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Abstract
Pairwise maximum likelihood (PML) estimation is a prom-
ising method for multilevel models with discrete responses. 
Multilevel models take into account that units within a clus-
ter tend to be more alike than units from different clusters. 
The pairwise likelihood is then obtained as the product of 
bivariate likelihoods for all within-cluster pairs of units 
and items. In this study, we investigate the PML estimation 
method with computationally intensive multilevel random 
intercept and random slope structural equation models 
(SEM) in discrete data. In pursuing this, we first recon-
sidered the general ‘wide format’ (WF) approach for SEM 
models and then extend the WF approach with random 
slopes. In a small simulation study we the determine accu-
racy and efficiency of the PML estimation method by vary-
ing the sample size (250, 500, 1000, 2000), response scales 
(two-point, four-point), and data-generating model (media-
tion model with three random slopes, factor model with one 
and two random slopes). Overall, results show that the PML 
estimation method is capable of estimating computationally 
intensive random intercept and random slopes multilevel 
models in the SEM framework with discrete data and many 
(six or more) latent variables with satisfactory accuracy and 
efficiency. However, the condition with 250 clusters com-
bined with a two-point response scale shows more bias.
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2  |      BARENDSE and ROSSEEL

INTRODUCTION

Structural equation modelling (SEM) is an effective modelling framework used for measuring latent 
variables through indicators and studying the associations between the latent variables and/or observed 
variables (see Bollen, 1989; Kline, 2015). The generality of SEM is reflected in the number of appli-
cations in the social sciences (e.g., Guo et al., 2008; Kline, 2015; MacCallum & Austin, 2000; Xiong 
et al., 2015). SEM was introduced for continuous data and later extended to handle more complex data. 
Here, we will focus on the pairwise maximum likelihood (PML) estimation method for SEM to deal 
with two data complexities: discrete responses (i.e., binary coding or three- or four-point scales) and 
multilevel structures.

To estimate discrete data in the context of SEM, the PML estimation method was introduced by 
Jöreskog and Moustaki (2001). With PML estimation the product of bivariate (and sometimes univari-
ate) likelihoods is calculated (see Jöreskog & Moustaki, 2001). Outside the SEM context, PML is part of 
a broader framework of composite maximum likelihood estimators (see Varin, 2008; Varin et al., 2011). 
Katsikatsou et al. (2012) showed that PML estimation produced low biases within the SEM framework. 
Compared to other frequentist SEM estimation methods for discrete data, the most prominent advan-
tage of the PML estimation method is the possibility of computing models with a large number of latent 
variables. The marginal maximum likelihood (MML; see Bock & Aitkin,  1981) estimation method 
calculates a full likelihood and cannot estimate models with too many latent variables. Alternatively, the 
(weighted) least squares estimation method (Browne, 1984; Muthén et al., 1997) can be used to estimate 
discrete data. This estimation method also uses bivariate and univariate information and is in that re-
spect comparable to the PML estimation method.

Estimating models with both discrete data and a multilevel structure complicates the estimation. In 
multilevel data, lower-level units are selected within higher-level units (i.e., clusters). As a consequence, 
units within a cluster tend to be more alike than units from different clusters. This dependency in the 
data introduces an additional source of variation that needs to be taken into account in analysing data 
(Hox et al., 2017). Multilevel data in SEM are usually analysed with the ‘long format’ (LF) approach 
(see McDonald & Goldstein, 1989; Muthén, 1990), where each row corresponds to the data of a single 
unit and multiple rows constitute a single cluster. In the ‘wide format’ (WF) or ‘multivariate’ approach, 
each data row is independent and corresponds to a single cluster (see Barendse & Rosseel, 2020, for a 
multilevel model framework with a random intercept). However, the number of columns can increase 
substantially with large clusters in the WF approach. The WF approach is therefore particularly useful 
for data with relatively small cluster sizes (e.g., Koomen et al., 2007; Lau et al., 2015; Mahlke et al., 2016; 
Moorman, 2016; NLSAH, 2005).

This paper combines the challenges of multilevel structures including random slopes and discrete 
data using the PML estimation method. The pairwise likelihood in multilevel data is obtained as the 
product of bivariate likelihoods for within-cluster pairs of units and items. So far, the PML estimation 
method with random intercepts and random slopes has only been used for generalized mixed models 
for binary data (see Bellio & Varin,  2005; Cho & Rabe-Hesketh,  2011; Renard et al.,  2004; Tibaldi 
et al., 2007). Random slopes show up in multilevel models if the effect of covariates is allowed to vary 
across clusters. To deal with the random slopes, casewise estimation is applied. Casewise estimation 
blurs away most of the differences between the WF and LF approaches. The aim of this study is to es-
timate complex multilevel random intercept and random slope SEM with at least six latent variables in 
the WF approach that cannot be estimated with other frequentist estimation methods. Computationally, 
these models cannot be estimated with intensive numerical (e.g., adaptive Gauss–Hermite quadrature) 
multilevel marginal maximum likelihood estimation methods as the number of latent variables that has 
to be integrated out is too high (MML; see Hedeker & Gibbons, 1994). In addition, these models cannot 
be estimated with multilevel weighted least squares (WLS; see Asparouhov & Muthén, 2007), as it does 
not allow for the casewise estimation that is essential for models with random slopes.

The paper is organized as follows. We first describe the general SEM framework and the PML 
estimation method for discrete data. Then we introduce a new procedure to analyse data in the WF 
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       |  3MULTILEVEL SEM WITH RANDOM SLOPES

approach in multilevel data with random slopes and show how PML estimation can be used within 
this framework if the data are discrete. Next, we perform a small simulation study using two complex 
multilevel models (i.e., a mediation model and a factor model) with random slopes to evaluate the PML 
estimation method in terms of the accuracy of the parameter estimates. Finally, we discuss the useful-
ness of the PML estimation method in multilevel data.

General SEM framework

Structural equation modelling can estimate a wide range of models. It can be considered as a combina-
tion of regression or path analyses and factor analysis. The general model for unit i with continuous 
data can be described by a measurement model, that relates measured variables to latent variables, and a 
structural model, that relates latent variables to one another:

where y
i
 is a p-dimensional vector of observed variables for unit i, � is a p-dimensional vector of in-

tercepts, Λ is a p × l matrix of factor loadings relating the observed variables to the l-dimensional la-
tent variables �i, �i is a p-dimensional vector of measurement errors or residuals, � is an l-dimensional 
vector of latent factor means and intercepts, B is an l × l matrix of regression coefficients among the 
latent factors, and �

i
 is an l-dimensional vector of residuals for unit i. Assuming Cov(�, �) = 0, Cov(�, 

�) = 0, E(�
i
) = 0, E(�) = 0, diag(B ) = 0, and that (I −B) is invertible, where I is an l × l identity matrix, 

we can find expressions for the p × p covariance matrix Σi and the l-dimensional vector of the mean 
structure �

i
 (Equation 4) of y i:

 

where the variances and covariances of � and � are denoted by Ψ and Θ, respectively. The model parameter 
vector � includes the free parameters in  Λ, B, Θ, Ψ, �, and �. Before estimating models, the scale for the 
latent variables (i.e., �) needs to be defined, for example by fixing the first factor loading of each latent 
variable to unity.

Discrete data with the PML estimation method

To deal with discrete data, the PML estimation method assumes an underlying normally distributed 
continuous latent response variable. A variable yig for individual i on item g with Cg response scales 
stems from an underlying continuous variable y∗ig with a normal distribution N

(
y
∗

ig
|0, �2

g

)
 and 

τg,c values that refer to thresholds

for categories c
g
= 1, 2, … ,C

g
, with �

g,0
= − ∞ and �

g,C
= + ∞. Instead of calculating a full likelihood, 

PML estimation breaks down the complex likelihood. The log-likelihood of the PML estimation method 
for an individual is then calculated as the sum of p⋆ = p(p − 1)/2 components, each component being the 
bivariate log-likelihood of two variables (i.e., g and h):

(1)y
i
= � +��

i
+ �

i
,

(2)�
i
= � + B�

i
+ �

i
,

(3)�(�)
i
= �(I −B)

−1
Ψ(I −B)

−1T
�
T

+Θ,

(4)�(�)
i
= � +�(I −B)

−1
�,

(5)y
ig
= c

g
⇔ 𝜏

g,c−1
< y

∗

ig
< 𝜏

g,c
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4  |      BARENDSE and ROSSEEL

The total log-likelihood of the data is the sum of all individual contributions in a random sample Y = {y1, 
y2, …, yI} of size I and equals

The exact form of f
(
y
ig
, y
ih
; �

)
 in Equation 7 for discrete indicators g and h equals

with

where �
gh

 is the model implied correlation between y∗
ig

 and y∗
ih

, and Φ(τ1, τ2;�) is the bivariate cumulative 
normal distribution with correlation � evaluated at the point (τ1, τ2). Before estimating the model with the 
PML method, the metric for y

∗

 needs to be determined. Two popular ways are to fix the total variance (so-
called delta parameterization: Θ = Δ−2 − diag(Σ*), where Σ*= Λ (I - B)-1Ψ(I - B)-1T  ΛT and Δ the scaling 
factors) or to fix the residual variance (so-called theta parameterization: Δ−2 = diag(Σ*) + Θ). Other ways of 
scaling are also possible (see Lee et al., 1990, 1992).

Research has shown that the PML estimation method provides accurate and efficient results in 
the SEM context (see Jöreskog & Moustaki, 2001; Katsikatsou et al., 2012) as well as in the broader 
framework of composite maximum likelihood estimators (see Lindsay, 1988; Varin, 2008). In theory, 
Equation 6 is general and can deal with any type of data (continuous or discrete, and combinations 
thereof). Barendse and Rosseel (2020) estimated SEM with the PML estimation method for a mixture 
of binary and continuous data, by estimating Pearson, tetrachoric, polychoric, and polyserial correla-
tions. Standard errors and missing-data procedures for the PML estimation method have been devel-
oped by Katsikatsou et al. (2012) and Katsikatsou and Moustaki (2017).

Multilevel SEM in the WF approach

Before investigating the PML estimation method for multilevel data in the WF approach, we will first 
explain the WF framework for continuous data. With continuous multilevel data the LF and WF ap-
proaches obtain identical results (see Mehta & Neale, 2005). A random intercept, random slope regres-
sion model in the LF approach can be estimated in the WF approach as a single-level confirmatory 
factor analysis in the SEM framework (see Bryk & Raudenbush, 1987; Chou et al., 1998; MacCallum 
et al., 1997; McArdle & Epstein, 1987; Mehta & Neale, 2005; Meredith & Tisak, 1990). The random slope 
allows the relationship between the covariate and the dependent variable (y) to be different for each 
cluster. The mean of the random slope represents the fixed effect of the covariate and the variance of 

(6)
log l

i
=

p−1∑

g=1

p∑

h=g+1

[
log f

(
y
ig
, y
ih
; �

)]

=

∑

g<h

[
log f

(
y
ig
, y
ih
; �

)]
.

(7)log L(�;Y) =

I∑

i=1

log l
i
.

(8)
log f

(
y
ig
, y
ih
; �

)
=

C
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C
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b=1

I

(
y
ig
= a, y

ih
= b

)
log�

(
y
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= b; �

)
,

(9)

�

(
y
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= a, y
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)
=∫
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�
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; �
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�
g,a−1

, �
h,b−1

; �
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       |  5MULTILEVEL SEM WITH RANDOM SLOPES

the random slope reflects the variability. Figure  1a and 1b show the data layout, a graphical representa-
tion of the model, and the formula of a random intercept and random slope multilevel linear regression 
model for covariate x in the LF approach and in the WF approach, respectively. In Figure 1b for the 
WF approach there is no single covariance matrix for the entire sample as with conventional SEM, but 
a cluster-dependent covariance matrix (Mehta & Neale, 2005), where Λj is now cluster-specific. To esti-
mate this model in the WF approach, we have to use casewise calculations to compute a likelihood with 
cluster-specific vectors, not unlike the full-information maximum likelihood approach that was intro-
duced in SEM for handling missing data (Arbuckle, 1996). Consequently, a multilevel random intercept 
and random slope model can only be estimated with software that allows for casewise estimation to deal 
with a cluster-specific model implied covariance and mean structure.

F I G U R E  1   A random intercept and slope model with the corresponding data, figure and formula in both (a) the LF 
approach and (b) WF approach. Note: Triangles indicate for the mean or intercepts. In (1a), x′

ij

 equals the fixed effects matrix 
and z′

ij

 indicates the random effects matrix. In (1b), the rounded boxes represent the within- and between- components of 
the original variable y for three units per cluster. �

y
 corresponds to the unit-specific version of y  at the between-level, which 

equals a factor with loadings fixed at unity. �
rs
 corresponds to a random slope at the between-level with indicators fitted to the 

values of xj. Residual variances (not shown here) contain equality restrictions to ensure only one residual variance is estimated.

1a) 1b)
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6  |      BARENDSE and ROSSEEL

A multilevel regression model can be extended to a multilevel SEM. Multilevel random intercept SEM 
in the LF approach is described by different authors (see Bryk & Raudenbush, 1987; McDonald, 1993; 
McDonald & Goldstein,  1989; Muthén,  1989, 1990; Schmidt,  1969). Mehta and Neale  (2005), 
Curran (2003), and Bauer (2003) were among the first authors to describe random intercept SEM in the 
WF approach. Barendse and Rosseel (2020) described a general SEM WF framework for both contin-
uous and discrete data and proposed steps to perform random intercept models. However, a compli-
cation arises in the case of a covariate that exists at the within-level and the between-level (see Lüdtke 
et al., 2008). In a more general sense, this also holds for every regression coefficient that exists at the 
within-level and the between-level. To obtain the correct between-level effect, one has to disentangle 
the between effect by estimating the between-level effect and subtract this from the within-level effect 
using a definition variable (see Lüdtke et al., 2008). To avoid using definition variables to calculate the 
between effect, we adjusted the estimation of models in the WF approach in a way that is more intuitive 
than the parameterization presented in Barendse and Rosseel (2020). In this new approach we disentan-
gle the between-and within-levels by creating latent variables, which are then used to build models at 
the within-level and the between-level.

METHODS

We first reformulate the WF approach of Barendse and Rosseel  (2020) to allow for a more intuitive 
model parameterization in the presence of a covariate or a regression coefficient at both the within and 
the between-level (see Lüdtke et al., 2008). Then we explain how to apply the PML estimation method 
with discrete data in the WF approach.

Reformulation of the WF approach

Based on the steps introduced by Barendse and Rosseel  (2020), we formulate adjusted steps that 
first disentangle the between- and within-level of the model and then explicitly build models at both 
levels.

1.	 Rearrange the data in such a way that each row corresponds to a single cluster.
2.	 Disentangle each continuous endogenous variable into a between part (e.g., �

y
b

) and a within part (e.g., 
�
y
w

 ) by introducing new variables with factor loadings fixed to unity. For the between variables, repre-
senting the random intercepts of the model, one has to construct a latent variable where the indicators 
correspond to the unit-specific observations of that variable.

3.	 Construct a model with the newly introduced within-level variables involving the variables that belong 
to a single unit in a cluster and repeat this model as many times as the maximum cluster size.

4.	 Put equality constraints on all parameters across units in a cluster in the within part of the model. For 
example, in a one-factor model, equality constraints are necessary on the factor loadings, factor vari-
ances, and error variances. If variables are both at the within and the between-level, the intercepts at 
the within-level should be fixed to zero.

5.	 Construct a model at the between-level with the newly constructed between-level latent variables.

The solid lines in Figures 2 and 3 show a random intercept mediation model and a random intercept 
factor model, respectively. Appendix A shows the lavaan syntax for a multilevel mediation model (i.e., 
the model shown in Figure 2) and Appendix C shows the lavaan syntax for a multilevel factor model 
(i.e., the model shown in Figure 3).

This multilevel random intercept SEM can be extended with a random slope. Rockwood  (2020) 
gives a detailed description of multilevel models in the LF approach with random slopes (e.g., Figure 6 
in this paper shows a one-factor model in the LF approach with a random slope). In the WF approach 
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       |  7MULTILEVEL SEM WITH RANDOM SLOPES

we can also extend multilevel random intercept models with one or more random slope(s), by adding an 
additional step:

6.	 For each regression coefficient at the within-level that we allow to vary across clusters, we 
construct a latent variable (�

rs
) at the between-level with the dependent variable as indicators 

and factor loadings that are fixed to the values of the covariate. The latent variable �
rs
 rep-

resents the random slope in the model (see the dashed lines in Figures 2 and 3, and Appendices B 
and D for additional syntax to include a random slope).

Multilevel discrete data with the PML estimation method in the WF approach

With multilevel data, the pairwise likelihood is obtained as the product of bivariate likelihoods for 
within-cluster pairs of units (see Renard et al., 2004). Equations 6–9 are applicable for multilevel 
data by substituting individual i for unit j, where each separate row represents a single cluster in-
stead of a single unit (see Figure 1). If the PML estimation method is used with multilevel discrete 
data, only the within-level needs to be adjusted. Instead of estimating error variances at the within-
level, we estimate thresholds with equality constraints. Renard et al. (2004), Bellio and Varin (2005), 
Tibaldi et al. (2007), and Cho and Rabe-Hesketh (2011) showed how PML estimation can be used for 

F I G U R E  2   A multilevel mediation model in the WF approach with three units in each cluster. Note: Mediation model 
three variables (y,m, and z} with three units per cluster). The rounded boxes represent the within and between components of 
the original variables for three units per cluster. Labels a, b, c reflect the between-level regressions and d, e, f reflect the within-
level regressions. The dashed lines indicate all parameters related to the random slope �

rs
 with the dependent variable as 

indicators and factor loadings that are fixed to the values of the covariate xj. Residual variances (not shown here) also contain 
equality restrictions at the within-level. Appendix A shows the corresponding lavaan syntax for the random intercept model 
and Appendix B shows the additional lavaan syntax to add a random slope. Appendix E shows the alternative lavaan syntax 
with discrete variables.
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8  |      BARENDSE and ROSSEEL

generalized (random intercept, random slope) multilevel regression models with a binary outcome. 
For fitting multilevel SEM with discrete data, we need to adjust our formulated step 2:

2a.	�For each discrete endogenous variable at the within-level, construct a latent variable (i.e., y∗), 
where the indicators correspond to the unit-specific observation of that variable. The thresholds 
are estimated with equality constraints on thresholds across units within a cluster (see step 4).

Figure 4 shows a generalized multilevel regression model with both a random intercept and a random 
slope and four response options. This model is similar to the one presented in Figure 1b, but now 
contains four response options instead of continuous data. Appendix E shows the lavaan syntax for a 
multilevel mediation model with discrete data and Appendix F shows the lavaan syntax for a multilevel 
factor model with discrete data. The syntax in Appendix B or D can be added to include a random 
slope.

F I G U R E  3   A multilevel factor model in the WF approach with three items and three units within each cluster. Note: The 
rounded boxes represent the within- and between- components of the original variables y1.1 to y3.3 for three units per cluster. 
�
y
b
1

, �
y
b
2

, and �
y
b
3

 correspond to the unit-specific observation of that variable at the between-level, where labels a, b, c reflect 
the between-level factor loadings. For identification purposes, one factor loading or the variance of �

fb
 must be fixed to unity. 

The structures below y1.1 to y3.3 account for the within-level latent variables (i.e., �
fw
1

, �
fw
2

, and �
fw
3

) with parameter labels d, e, 
f for the factor loadings. For identification purposes, one factor loading of each within factor (�

fw
) or the variance of �

fw
 must 

be fixed to unity. The dashed lines indicate a random slope �
rs
 with the dependent variable as indicators and factor loadings 

that are fixed to the values of the covariate xj. The parameter h is an indicator of the correlation between the between-level 
factor and the random slope. Identical parameter labels indicate equality constraints in the model. Residual variances (not 
shown here) also contain equality restrictions. Appendix C shows the corresponding lavaan syntax for the random intercept 
model, and Appendix D shows the additional lavaan syntax to add a random slope. Appendix F shows the alternative lavaan 
syntax with discrete variables.
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       |  9MULTILEVEL SEM WITH RANDOM SLOPES

SIMUL ATION STUDY

To investigate computationally intensive multilevel SEM models with discrete data in the WF ap-
proach using the PML estimation method, we ran a simulation study with a multilevel mediation 
model and two multilevel factor models (i.e., one with one random slope and one with two random 
slopes). All the models have at least six latent variables (i.e., random slopes or factors) in the model. 
Within each type of model, we vary response scales (two-point, four-point) and the number of clus-
ters (250, 500, 1000, 2000). The cluster size is always fixed at three. In a fully crossed design, these 
factors yield 3 × 2 × 4 = 24 different conditions. The performance of the PML method is evaluated 
by calculating the relative bias. The relative bias is calculated for the estimated parameters as % 
bias = (θ̂−θ)/θ × 100 and for the standard errors as % bias = (SE-SD)/SD × 100, where SE is the 
mean of the estimated standard errors across replications and the SD refers to the standard deviation 
of the parameter estimates across replications.

Data generation

Figures 5 and 6 show the data-generation model in the LF approach for a mediation model and a fac-
tor model, respectively. The mediation model is generated with three random slopes and the factor 
model is generated with one or two random slopes. The dashed lines represent the random slopes (i.e., 
�
rs
1

, �
rs
2

 , �
rs
3

). The solid lines of models in the LF approach are identical to those in the WF approach 
presented in Figures 2 and 3. In all models we generated more variance at the within-level than at the 
between-level to mimic real data examples (see Snijders & Bosker, 1999). For example, using the param-
eter values of the basic factor model from Figure 6, the intraclass correlation for all indicators equals 

F I G U R E  4   Random intercept and random slope model with three units in each cluster. Note: With four response 
options, three thresholds are estimated per variable. (�

y
b
1

) refers to a random intercept, (�
y
w
1

) refers to the within 
representation of the variables, � refers to the thresholds, and y∗ refers to the underlying latent response variables. Identical 
parameter labels indicate equality constraints. Figure 4 is similar to Figure 1 with the new parameterization and discrete data.
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10  |      BARENDSE and ROSSEEL

(12 × .5 + .2)/((12 × .5 + .2) + (12 × 1 + 1)) =  .260. The multilevel models are generated with three vari-
ables with three units in each cluster to limit the estimation time in the simulation study. Continuous 
data were drawn from a multivariate normal distribution. Discrete data with two-point response scales 
are obtained by discretizing the continuous data such that the population proportions equal approxi-
mately .50 per category and four-point response scales are obtained by discretiszing the data such that 
the population proportions equal approximately .16, .34, .34, and .16. We have chosen the mean of the 
random slope (see the triangles in Figures 5 and 6) to be equal to the variance of the random slope. The 
residual variances equal an identity matrix to resemble the theta parameterization. For each condition 
500 data sets are generated.

Estimation

The R package lavaan (version 0.6–12: Rosseel, 2012) is used for the calculations. Casewise estimation 
is necessary to estimate multilevel models with random slopes. To perform casewise calculations in this 
study, we wrote custom scripts to estimate the likelihood for each cluster separately.1 Based on the the-
ory of Katsikatsou et al. (2012), we used a closed-form solution to calculate the PML standard errors 
casewise (i.e., cluster-specific). In the estimated factor models, we fixed the first factor loading to unity 
to set the metric of the factor.

 1All R scripts (e.g., data-generation scripts and scripts to analyse the data) are available at https://osf.io/346vj/.

F I G U R E  5   A data generation model for a multilevel mediation model in the LF approach. Note: The solid lines represent 
the general mediation model. The rounded boxes represent the within- and between components of the original variables 
for three units per cluster. Variables y, m, and z are variables in the mediation model that appear at both the within and the 
between-level. The dashed lines indicate all parameters related to the random slopes (�

rs
1

, �
rs
2

, �
rs
3

) of covariate x.
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       |  11MULTILEVEL SEM WITH RANDOM SLOPES

Results

After applying each of the 12000 data sets, we found that all models converged. Inspection of the 
results shows that especially models with 250 clusters and two-point scales show unreasonable pa-
rameter estimates and standard errors. We removed all results that included at least one parameter 
or standard error at more than four standard deviations from the mean2. This resulted in 3.90% 
deletions for the mediation model with three random slopes, 2.78% deletions for the factor model 
with one random slope, and 4.38% deletions for the factor model with two random slopes. Below we 
describe the relative bias (expressed as percentages) of the estimated mediation model and the factor 
models for the within- and between-level separately. Notice that the coefficients displayed in the 
plots refer to Equations 3 and 4.

 2All raw results with and without outliers are available at https://osf.io/346vj/.

F I G U R E  6   A data generation model for a multilevel factor model in the LF approach. Note: The solid lines represent 
the general model and the dashed lines indicate the random slopes. The rounded boxes represent the within- and between- 
components of the original variables for three units per cluster. �

fw
 denotes the variance of the within-level variance and �

fb
 

denotes the variance of the between-level variance. The dashed lines indicate all parameters related to the random slopes (�
rs
1

 
and �

rs
2

) of the covariates x.
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12  |      BARENDSE and ROSSEEL

Mediation model

Within-level

Bias of the parameter estimates
Figure 7 shows the relative bias of the three regression coefficients in the mediation model at the within-
level. The relative bias is lower across all conditions with a larger number of clusters and a four-point 
response scale. In particular, the condition with 250 clusters with a two-point response scale influenced 
the overall results. Raw results show that all the parameter estimates across all conditions with a four-
point scale have less than 1.3% bias and that all conditions with a two-point scale and 1000 or 2000 
clusters have less than 1.5% bias.

Bias standard errors
To study the efficiency of the estimates, we calculated the relative bias of the standard errors. The relative 
bias of the standard errors associated with the within-level regression coefficients is shown in Figure 8. High 
percentages of relative bias were found in conditions with 250 clusters and a two-point response scale (about 
70% to 275%). To put this in context, an absolute bias between the standard errors and the standard devia-
tions of the parameter estimates that equals .09 resulted in about 100% bias. Conditions with a four-point 
response scale with at least 500 clusters and conditions with a two-point response scale with at least 1000 
clusters were more efficient, with less than 6% bias and less than 8% bias, respectively.

Between-level

Bias of the parameter estimates
The relative bias of the regression coefficients across all conditions in the mediation model is shown in 
Figure 9. Almost all conditions had very low percentages of relative bias. We only observed a little more 

F I G U R E  7   Relative bias of the three regression coefficients of the mediation model at the within-level
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       |  13MULTILEVEL SEM WITH RANDOM SLOPES

bias in the mean of �
rs
3

. Figure 10 shows the relative bias of the parameters related to the variances and 
covariances in the mediation model. For the sake of efficiency, we only show the variance of z at the 
between-level (i.e., �z). Results show that the random slopes have more bias than the regression coef-
ficients. Figure 10 shows low percentages of bias across all conditions in the estimated covariances and 
higher percentages of bias in the variances. Overall, we observe similar patterns at the between-level to 
those we observed at the within-level, and more accuracy across all conditions with more clusters and 
a four-point response scale.

F I G U R E  8   Relative bias of the standard error related to the three regression coefficients of the mediation model at the 
within-level

F I G U R E  9   Relative bias of the regression coefficients of the mediation model at the between-level
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14  |      BARENDSE and ROSSEEL

Bias standard errors
Figures 11 and 12 show the relative bias of the standard errors for all parameters at the between-level. 
Once again, high percentages of bias were found in conditions with fewer clusters and two-point re-
sponse scales. The bias related to the variances is higher than the bias related to the regression coef-
ficients. We identified similar patterns of high and low percentages of relative bias to those we found at 
the within-level. In particular, a sample size of 250 with a two-point response scale showed very high 
percentages of relative bias across all parameters (about 65% to 230%). All other conditions show rea-
sonable percentages of relative bias.

Factor models with random slopes

As the result tendencies of the factor model with one random slope are very similar to the results 
with two random slopes, we will only show the results of the factor model with two random slopes. 

F I G U R E  1 0   Relative bias of the (co)variances of the mediation model at the between-level
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F I G U R E  1 1   Relative bias of the standard error related to the regression coefficients of the mediation model at the 
between-level
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       |  15MULTILEVEL SEM WITH RANDOM SLOPES

In general, the bias in the factor model with one random slope is a little lower across both parameter 
estimates and standard errors. The results of the factor model with one random slope are shown in the 
online supplementary materials.

Within-level

Bias of the parameter estimates
Figure 13 shows the relative bias of one of the factor loadings (we chose the third factor loading) and the 
variance of the within-level factor in a factor model with two random slopes. The factor variance (�

fw
) 

shows higher percentages of bias than the factor loading (λw). Overall, the percentages of relative bias 

F I G U R E  1 2   Relative bias of the standard error related to the (co)variances of the mediation model at the between-level
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F I G U R E  1 3   Relative bias of one of the factor loadings and the variance of the factor at the within-level
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16  |      BARENDSE and ROSSEEL

were quite low. Raw results show that the condition with 250 clusters with a two-point response scale 
showed a maximum of 17% relative bias. All other conditions have a maximum of 5.5% relative bias.

Bias standard errors
The relative bias of the within-level parameter estimates is shown in Figure 14. Notice that we used a 
different scale on the y-axis as the relative percentages of bias were much lower in the factor models than 
those observed in the mediation model. The relative bias found across all conditions with a four-point 
response scale was <5%. In conditions with a two-point response scale a maximum of 15% relative bias 
was observed.

Between-level

Bias of the parameter estimates
The relative bias of the parameter estimates is shown in Figures 15 and 16. The variances and covari-
ances show higher percentages of bias than the other parameters. In general, we observe a similar trend 
with more bias in conditions with fewer clusters and fewer response scales. Except in conditions with a 
cluster size of 250 and a two-point response scale, we observe a maximum of 12% bias.

Bias standard errors
Figures 17 and 18 show the relative bias of the standard errors related to the parameter estimates at the 
between-level. The factor loading and the variance of the between-level show a pattern in which more 
relative bias is related to a smaller number of clusters. The bias of the standard errors related to the other 
parameter estimates is lower. Taking into account that the percentages of bias in the standard errors 
increases quite quickly, the percentages of relative bias were quite low. In addition, we observe here that 
calculating bias across all conditions slightly increases the bias of the standard errors. For example, the 
raw results with 1000 and 2000 clusters show no more than 10% relative bias.

F I G U R E  1 4   Relative bias of the standard errors related to one of the factor loadings and the variance of the factor 
model at the within-level
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       |  17MULTILEVEL SEM WITH RANDOM SLOPES

DISCUSSION

In this study we combined the challenges of multilevel- and discrete-data SEM using the PML estima-
tion method. In pursuing this, we first reformulated the general framework of multilevel SEM in the 
WF approach of Barendse and Rosseel (2020) into a parameterization that is more intuitive and avoids 
using definition variables in case covariates or regression coefficients exist at both the within- and 
between-level. In this approach, the between- and within-levels are disentangled via latent variables 
that are then used to specify models at each level separately. Then we extended the reformulated WF 
approach for multilevel models with random slopes. In this study, we specifically focused on estimating 
structural equation models with discrete data and many latent variables (six or more, including random 
slopes) as these are computationally too intensive to estimate with the multilevel marginal maximum 
likelihood estimation method. The least squares estimation methods cannot be used either because they 
do not allow for random slopes due to relying on summary statistics. The PML estimation method, on 

F I G U R E  1 5   Relative bias related to the factor loading and the regression coefficients of the covariate of the factor 
model at the between-level
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F I G U R E  1 6   Relative bias related to the (co)variances of the factor model at the between-level
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18  |      BARENDSE and ROSSEEL

the other hand, is well suited for these kinds of models, as PML allows for random slopes and calculates 
the products of bivariate likelihoods that are computationally easy to handle.

We conducted a small simulation study to examine whether the PML estimation method can deal 
with complex multilevel data including random slopes. Results across all conditions show that the PML 
estimation method can deal with three-variable mediation models with three random slopes and three-
variable factor models with one or two random slopes. The mediation model showed higher percentages 
of relative bias than the factor models. This may have to do with the number of random slopes. The 
simulation study also showed that a factor model with one random slope can easily be extended to a 
model with two random slopes, with only slightly less accurate and efficient results. In general, a larger 
number of clusters and four-point response scales leads to low percentages of relative bias. The condi-
tion with 250 clusters and a two-point response scale showed higher percentages of relative bias. More 
specifically, the most prominent bias of the standard errors is observed in the mediation model. Overall, 
we observed more bias at the within-level than at the between-level. Additional research to estimate 
the same multilevel model with scripts that do not make use of equality constraints at the within-level 

F I G U R E  1 7   Relative bias of the standard error related to the factor loading and the regression coefficients of the 
covariate of the factor model at the between-level
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F I G U R E  1 8   Relative bias of the standard error related to the (co)variances of the factor model at the between-level
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       |  19MULTILEVEL SEM WITH RANDOM SLOPES

revealed that the equality constraints did not cause the additional bias. The bias at the within-level may 
be improved by increasing the number of units in each cluster. Generally speaking, we conclude that 
the PML estimation method is quite accurate and efficient when there are enough data to estimate the 
parameters. Only the condition with 250 clusters and a two-point response scale lacked sufficient accu-
racy and efficiency.

Comparing our results to those obtained in Barendse and Rosseel (2020), we conclude that models 
with random slopes need a larger number of cluster to be accurate and efficient. The random slopes 
bring an extra level of variability to the model. More research is needed to investigate whether this can 
be improved by increasing the number of units in the cluster or using techniques such as bounded es-
timation (De Jonckere & Rosseel, 2022). In this study we used a different parameterization than in the 
study of Barendse and Rosseel (2020). This parameterization does not influence the results in most of 
the models. However, in models with regression coefficients that exist at both the within- and between-
level, the newly described parameterization is highly recommended as it causes fewer difficulties in 
model estimation (i.e., it avoids calculation the between-level with the within-level using definition 
variables). Compared to the previous approach, we estimate more latent variables in the newly described 
approach. However, the PML estimation is not affected by this as it can handle many latent variables.

Adding random slopes complicates the estimation of a multilevel structural equation model, but it is 
still a sophisticated method to deal with within-level covariates. We recommend that each within-level 
covariate is first investigated via a random slope. Ignoring a random slope creates a misspecification in 
the model. This misspecification can result in incorrect standard errors and incorrect fit statistics. In 
principle, there are different ways of incorporating covariates that can be combined when fitting multi-
level models. In case a random slope does not contain enough variance, one can continue with a fixed 
covariate. If one is not interested in the effect of the covariate, it is also possible to treat the variable as 
an exogenous covariate and regress out the covariates first and perform all other calculations on the 
residual correlations (Katsikatsou, 2017). When the covariate is a dichotomy, it is also possible to inves-
tigate the effect of the covariate in a multigroup analysis. Depending on the model, one can chose and 
combine different ways to incorporate covariates.

Even though PML estimation can estimate complex multilevel models in the WF approach, there are 
a number of limitations. As the PML with multilevel data is obtained as the product of bivariate likeli-
hoods for within-cluster pairs of units and variables, the PML in the WF approach is slower with large 
cluster sizes. Further research should investigate whether we can improve the estimation by, for exam-
ple, deleting the bivariate pairs that do not contribute much to the likelihood or applying a two-step ap-
proach where the thresholds are fixed in the second step to reduce the number of estimated parameters.

Notwithstanding the difficulties of the PML estimation method in the WF approach, the PML 
estimation method seems promising and suited to fit complex multilevel structural equation models in 
the WF approach. The suggested two-level models with PML estimation methods can in theory also 
be extended to more than two levels. In addition, PML is computationally efficient enough to deal with 
many latent variables at both the within- and between-level. That does not mean that estimation is fast. 
Indeed, it currently takes a couple of hours to estimate a model. Another advantage of the PML estima-
tion method with multilevel data is that the number of columns (variables × units) can be larger than the 
number of rows (number of clusters). In this simulation study we used three units in each cluster to limit 
the estimation time, but models with larger cluster sizes can be estimated. Finally, the PML estimation 
method can deal with all types of data – discrete, continuous, and combinations thereof.

In this paper we only focused on frequentist estimation methods and did not take into account the 
multilevel Bayesian estimation method (e.g., Fox, 2010), which is a full-information method that is able 
to estimate random slopes. For further research, it would be interesting to compare the PML estimation 
method to the multilevel Bayesian estimation method, which can also estimate complex multilevel models.
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DATA AVA IL A BIL IT Y STAT EM ENT
Data has been shared (following the link https://osf.io/346vj/).
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A PPEN DI X A  |  LAVAAN SYNTAX FOR A MULTILEVEL MEDIATION MODEL IN THE WF APPROACH

# Syntax corresponding to Figure 2 with three observations in each cluster

model <- ’

    ### Step 2: Disentangle each continuous endogenous variable into a

    ### between-part and a within-part

    # create a separate within-level

    wy.1 =~ 1*y.1; wy.2 =~ 1*y.2; wy.3 =~ 1*y.3 # �y
w
 in Figure 2

    wm.1 =~ 1*m.1; wm.2 =~ 1*m.2; wm.3 =~ 1*m.3 # �m
w
 in Figure 2

    wz.1 =~ 1*z.1; wz.2 =~ 1*z.2; wz.3 =~ 1*z.3 # �z
w
 in Figure 2

    # create a separate between-level

    by =~ 1*y.1 + 1*y.2 + 1*y.3 # �y
b

 in Figure 2
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    bm =~ 1*m.1 + 1*m.2 + 1*m.3 # �
m
b

 in Figure 2

    bz =~ 1*z.1 + 1*z.2 + 1*z.3 # �
z
b

 in Figure 2

    # zero residual variances

    y.1 ~~0*y.1; y.2 ~~0*y.2; y.3 ~~0*y.3

    m.1 ~~0*m.1; m.2 ~~0*m.2; m.3 ~~0*m.3

    z.1 ~~0*z.1; z.2 ~~0*z.2; z.3 ~~0*z.3

    ### Steps 3 and 4: Construct a model with all the newly introduced

    ### within-level variables with equality constraints

    # variances in the model

    wy.1 ~~ yvar*wy.1; wy.2 ~~ yvar*wy.2; wy.3 ~~ yvar*wy.3 # Var(�
y
w

) in Figure 2

    wm.1 ~~ mvar*wm.1; wm.2 ~~ mvar*wm.2; wm.3 ~~ mvar*wm.3 # Var(�
m
w

) in Figure 2

    wz.1 ~~ zvar*wz.1; wz.2 ~~ zvar*wz.2; wz.3 ~~ zvar*wz.3 # Var(�
z
w

) in Figure 2

    # within regressions

    wz.1 ~ zy.w*wy.1 + zm.w*wm.1 # e and f  in Figure 2

    wz.2 ~ zy.w*wy.2 + zm.w*wm.2 # e and f  in Figure 2

    wz.3 ~ zy.w*wy.3 + zm.w*wm.3 # e and f  in Figure 2

    wm.1 ~ my.w*wy.1 # d in Figure 2

    wm.2 ~ my.w*wy.2 # d in Figure 2

    wm.3 ~ my.w*wy.3 # d in Figure 2

    ### Step 5: Construct a model with all the newly introduced

    ### between-level variables

    # regressions at between-level

    bz ~ zy.b*by + zm.b*bm # b and c in Figure 2

    bm ~ my.b*by # a in Figure 2

    # variances and means at between-level

    by ~~ by; bm ~~ bm; bz ~~ bz # Var(�
y
b

), Var(�
m
b

), and Var(�
z
b

) in Figure 2

    by ~ 1; bm ~ 1; bz ~ 1# E(�
y
b

), E(�
m
b

), and E(�
z
b

) in Figure 2

’

# fitting the model with ML

fit <- lavaan(model, data = wideData)

summary(fit)

A PPEN DI X B  |  ADDITIONAL LAVAAN SYNTAX TO ADD A COVARIATE WITH RANDOM SLOPES IN THE 

MEDIATION MODEL

    ### Step 6: Add a random slope for variable z

    # variance of the covariate x at the within-level

    x.1 ~~ xvar*x.1; x.2 ~~ xvar*x.2; x3 ~~ xvar*x.3 # Var(x) in Figure 2

    # covariance y and x (exogenous!)

    wy.1 ~~ covyx*x.1; wy.2 ~~ covyx*x.2; wy.3 ~~ covyx*x.3 # g in Figure 2

    # mean x

    x.1 ~mx*1; x.2 ~ mx*1; x.3 ~ mx*1 # E(x)

    # covariate at the between-level

    # create a random slope for z with covariate x

    RS =~999*wz.1 + 999*wz.2 + 999*wz.3 # 999 indicate the unit specific values of x;

      �
rs
 with unit specific x values in Figure 2

    RS ~~ RS # Var(�
rs
) in Figure 2

    RS ~ 1 # E(�
rs
) in Figure 2

    RS ~~ by + bm + bz # i, j, and k in Figure 2
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A PPEN DI X C  |  LAVAAN SYNTAX FOR A MULTILEVEL FACTOR MODEL IN THE WF APPROACH

# Syntax corresponding to Figure 3 with three observations in each cluster

model <- ’

    ### Step 2: Disentangle each continuous endogenous variable into a

    ### between-part and a within-part

    # create a separate within-level

    wy1.1 =~ 1*y1.1; wy2.1 =~ 1*y2.1; wy3.1 =~ 1*y3.1 # �
y
w
1

 in Figure 3

    wy1.2 =~ 1*y1.2; wy2.2 =~ 1*y2.2; wy3.2 =~ 1*y3.2 # �
y
w
2

 in Figure 3

    wy1.3 =~ 1*y1.3; wy2.3 =~ 1*y2.3; wy3.3 =~ 1*y3.3 # �
y
w
3

 in Figure 3

    # create a separate between-level

    by1 =~ 1*y1.1 + 1*y1.2 + 1*y1.3 # �
y
b
1

 in Figure 3

    by2 =~ 1*y2.1 + 1*y2.2 + 1*y2.3 # �
y
b
2

 in Figure 3

    by3 =~ 1*y3.1 + 1*y3.2 + 1*y3.3 # �
y
b
3

 in Figure 3

    ### Steps 3 and 4: Construct a model with all the newly introduced

    ### within-level variables with equality constraints

    # variances in the model

    wy1.1 ~~ y1var*wy1.1; wy2.1 ~~ y1var*wy2.1; wy3.1 ~~ y1var*wy3.1 # Var(�
y
w
1

) in Figure 3

    wy1.2 ~~ y2var*wy1.2; wy2.2 ~~ y2var*wy2.2; wy3.2 ~~ y2var*wy3.2 # Var(�
y
w
2

) in Figure 3

    wy1.3 ~~ y3var*wy1.3; wy2.3 ~~ y3var*wy2.3; wy3.3 ~~ y3var*wy3.3 # Var(�
y
w
3

) in Figure 3

    # factor model

    fw1 =~ 1*wy1.1 + lw2*wy2.1 + lw3*wy3.1 # �
fw
 with factor loadings d, e, and f in Figure 3

    fw2 =~ 1*wy1.2 + lw2*wy2.2 + lw3*wy3.2 # �
fw
 with factor loadings d, e, and f in Figure 3

    fw3 =~ 1*wy1.3 + lw2*wy2.3 + lw3*wy3.3 # �
fw
 with factor loadings d, e, and f in Figure 3

    fw1 ~~ NA*fw1 + fwt*fw1 # Var(�
fw
) in Figure 3

    fw2 ~~ NA*fw2 + fwt*fw2 # Var(�
fw
) in Figure 3

    fw3 ~~ NA*fw3 + fwt*fw3 # Var(�
fw
) in Figure 3

    ### Step 5: Construct a model with all the newly introduced

    ### between-level variables

    # factor model

    fb =~ 1*by1 + by2 + by3 �
fw
 with factor loadings a, b, and c in Figure 3

    fb ~~ fb # Var(�
fb
) in Figure 3

    # intercepts

    by1 ~ 1; by2 ~ 1; by3 ~ 1 # E(�
y
b

) in Figure 3

    # variances

    by1 ~~ by1; by2 ~~ by2; by3 ~~ by3 # Var(�
y
b

) in Figure 3

’

# fitting the model with ML

fit <- lavaan(model, data = wideData)

summary(fit)

A PPEN DI X D  |  ADDITIONAL LAVAAN SYNTAX TO ADD A COVARIATE WITH A RANDOM SLOPE IN 

THE FACTOR MODEL

    # covariate at the between-level

    # create a random slope

    RS =~ (999)*fw1 + (999)*fw2 + (999)*fw3 # 999 indicate the unit-specific values of x;

      �
rs
 with unit-specific x values in Figure 3
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    # mean of the random slope

    RS ~ 1# E(�
rs
) in Figure 3

    # variance of the random slope

    RS ~~ RS # Var(�
rs
) in Figure 3

    # covariance between RS and factor at the between-level

    fb ~~ RS # h in Figure 3

A PPEN DI X E  |  LAVAAN SYNTAX FOR A MULTILEVEL MEDIATION MODEL WITH DISCRETE DATA IN 

THE WF APPROACH

# syntax corresponding to solid lines in mediation model of Figure 2 with

# three observations in each cluster with discrete data (4-point scales)

# in the theta parameterization using the PML estimation method

model <- ’

    ### Step 2: Disentangle each continuous endogenous variable into a

    ### between-part and a within-part

    # take care of the thresholds

    y.1 + y.2 + y.3 | thy1*t1 + 0*t2 + thy3*t3

    m.1 + m.2 + m.3 | thm1*t1 + 0*t2 + thm3*t3

    z.1 + z.2 + z.3 | thy1*t1 + 0*t2 + thy3*t3

    # create star version of variables explicitly

    fy.1 =~1*y.1; fy.2 =~1*y.2; fy.3 =~1*y.3

    fm.1 =~1*m.1; fm.2 =~1*m.2; fm.3 =~1*m.3

    fz.1 =~1*z.1; fz.2 =~1*z.2; fz.3 =~1*z.3

    # zero residual variances

    y.1 ~~0*y.1; y.2 ~~0*y.2; y.3 ~~0*y.3

    m.1 ~~0*m.1; m.2 ~~0*m.2; m.3 ~~0*m.3

    z.1 ~~0*z.1; z.2 ~~0*z.2; z.3 ~~0*z.3

    # create within-level with star version of variables

    wy.1 =~1*fy.1; wy.2 =~1*fy.2; wy.3 =~1*fy.3

    wm.1 =~1*fm.1; wm.2 =~1*fm.2; wm.3 =~1*fm.3

    wz.1 =~1*fz.1; wz.2 =~1*fz.2; wz.3 =~1*fz.3

    # create between-level with star version of variables

    by =~1*fy.1 + 1*fy.2 + 1*fy.3

    bm =~1*fm.1 + 1*fm.2 + 1*fm.3

    bz =~1*fz.1 + 1*fz.2 + 1*fz.3

    ### Steps 3 and 4: Construct a model with all the newly introduced

    ### within-level variables with equality constraints

    # variances in the model, representing theta parametrisation

    wy.1 ~~1*wy.1; wy.2 ~~1*wy.2; wy.3 ~~1*wy.3

    wm.1 ~~1*wm.1; wm.2 ~~1*wm.2; wm.3 ~~1*wm.3

    wz.1 ~~1*wz.1; wz.2 ~~1*wz.2; wz.3 ~~1*wz.3

    # within regressions

    wz.1 ~ zy.w*wy.1 + zm.w*wm.1

    wz.2 ~ zy.w*wy.2 + zm.w*wm.2

    wz.3 ~ zy.w*wy.3 + zm.w*wm.3

    wm.1 ~ my.w*wy.1

    wm.2 ~ my.w*wy.2

    wm.3 ~ my.w*wy.3
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    ### Step 5: Construct a model with all the newly introduced

    ### between-level variables

    # regressions at between-level

    bz ~ zy.b*by + zm.b*bm

    bm ~ my.b*by

    # variances and means at between-level

    bz ~~ bz; bm ~~ bm; by ~~ by; bz ~1; bm ~1; by ~1

’

#fit the model with the PML estimation method

Pfit <- lavaan(model, data = wideData, ordered = paste(rep(c("y1","y2",

    "y3"), 3), rep(1:3, each = 3), sep = "."), estimator = "PML",

    parameterization = "theta")

summary(Pfit)

A PPEN DI X F  |  LAVAAN SYNTAX FOR THE MULTILEVEL ONE-FACTOR MODEL WITH DISCRETE DATA 

IN THE WF APPROACH

# syntax corresponding to solid lines in the factor model of Figure 3 with

# three observations in each cluster with discrete data (4-point scales)

# in the theta parameterization using the PML estimation method

model <- ’

    ### Step 2: Disentangle each continuous endogenous variable into a

    ### between-part and a within-part

    # take care of the thresholds

    y1.1 + y2.1 + y3.1 | thy1.1*t1 + 0*t2 + thy3.1*t3

    y1.2 + y2.2 + y3.2 | thy1.2*t1 + 0*t2 + thy3.2*t3

    y1.3 + y2.3 + y3.3 | thy1.3*t1 + 0*t2 + thy3.3*t3

    # create star explicitly

    fy1.1 =~1*y1.1; fy2.1 =~1*y2.1; fy3.1 =~1*y3.1

    fy1.2 =~1*y1.2; fy2.2 =~1*y2.2; fy3.2 =~1*y3.2

    fy1.3 =~1*y1.3; fy2.3 =~1*y2.3; fy3.3 =~1*y3.3

    # zero residual variances

    y1.1 ~~0*y1.1; y2.1 ~~0*y2.1; y3.1 ~~0*y3.1

    y1.2 ~~0*y1.2; y2.2 ~~0*y2.2; y3.2 ~~0*y3.2

    y1.3 ~~0*y1.3; y2.3 ~~0*y2.3; y3.3 ~~0*y3.3

    # create within-level component (with star) of the variables

    wy1.1 =~1*fy1.1; wy2.1 =~1*fy2.1; wy3.1 =~1*fy3.1

    wy1.2 =~1*fy1.2; wy2.2 =~1*fy2.2; wy3.2 =~1*fy3.2

    wy1.3 =~1*fy1.3; wy2.3 =~1*fy2.3; wy3.3 =~1*fy3.3

    # create between-level component (with star) of the variables

    by1 =~1*fy1.1 + 1*fy1.2 + 1*fy1.3

    by2 =~1*fy2.1 + 1*fy2.2 + 1*fy2.3

    by3 =~1*fy3.1 + 1*fy3.2 + 1*fy3.3

    ### Steps 3 and 4: Construct a model with all the newly introduced

    ### within-level variables with that represent theta parametrisation

    # variances in the model

    wy1.1 ~~1*wy1.1; wy2.1 ~~1*wy2.1; wy3.1 ~~1*wy3.1

    wy1.2 ~~1*wy1.2; wy2.2 ~~1*wy2.2; wy3.2 ~~1*wy3.2

    wy1.3 ~~1*wy1.3; wy2.3 ~~1*wy2.3; wy3.3 ~~1*wy3.3
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    # factor model

    fw1 =~1*wy1.1 + lw2*wy2.1 + lw3*wy3.1

    fw2 =~1*wy1.2 + lw2*wy2.2 + lw3*wy3.2

    fw3 =~1*wy1.3 + lw2*wy2.3 + lw3*wy3.3

    fw1 ~~ NA*fw1 + fwt*fw1

    fw2 ~~ NA*fw2 + fwt*fw2

    fw3 ~~ NA*fw3 + fwt*fw3

    ### Step 5: Construct a model with all the newly introduced

    ### between-level variables

    # factor model

    fb =~1*by1 + by2 + by3;

    fb ~~ fb

    # intercepts

    by1 ~1; by2 ~1; by3 ~1

    # variances

    by1 ~~ by1; by2 ~~ by2; by3 ~~ by3

’

#fit the model with the PML estimation method

Pfit <- lavaan(model, data = wideData, ordered = paste(rep(c("y1","y2",

    "y3"), 3), rep(1:3, each = 3), sep = "."), estimator = "PML",

    parameterization = "theta")

summary(Pfit)
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