertheless, the SM is an incomplete theory as it cannot describe many experimental and phe-

nomenological aspects, such as quantum triviality, Higgs boson mass finiteness, matter-Antimatter

asymmetry, neutrino oscillations-mass, quantum gravity

Thus, the SM has to be expanded into a more complete theory. According to the SM, neutrinos

are massless particles which only interact via weak interactions [30]. Being massless particles,

neutrinos can be introduced in the SM as part of a left-handed SU(2)L doublet, together with the

left-handed component of its associated charged lepton(
ν`
`

)
L

whereas the right-handed component of the charged lepton is introduced as a singlet `R. How-

ever, experimental analysis of solar neutrinos show that they oscillate between flavor states, when

travelling a distance L, which can only be explained if neutrinos have mass. Then, the transition

probability between two flavors, as a function of L, is given by [50]

P (L) = sin2(2θ) sin2

[
1.27∆m2L

E

]
, (3.1)

where θ is the mixing angle between the two flavors, and ∆m2 is the difference of the square masses

of the neutrinos, which according to experiments is very small [51]. On this work, we will focus

on the neutrino mass problem, giving priority to the lepton sector of the weak interaction.

As the introduction of mass to neutrinos explains the oscillation between flavor states, there

should be neutrino mass terms in the SM-Lagrangian, which are not present. To include these

terms, one has to consider the introduction of right-handed singlets, νR, that should interact with

the SM Higgs to produce mass terms of the SM neutrinos. This means that we have to introduce

a Yukawa coupling between the Higgs, and our new neutrino states:

−Lm ⊃ f νij
¯̀i
Lφ̃ν

j
R (3.2)

In Equation 3.2 f νij are the Yukawa couplings to neutrinos, ` is the lepton doublet, νR is the right-

handed neutrino component, and φ̃ is the charge conjugated Higgs field, which defined as φ̃ = iτ2φ.
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Now, to produce mass terms, we have to consider SSB of the SM gauge group, this can be done

by introducing the Kibble parametrization of the Higgs field

φ =
1√
2

(
0

v + h

)
, (3.3)

that leads to

−Lm ⊃
1√
2
f νij

¯̀i
Lν

j
Rv +

1√
2
f νij

¯̀i
Lν

j
Rh (3.4)

Now, only focusing on the neutrino sector, i.e `i = νi, and if we follow the usual SM SSB, the

Dirac mass matrix can be defined as (MD)ij = 1√
2
f νijv. This definition allows us to reduce the

Lagrangian to

−Lm = (MD)νij ν̄
i
Lν

j
R +

1√
2
f νij ν̄

i
Lν

j
Rh+ h.c (3.5)

Note that the second term can be understood in terms of the Feynman diagram in Figure 3.1

Figure 3.1: Feynman diagram associated to a ν̄νh coupling

Even though Equation 3.5 explains how the measured neutrino masses are generated by the

introduction of new right-handed states, it does not explain the smallness of these masses. To

do so, we will follow [50, 52, 53] and introduce an arbitrary number, ni, of massive Majorana

neutrinos. The Lagrangian describing the mass term of Majorana neutrinos is

−LM =
1

2
ν̄cLMMνR + h.c, (3.6)

where we introduced the charged conjugated field νcL = Cν̄TL . Then, to make a more profound study

of the origins of neutrino masses, it is natural to consider the complete neutrino mass Lagrangian,

which contains the Majorana and Dirac terms:

−Lm ⊃
1

2
[ν̄LMDνR + ν̄cLM

T
Dν

c
R + ν̄cLMMνR] + h.c (3.7)

=
1

2
ν̄LMNνR + h.c (3.8)
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In the previous equation we have redefined the neutrino states and the mass matrix as

νR = (νcL, νR)T ;MN =

(
0 MD

MT
D MM

)

Now, note that the mass matrix MN is non diagonal. This means that the weak interaction

eigenstates do not correspond with the mass eigenstates. Therefore, we have to diagonalize the

mass matrix. This can be done by means of an orthogonal transformation V, such that we obtain

a diagonal matrix [54, 55]

Md = diag(m1,m2, · · · ,mi) = V TMNV, (3.9)

where the mi are the eigenvalues of the mass matrix. After diagonalization, we obtain Md from

the decomposition of MN in it’s two possible eigenmatrices

M ′
N = diag(λ+, λ−);λ± =

1

2
[MM ±

√
M2

m + 4MT
DMD] (3.10)

One interesting scenario, and one of the main focuses of this project, is the so called Seesaw

mechanism. In the Seesaw scenario, it is assumed MM � MD. In other words, we set the masses

of the right-handed Majorana neutrinos to be bigger than those of the SM-neutrinos. This allows

us to expand the squared root and rewrite both eigenmatrices as:

λ± =
1

2
[MM ±MM(1 + 2(M−1

M )2MT
DMD)] (3.11)

This reduces M ′
N to

M ′
N =

(
MM 0

0 −M−1
M MT

DMD

)
(3.12)

To better illustrate this idea, let us consider just one neutrino flavor. Then, the mass eigenmatrices

reduce to single eigenvalues:

λ± =
1

2

[
mm ±mm

(
1− 2

m2
D

m2
m

)]
λ+ =mm; λ− =

m2
D

mm

Note that for the second mass eigenvalue, we have that it will be very small if the newly introduced

Majorana neutrino is very heavy. So, it is possible to associate λ− with the SM-neutrinos.

Even though the introduction of very heavy Majorana neutrinos solves the mass problems via

Seesaw, it introduces one deep problem as the lepton number, L, is not preserved in any process

involving them. As a matter of fact, the mass term of Majorana neutrinos breaks L by two units,

creating a lepton excess. Nonetheless, these excess can be used to explain the observed asymmetry
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between matter-antimatter in the universe, namely via Leptogenesis [12].

In the SM, both baryon number (B) and L are not explicit symmetries of the model, but the

arise as one via perturbative analysis. In other words, B and L become symmetries by analyzing

how they behave at any order of the S matrix. Being L one of the symmetries of the SM, we shall

now explore a way to break it; to do so we promote L (or B-L) to be a U(1) gauge symmetry of

the SM, this extends the electroweak gauge group to

GEW = SU(2)L × U(1)Y × U(1)L/B−L (3.13)

In this project we will focus on a global breaking of the U(1)L/B−L gauge group via a scalar

singlet ϕ. However, many authors such as [56, 57] have studied the consequences of a local breaking

of this symmetry, which introduces a new vector boson, the Z’ boson. The introduction of this

new scalar singlet allows us to expand the Higgs sector to [58]

−L = m2
φφ
†φ+

λφ
2

(φ†φ)2 +m2
ϕϕ
†ϕ+

λϕ
2

(ϕ†ϕ)2 − V (φ, ϕ) (3.14)

Here we just focus on the expansion of the Higgs sector by a singlet scalar charged under U(1)B/B−L,

this means that the potential V can be ignored as it is meaningless in our study. However, some

authors such as [58], consider a mixing potential between the SM Higgs doublet and the singlet.

After defining our Higgs extension, we now consider a Kibble parametrization for both the singlet

and doublet as:

φ =

(
G+

v+h+G0
√
2

)
; ϕ =

1√
2

(f + A+ iJ) (3.15)

Note that we have in total four Goldstone modes; three of them (G0, G±) get eaten by the W and

Z bosons, giving them longitudinal polarization modes, while one of them, J, remains free in the

model. We will now refer to J as the Majoron, and we will consider it to be massive [54, 55, 59].

Note that we now require an extension of the Yukawa sector, we do this by inserting new

couplings between U(1)L/B−L charged particles, namely between the Heavy Neutrino eigenstates

(HN) and the scalar singlet:

−LY uk ⊃
1

2
yij ν̄

c,i
L ϕν

j
R (3.16)

After SSB of the L symmetry, Majorana mass terms are generated as well as couplings between

the HN with A and the Majoron:

−LY uk ⊃
1

2
MM,ij ν̄

c,i
L ν

j
R +

1

2
√

2
yij ν̄

c,i
L Aν

j
R +

i

2
√

2
yij ν̄

c,i
L Jν

j
R; (3.17)

Note that we found a way of generating L-breaking Majorana masses for the right-handed neutrinos,

and generated neutrino mixing. Now, after changing to the neutrino mass eigenstates,ni, we follow
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[55] for the tree-level Lagrangian J-HN coupling (also after SM unitary gauge):

−LJN =
i

2f

6∑
i,j=1

n̄i[Cij(miPL −mjPR) + Cji(mjPL −miPR) + δijγ
5mi]njJ (3.18)

Here, the C matrix is a 6× 6 matrix related to the change of basis matrix V by

Cij =
3∑
l=1

VliV
∗
lj

where the V matrix is related to the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing

matrix, U, via [55]

C =

(
1− AA† A

A† A†A

)
; A = U †MDM

−1
M . (3.19)

The consideration of neutrino mass eigenstates induces a neutrino-lepton mixing in the W boson

Lagrangian, which is now given by [55]

Lw ⊃
gw√

2

6∑
i=1

3∑
a=1

(¯̀
aBaiγ

µW−
µ PLni + n̄iB

∗
aiγ

µW+
µ PL`a) (3.20)

Here B is the 3× 6 neutrino lepton mixing matrix, which is related to the PMNS matrix via

B =

(
U

(
1− 1

2
AA†

)
UA

)
(3.21)

Given that the PMNS matrix has the values given in Equation 3.22 [46], it is straightforward to

check that the lepton-neutrino mixing values are considerably small.

|U | =

0.799 · · · 0.844 0.516 · · · 0.582 0.141 · · · 0.156

0.242 · · · 0.494 0.467 · · · 0.678 0.639 · · · 0.774

0.284 · · · 0.521 0.490 · · · 0.695 0.615 · · · 0.754

 (3.22)

Note it is possible to reduce the terms in the Lagrangian given in Equation 3.18, if we consider the

Seesaw mechanism. This means that there are three negligible mass values, associated to the SM

neutrinos. Additionally, this implies that the first two terms of the Lagrangian can be ignored,

this leaves us with the reduced Lagrangian

−LJN =
i

2f

3∑
i=1

min̄iγ
5ni (3.23)

these couplings can be represented on a Feynman diagram as seen in Figure 3.2. In this case, the
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vertex factor for one neutrino is given by

Fvertex =
im

2f
γ5 (3.24)

Figure 3.2: Feynman diagram of the J-HN coupling at tree level. Fermion flux has been ignored
as the ni are Majorana-like.
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4. Production Mechanisms at the LHC.

In recent years the HN production mechanisms have been considered of great interest, as these

particles can be consider DM candidates. However, no signal of these neutrinos has been found

at the LHC experiments or any other experiment until now. Thus, the study of J-HN couplings

arises as one possible scenario for DM production, as finding a Majoron can be an indirect signal

for HN. Throughout this whole project we consider the J boson to be massive and stable, which

simplifies some of the calculations without loss of generality.

In this project we will consider three possible production mechanisms that have been pillars

of heavy particle production at the CERN’s Large Hadron Collider(LHC). The first of them is

known as the Drell-Yan Mechanism (DY) and allows us to study how particles couple to the

color sector of a given theory [60]. The second production mechanism, VBF [61], allows to study

production of new particles through electroweak-meadiated interactions [62, 63]. Nevertheless,

we consider an indirect VBF production for the Majoron, such that it emulates its production

to neutrinoless double beta decay [64]. Representative Feynman diagrams for the DY and VBF

production mechanisms are presented in Figures 4.1 and 4.2, where fermion flux arrows have been

placed for a better understanding of the Majorana behavior of HN.

Figure 4.1: DY production mechanism of J via HN coupling.
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Figure 4.2: VBF production of J.

The third production mechanism that is being considered is J production via W boson exchange,

or W channel, between a quark and antiquark pair and, together with the DY process, helps us

to understand the coupling between the Majoron and the weak gauge bosons at tree level. The

Feynman diagram of this process can be seen in Figure 4.3 [65]

Figure 4.3: Tree-level production of a J via W channel

37



5. Experimental Setup

The simulations were performed based upon the CMS input card in Delphes. Therefore, a brief

introduction to the detector and its experimental parameters is presented, in order to understand

the feasibility study associated to this dissertation.

Figure 5.1: Sketch of the CMS detector components. Adapted from [66]

The CMS experiment is a multi-purpose detector at CERN’s LHC. It has a length of 21.6

meters, with a diameter of 14.6 meters and weights 12500 tonnes. The detector is composed of a

set of different sub-detectors as seen in Figure 5.1. The CMS detector has a cylindrical shape and

it is divided into two main sections: barrel and endcaps. The different sub-detectors are located

concentrically in layers [16]. The inner most layer has a pixel detector made out of silicon, used

for the reconstruction of primary and secondary vertices from electrically charged particles that

decay promptly within this sub-detector volume. The pixel detector is followed by a sub-detector

made of silicon strips, known as the tracker detector, used for the reconstruction of trajectories

of electrically charged particles. Following the tracker detector, are found the electromagnetic

(ECAL) and hadron (HCAL) calorimeters, used to measure both energy and direction of the

particles undergoing electromagnetic and strong interactions, respectively. The ECAL detector is

a modular device composed of lead-tugsten crystals, highly efficient to produce electromagnetic

showers after interacting with charged particles. The emerging photons from the showers are

measured using photo-diodes, that collect the light produced from the signal and convert it into
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an electric signal. This signal is then used by software tools to detect the energy and direction

of the corresponding particles [67]. The ECAL is made of non magnetic materials such as copper

and steel, which are characterized by heavy nuclei favoring strong interactions. Following a similar

functioning as ECAL, hadronic particles enter the calorimeter, interact with the non-magnetic

layers producing hadronic showers. These showers are then detected by plastic scintillators and

their signals are transformed into electric pulses. These signals are then analyzed to estimate the

energy and direction of the original particles [16].

The next layer of the detector consists of a superconducting solenoid, which surrounds the

previous sub-detectors. This solenoid is made of a niobum-titanium alloy that is refrigerated to

2K by using liquid helium, producing a uniform magnetic field of 3.8T inside the barrel [67]. This

magnetic field is used to measure the momentum of electrically charged particles as it induces

curvatures in their trajectories.

Finally, the last set sub-detectors conform the muon detector system. This system is made of

three different detector technologies, that allow to reconstruct the trajectory of the muons with a

fast trigger response, and are alternated with iron returning yokes of steel to enclose the magnetic

field produced by the solenoid. The trigger is a date-filtering system composed of hardware and

software algorithms, designed to collect interesting events from the proton-proton collisions. The

muon detectors have a total of 1400 chambers distributed in 250 drift tubes, 540 cathode strip

chambers that track the position of a muon and provide a trigger, as well as 610 resistive plate

chambers that give a redundant trigger, which quickly decide over the event storage [68].

5.1 Experimental Parameters

Before defining the experimental parameters of the CMS detector, it is useful to consider its

geometry, which is presented in Figure 5.2.

Figure 5.2: Coordinate system of the CMS detector. Adapted from [69]

• Luminosity (L) The luminosity gives a measure of the performance of the accelerator. For
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head on colliding Gaussian beams, such as the LHC ones, the luminosity is given by [70]

L =
N1N2fNb

4πσxσy
, (5.1)

where N1 and N2 are the number of particles per bunch, f the revolution frequency, Nb the

number of bunches per beam and the effective interaction area 4πσxσy. However, if these

collisions are not head on, such that the beams interact at a relative scattering angle α, the

luminosity is given by

L =
N1N2fNb

4πσxσy
α (5.2)

For the LHC, it has been measured that L = 2.06× 1034cm−2s−1 [71]. Additionally, one can

also consider the integrated luminosity, which is given by

L =

∫ t2

t1

dtL, (5.3)

as it is directly related to the interaction cross section and the total number of events via

Lσ = N (5.4)

• Cross Section (σ) The cross section, σ, is used in particle physics as a measure of the pro-

duction probability of a certain process per unit area. This variable is related to the type

of interaction between the colliding beams, the integrated luminosity of the collider and the

total number of events.

• Missing Transverse Energy The Missing Transverse Energy (MET) or Missing Transverse

Momentum, pmissT , is a measure of the energy associated to undetected particles such as

neutrinos or even new physics. To take these particles into account, one considers total

momentum conservation of both detected and undetected particles [72]∑
a

~paT (detected) +
∑
b

~pbT (undetec) = 0 (5.5)

~pmissT = −
∑
a

~paT (5.6)

one then takes the magnitude of the vector given in the last equation to be the MET or pmissT .

• Pseudorapidity (η) The CMS detector does not use explicitly the polar angle θ. In its

place the pseudorapidity η is used. As a major advantage comes that η gives a significantly

more uniform distribution of the particle multiplicity across the detector volume than the θ

angle. Additionally, the pseudorapidity difference between two particles is a Lorentz invariant

quantity if a Lorentz transformation parallel to the beam line is performed. The definition
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of η is given by [1]

η = − ln

(
tan

θ

2

)
(5.7)
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6. Calculation of the production matrix element of a Ma-

joron via DY Mechanism.

For this calculation, as well as for further ones, we follow the standard electroweak Feynman

rules given in [24] and choose Majorana fermion propagators given in [73].

After assigning momentum values to all particles we obtain the Feynman diagram that can be

seen in Figure 6.1.

Figure 6.1: Feynman diagram of DY production of a J after momentum assignation.

Our first step is to find momentum conservation rules, these can be easily obtained from the

Feynman diagram:

p1 − p2 =q1 (6.1)

p3 − p4 =q1 (6.2)

q2 − p4 =p5 (6.3)

p5 − p6 =q3 (6.4)

p7 − p8 =q3 (6.5)

p3 + p9 =q4 (6.6)

p11 − p10 =q4 (6.7)

(6.8)

After a little algebra, all these momentum conservation relations can be reduced to

q2 = p1 + p2 + p7 + p8 − p6 − p9 − p11 − p10 (6.9)
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This being established we can write the matrix element for the process

iM = [ū(p11)×
−iαw√

2
γεPL × v(10)]× iDW

ηε (q4)× [ū(p9)×
−iαw√

2
γηPL × iSF (p3)]

×[ū(p7)×
−iαw√

2
γκPL × v(p8)]× iDW

βκ(q3)× [v̄(p6)×
−iαw√

2
γβPL × iSF (p5)]

×iSF (p4)C ×
imN

2f
γ5 × iDZ

µν(q1)×
−igz√

2
γν(cNA − cNV γ5)× [v̄(p2)

×−igz√
2
γµ(cqA − c

q
V γ

5)× u(p1)]

(6.10)

where the left-handed projection operator is PL = 1
2
(1− γ5). Due to the Majorana nature of NR,

we can get rid of the charge conjugation operator [74]:

v̄(p6) ⇐⇒ u(p6) (6.11)

Now, let us analyze each current contained in the matrix element such that it takes the form

−iM = A×B × E ×D

For the A term we have

A =[ū(p11)×
−iαw√

2
γεPL × v(10)]× iDW

ηε (q4)× [ū(p9)×
−iαw√

2
γηPL × iSF (p3)] (6.12)

=
−α2

w

2
[ū(p11)γ

εPLv(p10)]× iDεη(q4)
W × [ū(p9]γ

ηPLiSF (p3)] (6.13)

Let us now rewrite A in terms of the propagator

iDµν(q) = iΠ(q)

(
ηµν −

qµqν
m2
W

)
; Π(q) =

1

q2 −m2
W

(6.14)

Hence

A =− −iΠ(q4)α
2
w

2
[ū(p11)γ

εPLv(p10)](ηεη − q4εq4η/m2
W )[ū(p9)γ

ηPLiSF (p3)] (6.15)

After expanding the propagator terms, A takes the form

A =− iΠ(q4)α
2
w

2

{
[ū(p11)γηPLv(p10)][ū(p9)γ

ηPLiSF (p3)] · · ·

· · · − 1

m2
W

[ū(p11)/q4PLv(p10)][ū(p9)/q4PLiSF (p3)]

} (6.16)
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Next, we take the element B as

B =[ū(p7)×
−iαw√

2
γκPL × v(p8)]× iDW

βκ(q3)× [v̄(p6)×
−iαw√

2
γβPL × iSF (p5)] (6.17)

=[ū(p7)×
−iαw√

2
γκPL × v(p8)]× iDW

βκ(q3)× [u(p6)×
−iαw√

2
γβPL × iSF (p5)] (6.18)

Note that this term has the same form of Equation 6.12, up to a minus sign. This obligates B to

take the form

B =
iΠ(q5)α

2
w

2

{
[ū(p7)γβPLv(p8)][u(p6)γ

βPLiSF (p5)] · · ·

· · · − 1

m2
w

[ū(p7)/q3PLv(p8)][u(p6)/q3PLiSF (p5)]

} (6.19)

Consequently, let us define the C factor as simply

E = iSF (p4)×
imN

2f
γ5 (6.20)

Before defining D, let us rewrite the pseudovector couplings of the Z boson, to a fermion f, as well

as the coupling constant as

P f
Z = (Cf

A − C
f
V γ

5); αz =
αw√

2 cos θW
(6.21)

This lets us define the final element D as

D = iDZ
µν(q1)×

−iαz√
2
γν(cNA − cNV γ5)× [v̄(p2)×

−iαz√
2
γµ(cqA − c

q
V γ

5)× u(p1)] (6.22)

In terms of the projector, which was defined in Equation 6.21, as

D = −α
2
z

2
× iDµν(q1)

Z × γνPN
z × [v̄(p2)γ

µP q
z u(p1)] (6.23)

For the Z boson propagator, let us define I(q)= 1
q2−m2

z
. This implies that D takes the form

D = −iα
2
ZI(q1)

2

{
γµPN

z [v̄(p2)γ
µP q

z u(p1)]−
1

m2
Z
/q1P

N
z [v̄(p2)/q1P

q
Zu(p1)]

}
(6.24)

However, as the polarizations and spin values of the initial and final states are arbitrary, we are

obligated to average over the initial states, and sum over the spins of the final ones. This means

that we have to calculate the unpolarized matrix element as

〈|M|2〉 =
1

2

∑
spins

M∗M (6.25)
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To calculate the adjoint matrix element, we have first to calculate the adjoints of some of the

currents. Let us begin with a pseudovector current

[ūγµPLv]† =v†P †L(γµ)†ū† (6.26)

=v†PLγ
0γµγ0γ0u (6.27)

=v̄PRγ
µu (6.28)

where PR = 1
2
(1 + γ5).Now, for the other possible current we have

[uγβPLiSF ]† =[v̄γβPLiSF ]† (6.29)

=− iS†FPLγ
0γβγ0γ0v (6.30)

=− iS†Fγ
0PRγ

βū (6.31)

=− γ0iSFPRγβū (6.32)

Finally, for the Z current we have

[v̄γµP f
z u]† =u†(P f

z )†(γµ)†v̄† (6.33)

=u†P f
z γ

0γµγ0γ0v (6.34)

=u†P f
z γ

0γµv (6.35)

=u†(Cf
V − C

f
Aγ

5)γ0γµv (6.36)

=u†γ0(Cf
V + Cf

Aγ
5)γµv (6.37)

=ūP f
z,+γ

µv (6.38)

This being established, we have that the conjugated matrix element is given by

iM∗ = D∗ × E∗ ×B∗ × A∗ (6.39)

With each term given by

D∗ = −iα
2
ZI(q1)

2

{
[ū(p1)P

q
z,+γ

µv(p2)P
N
z γµ]− 1

m2
Z

[ū(p1)Pz,+/q1v(p2)P
N
z /q1]

}
(6.40)

For C we have:

E∗ =
imN

2f
γ5γ0iSF (p4)γ

0 (6.41)

Now, for B:

B∗ =
iΠ(q5)α

2
W

2

{
[iSF (p5)PRγ

βū(p6)][v̄(p8)PRγβu(p7)]−
1

m2
W

· · ·

· · · [iSF (p5)PR/q3ū(p6)][v̄(p8)PR/q3u(p7)]

} (6.42)
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Finally, for A we have

A∗ =
−iΠ(q4)α

2
W

2

{
[iSF (p3)PRγ

ηu(p9)][v̄(p10PRγηu(p11)] · · ·

· · · − 1

m2
W

[iSF (p3)PR/q3u(p9)][v̄(p10)PR/q4u(p11)]

} (6.43)

This means that the spin averaged matrix element takes the form

〈|M|2〉 =
1

2

∑
spins

(D∗ × E∗ ×B∗ × A∗)(A×B × E ×D) (6.44)

To make these calculations, first let us calculate the product A∗×A. Before of it, let us define the

parameter

a2(q4) = −Π2(q4)α
4
W

4
(6.45)

Hence,

∑
spins

A∗A = a2
∑
spins

[
iSF (p3)PRγ

ηu(p9)][v̄(p10)PRγηu(p11)]− · · ·

· · · − 1

m2
W

[iSF (p3)PR/q4u(p9)][v̄(p10PR/q4u(p11)]

}
× · · ·

· · · ×
{

[ū(p11)γλPLv(p10)][ū(p9)γ
λPLiSF (p3)]− · · ·

· · · − 1

m2
W

[ū(p11)/q4PLv(p10)][ū(p9)/q4PLiSF (p3)]

}
As each term has implicit sums over spin states, we can move terms such that

∑
spins

A∗A =a2
∑
spins

{
[iSF (p3)PRγ

ηu(p9)ū(p9)γ
λPLiSF (p3)]× · · ·

· · · × [v̄(p10)PRγηu(p11)ū(p11)γλPLv(p10)]− · · ·

· · · − 1

m2
W

[v̄(p10)PRγηu(p11)ū(p11)/q4PLv(p10)]× · · ·

· · · × [iSF (p3)PRγ
ηu(p9)ū(p9)/q4PLiSF (p3)]− · · ·

· · · − 1

m2
W

[v̄(p10)PR/q4u(p11)ū(p11)γλPLv(p10)]× · · ·

· · · × [iSF (p3)PR/q4u(p9)ū(p9)γλPLiSF (p3)] + · · ·

· · ·+ 1

m4
W

[iSF (p3)PR/q4u(p9)ū(p9)/q4PLiSF (p3)]× · · ·

· · · × [ū(p10)PR/q4u(p11)ū(p11)/q4PLv(p10)]

}

(6.46)
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Our next step is to use the identities∑
r

urα(p)ūrβ = (/p+m)αβ;
∑
r

vrαv̄rβ = (/p−m)αβ (6.47)

After taking the sums, all terms will be nothing but traces, such that

∑
spins

A∗A =a2
{

tr[iSF (p3)PRγ
η(/p9 +m1)γ

λPLiSF (p3)]× · · ·

· · · × tr[(/p10 −m2)Prγη(/p11 +mν1)PL]− · · ·

· · · − 1

m2
W

tr[(/p10 −m2)PRγη(/p11 +mν1)/q4PL]× · · ·

· · · × tr[iSF (p3)PRγ
η(/p9 +m1)/q4PLiSF (p3)]− · · ·

· · · − 1

m2
W

tr[(/p10 −m2)PR/q4(/p11 +mν1)γλPL]× · · ·

· · · × tr[iSF (p3)× PR/q4(/p9 +m1)γλPLiSF (p3)]− · · ·

· · · − 1

m4
W

tr[γ0iSF (p3)PR/q4(/p9 +m1)/q4PLiSF (p3)]× · · ·

· · · × tr[(/p10 −m2)PR/q4(/p11 +mν1)/q4PLv(p10)]

}

(6.48)

Consequently, for the product of B∗ and B, we have the same structure. This means, that we

already know it’s result by the means of Equation 6.48, but as we are changing the momenta, we

first define

b2 = −Π(q5)
2α4

W

4
(6.49)

Such that we obtain the traces∑
spins

B∗B =b2
{

tr[iSF (p5)PRγ
β(/p6 −m3)γ

αPLiSF (p5)]× · · ·

· · · × tr[(/p8 −mν2)PRγβ(/p7 +m4)γαPL]− · · ·

· · · − 1

m2
W

tr[iSF (p5)PRγ
β(/p6 −m3)/q3PLiSF (p5)]× · · ·

· · · × tr[(/p8 −mν2)PRγβ(/p7 +m4)/q3PL]− · · ·

· · · − 1

m2
W

tr[iSF (p5)PR/q3(/p6 −m3)γ
αPLiSF (p5)]× · · ·

· · · × tr[(/p8 −mν2)PR/q3(/p7 +m4)γαPL] + · · ·

· · ·+ 1

m4
W

tr[iSF (p5)PR/q3(/p6 −m3)/q3PLiSF (p5)]× · · ·

· · · × tr[(/p8 −mν2)PR/q3(/p7 +m4)/q3PL]

}

(6.50)
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For the E∗E product we first define

c2 = −m
2
N

4f 2
(6.51)

∑
spins

E∗E = c2 tr[γ0iSF (p4)γ
0iSF (p4)] (6.52)

Finally, for the D∗D we define

d2 = −α
4
ZI(q1)

2

4
(6.53)

such that the traces become∑
spins

D∗D =d2
{

tr[(/p1 +mq1)P
q
Z+γ

µ(/p2 −mq2)P
N
Z γµγνP

N
Z γ

νP q
Z ]− · · ·

· · · − 1

m2
W

tr[(/p1 +mq1)P
q
Z+γ

µ(/p2 −mq2)P
N
Z γµ/q1P

N
Z /q1P

q
Z ]− · · ·

· · · − 1

m2
W

tr[(/p1 +mq1)P
q
Z+/q1(/p2 −mq2)P

N
Z /q1γνP

N
Z γ

νP q
Z ] + · · ·

· · ·+ 1

m4
W

tr[(/p1 +mq1)P
q
Z+/q1(/p2 −mq2)P

N
Z /q1/q1P

N
Z /q1P

q
Z ]

}
(6.54)
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7. Calculation of the production matrix element of a Ma-

joron via VBF.

After momentum assignation in all vertices, the Feynman diagram is that of Figure 7.1.

Figure 7.1: Feynman diagram of VBF production of a J after momentum assignation.

Following the same steps of our previous calculation, we set momentum conservation rules

p1 =p2 + k1 (7.1)

k1 =k3 + p5 (7.2)

k5 =k3 − k4 (7.3)

k2 =p3 − p4 (7.4)

k2 =p4 + p6 (7.5)

After a little algebra we get

k5 = p1 + p4 + p6 − p2 − p3 − p4 (7.6)

After establishing our momentum conservation equation, we proceed to write the matrix element
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as

−iM =[ū(p2)×
−iαw√

2
γµPL × u(p1)]× iDW

µν(k1)× · · ·

· · · × [v(p5)×
−iαw√

2
γνPL × iSF (k3)]×

imN

2f
γ5 × · · ·

· · · × [v(p6)×
−iαw√

2
γαPL × iSF (k4)]× iDW

αβ(k2)× · · ·

· · · × [ū(p4)×
−iαw√

2
αβPL × u(p3)]

(7.7)

Let us consider that the matrix element in Equation 7.7 can be written as a product of three terms,

−iM = A×B × C. (7.8)

where each of them is given by:

A =[ū(p2)×
−iαw√

2
γµPL × u(p1)]× iDW

µν(k1)× [v(p5)×
−iαw√

2
γνPL × iSF (k3)]

B =
imN

2f
γ5

C =[v(p6)×
−iαw√

2
γαPL × iSF (k4)]× iDW

αβ(k2)× [ū(p4)×
−iαw√

2
αβPL × u(p3)]

(7.9)

After expanding the W boson progator we obtain:

A =
−iΠ(k1)α

2
w

2

{
[ū(p2)γ

µPLu(p1)][v(p5)γµPLiSF (k3)]− · · ·

· · · − 1

m2
W

[ū(p2)/k1PLu(p1)][v(p5)/k1PLiSF (k3)]

} (7.10)

B =
imN

2f
γ5 (7.11)

C =
−iΠ(k2)α

2
w

2

{
[v(p6)γ

αPLiSF (k4)][ū(p4)γαPLu(p3)]− · · ·

1

m2
W

[v(p6)/k2PLiSF (k4)][ū(p4)/k2PLu(p3)]

(7.12)

As we’re dealing with Majorana neutrinos, we can take them as Dirac ones, but flipping the u’s

and the v’s of their corresponding leptons. Now, to calculate the conjugated matrix element, we
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need the following identities

[ūγµPLu]† =u†PLγ
µ†ū†

=u†PLγ
0γµγ0γ0u

=u†PLγ
0γµu

=ūPRγ
µu

(7.13)

[vγµPLiSF ]† =[ūγµPLiSF ]†

=− iS†FP
†
Lγ
†
µū
†

=− iγ0SFγ0PLγ0γµγ0γ0u
=− iγ0SFPRγµu
=− γ0iSFPRγµv̄

(7.14)

With this two identities we can calculate all conjugates of A, B and C. For A we have

A∗ =
iΠ(k1)α

2
w

2

{
[v(p5)γµPLiSF (k3)]

†[ū(p2)γ
µPLu(p1)]

† (7.15)

After using the identities we have

A∗ =
−iΠ(k1)α

2
w

2

{
[iSF (k3)PRγµv̄(p5)][ū(p1)PRγ

µu(p2)]− · · ·

− 1

m2
W

[iSF (k3)PR/k1v̄(p5)][ū(p1)PR/k1u(p2)]

} (7.16)

For B we obtain a simple expression

B∗ = −imN

2f
γ5 (7.17)

Finally, for C we obtain

C∗ =− iΠ(k2)α
2
w

2

{
[ū(p3)PRγαu(p4)][iSF (k4)PRγ

αv̄(p6)]− · · ·

− 1

m2
W

[ū(p3)PR/k2u(p4)][iSF (k4)PR/k2v̄(p6)]

} (7.18)
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Before calculating the spin averaged matrix element, let us define the momentum variables

a2 = −Π(k1)
2α4

w

4
b2 = −m

2
N

4f 2
c2 = −Π(k2)

2α4
w

4
(7.19)

Our spin averaged matrix element will be given by

〈|M|2〉 =
1

2

∑
spins

(C∗ ×B∗ × A∗)(A×B × C) (7.20)

Our first product is the one relating the A’s. This product is given by

∑
spins

A∗A =a2
∑
spins

{
[iSF (k3)PRγµv̄(p5)][ū(p1)PRγ

µu(p2)]− · · ·

1

m2
W

[iSF (k3)PR/k1v̄(p5)][ū(p1)PR/k1u(p2)]

}
×{

[ū(p2)γ
νPLu(p1)][v(p5)γνPLiSF (k3)]− · · ·

1

m2
W

[ū(p2)/k1PLu(p1)][v(p5)/k1PLiSF (k3)]

}
(7.21)

Note that in the products we will obtain products of the form v̄ × v. To deal with them we use

the Majorana property mentioned in our previous calculation; this turns the product to u× ū:

∑
spins

A∗ × A =a2γ0
{

[iSF (k3)PRγµu(p5)ū(p5)γνPLiSF (k3)]× · · ·

· · ·[ū(p1)PRγ
µu(p2)ū(p2)γ

νPLu(p1)]− · · ·

· · · − 1

m2
W

[iSF (k3)PRγµu(p5)ū(p5)/k1PLiSF (k3)]× · · ·

· · · [ū(p1)PRγ
µu(p2)ū(p2)/k1PLu(p1)]− · · ·

− · · · 1

m2
W

[iSF (k3)PR/k1u(p5)ū(p5)γνPLiSF (k3)]× · · ·

· · · [ū(p1)PR/k1u(p2)ū(p2)γ
νPLu(p1)] + · · ·

· · ·+ 1

m4
W

[iSF (k3)PR/k1u(p5)ū(p5)/k1PLiSF (k3)]× · · ·

· · · [ū(p1)PR/k1u(p2)ū(p2)/k1PLu(p1)]

}

(7.22)
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So, after performing the sum, and using Equation 6.47 we obtain

∑
spins

A∗A =a2
{

tr[iSF (k3)PRγµ(/p5 +m3)γνPLiSF (k3)]× · · ·

· · · tr[(/p1 +m1)PRγ
µ(/p2 +m2)γνPL]− · · ·

· · · − 1

m2
W

tr[iSF (k3)PR/k1(/p5 +m3)γνPLiSF (k3)]× · · ·

· · · tr[(/p1 +m1)PR/k1(/p2 +m2)γ
νPL]− · · ·

· · · − 1

m2
W

tr[iSF (k3)PRγµ(/p5 +m3)/k1PLiSF (k3)]× · · ·

· · · × tr[(/p1 +m1)PRγ
µ(/p2 +m2)/k1PL] + · · ·

· · ·+ 1

m4
W

tr[iSF (k3)PR/k1(/p5 +m3)/k1PLiSF (k3)]× · · ·

· · · × tr[(/p1 +m1)PR/k1(/p2 +m2)/k1PL]

}

(7.23)

Secondly, for the product of B and it’s conjugated:∑
spins

B∗B =b2
∑
spins

(γ5)
2

=b2
∑
spins

1

= 4b2

(7.24)

Finally, as C follows the same structure of A, we can extrapolate it’s results such that we get∑
spins

C∗C =c2{tr[(/p3 +m5)PRγα(/p4 +m6)γβPL]× · · ·

· · · × tr[iSF (k4)PRγ
α(/p6 +m4)γ

βPLiSF (k4)]− · · ·

· · · − 1

m2
W

tr[(/p3 +m5)PRγα(/p4 +m6)/k2PL]× · · ·

· · · × tr[iSF (k4)PRγ
α(/p6 +m4)/k2PLiSF (k4)]− · · ·

· · · − 1

m2
W

tr[(/p3 +m5)PR/k2(/p4 +m6)γβPL]× · · ·

· · · × tr[iSF (k4)PR/k2(/p6 +m4)γ
βPLiSF (k4)] + · · ·

· · ·+ 1

m4
W

tr[(/p3 +m5)PR/k2(/p4 +m6)/k2PL]× · · ·

· · · × tr[iSF (k4)PR/k2(/p6 +m4)/k2PLiSF (k4)]

}

(7.25)
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8. Calculation of the production matrix element of a Ma-

joron via W channel

After momentum assignation in every vertex, the Feynman diagram is that of Figure 8.1.

Figure 8.1: Feynman diagram of W-channel production of a J after momentum assignation.

Following the same steps of our previous two calculations, we obtain the following momentum

conservation rules

p1 − p2 = q1 (8.1)

q1 = p3 + p4 (8.2)

q2 = p4 − p5 (8.3)

p5 − p6 = q3 (8.4)

q3 = p7 + p8 (8.5)

After a little algebra we obtain that this radiating process must obey

q2 = p1 − p2 − p3 − p6 − p7 − p8. (8.6)

By using the same Feynman rules as before, we get that the Feynman amplitude is given by

iM =
imNg

4
w

8f
[ū(p7)γ

µPLv(p8)]iDµν(q3)[u(p6)γ
νPLiSF (p5)]γ5[v(p3)γ

αPLiSF (p4)]× · · ·

· · · × iDαβ(q1)[v̄(p2)γ
βPLu(p1)]

(8.7)
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If we take the W boson to be off-shell such that mw >> p we can reduce the propagator to

iDµν(q) = −i
ηµν − qµqν

m2
w

p2 −m2
w

→ i
ηµν
m2
w

(8.8)

Hence

iM =
−imNg

4
w

8fm4
w

[ū(p7)γ
µPLv(p8)][u(p6)γµPLiSF (p5)]γ5[v(p3)γ

αPLiSF (p4)][v̄(p2)γαPLu(p1)] (8.9)

The adjoint matrix is then

−iM† =
−imNg

4
w

8fm4
w

[ū(p1)PRγ
δv(p2)][iSF (p4)PRγδv̄(p3)]γ5[iSF (p5)PRγρū(p6)][v̄(p8)PRγ

ρu(p7)]

(8.10)
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9. Phenomenological Analysis

A feasibility study for the production of HN and J bosons at the LHC was performed, consid-

ering purely diagonal couplings between leptons and neutrinos. The model was implemented in

the software Mathematica, using the FeynRules package [75]. The package produces the so called

Universal FeynRules Output (UFO), which is used as input for the software MadGraph [76]. This

software allows the emulation of proton-proton collisions at the center of momentum energy at

the LHC. In addition, it allows to simulate the desired final states for both, SM processes, also

known as backgrounds, and signal processes of interest. Background and signal events were gen-

erated using a 13 TeV proton-proton collision energy. The associated fragmentation processes of

partons (quarks and gluons) was produced using Pythia [77]. The fragmentation of partons is a

consequence of the strong interaction. Pythia emulates the corresponding production of hadrons

resulting from this process. This is also referred to as hadronization. The simulation of the inter-

action between particles and a generic particle-physics detector at the LHC, was included using

the software Delphes [78]. This software includes associated efficiencies, misidentification rates,

momentum and energy resolution effects, which are known experimental effects. The input card

associated to the characteristics of the CMS detector was used in all the simulations.

Background processes with similar final states as those considered for the expected signals were

considered. Production of Drell-Yan events, Z/γ∗, with associated jets from initial state ration,

and of W-bosons with associated jets, referred to as V+jets were included. Additionally, events

with two (WW. WZ, ZZ) or three vector bosons (WWW, WWZ, WZZ, ZZZ) were also included.

These events are represented as VV and VVV, respectively. Finally, production of top-anti-top

pairs were also simulated. Table 9.1 shows the number of events simulated for the backgrounds.

Table 9.1: Number of events produced for the backgrounds.

Background Ne

tt̄ 24.307.250

W+jets 20.925.778

Z+jets 18.505.572

WWW 5.000.000

WWZ 2.500.000

ZZW 2.500.000

ZZZ 5.000.000

WW 12.500.000

WZ 9.850.000

ZZ 10.000.000
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9.1 W channel production

The first set of signal samples produced were generated for the W-channel. Scenarios where the

mass difference between the Majoron and the lightest neutrino (Ne) is 100 GeV (∆m(Ne, J) = 100

GeV) and where the following mass differences hold: ∆m(Ne, J) = ∆m(Ne, Nµ) = ∆m(Nµ, Nτ ),

were considered. The complete mass spectra explored in the analysis, is presented in Table 9.2.

The signal samples simulation considered the processes: p p → ν̄τ τ
+ J τ− τ+, p p → ν̄µ µ

+ J µ−

µ+ and p p → ν̄e e
+ J e− e+.

The syntax used to produced the signal samples in MadGraph is presented next:

> import model SM_HeavyN_UFO

> define lepton = e- mu- ta-

> define lepton~ = e+ mu+ ta+

> define neutrino = ve vm vt

> define neutrino~ = ve ~ vm ~ vt ~

> define p = u d u~ d~

> generate p p > lepton lepton~ j0 lepton neutrino~ QCD=0 QED<=5

Table 9.2: Number of events produced for the analyzed mass spectra.

{m(J), m(Ne), m(Nµ), and m(Nτ )} Number of events

{50, 150, 250, 350} 200.000

{200, 300, 400, 500} 200.000

{700, 800, 900, 1000} 200.000

Figure 9.1 shows the production cross section as function of the tau-heavy-neutrino mass

(m(Nτ )). The blue curve shows the cross-section before decay, while the yellow curve shows

the cross-section after decaying the Nτ . The difference between the curves is explained by the

associated W → τντ branching fraction. The cross-sections were obtained using MadGraph, and

consistent values reported in other associated phenomenological studies for heavy neutrinos [79].
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Figure 9.1: (Blue) Cross section as function of m(Nτ ) considering production of stable neutrinos.
(Yellow) Cross section considering Majoron radiation and non stable neutrinos.

9.1.1 Event Selection Criteria

To understand the kinematic and topological differences between the associated backgrounds and

the signal, distributions normalized to unity are presented. The distributions were obtained after

applying basic kinematic requirements on the transverse momentum (pT ) and pseudorapidiy (η),

obtained from experimental studies reported at CMS and ATLAS [80, 81, 82].

Figure 9.2 show the pT distribution for the electrons and muons. Note that signal events have

signatures with higher pT spectrum with respect to associated backgrounds. Figure 9.3 shows

the missing transverse momentum distribution (pmissT ). As expected, signal have higher values of

pmissT with respect to backgrounds, because of the radiated Majoron and the associated neutrino

from the leptonic decay of the W -boson. The transverse mass distribution between the highest pT
electron (muon) and the pmissT is shown on the left (right) in Figure 9.4. The transverse mass is

defined as

mT =
√

2pT (`)pmissT × (1− cos(∆φ(`, pmissT )))

This variable is a well regarded experimental observable, widely used to observe the recon-

structed mass of W -bosons (Jacobian peak). Note that the V+jets and tt̄ backgrounds peak at

around 80 GeV, which corresponds to the expected W -boson mass. For signal, the average large

lepton-pT and pmissT , naturally result in large mT values. Figure 9.5 shows the difference in the

azimuthal angle distribution, ∆Φ, between the highest pT electron (muon) and the pmissT . Note

that, as expected, the V+jets background (specially W+jets) and the signal peak at around π,

which is expected given the nature of the topology of the decay. Finally, since signal events are

characterized by object with large pT and large pmissT values, we explored the so called ST distri-

bution, defined as the scalar sum of the pT of all leptons and the pmissT . Figure 9.6 shows the ST
distribution. Note that this distribution gives a good signal-to-background separation.
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Table 9.3: Basic Event Selection Criteria (I)

Criteria Selections

pT (e) > 8 GeV

pT (µ) > 5 GeV

pT (τ) > 20 GeV

|η(e)|, |η(µ)|,|η(τ)| < 2.4
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Figure 9.2: Electrons (left) and muons (right) transverse momentum distribution in logarithmic
scale. The notation for the signal samples correspond to {m(J), m(Ne), m(Nµ), m(Nτ )}.
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Figure 9.3: Missing energy transverse (Emiss
T ) distribution for signal and backgrounds in logarith-

mic scale. The notation for the signal samples correspond to {m(J), m(Ne), m(Nµ), m(Nτ )}.

59



0 100 200 300 400 500 600 700 800 900 1000

,e) [GeV]
T

miss (pTm

6−10

5−10

4−10

3−10

2−10

1−10

1

10a.
u.

{50,150,250,350} {200,300,400,500}

{700,800,900,1000} vv

v+jets ttbar

vvv

0 100 200 300 400 500 600 700 800 900 1000

) [GeV]µ,miss (pTm

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10a.
u.

{50,150,250,350} {200,300,400,500}

{700,800,900,1000} vv

v+jets ttbar

vvv

Figure 9.4: Electrons (left) and muons (right) transverse mass distribution in logarithmic scale.
The notation for the signal samples correspond to {m(J), m(Ne), m(Nµ), m(Nτ )}.
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Figure 9.5: Electrons (left) and muons (right) angular difference distribution. The notation for
the signal samples correspond to {m(J), m(Ne), m(Nµ), m(Nτ )}.
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Figure 9.6: ST distribution in logarithmic scale. The notation for the signal samples correspond
to {m(J), m(Ne), m(Nµ), m(Nτ )}.

Table 9.4: Central Event Selection Criteria (II)

Criteria Selections

pmissT > 100 GeV

N(b− jets) 0

pT (`lead) > 50 GeV

pT (`other) > 20 GeV

∆pT (`lead, `lowest) > 50 GeV

After analyzing various distributions a set of selection criteria was chosen to reduce the back-

ground contamination while keeping most of the signal events. Table 9.4 shows the chosen selection

criteria. The requirement on pmissT and ∆pT (`lead, `lowest) respond to the features of the signal topol-

ogy, the requirement on zero jets associated to b-quarks helps suppress the contribution from tt̄

processes, and the minimum lepton pT threshold is associated with experimental constrains related

with thresholds for single-lepton triggers. The ∆pT (`lead, `lowest) requirement is defined as the ab-

solute difference between in pT between the lepton with the highest momentum (leading) and one

with the lowest. After applying these selections, we considered four different final states, also

referred to as channels: {e, e, µ} (CH1), {µ, µ, e} (CH2), {µ, µ, µ} (CH3), and {e, e, e} (CH4). The

cumulative efficiencies of the different set of selections and channels are presented in Table 9.5.

Efficiency εI corresponds to events passing the selections reported on Table 9.3, εII correspond

to efficiencies after passing selections on Table 9.3 and Table 9.4, while εIII−V I are associated to

events passing selections on Table 9.3 and Table 9.4 for channels CH1-CH4.

after cuts I and II: (III) {e, e, µ}, (IV) {µ, µ, e}, (V) {µ, µ, µ}, (VI) {e, e, e}
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Table 9.5: Percentage cumulative efficiencies for the signals and backgrounds after every cut.

Signals

{m(J), m(N1), m(N2), m(N3)} εI εII εIII εIV εV εV I

{50, 150, 250, 350} 85.18 72.93 4.14 5.72 9.28 4.46

{200, 300, 400, 500} 95.52 86.51 8.22 5.69 6.89 8.59

{700, 800, 900, 1000} 99.01 92.53 12.13 4.86 4.89 11.26

Backgrounds

Sample εI εII εIII εIV εV εV I

www 41.56 29.44 4.47×10−2 5.63×10−2 3.84×10−2 1.83×10−2

zzw 43.36 28.94 6.81×10−2 8.44×10−2 15.29×10−2 6.97×10−2

zzz 41.41 26.62 4.15×10−2 5.22×10−2 7.13×10−2 3.40×10−2

wwz 47.51 32.52 8.76×10−2 10.88×10−2 15.58×10−2 7.90×10−2

wz 21.18 16.41 1.07×10−2 1.44×10−2 4.10×10−2 2.85×10−2

zz 20.00 15.66 2.13×10−3 1.67×10−4 8.26×10−3 2.24×10−3

ww 20.81 15.32 1.40×10−4 4.00×10−5 9.60×10−5 2.32×10−4

tt̄ 39.04 6.61 1.10×10−4 1.73×10−4 2.34×10−4 1.60×10−4

z+jets 2.79 2.54 5.40×10−6 5.40×10−6 - 5.4×10−6

w+jets 3.89 2.99 - - - -

Figure 9.7 shows the ST distribution for the eee channel (left) and for the µµµ channel (right),

normalized to the production cross section and an expected luminosity of 1000fb−1. The most

relevant backgrounds are shown stacked while the signals are overlaid on top of the backgrounds.

Note that the overall expected background is larger for the eee channel. Experimentally, electrons

have lower identification efficiencies and higher miss-identification rates, with respect to muons.

The miss identification rate can be up to one order of magnitude higher for electrons, depending

on pT . Although the background composition on the tail, where signal sensitivity is higher, seem

different for both channel, note there are a few events falling in the high ST range, which have

associated large statistical uncertainties. Nevertheless, it is important t o note that the event se-

lection criteria chosen for this study, shows good potential to discriminate signal from background,

showing that this analysis is feasible to be conducted at the LHC. A potential discovery might

require larger luminosity to reach the 5σ statistical significance of a hypothetical observed signal,

on top of the observed background. Therefore, this type of analysis might require the 3000fb−1 of

luminosity, expected to be collected by the end of the LHC physics program. Although the signal

cross sections reported on this study are small, the unique topology of this search, which result in

small backgrounds, and the expected luminosity during the LHC era, makes this analysis relevant

to be conducted at ATLAS and CMS.
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Figure 9.7: ST distribution for the expected number of events for 1000fb−1 luminosity, for the
most relevant backgrounds (stacked) and for three different signal samples, dashed lines overlaid
on top of the backgrounds. The distribution on the left is for the eee channel and the distribution
on the right is for the µµµ channel.

9.2 VBF channel production

As mentioned before, the VBF topology is characterized experimentally by the presence of two

highly energetic jets, with a large η gap, in opposite hemispheres of the detector volume, and

large reconstructed dijet mass, which is defined in Equation 9.1 [72]. This technique has allowed

to study difficult experimental regions, in mainly in searches for supersymmetry, and also study

the production of new signal processes, considering dominant production through electroweak

processes, because preferential couplings to this sector. Also, it have been proposed to study the

production of Z
′

bosons and HN, as it was previously mentioned.

m(j1, j2) =

√
2pj1T p

j2
T cosh(ηj1 − ηj2) (9.1)

Scenarios where the mass difference between the Majoron and the lightest neutrino (Ne) is 100 GeV

(∆m(Ne, J) = 100 GeV) and where the following mass differences hold: ∆m(Ne, J) = ∆m(Ne, Nµ)

= ∆m(Nµ, Nτ ), were once again considered. The complete mass spectra explored in the analysis,

is presented in Table 9.6. The signal samples simulation considered the processes: p p → τ− J τ−

j j , p p → µ− J µ− j j and p p → e− J e− j j.

The syntax used to produced the signal samples in MadGraph is presented next:

> import model SM_HeavyN_UFO

> define lepton = e- mu- ta-

> define lepton~ = e+ mu+ ta+

> define neutrino = ve vm vt

> define neutrino~ = ve ~ vm ~ vt ~

> define p = u d u~ d~

> generate p p > lepton j0 lepton j j
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Table 9.6: Number of events produced for the analyzed mass spectra.

{m(J), m(Ne), m(Nµ), and m(Nτ )} Number of events

{50, 150, 250, 350} 200.000

{200, 300, 400, 500} 200.000

{700, 800, 900, 1000} 200.000

Figure 9.8 (left) shows the production cross section as function of the Nτ mass. The distribution

before decay (blue) and for the process associated to the theoretical calculation performed in this

project (see Figure 7.1) (yellow), are presented. In Figure 9.8 (right) is presented a comparison

for the production cross sections between two possible VBF processes. Note that the process

pp > τNτjj, which has been studied at the LHC considering the Nτ stable, has a larger cross

section. Nevertheless, the model presented in this project has not been studied at the LHC so far.

The fact that the HNs are unstable, result and in a larger lepton multiplicity in the final state and

large pmissT due to the associated Majoron.
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Figure 9.8: Left: (Blue) Cross section as function of m(Nτ ) considering production of stable
neutrinos. (Yellow) Cross section considering Majoron radiation and non stable neutrinos. Right:
(Blue) Cross section as function of m(Nτ ) considering production of stable neutrinos. (Yellow)
Cross section considering Tau production with two jets and a stable neutrino.

Figure 9.9 shows that the signal samples follow the nature proper to the VBF topology. This

variable helps to distinguish the signal from the background processes, which are mainly detected

at the barrel region of the detector. Thus, the η distribution for the jets is centered at zero.

Note that this distribution shows potential to remove as most background events as possible.

Additionally, Figure 9.10 shows the restriction made, at generation level, over the η separation

between the two produced jets |∆η(j1, j2)| > 3.8. It is worth noticing that this distribution

shows the behavior associated to VBF topology for the signal events. Hence, this variable shows
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a potentially interesting behavior to eliminate background events. Figure 9.11 shows the pmissT

distribution for both signal and background events.

5− 4− 3− 2− 1− 0 1 2 3 4 5

 (j)η

0.005

0.01

0.015

0.02

0.025

0.03

a.
u. {50,150,250,350} {200,300,400,500}

{700,800,900,1000} tt
vvv vv
v+jets

Figure 9.9: η distribution for the jets. The notation for the signal samples correspond to {m(J),
m(Ne), m(Nµ), m(Nτ )}.
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Figure 9.10: |∆η| distribution for the jets. The notation for the signal samples correspond to
{m(J), m(Ne), m(Nµ), m(Nτ )}.
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Figure 9.11: pMiss
T distribution. The notation for the signal samples correspond to {m(J), m(Ne),

m(Nµ), m(Nτ )}.

As the events in the VBF channel require similar pT and pmissT requirements to those of the W-

channel, the ST distribution has been also explored. Figures 9.12 show the transverse momentum

distributions for both electrons and muons, showing an interesting behavior that can help us to

eliminate some background events. Additionally, Figure 9.13 shows the ST distribution of the

channel, which functions as an interesting variable to distinguish between background and signal

events due to the separations between the values given for each of the considered processes.
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Figure 9.12: pT distributions, in logarithmic scale, for the electrons (Left) and muons (Right).The
notation for the signal samples correspond to {m(J), m(Ne), m(Nµ), m(Nτ )}.
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Figure 9.13: ST distribution in logarithmic scale. The notation for the signal samples correspond
to {m(J), m(Ne), m(Nµ), m(Nτ )}.

Table 9.7: Topological selections

Criteria Selections

pmissT > 150 GeV

N(b− jets) 0

pT (b− jets) > 30 GeV

|η(b− jets)| < 2.5

Table 9.8: VBF selections

Criteria Selections

N(j) ≥ 2

pT (j) > 30 GeV

|η(j)| < 2.5

η(j1) · η(j2) < 0

|∆η(j1, j2)| > 5.5

The selection criteria given in Table 9.7 were aimed to remove events with low pmissT values

and b-jet production. The established pmissT value has been set to 150 GeV due to the presence

of the heavy neutrino states in the VBF topology, and to remove the backgrounds coming from

SM electroweak processes. The restrictions over the b-jets are aimed to eliminate any possible

QCD background, specially those coming from the hadronization processes of the jets, as well as
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those coming from the hadronic decays of the W bosons. Table 9.8 shows the set of cuts used to

optimize the di-jet mass value given the VBF topology. Hence, we required the pair of jets to have

proper η and pT values, such that they have the minimum reconstruction requirements given the

experimental constrains of the CMS detector.

Table 9.9: Percentage cumulative efficiencies for the signals and backgrounds after every cut.

Signals

{m(J), m(N1), m(N2), m(N3)} εI εII εIII εIV εV εV I

{200, 300, 400, 500} 65.985 30.128 4.852 4.476 4.215 9.354

{700, 800, 900, 1000} 82.519 38.423 7.028 5.162 6.887 11.311

{50, 150, 250, 350} 49.733 21.808 3.183 3.73 2.052 6.586

Backgrounds

Sample εI εII εIII εIV εV εV I

www 4.444 0.077 0.012 0.017 0.109×10−2 0.17×10−2

zzw 6.658 0.120 0.008 0.010 0.156×10−2 0.24×10−2

zzz 5.683 0.083 0.003 0.002 0.168×10−2 0.26×10−2

wwz 8.316 0.115 0.015 0.018 0.132×10−2 0.16×10−2

tt̄ 0.657 0.029 0.004 0.00639727 0.209×10−3 0.382×10−3

z+jets 0.102 0.001 1.621e-05 1.621e-05 5.400×10−3 -

w+jets 0.051 0.001 0.133×10−3 0.00019115 - -

ww 0.799 0.014 2.096×10−3 3.184×10−3 5.6×10−5 0.12×10−3

zz 1.457 0.018 0.48 ×10−3 0.39 ×10−3 0.14×10−3 0.22×10−3

wz 1.251 0.024 1.431×10−3 2.497×10−3 4.061×10−5 8.122×10−5

After analyzing the distributions given before the selection criteria given in Tables 9.7 and 9.8

were applied to reduce background contamination while keeping as much signal events as possible.

After applying these selections, we considered two different extra channels, {e,e} (CH1) and {µ, µ}
(CH2) given the diagonal couplings between leptons and neutrinos. The cumulative efficiencies of

the different set of selections are presented in Table 9.9. Efficiency εI corresponds to the events

passing the selections reported on Table 9.7. εII corresponds to events after passing the selections

given in Tables 9.7 and 9.8, while εIII−IV correspond to events passing selections on Tables 9.7 and

9.8 given the production of a single electron or muon, together with a stable neutrino as illustrated

in Figure 9.8. Furthermore εV−V I correspond to events passing the selections given on Tables 9.7

and 9.8, as well as the requirements of CH1 and CH2. It is important to note that the selection

criteria for this study shows good potential to discriminate signal from background, showing that

this analysis can be potentially performed at the LHC. However, a potential discovery of a Majoron

in this channel would require large luminosity values to reach the 5σ statistical significance of a

hypothetical discovery. Hence, this type of analysis might require luminosity values larger than

1000fb−1, namely the 3000fb−1 expected to be collected by the end of the LHC physics program.
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10. Conclusions

This work provides tree-level calculations of the production matrix elements of a stable Majoron

radiated from massive neutrino states, whose masses are considered to be in the Seesaw limit and

generated by the type 1 Seesaw mechanism, in three different channels: DY, VBF and W-mediated.

Then, a preliminary phenomenological study of the hypothetical production and detection of this

particle was successfully carried in the W and VBF channels, showing the promising character of

the model for future studies with real data from the CMS and ATLAS detectors. This preliminary

phenomenological study allowed to establish event selection criteria to reduce the background while

keeping most of the signal in the W and VBF channels.

As a future study it is recommended to explore the DY channel, as well as loop induced

production of a Majoron in the Seesaw limit. Secondly, a similar phenomenological study exploring

the studied channels while considering non diagonal couplings between leptons and neutrinos

is suggested. Furthermore, it is recommended to study the hypothetical production of heavy

neutrinos and Majorons in future colliders such as the International Linear Collider or the Future

Circular Collider.

Finally, the work conducted in this dissertation is associated with an article that will be sent

to a peer reviewed journal in the following months.
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International Conference on High Energy Physics., 1989.

[48] S. Holmes. Remembering the tevatron: The machine(s). arXiv:1109.2937 [physics.acc-ph],

2011.

[49] S. Weinberg. Physical processes in a convergent theory of the weak and electromagnetic

interactions. Physical Review Letters, 1971.

[50] Paul Langacker. The Standard Model and Beyond. CRC Press, 2017.

[51] S.M. Bilenky et al. Absolute values of neutrino masses: Status and prospects. Physics Reports,

2003.

[52] P. Langacker et al. Neutrino physics. arXiv:hep-ph/0506257v1, 2005.

[53] E. Akhmedov et al. Seesaw mechanism and structure of neutrino mass matrix. Physics Letters

B, 2000.

[54] C. Garcia-Cely J. Heeck. Neutrino lines from majoron dark matter. Journal of High Energy

Physics, 2017.

[55] H. H. Patel J. Heeck. The majoron at two loops. Physical Review D, 2019.

72

https://cds.cern.ch/record/935622/files/p27.pdf
https://cds.cern.ch/record/935622/files/p27.pdf
https://cds.cern.ch/record/454171/files/p41.pdf
https://cds.cern.ch/record/454171/files/p41.pdf


[56] A.Leike. The phenomenology of extra neutral gauge bosons. Physics Reports, 1999.

[57] P. Langacker. The physics of heavy z’ gauge bosons. Reviews Of Modern Physics, 2009.

[58] A. Pilaftsis. Astrophysical and terrestrial constraints on singlet majoron models. Physical

Review D, 1994.

[59] C. P. Burgess. Goldstone and pseudo-goldstone bosons in nuclear, particle and condensed-

matter physics. Physics Reports, 2000.

[60] I. R. Kenyon. The drell-yan process. Reports on Progress in Physics, 1982.

[61] A. Delannoy et al. Probing dark matter at the lhc using vector boson fusion processes. Physical

Review Letters, 2013.

[62] B. Dutta et al. Vector boson fusion processes as a probe of supersymmetric electroweak sectors

at the lhc. Physical Review D, 2013.

[63] J. Brooke et al. Vector boson fusion searches for dark matter at the lhc. Physical Review D,

2016.

[64] W. Rodejohann H. Päs. Neutrinoless double beta decay. New Journal of Physics, 2015.

[65] N. Vergara. Theoretical and phenomenological study for the production of heavy neutrinos

and majorons at the lhc. Bsc. thesis, Universidad de Los Andes, 2020.

[66] T. McCauley T. Sakuma. Detector and event visualization with sketchup at the cms experi-

ment. Journal of Physics: Conference Series, 2014.

[67] CERN cms experiment. https://cms.cern/detector. Accessed: 2020-08-19.

[68] Cms experiment: Muon detectors. http://cms.web.cern.ch/news/muon-detectors. Ac-

cessed: 2020-08-19.

[69] M. Dunford M. Schott. Review of single vector boson production in pp collisions at
√
s = 7

tev. The European Physical Journal C, 2016.

[70] B. Muratori W. Herr. Concept of luminosity. Accelerators and Colliders. Landolt-Börnstein -

Group I Elementary Particles, Nuclei and Atoms (Numerical Data and Functional Relation-

ships in Science and Technology), 2013.

[71] Record luminosity: well done lhc. https://home.cern/news/news/accelerators/

record-luminosity-well-done-lhc. Accessed: 2020-08-20.

[72] N. Cardona. Search for pure higgsino dark matter at the lhc using vector boson fusion. Bsc.

thesis, Universidad de Los Andes, 2020.

[73] A. Denner. Compact feynman rules for majorana fermions. https://www.desy.de/~gudrid/

teaching/WIS1718/majorana-rules.pdf. Accessed: 2020-01-24.

73

https://cms.cern/detector
http://cms.web.cern.ch/news/muon-detectors
https://home.cern/news/news/accelerators/record-luminosity-well-done-lhc
https://home.cern/news/news/accelerators/record-luminosity-well-done-lhc
https://www.desy.de/~gudrid/teaching/WIS1718/majorana-rules.pdf
https://www.desy.de/~gudrid/teaching/WIS1718/majorana-rules.pdf


[74] W. Rodejohann. Phenomenological aspects of majorana neutrino mass matrices. Ph.d thesis,

Universität Dortmund, 2001.
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