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Abstract. We consider the problem of the first passage time to the origin of a

spatially non-homogeneous random walk with a position-dependent drift, known as

the Gillis random walk, in the presence of resetting. The walk starts from an initial

site x0 and, with fixed probability r, at each step may be relocated to a given site

xr. From a general perspective, we first derive a series of results regarding the first

and the second moment of the first hitting time distribution, valid for a wide class

of processes, including random walks lacking the property of translational invariance;

we then apply these results to the specific model. When resetting is not applied, by

tuning the value of a parameter which defines the transition probability of the process,

denoted by ǫ, the recurrence properties of the walk are changed, and we can observe: a

transient walk, a null-recurrent walk, or a positive-recurrent walk. When the resetting

mechanism is switched on, we study quantitatively in all regimes the improvement of

the search efficiency. In particular, in every case resetting allows the system to reach

the target with probability one and, on average, in a finite time. If the reset-free system

is in the transient or null-recurrent regime, this makes resetting always advantageous

and moreover, it assures the existence of an optimal resetting probability r∗ which

minimizes the mean first hitting time. Instead, when the system is positive-recurrent,

the introduction of resetting is not necessarily beneficial. We explain that in this case

there exists a threshold rth for the resetting probability r, above which the resetting

mechanism yields a larger mean first hitting time with respect to the reset-free system.

We provide a study of rth, which can be zero for some values of the system parameters,

meaning that resetting can not be beneficial in those situations. All the theoretical

findings are corroborated with numerical simulations.

Keywords: Exact results, First passage, Stochastic processes

1. Introduction

Stochastic resetting is a simple mechanism by which from time to time a random process

is restored to a given condition, usually corresponding to the initial state [1]. Following

each resetting event the dynamics is started anew, with loss of memory of the previous

http://arxiv.org/abs/2208.10220v4
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history. Despite the simplicity of the mechanism, the repeated returns to a given location

produce non-trivial effects on the statistical properties of the dynamics. For instance, if

we consider the paradigmatic example of Brownian motion, it is known that resetting

favours the emergence of a non-equilibrium steady state [2], which arises because the

diffusive spreading of the probability density function is suppressed and the particle is

only allowed to diffuse between to consecutive restarts. A second striking fact regards

the time needed to reach a target for the first time, which is often investigated to test

the efficiency of a search process. While for a Brownian motion without restarts the

expected time to reach a target is infinite, the introduction of resetting eventually cuts

off the contribution of long diffusive excursions away from the target, thus enhancing

the search efficiency to the point where the mean first passage time attains a finite

value. Not surprisingly, this property has been thoroughly investigated in the literature

[1, 3, 4, 5, 6, 7, 8, 9, 10, 11] and it is still object of many studies, trying to extend it

outside the realm of pure diffusion, e.g. for the telegraphic process and run-and-tumble

motion [12, 13, 14, 15, 16], continuous time random walks [17, 18] and Lévy flights

[19, 20, 21, 22]. For comprehensive reviews, see [23, 24]. It is worth mentioning that the

usefulness of stochastic resetting has been widely recognized also in different contexts,

such as quantum physics [25, 26, 27], chemistry [28, 29], biology [30, 31], computer

science [32, 33] and economics [34, 35, 36].

Although the vast majority of the studies focused on situations where the time of the

process is described by a continuous parameter, a reasonable amount of work has been

dedicated to the analysis of random walks (RW) in discrete time. In [37] the authors

investigated a one-dimensional random walker on a discrete lattice with resetting to the

position of the maximum. In [38] it was considered the introduction of resetting in the

so-called Sisyphus RW, a particular kind of unidirectional walk. Resetting with memory

of the previous history was studied in for RW in discrete time and space [39]. A general

setup for the analysis of first passage RW processes was proposed in [40]. Furthermore,

stochastic resetting has been also considered for RWs on networks, with a particular

attention on first passage times [41, 42]. More recently, RWs with stochastic resetting

have been considered for the evaluation of extreme value statistics, regarding maxima,

records and survival probability [43, 44, 45], and to revisit the classical problem of the

number of distinct sites visited up to step n [46].

In this paper we will present general results regarding the search efficiency of the

process in presence of resetting, valid for a wide class of random walks on the integer

lattice, which will be specified later. Our results involve the evaluation of the mean and

the variance of the first hitting time to a target, with the aim of unveiling the relation

with the recurrence properties of the reset-free system. To corroborate our general

findings, we will consider a classical model of random walk on the one-dimensional

lattice of integers known by the name of Gillis random walk (GRW) [47], defined by the
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following transition probability Gxy of jumping from site y to site x:

Gxy =





1

2

(
1− ǫ

y

)
δx,y+1 +

1

2

(
1 +

ǫ

y

)
δx,y−1 if y 6= 0

1

2
δx,y+1 +

1

2
δx,y−1 if y = 0,

(1)

where δxy is the Kronecker delta, restricting the jumps only between nearest-neighbour

sites, while ǫ is a real parameter such that −1 < ǫ ≤ 1. As can be inspected from (1),

there is a tendency to move towards or away from the origin, depending on the sign

of ǫ. Moreover, the transition probability depends explicitly on the current position.

For these reasons, the GRW can be classified as a non-homogeneous centrally-biased

random walk. The peculiarity of this model is that is one the few kinds of random walks

lacking translational invariance for which exact analytical results can be obtained [48].

It recently attracted interest in the physical literature [49, 50] due to the correspondence

of the asymptotic properties of the walk to those of a Brownian particle in a logarithmic

potential, even if the model already appeared in [51], to map the problem of ion diffusion

in a semi-infinite domain in the presence of a charged barrier. However, the GRW is

mostly known in the mathematical literature as a paradigmatic example for the study

of recurrence and first passage properties in d dimensions and in the presence of a bias

[47, 52, 53, 54, 55].

The paper is organised as follows: first, in sections 2 and 3 we briefly review the

notions of recurrence and transience, and present the formalism to treat analytically

the first hitting problem in the presence of resetting; then, in sections 4 and 5 we

derive general results regarding the first and the second moment of the first hitting

time distribution, also specifying the class of processes for which these are valid; in

section 6 we discuss under which conditions the problem may be optimised by choosing

correctly the probability of reset; in section 7 we apply all findings to the Gillis model

and show the agreement with our numerical simulations; finally in section 8 we draw

our conclusions.

2. Recurrence and transience

In this section we recall the basic definitions of recurrence and transience for a random

walk, and also specify the class of processes that we will consider in the paper. We say

that a random walk is recurrent if with probability one it returns to the starting site an

infinite number of times [47]. An useful criterion to test recurrence is thus based on the

generating function of the probability of first return time at the origin. Let us denote

with F (n) the probability that a walk starting at x0 = 0 returns to the origin for the

first time at step n, and define the generating function

F̃ (z) =
∞∑

n=1

F (n)zn. (2)
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The limit z → 1− of this generating function corresponds to the sum of all F (n), hence

the random walk is recurrent if and only if

lim
z→1−

F̃ (z) = 1 (recurrent walk); (3)

otherwise we say that the random walk is transient, which means that there is a positive

probability Q = 1 − R that the walk never returns to the starting point, where R is

given by

lim
z→1−

F̃ (z) = R < 1 (transient walk). (4)

It is important also to note that one can distinguish between null and positive recurrence:

a null-recurrent walk returns with infinite expected return time, while the return time

for positive-recurrent walks has finite mean.

It turns out that when a random walk is recurrent, the general structure assumed

by F̃ (z) is ruled by a classical result by Lamperti [56], which establishes a relation

between F̃ (z) and the existence of a certain limiting distribution. To be more specific,

the theorem is valid for a class of processes with the property that the state space can

be split in two sets, say S1 and S2, separated by a special state s, assumed as the initial

condition, and furthermore: (i) the occupation of s is a recurrent event; (ii) if the process

is in S1 at step n− 1 and in S2 at step n + 1 (or vice versa), then necessarily occupies

s at step n; under these condition, the existence for n → ∞ of the limiting distribution

of the fraction of time spent in S1 implies that there is 0 ≤ ρ ≤ 1 and a slowly-varying

function L(x) such that

F̃ (z) = 1− (1− z)ρL
(

1

1− z

)
. (5)

We recall that a slowly-varying function is a continuous function, positive for large

enough x, that for any t > 0 satisfies

lim
x→∞

L(tx)
L(x) = 1. (6)

The class of processes for which this result holds is quite general, and includes for

example all Markov chains in which one state separates the rest in two sets [56]. For

example, considering the simple and symmetric random walk on Z starting from x0 = 0,

then we can identify S1 with the set of positive integers and S2 with the set of negative

integers; the theorem states that if the distribution of the fraction of time spent in S1

exists, then F̃ (z) can be written as in (5), and indeed we know [57]

F̃ (z) = 1−
√
1− z2 = 1−

√
1− zL

(
1

1− z

)
, (7)

with

L(x) =
√

2− 1

x
, (8)

which shows that for this model ρ = 1
2
.
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We remark that the values ρ = 0 and ρ = 1 are special, because they both define

a “phase transition”: walks with ρ = 0 correspond to a transition between recurrent

and transient processes, while those with ρ = 1 separate null-recurrence and positive-

recurrence [56]. The consequences of this result on many statistical properties of the

walk, as well as the evaluation of ρ and its general relation with other exponents

describing the system, have been investigated in previous works [49, 58]. Now we

are interested in the special form of F̃ (z) given by (5), which will help us obtain

straightforwardly useful information on the mean and the standard deviation of the

first hitting time in presence of resetting.

3. Random walks with stochastic resetting

In this section we are interested in the number of steps required to reach the point x for

the first time for a random walker starting from x0, when we also consider a stochastic

resetting mechanism that, with probability r, after each step can relocate the walk to

a fixed position xr. This is sometimes called geometric restart [40]. In the following we

will only consider walks that can perform jumps between nearest-neighbour sites. Let

us first consider the simple case where x0 = xr, and let us denote by Fr(x, n|x0) the

probability of hitting x for the first time at step n, in the presence of resetting which

relocates the walker at the starting position x0. This can be expressed as the sum of two

contributions: the first comes from the walks that reach x in n steps with no resetting

events. This can be written in terms of F (x, n|x0), by which we denote the first hitting

time probability of x in absence of resetting. The second is due to walks that are reset

for the first time at step k < n, not having hit x in the previous k − 1 steps, and then

reach the target in the remaining n−k steps. Hence by calling Q(x, n|x0) the probability

of never reaching x in n steps starting from x0, namely the survival probability, we can

write

Fr(x, n|x0) = (1− r)nF (x, n|x0) +

r

n∑

k=1

(1− r)k−1Q(x, k − 1|x0)Fr(x, n− k|x0). (9)

Note that an equivalent equation for the survival probability in presence of resetting,

Qr(x, n|x0), already appeared, for instance, in [19]. We define the generating functions

F̃r(x, z|x0) =

∞∑

n=1

znFr(x, n|x0) (10)

F̃ (x, z|x0) =

∞∑

n=1

znF (x, n|x0) (11)

Q̃(x, z|x0) =

∞∑

n=0

znQ(x, n|x0), (12)

then multiply (9) for zn and sum over n = 1, 2, . . ., obtaining

F̃r(x, z|x0) = F̃ (x, ζ |x0) + zrQ̃(x, ζ |x0)F̃r(x, z|x0), (13)
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where we have introduced the rescaled variable ζ = (1 − r)z. It is more convenient

to rewrite Q̃(x, z|x0) in terms of F̃ (x, z|x0), which can be done by observing that the

numbers of walks that reach x for the first time in n steps is the difference between

those that have not reach it up to step n − 1, and those that have not reach it up to

step n:

F (x, n|x0) = Q(x, n− 1|x0)−Q(x, n|x0). (14)

Hence one gets the following relation between the generating functions:

Q̃(x, z|x0) =
1− F̃ (x, z|x0)

1− z
. (15)

By plugging this expression in (13) and rearranging terms, we get

F̃r(x, z|x0) =
(1− ζ)F̃ (x, ζ |x0)

1− z + rzF̃ (x, ζ |x0)
. (16)

We can now easily generalize to the case of a generic resetting position xr. Obviously

the difference with respect to the previous case comes only from those walks that

experience at least one resetting, hence we have to modify only the second term at

the right-hand side of (9) to take into account that after the first reset, the process is

reset not at x0 but at xr, and that all future resets will relocate the particle at the same

position xr. Therefore in this case we have

Fr(x, n|x0, xr) = (1− r)nF (x, n|x0) +

r

n∑

k=1

(1− r)k−1Q(x, k − 1|x0)Fr(x, n− k|xr), (17)

and by switching to generating functions:

F̃r(x, z|x0, xr) = F̃ (x, ζ |x0) + rzQ̃(x, ζ |x0)F̃r(x, z|xr), (18)

where at the rhs F̃r(x, z|xr) has the expression given in (16) by replacing x0 with xr.

We thus get:

F̃r(x, z|x0, xr) =
(1− z)F̃ (x, ζ |x0) + rzF̃ (x, ζ |xr)

1− z + rzF̃ (x, ζ |xr)
, (19)

and note that when x0 = xr we recover (16). In the limit z → 1− we can write

F̃r(x, z|x0, xr) ∼ 1− (1− z)

[
1− F̃ (x, 1− r|x0)

rF̃ (x, 1− r|xr)

]
, (20)

hence we can immediately deduce:

a) The process under stochastic resetting is always recurrent independently of the

features of the generating function F̃ (x, z|y) of the free process, since the leading

order term of the expansion (20) is one for any choice of x, x0 and xr;

b) In the limit z → 1− that we are considering, the generating function in presence

of resetting assumes the form dictated by the Lamperti theorem, see (5) in section

2, even if in this case we are considering not a first return problem, but the first

hitting probability.
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c) The term in square brackets at the rhs of (20) is the mean first hitting time

〈τr(x|x0, xr)〉 of the walk with resetting, since it is the coefficient of the linear

term in the expansion of F̃r(x, z|x0, xr) in powers of 1 − z. Indeed, calling

Fr(n) = Fr(x, n|x0, xr) for brevity, we can write
∞∑

n=1

Fr(n) [1− (1− z)]n ∼
∞∑

n=1

Fr(n)− (1− z)
∞∑

n=1

nFr(n), (21)

in the limit z → 1−. Note that this works because both series appearing in the

expansion converge. In principle, one can obtain information on higher order

moments of the first hitting time by considering further powers of 1 − z. For

example the next term would be

(1− z)2

2

∞∑

n=2

n(n− 1)Fr(n) =
(1− z)2

2
[µ2 − Fr(1)− µ1 + Fr(1)]

(1− z)2

2
[µ2 − µ1] , (22)

where we have used the short notation µq = 〈τ qr (x|x0, xr)〉. By expanding (19) up

to (1− z)2 we get

〈τ 2r (x|x0, xr)〉 = 2〈τr(x|x0, xr)〉
[
1

2
− (1− r)

F̃ ′(x, 1− r|xr)

F̃ (x, 1− r|xr)
+

1− rF̃ (x, 1− r|xr)

rF̃ (x, 1− r|xr)
− (1− r)F̃ ′(x, 1− r|x0)

1− F̃ (x, 1− r|x0)

]
. (23)

3.1. Summary of the main results for the Gillis random walk

Let us summarize the main results for the GRW. As we will explain later in section 7,

depending on the value of ǫ defining the jump probability, see (1), the walk is transient

for −1 < ǫ < −1
2
and recurrent otherwise. In all cases, we obtain the exact expression

of mean first hitting time of the origin x = 0, starting from a generic point x0 and with

resetting position xr. We also derive the asymptotics of the mean 〈τr(0|x0, xr)〉 and the

standard deviation σr, in the regimes r → 0 and r → 1. The former case is summarized

in table 1, which shows different behaviours depending on the recurrence properties of

the walk. In the latter case instead, we find that in the whole range −1 < ǫ ≤ 1, hence

independently of the recurrence properties, 〈τr(0|x0, xr)〉 diverges as

〈τr(0|x0, xr)〉 ∼
|xr|!Γ(1 + ǫ)

Γ(1 + ǫ+ |xr|)

(
2

1− r

)|xr|

, r → 1 (24)

and the standard deviation σr follows exactly the same behaviour. By comparing this

result with those reported in table 1, we also conclude that:

a) In the transient and null-recurrent regimes, 〈τr(0|x0, xr)〉 diverges for both r → 0

and r → 1. This means that resetting is able to expedite the search for any

0 < r < 1, and furthermore, there exists an optimal resetting probability r∗ which

minimizes the mean first hitting time. In section 7 we consider the particular case

x0 = xr and present a numerical study on r∗ as a function of ǫ and x0;
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Range of ǫ 〈τr(0|x0, xr)〉 (r → 0) σr (r → 0)

Transient −1 < ǫ < −1
2

C(x0, xr)

r

c(x0, xr)

r

Null-recurrent

ǫ = −1
2

A(x0)

r log(1/r)

√
A(x0)

log(1/r)

1

r

−1
2
< ǫ < 1

2

B(x0)

r1/2−ǫ

√
2B(x0)

r(3/2−ǫ)/2ǫ = 1
2

x2
0

2
log(1/r)

Positive-recurrent 1
2
< ǫ ≤ 1

x2
0

2ǫ− 1

Table 1. Asymptotic (small-r) behaviours for the mean and the standard deviation

of the first hitting time, for the GRW with resetting. Here we consider x = 0 with

generic starting and resetting positions. The coefficients appearing in the table are

defined later in the main text: A(x0) is given by (99), B(x0) by (100), B(x0) by (116),

while C(x0, xr) and c(x0, xr) are defined by (109) and (111), respectively.

b) In the positive-recurrent regime, while 〈τr(0|x0, xr)〉 still diverges for r → 1, the

divergence for r → 0 disappears, and the mean first hitting time converges instead to

a finite positive value, see table 1. The existence of an optimal resetting probability

is thus not guaranteed. Indeed, sticking to x0 = xr, we show that in the particular

case ǫ = 1 and |x0| = 1, the resetting only hinders the mean first hitting time.

However, if we consider ǫ = 1 but |x0| > 1, or ǫ < 1 with any initial distance,

we find that there exists an optimal probability r∗ which minimizes the mean first

hitting time. Nevertheless, we explain that, contrarily to the previous ones, in this

regime resetting can be advantageous only up to a certain threshold rth, that we

study numerically.

Although for the GRW we can obtain exact analytical results, in the following we will

also show that the asymptotic behaviours can be derived from a general perspective, that

does not require the full knowledge of the underlying generating function F̃ (x, z|x0), but

only its general structure, which for a wide class of processes is dictated by the recurrence

properties of the system.

4. General analysis on the mean first hitting time

As described by the expressions we found for 〈τr(x|x0, xr)〉 and 〈τ 2r (x|x0, xr)〉 in (20) and

(23) respectively, these quantities can be written in terms of the generating functions

of the reset-free process. Now, even though the generating functions we are considering

here do not refer to the first return probability, it is safe to assume that in the limit
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z → 1− they must attain a similar form of that prescribed by Lamperti theorem; namely,

for recurrent walks

F̃ (x, z|x0) ∼ 1− (1− z)ρL

(
1

1− z
; x, x0

)
, (25)

where in this case the slowly-varying function contains information on the starting point

and the target, while we suppose to observe no difference in the value of ρ. This is due

to the fact that for a random walk where any point x is accessible from any other point

x0, the starting point does not change the recurrence properties of the process [47],

and we expect that the first return probability and first hitting probability share the

same asymptotic behaviour, which is ruled by ρ. More generally, as shown in a previous

paper [58], the exponent ρ is also related to the temporal scaling of the probability

distribution, which can be safely assumed independent of x and x0. This can be more

rigorously proved in the context of infinite ergodic theory, see [58, 59, 60, 61].

For transient walks, this correspondence between the first return and the first hitting

probability is weaker. For example, let us imagine a one-dimensional walk with a strong

positive bias, so that the walk drifts towards +∞: in this case, each point is transient,

but the transition from x0 to x, if x0 < x, occurs with probability one. Hence, while

the first return probability generating function converges to a finite value smaller than

one for each choice of the starting point, the generating function of the first hitting

probability of x starting from x0 converges instead to one, for x0 < x. On the other

hand, for x < x0, due to the bias the walk only has probability R(x|x0) < 1 of reaching

x, hence F̃ (x, z|x0) → R(x|x0) < 1 in the limit z → 1−. Since many of the results we

derive in the following mainly depend on the whether F̃ (x, z|x0) converges to one or to

a smaller value, when we consider transient walks we will only refer to the former case,

where the total transition probability from x0 to x occurs with probability R(x|x0) < 1.

4.1. High resetting probability

Let us first examine

〈τr(x|x0, xr)〉 =
1− F̃ (x, 1− r|x0)

rF̃ (x, 1− r|xr)
, (26)

in the regime r ≈ 1, so that we have to consider the behaviour of F̃ (x, z|y) close to

z = 0. We recall that we are only considering walks that can perform nearest-neighbour

jumps, hence it is easy to see that the generating function must vanish as z|x−y| in the

limit. This can be seen by observing that the generating function is

F̃ (x, z|y) =
∞∑

n=1

F (x, n|y)zn, (27)

and that due to the constraint of nearest-neighbour jumps, in general the particle can

not cover a distance of size d(x, y) = |x − y| in less than d(x, y) steps. Therefore, for

m = 1, 2, . . . , d(x, y)− 1, all coefficients F (x,m|y) must vanish, and we can write

F̃ (x, z|y) = zd(x,y)
∞∑

m=0

F (x, d(x, y) +m|y)zm, (28)
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where the simple shift of index m = n − d(x, y) has been considered. This shows that

as z → 0 the function F̃ (x, z|y) is asymptotic to

F̃ (x, z|y) ∼ z|x−y|

K(x, y)
, (29)

thus yielding

〈τr(x|x0, xr)〉 ∼ K(x, xr)(1− r)−|x−xr|, (30)

where the coefficient K(x, xr) has been introduced just to simplify the notation and is

precisely given by

K(x, xr) =
1

F (x, d(x, xr)|xr)
. (31)

In particular, for the simple and symmetric random walk, it is easy to see that the

probability of reaching x from xr for the first time in exactly |x− xr| steps is given by

F (x, d(x, xr)|xr) = 2−d(x,xr), hence one obtains

〈τr(x|x0, xr)〉 ∼
(

2

1− r

)|x−xr|

. (32)

We can immediately see that in this regime the mean first hitting time is not affected

by the starting point. This is obviously a trivial observation, because in the regime of

high reset probability, the information on x0 is immediately lost. Also, we observe that

this limiting behaviour does not change if we consider a recurrent or a transient process.

Note that here we have a power-law divergence which depends only on the distance

between the resetting position and x.

4.2. Low resetting probability

We now consider r ≈ 0, so that the behaviour of F̃ (x, z|y) close to z = 1 is important.

Let us begin with the recurrent case, where we assume (25) to be valid, hence by

substituting it in (26) we get

〈τr(x|x0, xr)〉 ∼
rρL(1/r; x, x0)

r − r1+ρL(1/r; x, xr)
∼ 1

r1−ρ
L

(
1

r
; x, x0

)
, (33)

We see that in this regime only x0 matters, as expected. As long as ρ < 1, we

have a power-law divergence which depends only on the characteristics of the reset-

free process, i.e. by the exponent ρ. The combination of two divergences at both

ends of the range of the resetting parameter is the typical behaviour observed for the

mean first passage time in the presence of resetting, for both diffusion and random

walks, see [1, 3, 4, 5, 6, 7, 8, 9, 10, 40, 41, 42]. As a consequence, one finds that the

mean first passage time curve has a minimum in correspondence of the optimal reset

value—note that for diffusion processes, one considers the reset rate rather then the

resetting probability, which takes values in (0,∞). For ρ = 1 instead, the mean first

hitting time may either diverge as a slowly-varying function, or converge to a constant,

which must coincide with the value of the mean first hitting time in absence of resetting.
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In this case, it is not trivial to deduce the existence of an optimal resetting value, and

more generally, it is not guaranteed that resetting can expedite the search process for

any value of the resetting parameter, as instead happens for ρ < 1 (remarkably, this

observation is the basis of many recent works [40, 42, 62, 63, 64, 65, 66]).

We can now repeat the analysis for the transient case. As pointed out in section 2,

we consider the case where the generating function F̃ (x, z|y) converges to a constant in

the limit z → 1−, which now depends on both x and y:

lim
z→1−

F̃ (x, z|y) = R(x|y). (34)

Therefore, as r → 0, from (26) we have

〈τr(x|x0, xr)〉 ∼
Q(x|x0)

R(x|xr)

1

r
, (35)

where we recall that Q(x|y) = 1 − R(x|y) is the probability of never hitting x starting

from y. We observe that, contrarily to the previous regime, in the transient case the

information on the resetting position is not lost, even in the limit r → 0. This happens

because the reset-free process has a positive probability of never hitting the target, hence

the walks that are reset at least once remain statistically relevant even in the limit of

very low resetting probability.

To summarize, the asymptotic behaviour of the mean first hitting time for small

values of the resetting probability, viz. r ≈ 0, is given by

〈τr(x|x0, xr)〉 ∼





Q(x|x0)

R(x|xr)

1

r
transient walk

L(1/r; x, x0)

r1−ρ
recurrent walk (0 ≤ ρ ≤ 1).

(36)

In particular, for ρ = 1
2
, which corresponds to the simple and symmetric random walk,

one recovers the behaviour 1/
√
r for small r, which is also observed for diffusion processes

[1].

5. Second moment and standard deviation

From the results of the previous subsection, we can easily deduce the behaviour of the

second moment for r ≈ 1 and r ≈ 0. It is convenient to consider the ratio

〈τ 2r (x|x0, xr)〉
2〈τr(x|x0, xr)〉

=
1− rF̃ (x, 1− r|xr)

rF̃ (x, 1− r|xr)
− (1− r)

F̃ ′(x, 1− r|xr)

F̃ (x, 1− r|xr)
+

1

2
− (1− r)

F̃ ′(x, 1− r|x0)

1− F̃ (x, 1− r|x0)
. (37)

5.1. High resetting probability

Once again, let us consider first r ≈ 1. Since

F̃ (x, z|y) ∼ z|x−y|

K(x, y)
(38)
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F̃ ′(x, z|y) ∼ |x− y|
K(x, y)

z|x−y|−1, (39)

the leading-order term is the first one at the rhs of (37), hence

〈τ 2r (x|x0, xr)〉
2〈τr(x|x0, xr)〉

∼ 1

F̃ (x, 1− r|xr)
∼ K(x, xr)(1− r)−|x−xr|, (40)

which means 〈τ 2r (x|x0, xr)〉 ∼ 2〈τr(x|x0, xr)〉2, see (30). If we introduce the standard

deviation

σr =
√

〈τ 2r (x|x0, xr)〉 − 〈τr(x|x0, xr)〉2, (41)

then we obtain

σr ∼ 〈τr(x|x0, xr)〉 ∼ K(x, xr)(1− r)−|x−xr|, (42)

which indicates that the mean and the standard deviation of the mean first hitting

time share the same divergence in the limit r → 1, suggesting that the distribution of

τr(x|x0, xr) becomes approximately exponential.

5.2. Low resetting probability

In the opposite limit, viz. when r ≈ 0, we have to evaluate the behaviour of the

derivative F̃ ′(x, z|y). Let us begin with the recurrent case, where we recall

F̃ (x, z|y) ∼ 1− (1− z)ρL

(
1

1− z
; x, y

)
, (43)

with 0 ≤ ρ ≤ 1. We have to consider the behaviour of the derivative F̃ ′(x, z|y) close to

z = 1, and we can say

F̃ ′(x, z|y) ∼ ρ

(1− z)1−ρ
L

(
1

1− z
; x, y

)
, (44)

see the original paper by Lamperti [56]. Hence we obtain from (37) that the leading

order is given by

〈τ 2r (x|x0, xr)〉
2〈τr(x|x0, xr)〉

∼ 1− ρ

r
, (45)

thus 〈τ 2r (x|x0, xr)〉 ∼ 2(1 − ρ)〈τr(x|x0, xr)〉/r. By considering (33), we obtain that the

standard deviation diverges as

σr ∼
√

2

r
(1− ρ)〈τr(x|x0, xr)〉 ∼

√
2(1− ρ)L(1/r; x, x0) r

−(1−ρ/2). (46)

Note that for ρ = 1 we need to be particularly cautious, because the leading-order

term that we have computed in (45) vanishes, and we have thus to consider the first

subleading correction. In other words, we have to evaluate the subleading terms in

the asymptotic expansion of the slowly-varying function. As a first approximation, by

taking the derivative with respect to z of (43), with ρ = 1, we can say

F̃ ′(x, z|y) ∼ L

(
1

1− z
; x, y

)
− 1

1− z
L′

(
1

1− z
; x, y

)
, (47)
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and the first correction may arise from both terms at the rhs. We report the details in

Appendix B, here we only state the main results. We distinguish three cases, depending

on the statistical features of the underlying first hitting process:

(i) The mean diverges as the slowly-varying function L(t; x, y): in this scenario, for

t → ∞ we can write

L′(t; x, y) ∼ ℓ(t; x, y)

t
, (48)

where ℓ(t) is a slowly-varying function. Note that ℓ(t; x, y) must be subdominant

with respect to L(t; x, y), see also Appendix B. Then from (37) we get

〈τ 2r (x|x0, xr)〉
2〈τr(x|x0, xr)〉

∼ ℓ(1/r; x, x0)

rL(1/r; x, x0)
, (49)

and by recalling that in this case 〈τr(x|x0, xr)〉 ∼ L(1/r; x, x0), we then have

σr ∼
√

2ℓ(1/r; x, x0)r
−1/2. (50)

(ii) The mean is finite, but the second moment is infinite: in this situation the first

hitting time probability decays as F (x, n|y) ∝ n−2−δ, with 0 < δ < 1, and we must

have

L(t; x, y) → µ1(x, y) as t → ∞, (51)

where µ1(x, y) is the mean first hitting time of the underlying process. In

Appendix B we find that

L(t; x, y) ∼ µ1(x, y)−
1

tδ
ℓ(t; x, y) (52)

L′(t; x, y) ∼ δ

t1+δ
ℓ(t; x, y), (53)

thus from (37) we obtain

〈τ 2r (x|x0, xr)〉
2〈τr(x|x0, xr)〉

∼ ℓ(1/r; x, x0)

µ1(x, x0)

δ

r1−δ
, (54)

and by recalling now that 〈τr(x|x0, xr)〉 → µ1(x, x0), we arrive at

σr ∼
√

2δℓ(1/r; x, x0)r
−(1−δ)/2. (55)

(iii) Both the mean and the second moment are finite: let us call µ1(x, y) the first

moment of the first hitting time distribution of x starting from y for the underlying

process, and µ2(x, y) the second moment. In this case we find

L(t; x, y) ∼ µ1(x, y)− [µ2(x, y)− µ1(x, y)]
1

2t
(56)

L′(t; x, y) ∼ [µ2(x, y)− µ1(x, y)]
1

2t2
, (57)

then from (37)

〈τ 2r (x|x0, xr)〉
2〈τr(x|x0, xr)〉

∼ µ2(x, x0)

2µ1(x, x0)
, (58)

where, as in the previous case, 〈τr(x|x0, xr)〉 → µ1(x, x0). Therefore the standard

deviation in presence of resetting converges to that of the reset-free process

σr → σ0. (59)
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We can now tackle the transient case, with F̃ (x, z|y) ∼ R(x|y) as z → 1−. It is

easy to see that this time we get

〈τ 2r (x|x0, xr)〉
2〈τr(x|x0, xr)〉

∼ 1

rR(x|xr)
, (60)

and thus we obtain that the standard deviation behaves as

σr ∼ 〈τr(x|x0, xr)〉
√

2

Q(x|x0)
− 1 ∼

√
1− R2(x|x0)

R2(x|xr)

1

r
. (61)

It follows that in the limit r → 0, the ratio σr/〈τr(x|x0, xr)〉 is always a constant bigger

than one, indeed

σr

〈τr(x|x0, xr)〉
∼

√
1−R2(x|x0)

R2(x|xr)
· R(x|xr)

1−R(x|x0)
=

√
1 +R(x|x0)

1−R(x|x0)
. (62)

To summarize, we found that for small values of the resetting probability, viz.

r ≈ 0, we can write

σr ∼





√
1−R2(x|x0)

R2(x|xr)

1

r
transient walk

√
2(1− ρ)L

(
1

r
; x, x0

)
1

r1−ρ/2
recurrent walk (0 ≤ ρ < 1),

(63)

and in particular σr ∝ r−3/4 for ρ = 1
2
, while for ρ = 1, the value of another exponent

δ is necessary to determine the behaviour of σr. This exponent is related to the

decay of the first hitting probability of the underlying process, which we indicate as

F (x, n|y) ∝ n−2−δ, and we obtain

σr ∼





√
2ℓ(1/r; x, x0)

1

r1/2
for δ = 0

√
2δℓ(1/r; x, x0)

1

r(1−δ)/2
for 0 < δ ≤ 1,

(64)

while for δ > 1 the standard deviation converges to that of the underlying first passage

process, which indeed in this case is finite, and so we have

σr → σ0. (65)

6. Optimal resetting

According to what we have seen so far, we can relate the recurrence properties of the

underlying process, in particular, the value of the exponent ρ, to the effects of resetting

on the mean first hitting time. From the previous discussion, it is evident that for

both transient and null-recurrent walks the introduction of resetting expedites the first

hitting process for any value of the resetting probability 0 < r < 1. Indeed, as already

thoroughly discussed in the literature, in these cases the mean first hitting time curve

presents a divergence at both ends of this range. While the divergence close to r ≈ 1

is intrinsically related to the resetting mechanism, the one for r ≈ 0 depends on the



Non-homogeneous random walks with resetting 15

behaviour of the reset-free system; hence, for transient and null-recurrent walks, the

introduction of a finite mean first hitting time for any 0 < r < 1 makes resetting always

advantageous. Furthermore, the non-monotonic behaviour of the curve assures that

there is an optimal value of the resetting probability r∗ which minimizes the mean first

hitting time. This is obviously the solution of

d

dr∗
〈τr∗(x|x0, xr)〉 = 0. (66)

In general, it has been pointed out [40, 42] that to evaluate whether resetting may

or not be beneficial it is useful to introduce the coefficient of variation, which is defined

in terms of the first and second moment of the first hitting time distribution

ξr(x|x0, xr) =

√
〈τ 2r (x|x0, xr)〉 − 〈τr(x|x0, xr)〉2

〈τr(x|x0, xr)〉
, (67)

and for which a more explicit expression can be provided by considering (23) and (26).

Let us first observe that, by defining

F(x, r|x0, xr) =
1− F̃ (x, 1− r|x0)

F̃ (x, 1− r|xr)
, (68)

we have
d

dr
log

(
F(x, r|x0, xr)

)
=

d

dr
log

(
〈τr(x|x0, xr)〉

)
+

1

r
(69)

=
F̃ ′(x, 1− r|x0)

1− F̃ (x, 1− r|x0)
+

F̃ ′(x, 1− r|xr)

F̃ (x, 1− r|xr)
. (70)

This is useful to rewrite the second moment, since the rhs of the equation above explicitly

appears in (23), and with some straightforward algebra we then obtain

〈τ 2r (x|x0, xr)〉 = 2〈τr(x|x0, xr)〉
[
〈τr(x|xr)〉+

1

2

]
− 2(1− r)

d

dr
〈τr(x|x0, xr)〉, (71)

where

〈τr(x|xr)〉 = 〈τr(x|xr, xr)〉 =
1− F̃ (x, 1− r|xr)

rF̃ (x, 1− r|xr)
(72)

is the mean first hitting time for xr = x0. It follows that the square coefficient of

variation satisfies for all 0 < r < 1 the equation

ξ2r (x|x0, xr) + 1 =
2〈τr(x|xr)〉+ 1

〈τr(x|x0, xr)〉
+ 2(1− r)

d

dr

(
1

〈τr(x|x0, xr)〉

)
. (73)

It has been argued that a sufficient condition for resetting to be advantageous is that the

derivative of 〈τr(x|x0, xr)〉 (with respect to r) is negative for r sufficiently small [40, 42],

and this can be translated to a simple inequality involving ξr(x|x0, xr). To see this, just

note that if for some r we have
d

dr
〈τr(x|x0, xr)〉 < 0, (74)

then it follows from (73):

ξ2r (x|x0, xr) + 1 >
2〈τr(x|xr)〉+ 1

〈τr(x|x0, xr)〉
. (75)
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It is then sufficient to check if this inequality is valid for r small enough. Furthermore,

note that whenever the derivative of 〈τr(x|x0, xr)〉 is positive, the opposite inequality

holds. Then when the derivative vanishes, viz. for r = r∗, we must have

ξ2r∗(x|x0, xr) + 1 =
2〈τr∗(x|xr)〉+ 1

〈τr∗(x|x0, xr)〉
, (76)

which establishes a condition for the optimal value r∗. We remark that for xr = x0 one

recovers the same equation found by Riascos et al. [42]:

ξ2r∗(x|x0) =
1

〈τr∗(x|x0)〉
+ 1. (77)

As we have already said, for transient and null-recurrent walks, it is unnecessary

to check if (75) is verified, since in both cases the mean first hitting time diverges for

r → 0. However, the situation may change significantly if we consider positive-recurrent

walks, since in this case for r ≈ 0 the mean first hitting time reaches a finite value.

Let us first consider the case of positive-recurrent walks with infinite variance; then we

recall

F̃ (x, z|y) ∼ 1− (1− z)µ1(x, y) + (1− z)1+δℓ

(
1

1− z
; x, y

)
, (78)

hence

〈τr(x|x0, xr)〉 ∼ µ1(x, x0)− (1 + δ)ℓ

(
1

r
; x, x0

)
rδ, (79)

where, from the discussion of the previous section, ℓ(1/r; x, x0) must be positive as

r → 0. It follows that in this case the mean first hitting time has negative slope for r

small enough, hence resetting is still able to expedite the process. However, differently

from the previous case, this does not happen for any value of the resetting probability:

since 〈τr(x|x0, xr)〉 diverges for r → 1, there must be a range of r such that

〈τr(x|x0, xr)〉 > µ1(x, x0), (80)

meaning that the resetting-free process possesses a lower mean first hitting time. Hence

in this case we must be aware of the presence of a threshold rth above which the resetting

increases the mean completion time, which is obviously the positive solution of

〈τrth(x|x0, xr)〉 = µ1(x, x0). (81)

Finally, let us consider the case of underlying first hitting processes with also finite

variance, where we can write

F̃ (x, z|y) ∼ 1− (1− z)µ1(x, y) +
1

2
(1− z)2 [µ2(x, y)− µ1(x, y)] , (82)

which yields

〈τr(x|x0, xr)〉 ∼ µ1(x, x0)−
r

2
[µ2(x, x0)− µ1(x, x0)− 2µ1(x, x0)µ1(x, xr)] .(83)

Therefore the mean first hitting time has negative slope for r ≈ 0 if the moments of the

reset-free process satisfy

µ2(x, x0) > 2µ1(x, x0)µ1(x, xr) + µ1(x, x0), (84)
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or

ξ20(x|x0) + 1 >
2µ1(x, xr) + 1

µ1(x, x0)
, (85)

where

ξ0(x|x0) =

√
µ2(x, x0)− µ2

1(x, x0)

µ1(x, x0)
(86)

is the coefficient of variation of the reset-free process. As remarked in previous works

[40], in this case the criterion only involves the statistical properties of the underlying

process; in particular, just the first and the second moment.

We remark that even if the previous condition is not satisfied, the existence of

a range of r for which resetting becomes advantageous can not be excluded, nor the

presence of a global minimum in correspondence of an optimal value r∗, see [40, 67] for

a few illustrative examples. In other words, the mean first hitting time is not necessarily

a monotonic function of r, as it can show for example a maximum and then a minimum

below µ1(x, x0); in other words, the situation becomes much more complex and specific

analysis for each case ought to be considered.

7. Results for the Gillis random walk and numerical simulations

We now apply the results obtained in the previous sections to the GRW and test our

findings with numerical simulations. To offer a complete overview of the problem, we

first briefly review the properties of the system without resetting, which will be used

later to derive the quantities of interest under geometric restart.

7.1. GRW without resetting

Let us begin with the return probability. Remarkably, for the GRW the generating

function F̃ (z) can be computed exactly [47]:

F̃ (z) = 1− 2F1

(
1
2
ǫ, 1

2
+ 1

2
ǫ; 1; z2

)

2F1

(
1
2
+ 1

2
ǫ, 1 + 1

2
ǫ; 1; z2

) , (87)

where 2F1 (a, b; c; t) is the Gauss hypergeometric function, defined by

2F1 (a, b; c; t) =

∞∑

n=0

(a)n(b)n
(c)n

tn

n!
. (88)

Here (ν)n is the Pochhammer symbol, which can be defined in terms of the Gamma

function as (ν)n = Γ(ν + n)/Γ(ν). By taking the limit z → 1− of (87), one can show

that the walk is transient for −1 < ǫ < −1
2
and recurrent for ǫ ≥ −1

2
. When the walk

is recurrent, from (87) we can get the value of ρ [49, 58]:

ρ =





0 for ǫ = −1
2

1

2
+ ǫ for −1

2
< ǫ < 1

2

1 for 1
2
≤ ǫ < 1.

(89)
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It is also possible to obtain the large-n behaviour of the mean return time 〈τ〉 for any

value of ǫ > −1
2
, which reads

〈τ〉 ∝





n

log2(n)
for ǫ = −1

2

n1/2−ǫ for −1
2
< ǫ < 1

2

log(n) for ǫ = 1
2
,

(90)

where τ ∝ g(n) indicates that limn→∞〈τ〉/g(n) is a constant, while in the positive-

recurrent case 〈τ〉 converges to the expected value

〈τ〉 → 2ǫ

2ǫ− 1
, ǫ >

1

2
. (91)

In the transient case instead we can explicitly compute the return probability R, given

by

R = −1− 1

ǫ
, ǫ < −1

2
. (92)

Let us mention here that recurrence and transience can be explained in physical

terms by the presence of an external field, which either forces the particle to repeatedly

return to the starting point or eventually drift away from it. Indeed, as we mentioned

in the introduction and shown in previous work [49], the GRW can be interpreted as

the microscopic description of a Brownian particle diffusing in a logarithmic potential

V (x) ∼ V0 log(|x|). Let us now drop the assumption of unitary lattice spacing and

time step length, and introduce a microscopic jump size ℓ and step duration δ. We call

Pnδ(xℓ|x0ℓ) the probability of occupying z = xℓ at time t = nδ, having started from

z0 = x0ℓ. By recalling the definition of the transition probability Gx,y given in (1), the

evolution equation can be written

P(n+1)δ(xℓ|x0ℓ)− Pnδ(xℓ|x0ℓ)

δ
=

ℓ2

2δ

[
Pnδ((x+ 1)ℓ|x0ℓ)− 2Pnδ(xℓ|x0ℓ) + Pnδ((x− 1)ℓ|x0ℓ)

ℓ2

+
ǫP ((x+ 1)ℓ|x0ℓ)

(x+ 1)ℓ2
− ǫP ((x− 1)ℓ|x0ℓ)

(x− 1)ℓ2

]
, (93)

which is a finite difference approximation of a partial differential equation. Indeed, the

first line can be approximated by a derivative with respect to the time variable t = nδ;

the second line, by a second derivative with respect to the variable z = xℓ; the third line

by the derivative of ǫP (z|z0)/z with respect to z (up to a factor 2), see [68]. Therefore,

by considering the limit ℓ → 0, δ → 0, with the ratio ℓ2/(2δ) = D kept fixed, we formally

get the Fokker-Planck equation:

∂P (z, t|z0)
∂t

= D
∂2P (z, t|z0)

∂z2
+ 2ǫD

∂

∂z

[
P (z, t|z0)

z

]
. (94)

We recall that the Fokker-Planck equation of a one-dimensional diffusive particle, with

diffusion constant D, in a potential V (z) is written

∂P (z, t|z0)
∂t

= D
∂2P (z, t|z0)

∂z2
+

∂

∂z

[
P (z, t|z0)

dV (z)

dz

]
, (95)
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which means that we can interpret (94) with V (z) of the form V (z) = 2ǫD log(|z|/a),
where a is a cut-off which can be tuned to regularize the potential around the origin.

This reveals that the parameter ǫ is equal to the ratio ǫ = V0/(2D). It is then intuitive

that, by tuning the sign and the relative strength of the potential with respect to the

diffusion constant, one can drastically change the recurrence properties of the system: for

ǫ > 1
2
, i.e. V0 > D, the potential is sufficiently confining and the process is thus positive-

recurrent; in the opposite case, V0 < −D, the particle is drifted away from the origin

strongly enough that the process is transient; in the intermediate case, −D < V0 < D,

diffusion is instead in control and the walk is hence null-recurrent.

Under these premises, we now turn to the quantity of interest for the present

work, which is the first hitting time probability of site x starting the walk from x0.

Unfortunately this problem has not been solved yet for any possible x, except for x = 0,

hence from now on we will consider only this case. By denoting with F̃ (0, z|x0) the

corresponding generating function, we have for any x0 6= 0

F̃ (0, z|x0) =
z|x0|

|x0|!
Γ(1 + ǫ+ |x0|)
2|x0|Γ(1 + ǫ)

2F1

(
1+ǫ+|x0|

2
, 1 + ǫ+|x0|

2
; 1 + |x0|; z2

)

2F1

(
1+ǫ
2
, 1 + 1

2
ǫ; 1; z2

) ,(96)

where Γ(x) is the Gamma function. The interested reader may find a derivation of this

result in Appendix A. For particular values of ǫ, the expression above can be written

in terms of elementary functions: for ǫ = 0, the model becomes the simple symmetric

random walk on Z and indeed one recovers the well-known formula for the generating

function of the first hitting time probability; more interestingly, for ǫ = 1 one can write

F̃ (0, z|x0) =

(
z

1 +
√
1− z2

)|x0| (
1 + |x0|

√
1− z2

)
, (97)

as originally found in [51], where this case was related to the problem of ion diffusion

in a semi-infinite domain near a uniformly charged surface; for ǫ = −1 the rhs in (96)

vanishes, and indeed this is not a case we will deal with, because the first hitting time of

the origin is pathologically always infinite: it is clear from the definition of the transition

probability (1) that whenever the particle reaches x = ±1, it is then pushed away from

the origin with probability one.

Of course, one can check that the assumption about the limit form of F̃ (0, z|x0)

for z ≈ 1 we made in the previous section holds for any ǫ ≥ −1
2
, and verify that the

value of ρ is given again by (89), see Appendix C. From this generating function we can

compute the expected first hitting time of the origin 〈τ(0|x0)〉, and as we have already

mentioned, we expect a similar behaviour as the mean return time 〈τ〉. Indeed we get

〈τ(0|x0)〉 ∼





A(x0)n

log2(n)
for ǫ = −1

2

(1/2 + ǫ)B(x0)

Γ(3/2− ǫ)
n1/2−ǫ for −1

2
< ǫ < 1

2

x2
0

2
log(n) for ǫ = 1

2
,

(98)
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where A(x0) and B(x0) are coefficients given by

A(x0) = Ψ
(

1
4
+ |x0|

2

)
−Ψ

(
1
4

)
+Ψ

(
3
4
+ |x0|

2

)
−Ψ

(
3
4

)
(99)

B(x0) = 2−1/2−ǫΓ(1/2− ǫ)

Γ(3/2 + ǫ)

[
ǫ
Γ(1 + ǫ)

Γ(1 − ǫ)
+

Γ(1 + ǫ+ |x0|)
Γ(|x0| − ǫ)

]
. (100)

In the first line, Ψ(x) is the Digamma function, defined by Ψ(x) = d
dx

log (Γ(x)). For

ǫ > 1
2
, i.e. in the positive-recurrent case, the expected first hitting time converges to a

constant

〈τ(0|x0)〉 →
x2
0

2ǫ− 1
, ǫ >

1

2
, (101)

while in the regime ǫ < −1
2
, where the walk in transient, we have a probability of hitting

the target R(0|x0) < 1, which can be expressed as

R(0|x0) =
(1 + ǫ)|x0|

(−ǫ)|x0|

, ǫ < −1

2
, (102)

where (x)k is the Pochhammer symbol [69]:

(x)k =
Γ(x+ k)

Γ(x)
. (103)

Let us remark that in the transient regime of the GRW, we have R(0|x0) < 1 for

any choice of x0, hence in this case the general correspondence of the first return time

probability and the first hitting time probability is always valid also in the transient

case, see the discussion at the beginning of section 4.

7.2. GRW with resetting

We present now the numerical results regarding the first hitting time of the origin for

the GRW with resetting. All the simulations have been performed basically by evolving

the dynamics according to the transition probability Gxy given by (1). We initially fix

a value for ǫ and set the initial position x0 and the resetting position xr, as well as

the resetting probability r. Note that, given the symmetry of the walk, we can restrict

ourselves to positive values of x0 and xr. At the first time step, we extract a random

number u1, uniformly distributed in (0, 1): if u1 < r, then the particle is moved to

position xr (the resetting can happen even at the first time step); if u1 > r instead,

the dynamics of the GRW takes place, and the particle either moves to x0 − 1, with

probability

Gx0−1,x0
=

1

2

(
1 +

ǫ

x0

)
, (104)

or to x0 + 1 with the complementary probability. This means that after extracting a

second random number u2, independent of u1 but still uniformly distributed in (0, 1),

we check whether u2 is smaller or bigger than Gx0−1,x0
: in the first case the position is

decreased by one unity, otherwise it is increased. The procedure is then iterated until

the particle reaches the origin, keeping in mind that the transition probability at each
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Figure 1. Mean first hitting time and standard deviation (insets) versus the resetting

probability r for different values of ǫ. Data sets are obtained by averaging over N = 104

(ǫ = −0.85, −0.5, −0.25), N = 105 (ǫ = 0.25, 0.5) or N = 106 (ǫ = 0.85) trajectories.

The agreement with the theoretical results (26) and (41) is very good.

iteration depends on the current position. The total number of iterations corresponds

to the first hitting time for that realization, and the first and second moment of the first

hitting time distribution are then obtained by averaging over many realizations.

In figure 1 we test the results for the mean and the standard deviation, given by

(26) and (41) respectively, for several values of ǫ, describing the different phases of the

GRW. We always consider walks that start from x0 = 3 and are reset to position xr = 5.

Note that in each case the mean first hitting time and the standard deviation diverge
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when r → 0 or r → 1, except when the process is positive-recurrent, which corresponds

to panel (f) in the figure. In that case, for r → 0 the curve of the mean first hitting

time attains a finite value, corresponding to mean first hitting time of the underlying

process.

We can analytically compute the behaviour of the curves for both r ≈ 1 and r ≈ 0.

Let us consider first the regime r ≈ 1, where we recall that the behaviour of F̃ (0, z|y)
close to z = 0 is important. From (96) we have

F̃ (0, z|y) ∼ z|y|

|y|!
Γ(1 + ǫ+ |y|)
2|y|Γ(1 + ǫ)

, (105)

thus, for any −1 < ǫ ≤ 1, we immediately obtain from (30)

〈τr(0|x0, xr)〉 ∼
|xr|!Γ(1 + ǫ)

Γ(1 + ǫ+ |xr|)

(
2

1− r

)|xr|

, (106)

and the same behaviour for the standard deviation, as anticipated by (42).

Now we take r ≈ 0 and begin with the transient case, viz. −1 < ǫ < −1
2
. In this

range, for z → 1− the generating function F̃ (0, z|y) converges to

F̃ (0, z|y) → R(0|y) = (1 + ǫ)|y|
(−ǫ)|y|

, (107)

hence (35) yields

〈τr(0|x0, xr)〉 ∼ C(x0, xr)
1

r
, (108)

with

C(x0, xr) =
(−ǫ)xr

(1 + ǫ)xr

− Γ(1 + ǫ+ x0)Γ(xr − ǫ)

Γ(1 + ǫ+ xr)Γ(x0 − ǫ)
, (109)

while for the standard deviation we get from (61)

〈σr(0|x0, xr)〉 ∼ c(x0, xr)
1

r
, (110)

where

c(x0, xr) =

√
1− [(1 + ǫ)x0

/(−ǫ)x0
]2

[(1 + ǫ)xr
/(−ǫ)xr

]2
. (111)

A graphic proof is shown in figure 2, where we observe that the resetting position is

relevant to determine the correct asymptotic behaviour for r ≈ 0.

Now let us consider the transient case and deal with the range −1
2
≤ ǫ < 1

2
first.

As anticipated, by using the properties of the hypergeometric function [69] we can write

for z ≈ 1

F̃ (0, z|y) ∼ 1− (1− z)1/2+ǫL

(
1

1− z
; y

)
, (112)

where the slowly-varying function can be determined explicitly, see Appendix C,

obtaining

L(t; x) ∼





A(x)

log(t)
for ǫ = −1

2

B(x) for −1
2
< ǫ < 1

2
,

(113)
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Figure 2. Transient case: mean first hitting time (a) and standard deviation (b)

versus the resetting probability r for different values of the resetting position xr. The

insets show the agreement between the behaviour of the curves for low values of the

resetting probability, and the corresponding asymptotics predicted by (108) and (110).

Note the dependence on xr.

where A(x) and B(x) are the numerical coefficients given by (99) and (100), respectively.

Thus from (33) we get

〈τr(0|x0, xr)〉 ∼





A(x0)

r log(1/r)
for ǫ = −1

2

B(x0)

r1/2−ǫ
for −1

2
< ǫ < 1

2
,

(114)

while the standard deviation is obtained from (46)

σr ∼





√
2A(x0)

log(1/r)

1

r
for ǫ = −1

2

√
2B(x0)

r(3/2−ǫ)/2
for −1

2
< ǫ < 1

2
,

(115)

where

2B(x0) = 21/2−ǫΓ(3/2− ǫ)

Γ(3/2 + ǫ)

[
ǫ
Γ(1 + ǫ)

Γ(1− ǫ)
+

Γ(1 + ǫ+ |x0|)
Γ(|x0| − ǫ)

]
, (116)

see figure 3.

We now finally deal with the range 1
2
≤ ǫ ≤ 1, where also the derivative of the

slowly-varying function is important. For ǫ = 1
2
, we compute

L(t; 0, x0) ∼
x2
0

2
log(t) =⇒ L′(t; 0, x0) ∼

x2
0

2t
, (117)

which means we may identify

ℓ(t; 0, x0) ∼
x2
0

2
. (118)

We therefore obtain that the mean first hitting time grows logarithmically

〈τr(0|x0, xr)〉 ∼
x2
0

2
log (1/r) , (119)
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Figure 3. Null-recurrent case: mean first hitting time (a) and standard deviation (b)

versus the resetting probability r for different values of ǫ. The dashed lines represent

the asymptotic behaviour for r ≈ 0 predicted by (114) and (115).

while the standard deviation diverges as

σr ∼
|x0|
r1/2

. (120)

For 1
2
< ǫ ≤ 1 instead, by expanding L(1/(1− z); 0, x0) in powers of 1− z we find

L

(
1

1− z
; 0, x0

)
∼ x2

0

2ǫ− 1
+B(x0)(1− z)ǫ−1/2, (121)

where we point out that B(x0) assumes negative values in this case. Thus the mean

first hitting time converges to

〈τr(0|x0, xr)〉 →
x2
0

2ǫ− 1
, (122)

and we can say that the derivative of L(t; 0, x0) is such that

tL′(t; 0, x0) ∼ −
(
ǫ− 1

2

)
B(x0)

tǫ−1/2
as t → ∞. (123)

By comparing this last equation with (53), we find that δ = ǫ− 1
2
and

ℓ(t; 0, x0) = −B(x0) =
1

δ
B(x0), (124)

where B(x0) is given by (116), hence the standard deviation diverges as

σr ∼
√

2B(x0)r
−(3/2−ǫ)/2. (125)

However, we point out that in the special case ǫ = 1 the coefficient B(x0), and hence

also σr, vanish for |x0| = 1. This is not surprising, because it easily seen from (1) that

with this choice of ǫ and x0, the walk becomes a trivial deterministic process where the

particle always jumps to the origin in one step. The first hitting time distribution has

mean one, zero variance, and indeed the generating function given by (97) reduces to

F̃ (0, z| ± 1) = z = 1− (1− z). (126)
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An immediate consequence is that resetting can not expedite the process in this case.

Apart from physical intuition, this is also confirmed by the criterion discussed in section

6 related to the coefficient of variation, summarized by (85): if the standard deviation

is zero then the lhs can not be bigger than the rhs.

In figure 4 we present the predicted behaviour of the standard deviation in the

range 1
2
≤ ǫ < 1, and we observe indeed that as r becomes small all curves tend to (120)

for ǫ = 1
2
, and (125) for 1

2
< ǫ < 1.

Figure 4. Positive-recurrent case and phase transition: standard deviation versus the

resetting probability r for ǫ = 0.5 (phase transition) and ǫ = 0.85 (positive-recurrent

case). The dashed lines represent the asymptotic behaviour for r ≈ 0 predicted by

(120) for panel (a) and (125) for panel (b).

To summarize, in the small r regime, the mean first hitting time of the GRW with

resetting presents the following behaviour for −1 < ǫ ≤ 1
2
:

〈τr(0|x0, xr)〉 ∼





C(x0, xr)
1

r
for −1 < ǫ < −1

2

A(x0)

r log(1/r)
for ǫ = −1

2

B(x0)

r1/2−ǫ
for −1

2
< ǫ < 1

2

x2
0

2
log(1/r) for ǫ = 1

2
,

(127)

where A(x0), B(x0) and C(x0, xr) are given by (99), (100) and (109), respectively,

whereas for ǫ > 1
2
we recover:

〈τr(0|x0, xr)〉 → 〈τ(0|x0)〉 =
x2
0

2ǫ− 1
. (128)
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In the same regime of r, for the standard deviation we have:

σr ∼





c(x0, xr)
1

r
for −1 < ǫ < −1

2
√

2A(x0)

log(1/r)

1

r
for ǫ = −1

2

√
2B(x0)

r(3/2−ǫ)/2
for −1

2
< ǫ < 1

2

|x0|
r1/2

for ǫ = 1
2

√
2B(x0)

r(3/2−ǫ)/2
for 1

2
< ǫ < 1,

(129)

with c(x0, xr) given by (111), while B(x0) is defined by (116). In the limit case ǫ = 1

we have 〈τr(0|x0, xr)〉 → x2
0, while for σr:

σr ∼ 2

√
|x0|(x2

0 − 1)

3
√
2r

for |x0| > 2, (130)

where the coefficient results from B(x0) evaluated at ǫ = 1, and σr → 0 for |x0| = 1.

7.3. Numerical investigation on the optimal resetting

We now study numerically the behaviour of the optimal resetting probability for the

Gillis model, which we recall is given by the condition

d

dr∗
〈τr∗(0|x0, xr)〉 = 0. (131)

In our case, the solution of this equation shows a dependence on both x0 and xr, as well

as ǫ. However, to reduce the number of free parameters in the problem, we will only

deal with the case xr = x0. We recall that in this case we have

〈τr(0|x0, x0)〉 = 〈τr(0|x0)〉 =
1− F̃ (0, 1− r|x0)

rF̃ (0, 1− r|x0)
. (132)

Figure 5 displays the numerically computed values of r∗ and its behaviour as a

function of the system parameters. We first note (panel (a)) that the optimal probability

shows a monotone decrease with increasing bias ǫ; furthermore, it converges to a constant

value at both ends of the range of existence of ǫ. To explain this, let us first recall that

for ǫ = 1 the problem is well-defined and can be expressed in terms of the generating

function (97). Then, one can compute 〈τr(0|x0)〉 and write an explicit equation for r∗,

which can be formulated in terms of z∗ = 1− r∗ as

z∗ = [h (z∗, x0)]
1

|x0| , (133)

where

h (t, x0) =
(
1−

√
1− t2

)(
1 + |x0|

√
1− t2

)
−

|x0|(1− t)

[
t|x0|−1 − (|x0|+ 1)t|x0|+1

(1−
√
1− t2)(1 + |x0|

√
1− t2)

]
. (134)
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Figure 5. Optimal resetting probability, (a) as a function of ǫ for fixed x0; (b) as a

function of x0 for fixed ǫ. In panel (a), the data converge at both ends of the range

to a defined value, which can be obtained for ǫ ≈ −1 by the solution of (140), and for

ǫ = 1 by the solution of (133)

This can then be solved numerically for z∗, and one finds that the data in figure 5

corresponding to ǫ = 1 coincide indeed with the solution r∗ = 1 − z∗ of the previous

equation. The situation close to ǫ = −1 is instead less clear, because, as we have already

mentioned, the first hitting problem is pathological since the particle can not hit the

origin; as a consequence, the generating function (96) vanishes for ǫ = −1. Nevertheless,

observe that for ǫ ≈ −1 we can write

F̃ (0, z|x0) ≈ Kǫ(x0)f(z, x0), (135)

where

f(z, x0) =

(
z

1 +
√
1− z2

)|x0|

(136)

is obtained by evaluating the hypergeometric functions appearing in (96) at ǫ = −1,

while

Kǫ(x0) =
Γ(1 + ǫ+ |x0|)
|x0|! Γ(1 + ǫ)

, (137)

is a very small coefficient, due to the divergence of the Gamma function in the

denominator. It is easy to verify that the equation for r∗ is

f ′(1− r∗, x0)

f 2(1− r∗, x0)
− 1

f(1− r∗, x0)
+Kǫ(x0) = 0, (138)

which, since Kǫ(x0) is small, can be approximated as

f ′(1− r∗, x0)

f 2(1− r∗, x0)
− 1

f(1− r∗, x0)
≈ 0. (139)

This last equation does not depend on ǫ and yields a meaningful solution, explaining

the behaviour of the data close to ǫ = −1 in figure 5. It can be shown that in this case

r∗ can be given in terms of z∗ = 1− r∗, which satisfies

(z∗)2
√

1− z∗

1 + z∗
=

(
1−

√
1− (z∗)2

)(
1− z∗ +

z∗

|x0|

)
. (140)
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Let us hence observe that at ǫ = −1 the system exhibits an abrupt phase transition:

although for ∆ = ǫ+ 1 = 0 there is no r that can minimise the mean first hitting time,

for each positive and arbitrarily small ∆, there exists an optimal resetting probability

r∗ which is always smaller than 1− z∗(−1), where z∗(−1) is the solution of (140). From

this analysis, and given the monotonic dependence of r∗ on ǫ displayed in the figure,

we can conclude that for fixed x0 the optimal resetting probability will satisfy for any

−1 < ǫ < 1

1− z∗(1) < r∗ < 1− z∗(−1), (141)

where z∗(1) and z∗(−1) are the solutions of (133) and (140), respectively. A graphical

illustration of these is offered in figure 6.

Figure 6. Graphical representation of the solutions of (133) (panel (a)) and (140)

(panel (b)). The abscissa of each marker corresponds to the optimal value z∗: (a) for

ǫ = 1, we find z∗ ≈ 0.9873 (x0 = 8), 0.9801 (x0 = 6), 0.9668 (x0 = 4) and 0.9558

(x0 = 2); (b) for ǫ = −1, we find z∗ ≈ 0.9710 (x0 = 8), 0.9610 (x0 = 6), 0.9030

(x0 = 4) and 0.7522 (x0 = 2).

It is also interesting to analyse the behaviour of r∗ for fixed ǫ as a function of

the starting position, panel (b) in figure 5. It is shown that different situations arise

depending of the chosen value of the bias. We see that for ǫ ≪ 1, the optimal probability

decreases with the distance from the origin. In a random walk setting, where the particle

only performs nearest-neighbour jumps, this can be explained by the fact that a longer

initial distance requires more steps to reach the target, hence we expect that optimality

is achieved by resetting the process less frequently. However, when ǫ approaches one,

while for x0 ≥ 2 the data show the same behaviour, for x0 = 1 the value of r∗ gets closer

to zero. This is again due to the fact that for the underlying walk, when x0 = 1 and

ǫ = 1, the variance of the first hitting time vanishes, hence resetting can not expedite

the process; thus when ǫ ≈ 1 we also expect the optimal resetting probability to be

very small. On the other hand, when x0 ≥ 2, the variance of the underlying process is

infinite even for ǫ = 1, hence the data show the monotonic behaviour discussed before.

Finally, let us briefly discuss a feature that we can observe only in the positive-

recurrent case. As already mentioned, for r → 0, 〈τr(0|x0)〉 converges to a finite
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Figure 7. (a) Threshold probability for the positive-recurrent case, as a function of

ǫ. The data approach one for ǫ ≈ 1

2
and reach rth = 1 − zth for ǫ = 1, where zth is the

solution of (143). (b) Graphical representation of the solutions of (143): the abscissa of

each marker corresponds to the value of zth = 1− rth: these are zth ≈ 0.9319 (x0 = 8),

0.8979 (x0 = 6), 0.8433 (x0 = 4) and 0.8147 (x0 = 2).

value and d〈τr(0|x0)〉/dr < 0. On the other hand, for r → 1 the mean first hitting

time diverges, as shown in section 4. Therefore, while for sufficiently small r we have

〈τr(0|x0)〉 < µ1(0, x0), there is a threshold value rth for the resetting probability above

which one observes 〈τr(0|x0)〉 > µ1(0, x0), where µ1(0, x0) is the mean first hitting time

of the reset-free process. This value is hence the solution of

〈τrth(0|x0)〉 = µ1(0, x0). (142)

A numerical study of the behaviour of rth as a function of ǫ is presented in figure 7,

which shows that rth does not present particularly surprising features: for ǫ ≈ 1
2
, which

is the phase transition point, rth is close to one, since the underlying process with ǫ = 1
2

has infinite mean first hitting time; for ǫ ≈ 1 it reaches a finite value, which is the

solution of (142) in the particular case ǫ = 1. By defining zth = 1 − rth and using the

generating function (97), it can be shown that this new variable satisfies

1 +
√
1− z2th
zth

=

{[
1 + x2

0

(
1− z2th

)](
1 + |x0|

√
1− z2th

)} 1
|x0|

, (143)

see figure 7. In the intermediate range 1
2

< ǫ < 1, the bias towards the origin

becomes stronger with increasing ǫ and thus the range of r for which resetting expedites

the process becomes smaller, yielding the monotonically decreasing behaviour of rth
displayed in panel (a).

8. Conclusions

We have studied the problem of the first hitting time of the origin for a Gillis random

walker starting from x0, that can be reset to a generic position xr after each step, with

fixed probability r. This provides an example of a spatially non-homogeneous random

walk for which exact analytical results can be obtained, both in presence and absence of
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resetting. By starting from a general perspective, we have examined the relation between

the recurrence properties of the reset-free system, and the first two moments of the first

hitting time distribution of the process with resetting. This analysis let us obtain the

exact analytical curves for the mean first hitting time, as well as the variance, which

enabled a comparison with numerical simulations. We have also extensively studied the

behaviour of the optimal resetting probability for which the mean first hitting time is

minimised, as a function of the tuning parameter of the bias ǫ and the starting position

x0, and provided an explanation for the observed behaviour in relation to the physics

of the problem.

We stress once again that the system we have considered can be seen as a discrete

analogous of a Brownian particle diffusing in an asymptotically logarithmic potential,

undergoing stochastic Poissonian resetting. Diffusion with resetting in a logarithmic

potential was studied in [63, 64], hence one can notice resemblances between the results

presented in this paper and these works. Nevertheless, it has been pointed out in the

context of resetting [40, 42] that the discrete-time formalism of random walks presents

some important differences with respect to the continuous-time formalism of diffusion

processes. For example, in the latter it has been established that the introduction of

resetting reduces the mean first passage time whenever the coefficient of variation of

the reset-free system is larger than unity [3]. For random walks instead this criterion is

not valid, as noted in [40, 42] and reported in section 6, where we have also extended

the result to the case where the starting and the reset position do not coincide. More

precisely, the criterion has to be modified to take into account that each step has a fixed

duration, and also the resetting requires one unit of time to be performed. Hence, it is no

more sufficient that the coefficient of variation is larger than unity, but we can see from

(85), by setting xr = x0, that the inequality requires an additional term—which depends

explicitly on the first moment of the underlying first-passage distribution. Similar

observations can be made for the condition (77) at the optimal reset probability: in

the case of diffusion one would simply have that the coefficient of variation evaluated

at the optimal reset rate is equal to one, and indeed one can graphically prove this

by observing that the abscissa of the intersection point between the curves of mean

first passage time and standard deviation corresponds to r∗, see for example [63]. This

feature is not observed instead for random walks.

We think that the present work is useful to extend the results on resetting for

random walks, by also providing a connection with the problem of Brownian motion

in logarithmic potentials, which is of great interest for the physical literature, without

neglecting the differences between the discrete-time formalism and the continuous one

of diffusion processes.
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Appendix A. Generating function of the first hitting time for the GRW

In this Appendix we will compute the generating function F̃ (0, z|x0) in an indirect way,

i.e. by making use of the relation [70]

F̃ (0, z|x0) =
P̃ (0, z|x0)

P̃ (0, z|0)
, (A.1)

where P̃ (x, z, |x0) is the generating function of the probability Pn(x|x0) of being at site x

at step n starting from x0. A nice method to obtain the function P̃ (0, z|x0) is presented

in [48], we fully report it here for completeness. We begin by writing the evolution

equation for Pn(x|x0):

Pn+1(x|x0) =
x− 1− ǫ

2(x− 1)
Pn(x− 1|x0) +

x+ 1 + ǫ

2(x+ 1)
Pn(x+ 1|x0). (A.2)

By multiplying both sides for zn+1 and summing over n = 0, 1, . . ., we get an equation

involving generating functions which reads

P̃ (x, z|x0) = δx,x0
+

z

2
P̃ (x+ 1, z|x0) +

z

2
P̃ (x− 1, z|x0)

+
ǫz

2 (x+ 1)
P̃ (x+ 1, z|x0)−

ǫz

2 (x− 1)
P̃ (x− 1, z|x0). (A.3)

We now consider the discrete Fourier transform of this equation, with

P̂z(q|x0) =
+∞∑

x=−∞

eiqxP̃ (x, z|x0), (A.4)

which leads to

1− z cos q

sin q
P̂z(q|x0)−

eiqx0

sin q
= −iǫz

∑

x 6=0

eiqx

x
P̃ (x, z|x0). (A.5)

By taking the derivative with respect to q of both sides we obtain a linear first-order

differential equation for P̂z(q|k0), which we put in the following form:

P̂ ′
z(q|x0) + f(q)P̂z(q|x0) =

sin q

1− z cos q

d

dq

(
eiqx0

sin q

)

− ǫz sin q

1− z cos q
P̃ (0, z|x0), (A.6)

where

f(q) =
sin q

1− z cos q

[
d

dq

(
1− z cos q

sin q

)
− ǫz

]
. (A.7)

This equation can be solved by means of the usual integrating factor method, and we

get the general solution

P̂z(q|x0) =
sin q

(1− z cos q)1−ǫ

∫
d

dq′

(
eiq

′x0

sin q′

)
dq′

(1− z cos q′)ǫ

− ǫz sin q P̃ (0, z|x0)

(1− z cos q)1−ǫ

∫
dq′

(1− z cos q′)ǫ
+

c sin q

(1− z cos q)1−ǫ , (A.8)
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where we indicated by c the integration constant. Considering now the integral from 0

to 2π and dividing both sides by 2π we get, after integrating by parts and rearranging

terms:

P̃ (0, z|x0) =

∫ 2π

0
eiqx0 (1− z cos q)−1−ǫ dq
∫ 2π

0
(1− z cos q)−ǫ dq

. (A.9)

The integrals can be evaluated in terms of hypergeometric functions (see below), yielding

P̃ (0, z|x0) =
z|x0|

|x0|!
Γ(1 + ǫ+ |x0|)
2|x0|Γ(1 + ǫ)

2F1

(
1+ǫ+|x0|

2
, 1 + ǫ+|x0|

2
; 1 + |x0|; z2

)

2F1

(
1
2
ǫ, 1

2
+ 1

2
ǫ; 1; z2

) .(A.10)

For x0 = 0 one recovers the classical result by Gillis [71]. By plugging this expression

in (A.1) we find the result given by (96) in the main text. Note that in the case x0 = 0

the relation (A.1) is no longer valid and one must instead use [70]

F̃ (z) = 1− 1

P̃ (z)
, (A.11)

where F̃ (z) = F̃ (0, z|0) and P̃ (z) = P̃ (0, z|0). One then recovers (87) in the main text.

Appendix A.1. Evaluation of the integrals

Let us consider

I =

∫ 2π

0

eiqk

(1− z cos q)ν
dq, (A.12)

for |z| < 1, k ∈ Z and ν ∈ R. Here (ν)n is the Pochhammer symbol, which can be

defined in terms of the Gamma function as

(ν)n =
Γ(ν + n)

Γ(ν)
. (A.13)

An expansion of the integrand in powers of z yields

I =

∞∑

n=0

(ν)n
n!

zn
∫ 2π

0

eiqk cosn qdq. (A.14)

For each value of n, by using the binomial expansion of cosn q, one deduces that the

integral in the n-th term of the series vanishes unless n ≥ |k|, and n and k are both

even or odd, in which case one gets:
∫ 2π

0

eikq cosn qdq =
2π

2n

(
n

n−k
2

)
. (A.15)

Let us first consider the case n even, so that it can be replaced by 2m. The integral is

then transformed into the series

I = 2π

∞∑

m= |k|
2

(ν)2m
22m

z2m

Γ
(
1 +m− k

2

)
Γ
(
1 +m+ k

2

) , (A.16)
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or, by the simple shift of the index m → m+ |k|
2
:

I =
2πz|k|

2|k|

∞∑

m=0

(ν)2m+|k|

22m
z2m

Γ(m+ 1)Γ(1 +m+ |k|) . (A.17)

For n odd, we set n = 2m + 1 and obtain a series similar to (A.16), but starting from

m = |k|−1
2

and with 2m replaced by 2m+ 1 in each term. Nevertheless, by shifting the

index m → m + |k|−1
2

, we obtain the same series of (A.17). From the definition of the

Pochhammer symbol, we deduce that

(ν)2m+|k| = (ν)|k|(ν + |k|)2m =
Γ(ν + |k|)

Γ(ν)
(ν + |k|)2m, (A.18)

and moreover from the properties of the Gamma function, we have

(ν + |k|)2m = 22m
(
ν + |k|

2

)

m

(
1 + ν + |k|

2

)

m

. (A.19)

Plugging the last two formulas in Eq. (A.17), we finally obtain:

I =
2π

|k|!
(z
2

)|k| Γ(ν + |k|)
Γ(ν)

2F1

(
ν + |k|

2
,
1 + ν + |k|

2
; 1 + |k|; z2

)
. (A.20)

Appendix B. Generating function of the first hitting time for the GRW:

evaluation of the derivative when ρ = 1

In this Appendix we are interested in the behaviour of the derivative F̃ ′(x, z|y) when

z ≈ 1, knowing that

F̃ (x, z|y) ∼ 1− (1− z)L

(
1

1− z
; x, y

)
, (B.1)

where L(t; x, y) is a slowly-varying function of t. To simplify the notation, from now on

we will not indicate the dependence on the parameters x and y. We begin by writing

F̃ ′(x, z|y) ∼ L

(
1

1− z

)
− 1

1− z
L′

(
1

1− z

)
, (B.2)

where, as we have already pointed out in section 5, the dominant term is the first one

at the rhs. However, to correctly capture the subleading correction to the asymptotic

behaviour, now we are interested also in the second one, which can be evaluated by

making some considerations on F̃ (z). Depending on the statistical properties of the

underlying first hitting process, we can distinguish three cases:

(i) If the first hitting time distribution of the underlying process has finite mean µ1

and finite second moment µ2, while (B.1) holds, it must also hold

F̃ (z) ∼ 1− (1− z)µ1 +
(1− z)2

2
(µ2 − µ1). (B.3)

This can be seen by expanding F̃ (z) in powers of 1− z. It follows that

L

(
1

1− z

)
∼ µ1 −

1− z

2
(µ2 − µ1), (B.4)
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viz.

L(t) ∼ µ1 −
1

2t
(µ2 − µ1) (B.5)

for t → ∞, and we can thus say that

L(t) → µ1 (B.6)

L′(t) ∼ 1

2t2
(µ2 − µ1) . (B.7)

(ii) If the first hitting time distribution of the underlying process has finite mean

µ1, but infinite second moment, i.e. the first hitting time probability decays as

F (n) ∝ n−2−δ, with 0 < δ < 1, then we can write

F̃ (z) ∼ 1− (1− z)µ1 + (1− z)1+δℓ

(
1

1− z

)
, (B.8)

where ℓ(t) is a slowly-varying function. We may thus identify

L

(
1

1− z

)
∼ µ1 − (1− z)δℓ

(
1

1− z

)
, (B.9)

hence for t → ∞:

L(t) → µ1 (B.10)

L′(t) ∼ δ
ℓ(t)

t1+δ
. (B.11)

(iii) If we examine the limit case δ = 0, then also the mean diverges. In particular,

it diverges as the slowly-varying function L(t) (typically displaying a logarithmic

growth, because here F (n) ∝ n−2). Then in this case we may write

F̃ ′(z) ∼ L

(
1

1− z

)
− ℓ

(
1

1− z

)
, (B.12)

where L(t) dominates ℓ(t) as t → ∞, and so we can identify

L′

(
1

1− z

)
∼ (1− z)ℓ

(
1

1− z

)
, (B.13)

showing that L′(t) decays as ℓ(t)/t. In general, since we typically expect to observe a

logarithmic growth of the mean first hitting time, we also expect that L′(t) converges

to zero as 1/t; it follows from the previous equation that ℓ(t) is expected to converge

to a constant.

Appendix C. Evaluation of the slowly-varying functions

In this Appendix we evaluate, for −1
2
≤ ǫ ≤ 1, the slowly-varying functions that appear

in the expression of F̃ (0, z|x0) for the GRW:

F̃ (0, z|x0) =
z|x0|

|x0|!
Γ(1 + ǫ+ |x0|)
2|x0|Γ(1 + ǫ)

2F1

(
1+ǫ+|x0|

2
, 1 + ǫ+|x0|

2
; 1 + |x0|; z2

)

2F1

(
1+ǫ
2
, 1 + 1

2
ǫ; 1; z2

) .(C.1)
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For ǫ 6= ±1
2
, we use the following property of the hypergeometric functions [69]:

2F1 (a, b; c; z) = (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)

[
G(1− z) +

(1− z)a+b−cΓ(c− a− b)Γ(a)Γ(b)H(1− z)

Γ(a+ b− c)Γ(c− a)Γ(c− b)

]
, (C.2)

where

G(z) = 2F1 (c− a, c− b; c− a− b+ 1; z) (C.3)

H(z) = 2F1 (a, b; a + b− c+ 1; z) . (C.4)

By plugging (C.2) in (C.1) we can write

F̃ (0, z|x0) = z|x0|
GN(1− z2) + qN(1− z2)1/2+ǫHN(1− z2)

GD(1− z2) + qD(1− z2)1/2+ǫHD(1− z2)
, (C.5)

with

qN = − 2−1−2ǫΓ(1/2− ǫ)Γ(1 + ǫ+ |x0|)
Γ(3/2 + ǫ)Γ(|x0| − ǫ)

(C.6)

qD =
ǫ

21+2ǫ

Γ(1/2− ǫ)Γ(1 + ǫ)

Γ(3/2 + ǫ)Γ(1− ǫ)
. (C.7)

We now consider an expansion in powers of 1 − z for z → 1−. When −1
2
< ǫ < 0 we

obtain

F̃ (0, z|x0) ∼ 1− (1− z)1/2+ǫ
[
21/2+ǫ (qD − qN)

− 21+2ǫqD (qD − qN ) (1− z)1/2+ǫ +O
(
(1− z)1/2−ǫ

) ]
, (C.8)

hence by writing the coefficients explicitly, we have

L

(
1

1− z
; x0

)
= B(x0)−

ǫB(x0)

21/2+ǫ

Γ(1/2− ǫ)Γ(1 + ǫ)

Γ(3/2 + ǫ)Γ(1− ǫ)
(1− z)1/2+ǫ

+ o
(
(1− z)1/2+ǫ

)
, (C.9)

where B(x0) is given by (100) in the main text; when 0 < ǫ < 1
2
we obtain instead

F̃ (0, z|x0) ∼ 1− (1− z)1/2+ǫ
[
21/2+ǫ (qD − qN)

− (2gN − 2gD − |x0|) (1− z)1/2−ǫ +O
(
(1− z)1/2+ǫ

) ]
, (C.10)

with

gN =
1

2

(1 + |x0| − ǫ)(|x0| − ǫ)

1− 2ǫ
(C.11)

gD =
ǫ

2

1− ǫ

2ǫ− 1
. (C.12)

It follows

L

(
1

1− z
; x0

)
= B(x0)−

x2
0

1− 2ǫ
(1− z)1/2−ǫ + o

(
(1− z)1/2−ǫ

)
. (C.13)



Non-homogeneous random walks with resetting 36

Finally when 1
2
< ǫ ≤ 1 the expansion is

F̃ (0, z|x0) ∼ 1− (1− z)
[
|x0|+ 2gD − 2gN

+ 21/2+ǫ (qD − qN ) (1− z)ǫ−1/2 +O
(
(1− z)1/2+ǫ

) ]
, (C.14)

hence

L

(
1

1− z
; x0

)
=

x2
0

2ǫ− 1
+B(x0)(1− z)ǫ−1/2 + o

(
(1− z)ǫ−1/2

)
. (C.15)

We now consider the critical cases ǫ = ±1
2
, when (C.2) is not valid. For ǫ = −1

2
we

shall use [69]:

2F1 (a, b, ; a+ b; z) =
Γ(a+ b)

Γ(a)Γ(b)
log

(
1

1− z

)
×

[
∞∑

n=0

(a)n(b)n
(n!)2

(1− z)n
(
1− p(n)

log (1− z)

)]
, (C.16)

with p(n) defined by

p(n) = 2Ψ(n+ 1)−Ψ(a + n)−Ψ(b+ n). (C.17)

We can thus write

F̃ (0, z|x0) = z|x0|

∑∞
n=0 kN(n)(1− z2)n

[
1− pN (n)

log(1−z2)

]

∑∞
n=0 kD(n)(1− z2)n

[
1− pD(n)

log(1−z2)

] , (C.18)

and by considering an expansion in powers of 1− z, we obtain

F̃ (0, z|x0) ∼ 1− 1

log(1− z)

[
pN(0)− pD(0) +

(2kN(1)− 2kD(1)− |x0|)(1− z) log

(
1

1− z

)
+O(1− z)

]
(C.19)

hence

L

(
1

1− z
; x0

)
=

A(x0)

log
(

1
1−z

) − x2
0

2
(1− z) + o(1− z), (C.20)

where A(x0) is given by (99) in the main text.

For ǫ = 1
2
we need the formula [69]

2F1 (a, b; a + b− 1; z) =
Γ(a+ b− 1)

Γ(a)Γ(b)
(1− z)−1

{
1 + (a− 1)(b− 1)×

∞∑

n=0

(a)n(b)n
n!(n + 1)!

(1− z)n+1
[
log(1− z) + Ψ(a+ n) +

Ψ(b+ n)−Ψ(n+ 1)−Ψ(n+ 2)
]}

, (C.21)

whereby we write

F̃ (0, z|x0) = z|x0|
1 + cN

∑∞
n=0 rN (n)(1− z2)n+1 [log(1− z) + sN (n)]

1 + cD
∑∞

n=0 rD(n)(1− z2)n+1 [log(1− z) + sD(n)]
(C.22)
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from which it follows

F̃ (0, z|x0) ∼ 1− (1− z)
[
2(cN − cD) log

(
1

1− z

)
− 2cNsN(0) +

2cDsD(0) + |x0|+O((1− z) log(1− z))
]
. (C.23)

By writing the coefficients explicitly, we have

L

(
1

1− z
; x0

)
=

x2
0

2
log

(
1

1− z

)
−K(x0) + o(1), (C.24)

where K(x0) is a constant that can be determined from the previous formulae.
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