Transient astrocytic accumulation of fluorescein during spreading depolarizations

Karl Schoknecht, Johannes Hirrlinger, Jens Eilers

Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany

Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany

Abstract

Spreading depolarizations (SDs) occur frequently in acute cerebral injuries. They are characterized by a breakdown of transmembrane ion gradients resulting in a reduced extracellular sodium ([Na\(^{+}\)]\(_{o}\)) and increased extracellular potassium concentration ([K\(^{+}\)]\(_{o}\)). Elevated [K\(^{+}\)]\(_{o}\) induces astrocytic swelling, another feature of SD; however, the solutes that drive astrocytic swelling remain incompletely understood. We incidentally found astrocytic accumulation of fluorescein (Fluo) – a low molecular weight anionic dye – during SDs induced by elevated [K\(^{+}\)]\(_{o}\). Herein, we aimed to explore the properties of astrocytic Fluo accumulation during SDs, electrical stimulation, [K\(^{+}\)]\(_{o}\) and glutamate elevation and elucidate underlying mechanisms and its relation to swelling. Experiments were performed in acute neocortical slices from adult male C57Bl6 mice and transgenic mice expressing tdTomato in parvalbumin (PV)-positive neurons. We labeled astrocytes with sulforhodamine-101 (SR-101), measured Fluo kinetics using 2-photon laser scanning microscopy and recorded local field potentials (LFP) to detect SDs. Elevations of [K\(^{+}\)]\(_{o}\) lead to an increase of the astrocytic Fluo intensity in parallel with astrocytic swelling. Pharmacological inhibitors of sodium-potassium ATPase (Na/K-ATPase), secondary-active transporters and channels were used to address the underlying mechanisms. Fluo accumulation as well as swelling were only prevented by inhibition of the sodium-potassium ATPase. Application of glutamate or hypoosmolar solution induced astrocytic swelling independent of Fluo accumulation and glutamate opposed Fluo accumulation when co-administered with high [K\(^{+}\)]\(_{o}\). Astrocytes accumulated Fluo and swelled during electrical stimulation and even more during SDs. Taken together, Fluo imaging can be used as a tool to visualize yet unidentified anion fluxes during [K\(^{+}\)]\(_{o}\)- but not glutamate- or hypoosmolarity induced astrocytic swelling. Fluo imaging may thereby help to elucidate mechanisms of astrocytic swelling and associated fluid movements between brain compartments during physiological and pathological conditions, e.g. SDs.
1. Introduction

Spreading depolarizations (SDs) are characterized by a near-complete breakdown of transmembrane ion gradients and propagate at 2–8 mm/min through the cortex. SDs have been associated with acute cerebral injuries, e.g., traumatic brain injury, ischemic and hemorrhagic stroke, but also with migraine aura (Dreier and Reiffurth, 2015). Animal and human studies suggest that SDs contribute to injury progression when concomitant extra energy demand to restore ion gradients can no longer be met by cerebral perfusion (Lemale et al., 2022). SDs are characterized by a negative direct current (DC) potential deflection, flattening of alternate current (AC) recordings indicative for depression of neuronal firing in electrically active tissue, increased extracellular potassium ([K+]o) and have caused astrocytic swelling (Hansson et al., 2000; Risher et al., 2014). In aqueous solution sodium fluorescein dissociates. Fluorescein was shown to increase blood-brain barrier (BBB) permeability (Gursoy-Ozdemir et al., 2004; Sadeghian et al., 2018; Parker et al., 2022), which may cause vasogenic edema.

Sodium fluorescein is a marker to measure BBB permeability. It is commonly applied intravenously and indicates blood-to-brain ‘leakage’ when detected in the extravascular compartment (Schoknecht et al., 2014). In aqueous solution sodium fluorescein dissociates. Fluorescein (abbreviated Fluo in the following; molecular weight: 332 Da) is thus a negatively charged solute. In pilot experiments in acute brain slices, we applied Fluo extravascularly to study its transport from brain-to-blood during K+-induced SDs. Unexpectedly, we noticed transient Fluo ‘brightening’ of a subpopulation of cells that turned out to be astrocytes. This led us to identify triggers of astrocytic Fluo accumulation, explore underlying mechanisms and test if Fluo indicates astrocytic water influx. Candidate triggers for Fluo accumulation and water influx are extracellular ([K+]o) and glutamate. Both rise during SDs (Lemale et al., 2017), and swelling of neurons and astrocytes, i.e., cytotoxic edema (Zhou et al., 2010; Risher et al., 2012; Dreier et al., 2018). In addition to cytotoxic edema, SDs were shown to increase blood-brain barrier (BBB) permeability (Gursoy-Ozdemir et al., 2004; Sadeghian et al., 2018; Parker et al., 2022), which may cause vasogenic edema.

2. Material and methods

Animals were housed and bred in accordance with the German Animal Welfare Act and the European Communities Council Directive (2010/63/EU) with approval of the local authorities (T10/20, TVV74/21). This study included 48 adult (11–24 week-old) male C57BL6 mice and two 5–9 week-old male transgenic PV-tdTomato mice. To create transgenic PV-tdTomato animals, the Cre-reporter mouse line A114 (Madisen et al., 2010) expressing tdTomato (Shaner et al., 2004) was recombined with the PyCrE knockin-mice expressing Cre-recombinase exclusively in PV-positive interneurons (The Jackson Laboratory, stock no. 017320).

2.1. Preparation

All experiments were conducted in acute neocortical brain slices. Following brief anesthesia by isoflurane, animals were decapitated, brains were removed and cut into coronal slices (thickness 300 μm) on a vibratome (Leica V1200S, Leica Biosystems, Nussloch, Germany) in ice-cooled artificial cerebrospinal fluid (aCSF). Thereafter slices were kept in warm aCSF (35 °C) for 30 min before being transferred to room temperature (20–22 °C). Fluo (0.1–0.5 μM, fluorescein sodium salt, Merck, Darmstadt, Germany) and sulfonamide 101 (SR-101, 130–275 nM, Sigma Aldrich) were added to the aCSF from water-dissolved stock solutions (0.1 and 1 mg/ml for Fluo and SR-101 respectively) immediately after slicing. Slices from PV-tdTomato mice were incubated with Fluo only.

2.2. Solutions and drugs

Drugs were purchased from Sigma Aldrich if not stated otherwise. ACSF contained in mM: 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 1.8 MgCl2, 2 CaCl2, and 20 glucose and was continuously carbogenated in 95% oxygen 5% CO2 (pH 7.4, osmolarity ~305 mOsm). In aCSF containing higher concentrations of KCl (up to 20 mM), NaCl was replaced with KCl to maintain constant osmolality. NaCl-free aCSF contained in mM: N-methyl-D-glucose (NMDG, 105 mM), HEPEs (10 mM), 2.5 KCl, 1.2 NaHPO4, 30 NaHCO3, 1.8 MgCl2, 2 CaCl2, and 20 glucose. K+ concentrations were increased to 10 mM by isosomolar exchange of KCl with NMDG. Other chemicals: alpha-cyano-4-hydroxycinnamic acid (4-CIN, 200 μM), barium chloride dihydrate (BaCl2, 100 μM-3 mM), cytochalasin B (20 μM), DCPB (10 μM, 4-(2-buty1-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy) butanoic acid, both Tocris Bioscience, Bristol, UK), digoxin (10 μM), dimethyl sulfoxid (≤0.1%, DMSO), glutamate sodium osmolu (0.2–1 mM), ouabain octahydrate (10 μM), phloretin (100 μM), probenecid (400 μM), S0859 (30 μM), DL-TBOA (DL-three-β-benzylx-yaspartic acid, 50 μM), TF-BTOA ((3S)-3-[3-[4-(trifluoromethyl)benzoyl]amino][phenyl]methoxy]-L-aspartic acid, 200 nM), and tetrodotoxin (ttx, 0.5–1 μM, last three from Tocris Bioscience).

2.3. Microscopy

For imaging and parallel electrophysiological recordings, slices were transferred to an open bath perfusion chamber (Warner Instruments, Holliston, MA, USA, perfusion rate 6–8 ml/min). To prevent movement artifacts slices were mounted with a U-shaped platinum wire holding a nylon grid. Images were acquired by 2-photon laser scanning microscope (excitation at 800 nm) using a Ti:Sapphire laser (Mai Tai DeepSea, Spectra-Physics, Milpitas, CA, USA) and a laser scanning microscope (Olympus Fluoview 10 M, Olympus, Tokyo, Japan) equipped with a 25× objective (XLPlan N 25×, Olympus, Tokyo, Japan) and a laser scanning microscope (Olympus Fluoview ASW (Version 04.01) software. Fluorescence was low pass filtered (690 nm) before passing a dichroic mirror (D570 nm). The two resulting channels were further bandpass filtered with 495–540 nm and 575–630 nm barrier filters (for ‘green’ Fluo and ‘red’ SR-101 signal, respectively). Images were acquired as xyz-time series with zoom factor 2–5 (image dimension 128 × 128 to 512 × 512 pixels, xy-pixel-dimension 0.2–1 μm), up to 25 z-steps at intervals of 1–1.5 μm and time intervals between 15 s (stimulation and spreading depolarization (SD)) and 2 min (K+ and/or drug wash-in and washout). To analyse the propagation of SDs, we measured light transmission in a third channel as previously enlarged using a 10× objective (UPLanFl 10× W NA:0.30) (single z-plane, zoom factor 1, x,y,z = 2.5 μm/pixel, t = 2.5 s).

2.4. Electrophysiological recordings

Local field potentials (LFP) were recorded ~50 μm below the surface...
of the slice using microelectrodes prepared in-house from borosilicate glass (Science Products, Hofheim, Germany, pipette puller PC-10, Narishige, Tokyo, Japan). The LFP signal was amplified (EXT-10), low-pass filtered (3 kHz, LPBF-01GX, both npi electronic, Tamn, Germany) and digitized (HEKA patch clamp EPC10 with PatchMaster v2x90.2 software, HEKA Elektronik or CED-1401 Micro3 with Spike2 9.01 software, Cambridge Electronic Design, Cambridge).

2.5. Electrical stimulation and induction of SD

Monopolar electrical stimulation was achieved with glass microelectrodes (same as for LFP recording) and a stimulus isolator (ISO-STIM 2.5. Electrical stimulation and induction of SD

ishige, Tokyo, Japan). The LFP signal was amplified (EXT-10), low-pass

glass (Science Products, Hofheim, Germany, pipette puller PC-10, Nar
-

of the slice using microelectrodes prepared in-house from borosilicate

K. Schoknecht et al.

consecutive xyz-stacks at \([K^+]_o\) 2.5 mM. All wash in experiments (i.e. of increasing concentrations of \([K^+]_o, [K^+]_o\) in combination with drugs, glutamate or hyposomotic aCSF) lasted for 5 xyz-stacks (i.e. 10 min wash in) and the last stack was used for quantifying astrocytic area and Fluo intensity (see below ‘data analysis’). Astrocytic area and Fluo intensity after wash in of \([K^+]_o\) 10 mM for 10 min served as a slice-internal reference for effects of drugs, glutamate (0.2–1 mM) and 30% hyposomotic aCSF.

During stimulation and SD (see induction protocol above), imaging was continued for at least 3 min after stimulation and until complete repolarization after the SD. In a subset of slices, two stimulation series were conducted, one in drug-free aCSF and one in aCSF containing ttx (0.5–1 μM). The sensitivity of SD-associated astrocytic area and Fluo changes to ouabain (10 μM) were investigated by comparing one SD evoked after bath application of aCSF containing ouabain (10 min wash in) to a previous SD evoked in drug-free aCSF in the same slice. Area and Fluo quantification during stimulation and SD are averages at maximum ±1 acquisition timepoint.

2.7. Data analysis

All data were analyzed in Matlab (The MathWorks, Natick, MA, USA, version R2019b). SDs were detected by eye. To quantify astrocytic area and Fluo intensity, xyz-time series were converted to maximum-intensity z-projection time series. Background was assessed by recording photomultiplier (PMT) signals at employed offset and gain settings without laser excitation and was subtracted. XY-movements were corrected using the dfixregistration algorithm (Guizar-Sicairos et al., 2008). To segment astrocytes, SR-101 images underwent a gaussian low pass filter (Matlab function: ‘fspecial’) before being turned into binary images by mean-based thresholding (mean + doubled standard deviation). Two to three astrocytes per field of view were individually selected with rectangular regions of interest (ROI), and the binary images (pixels showing a SR-101 signal) were used to quantify the astrocytic area by summing up the number of pixels within the ROI and to quantify the median Fluo intensity for the SR-101-positive pixels. These time-dependent values were self-normalized to baseline. Values of individual astrocytes were averaged per slice and then referred to as \(n = 1\).

Changes in light transmission (T) were calculated as a relative change. The last baseline image prior to SD induction was subtracted from all subsequent images and the calculated differences were normalized to the absolute baseline transmission and expressed in %.

2.8. Data reporting and statistical analysis

This is an exploratory study. Due to the lack of prior evidence sample sizes could not be accurately estimated and were selected to comply with likewise research. Slices were excluded from analysis if movement artifacts prevented reliable analysis and if stimulation or SD-induction were ineffective. Data are reported as median and interquartile range (IQR). Boxes in boxplots display median, 25th and 75th percentile (lower and upper box limit, respectively). Whiskers extend to minimal and maximal values unless considered as outliers (‘+, values >1.5*IQR’). Data analysis was automated once rectangular ROIs around astrocytes were selected, but not blinded. Statistical inference was performed by Wilcoxon test for paired comparisons and Bonferroni correction for multiple comparisons. Differences were considered significant at \(p < 0.05\). Data will be made available upon reasonable request.

3. Results

3.1. Astrocytic Fluo accumulation and volume depend on \([K^+]_o\)

We incidentally observed that astrocytes accumulate Fluo during SDs induced by 20 mM \([K^+]_o\) in acute mouse brain slices. To investigate whether Fluo accumulation depends on \([K^+]_o\), we applied increasing concentrations of \([K^+]_o, through isosomotic exchange of KCl for NaCl in the aCSF. All slices developed SDs at either 15 mM or 20 mM \([K^+]_o\). In line with previous reports (Risher et al., 2009; Florence et al., 2012; Walch et al., 2020), stepwise elevation of \([K^+]_o\), from 2.5 to 20 mM increased the astrocyte-covered area (Fig. 1A-D) proportionally by 60% (40, 78) (median (IQR), \(n = 14\) cells, 5 slices, 2 mice) at 20 mM \([K^+]_o\) compared to baseline (\([K^+]_o\) 2.5 mM), which approximately corresponds to volume doubling. In parallel, astrocytic Fluo intensity increased with each step and reached up to factor 2.3 (2.11, 2.38) (Fig. 1B,D). In contrast to Fluo, SR-101 intensity decreased during astrocytic swelling (Fig. 1C), probably due to the dilution of SR-101 during the swelling of astrocytes. Using the PV-tdToma reporter mouse line, we found that PV-positive neurons did not accumulate Fluo, while putative astrocytes showed the typical increase in Fluo intensity during bath application of \([K^+]_o\) (Fig. 1E,F).

3.2. Astrocytic Fluo accumulation is a hallmark of \(K^+\)-induced swelling

To investigate whether Fluo accumulation is exclusive to elevations in \([K^+]_o\) or is a general marker of astrocytic swelling, we measured the kinetics of Fluo during \(K^+\)-, glutamate-induced, and osmotic swelling (Fig. 2). As expected, the astrocytic area increased in response to all three stimuli, namely by 19% (16, 28), 24% (17, 38) and 18% (13,20) during wash in of \([K^+]_o\) 10 mM (\(n = 18\) slices, 12 mice), glutamate 0.2–1 mM (\(n = 11\) slices, 6 mice), and 30% hyposomotic aCSF (\(n = 7\) slices, 6 mice), respectively (\(p < 0.001, p = 0.003, p = 0.047\), respectively, Wilcoxon tests and Bonferroni correction, Fig. 2E). While Fluo intensity increased by factor 1.43 (1.34, 1.57) at \([K^+]_o\) 10 mM, it decreased by factor 0.91 (0.83, 0.97) and 0.87 (0.83, 0.93) during bath application of glutamate and hyposomolar aCSF, respectively (\(p < 0.001, p = 0.006, p = 0.094\), Wilcoxon tests and Bonferroni correction, Fig. 2E). Taken together, our data imply that astrocytic Fluo accumulation accompanies \(K^+\)-induced swelling, but is not a marker of glutamate-induced or osmotic astrocytic swelling.

3.3. Na/K-ATPase inhibition prevents astrocytic Fluo accumulation

Na/K-ATPase inhibition was shown to prevent astrocyte-selective \(K^+\)-induced swelling in acute brain slices (Walch et al., 2020), while the solutes that ultimately drive swelling remain largely unknown. We
therefore tested if accumulation of the anion Fluo is coupled to Na/K-ATPase-sensitive swelling of astrocytes. Confirming previous experiments (Walch et al., 2020), ouabain (10 μM, Na/K-ATPase inhibitor) reduced the increase in astrocytic area during bath application of [K⁺]₀, 10 mM (compared with [K⁺]₀, 2.5 mM) from 18% (16, 22) to 4% (0, 8) (Fig. 3 A,B). In parallel, ouabain reduced the increase in Fluo intensity from 1.54 (1.41, 1.59) to 0.95 (0.85, 1.00; n = 10 slices, 4 mice, Wilcoxon test, both: p = 0.002, Fig. 3 A,B). The effects of ouabain were reversible upon stepwise decreases in [K⁺]₀ (Fig. 3 C). Exemplary recording from the left-most astrocyte shown as ‘a’. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) E) Two-colour imaging as in A but in a slice from a mouse expressing tdTomato in parvalbumin-positive (PV⁺) neurons and without SR 101 staining. Left, control condition (2.5 mM [K⁺]₀), right, 10 min after perfusion of 10 mM [K⁺]₀, astrocytes and PV⁺ neurons are marked by ‘a’ and ‘n’, respectively. F) Fluo signal intensity in astrocytes and neurons (solid and dashed lines, respectively) marked in E during bath application of 10 mM [K⁺]₀. Note that neurons did not take up significant amounts of Fluo in response to elevated [K⁺]₀. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.4. Pharmacological profile of Fluo accumulation and role for swelling

To elucidate specific mechanisms of K⁺-induced astrocytic Fluo accumulation, we examined several pharmacological inhibitors of secondary-active transporters and channels. As a reference, the effect of ouabain is again displayed in Fig. 3E as a relative change of area and intensity comparing the effect of 10 mM [K⁺]₀ + drug to 10 mM [K⁺]₀.
alone (Fig. 3E, most left box in either boxplot). 0% relative change refers to no change in area or Fluo intensity despite 10 mM $[K^+]_o$ (i.e., complete prevention of swelling or Fluo accumulation by the drug; Fig. 3A) and 100% indicates no drug effect. Neither inhibition of excitatory amino acid transporters (EAAT1–3, inhibitors: DL- and TFB-TBOA, 50 μM and 200 nM), of sodium-bicarbonate exchanger-1 (NBCE-1, S0859, 30 μM), of organic anion transporter polypeptides (OATPs, probenecid, 400 μM), of monocarboxylate transporters (MCTs, phloretin, 100 μM, or 4-CIN, 200 μM), of glucose transporter 1 (GLUT1, cytochalasine B, 20 μM), of inward-rectifier K^+ channel 4.1 (Kir4.1, barium chloride, 100 μM), nor of volume-regulated anion channels (VRAC, DCPIB, 10 μM), reduced astrocytic swelling or Fluo accumulation (Fig. 3E). Taken together, while NaK-ATPase inhibition reduced both K^+-induced astrocytic swelling as well as Fluo accumulation, none of the targeted solitary transporters or channels had a similar effect.

3.5. Glutamate prevents astrocytic Fluo accumulation but not swelling

We found that inhibition of astrocytic glutamate uptake (through inhibition of EAATs) did not prevent the increase of astrocytic Fluo...
intensity during bath application of [K\textsuperscript+]\textsubscript{o}, 10 mM. Conversely, we saw a trend towards increased astrocytic Fluo accumulation during EAAT inhibition (Fig. 3E). To investigate, whether this effect is due to extracellular accumulation of glutamate, we measured astrocytic Fluo intensity and area during bath application of [K\textsuperscript+]\textsubscript{o}, 10 mM and compared it to aCSF containing [K\textsuperscript+]\textsubscript{o}, 10 mM and glutamate (0.2–1 mM). In contrast to EAAT inhibition, the additional glutamate reduced Fluo intensity from factor 1.43 (1.36, 1.57) to 1.13 (0.95, 1.20) and

Fig. 3. Pharmacological profile of Fluo accumulation and swelling.
A) Self-normalized area (top) and Fluo intensity (bottom) in three astrocytes from a neocortical slice upon wash-in of high K+ before and during application of the Na/K-ATPase inhibitor ouabain (10 μM). Note that ouabain prevented both swelling and Fluo accumulation. B) Boxplots of self-normalized area (top) and Fluo intensity for Na/K-ATPase inhibition by 10 μM ouabain (top and bottom, respectively; n = 10 slices, 4 mice, Wilcoxon test).
C) Boxplots summarizing data for Na/K-ATPase inhibition by 10 μM digoxin (n = 7 in 6 slices, 3 mice, Wilcoxon test). Exemplary traces are shown in Supplementary Fig. 1A.
D) Boxplots comparing K+-induced changes in astrocytic area and Fluo accumulation in aCSF containing physiological [Na+]\textsubscript{i}, to aCSF wherein Na+ was partly replaced by NDMG (n = 7 slices, 3 mice, Wilcoxon test). Exemplary traces are shown in Supplementary Fig. 1B.
E) Summarizing boxplots for drug effects on K+-induced changes in astrocytic area (left) and Fluo intensity (right). Drugs targeted the Na/K-ATPase as well as secondary-active transporters and channels (yellow and blue rectangle respectively). Relative change (in %) = percent change during high [K+]\textsubscript{o} & drug over percent change during high [K+]\textsubscript{o}. 0% indicates a complete block with absence of swelling and/or Fluo accumulation induced by 10 mM [K+], and 100% indicates full swelling and/or Fluo accumulation and no drug effect. Ouabain (10 μM, n = 10 slices, 4 mice (as shown also in B); TBOA (DL-TBOA, 50 μM, n = 7 slices, 3 mice and TFB-TBOA, 200 nM, n = 3 slices, 2 mice), inhibitors of excitatory-amino acid (EAAT) transport; 50809 (30 μM, n = 7 slices, 3 mice), inhibitor of sodium-bicarbonate exchanger – 1 (NBCE-1); probenecid (400 μM, n = 5 slices, 2 mice), organic anion transporter inhibitor; phloretin (100 μM, n = 6 slices, 3 mice) & 4-CIN (200 μM, n = 6 slices, 2 mice), monocarboxylate-transporter inhibitors; cysotranslal B (20 μM, n = 5 slices, 2 mice), glucose transporter-1 inhibitor; BacA (barium chloridoe (100 μM, n = 6 slices, 3 mice), blocker of inward-rectifier potassium channels; DCPB (10 μM, n = 6 slices, 2 mice), inhibitor of volume-regulated anion channels. Wilcoxon test and Bonferroni correction, p-values are written above bars when <0.05, i.e. when a given drug significantly altered area or fluorescence after bath application of 10 mM [K+]\textsubscript{o} compared to the slice-internal reference (bath application of 10 mM [K+]\textsubscript{o} without a drug). Note that only ouabain significantly reduced astrocytic swelling and Fluo accumulation.
F) Exemplary graphs (3 astrocytes from one brain slice) of self-normalized area and Fluo intensity during sequential perfusion of 200 μM glutamate and 10 mM [K+]\textsubscript{o} individually and in combination. Note that glutamate reduced the astrocytic Fluo intensity in the presence of 10 mM [K+]\textsubscript{o}.
G) Boxplots summarizing changes in astrocytic area (left) and Fluo accumulation (right) after 10 min perfusion of 10 mM [K+]\textsubscript{o} and of 10 mM [K+]\textsubscript{o}, combined with glutamate (n = 12 slices, 5 mice, Wilcoxon-test). Glutamate data at concentrations of 200 μM and 1 mM were pooled (n = 7 & 5 slices, from 3 and 2 mice, respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Stimulation-induced Fluo accumulation and swelling of astrocytes.
A) Local field potential (LFP) recording (gray and blue) during stimulation (18 bursts given at 0.1 Hz, each burst consisting of 50 stimuli given at 10 Hz). Top, full-length stimulation series; middle, first burst; bottom, first 10 stimuli of first burst. Stim (topmost trace, black) indicates stimulation; light and dark gray, LFP during stimulation in aCSF with and without 1 μM tetrodotoxin (ttx), respectively. Stimulation artifacts were cut out for clarity.
B) Exemplary graphs of self-normalized astrocytic area (top) and Fluo intensity (bottom, both: mean of 3 astrocytes from one recording) during stimulation (black bar). The slice was either perfused with aCSF (ctrl, red and green traces) or with aCSF containing 1 μM ttx (black traces).
C) Boxplots summarizing maximal astrocytic area (top) and Fluo intensity (bottom) during stimulation and after 3 min of recovery (each normalized to the pre-stimulation baseline; n = 14 stimulation series, 12 slices, 5 mice, Wilcoxon test). Individual values represent averages from 3 astrocytes and 3 consecutive timepoints for each condition.
D) Boxplots summarizing maximal astrocytic area (top) and Fluo intensity (bottom) during stimulation normalized to the pre-stimulation baseline. Slices were perfused with aCSF (ctrl') or aCSF containing ttx (ttx'), 0.5–1 μM. Data of 0.5 μM and 1 μM ttx were pooled (each concentration: n = 3 slices, 2 mice, Wilcoxon test). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
increased astrocytic area from 122% (116, 127) to 135% (130, 150) ($n = 12$ slices, 5 mice, $p < 0.001$ and $p = 0.006$, respectively, Wilcoxon test, Fig. 3F,G). Fig. 3F illustrates the rapid reduction of astrocytic Fluo intensity by additional glutamate in presence of 10 mM [K$^+$].

3.6. Electrical stimulation induces astrocytic Fluo accumulation

In acute brain slices, electrical stimulation of neuronal activity has been associated with transient elevations of [K$^+$]$_o$ (although lower than during SDs) (Larsen and MacAulay, 2017; Berndt et al., 2020) and glutamate (Dulla et al., 2008; Brandner et al., 2022). Given our results so far, astrocytic Fluo intensity should increase due to elevated [K$^+$]$_o$ but decrease due to elevated glutamate. We therefore tested, how electrical stimulation affects astrocytic Fluo intensity and also measured the astrocyte-covered area. We made use of repetitive burst stimulation (50 stimuli at 10 Hz/burst, 1 burst/10 s), which induced stimulus-associated population-spike responses (Fig. 4A, bottom), and additive burst-associated negative DC-potential deflections (Fig. 4A). As expected population-spike and DC-deflections were blocked by ttx (0.5–1 μM, Fig. 4A). During stimulation astrocytic Fluo intensity increased by factor 1.06 (1.04, 1.08) and the area increased by 3% (2, 4), respectively, and returned to 0.99 (0.98, 1.00) and 100% (99, 102) 3 min post stimulation.
extracellular glutamate and hypooxymotic extracellular solution induced swelling of astrocytes (Hansson et al., 2006; Hirrlinger et al., 2008; Risher et al., 2009; Florence et al., 2012; Larsen and MacAulay, 2017; Shi et al., 2017; Walch et al., 2020). Among these three triggers of swelling, only elevated \([K^+]_o \) was associated with a parallel increase in astrocytic Fluo intensity. The mechanisms that link \([K^+]_o \) and astrocytic swelling remain incompletely understood. Buffering of \([K^+]_o \) has been attributed to the function of astrocytes and was suggested to involve inter alia Kiri4.1 channels and the Na/K-ATPase (Larsen and MacAulay, 2014; Larsen et al., 2016). Of note, inhibition of the Na/K-ATPase prevented \(K^+ \)-induced astrocytic swelling in cell culture (Walz and Hinks, 1985) and in acute mouse brain slices (Walch et al., 2020), which we confirmed. In addition, we found that Na/K-ATPase inhibition by ouabain or digoxin blocked astrocytic Fluo accumulation. At the applied concentration of 10 \(\mu \)M, ouabain is expected to block most of the astrocytic \(\alpha_2 \)-isoform of the Na/K-ATPase, while only a partial block is expected for the more generally expressed \(\alpha_1 \)-isoform, which has a ~1000 fold higher IC50 (~50 \(\mu \)M) (O’Brien et al., 1994; Moseley et al., 2003). Acute elevation of \([K^+]_o \) increased Na/K-ATPase activity in cultured mouse astrocytes (Hajek et al., 1996), however with its stoichiometry – uptake of 2 \(K^+ \) ions in exchange for 3 Na\(^+ \) ions - Na/K-ATPase by itself cannot cause astrocytic swelling. We saw that a reduction in \([Na^+]_o \), likewise blocked Fluo accumulation and swelling, which suggests that Na\(^+ \) gradients established by the Na/K-ATPase drive secondary active transport of Fluo, e.g. via Na\(^+ \)-coupled uptake of glutamate by EAATs (Verkhratsky and Nedergaard, 2018). Glutamate is released from excitatory neurons during action potential firing, and action potential frequency was shown to increase at \([K^+]_o \) of 10.5 mM (Walch et al., 2020). Astrocytes are known to buffer excess glutamate by uptake via EAATs (Verkhratsky and Nedergaard, 2018). However, blocking EAATs did not prevent Fluo accumulation at 10 mM \([K^+]_o \). We thus have no evidence that Fluo is a substrate of EAATs. Inhibition of EAATs supposedly elevates extracellular glutamate, however, direct glutamate application in presence of 10 mM \([K^+]_o \) lowered astrocytic Fluo compared with wash in of 10 mM \([K^+]_o \) alone. This implies that the Fluo lowering effect of extracellular glutamate depends on its uptake into astrocytes. Na\(^+ \)-coupled uptake of glutamate by EAATs has been shown to increase intracellular Na\(^+ \) (Langer and Rose, 2009). Thereby transmembrane Na\(^+ \) gradients are reduced, which may in turn reduce the driving force for other Na\(^+ \)-coupled transporters, including one for Fluo. Alternatively, our data supports uptake of glutamate in exchange for Fluo or its physiological substrate.

While accumulation of Fluo depended on Na/K-ATPase activity and was opposed by extracellular glutamate, we were not able to identify the specific transport mechanism of Fluo. Astrocytic Fluo accumulation and swelling were not prevented by inhibition of NBCe-1 with S0857 in our experiments, although NBCe-1 inhibition by DIDS was previously reported to reduce \([K^+]_o \)-induced swelling of astrocytes (Florence et al., 2012) and partially prevented the activity-dependent reduction in extracellular space volume that was attributed to astrocytic swelling (Larsen and MacAulay, 2017). In contrast, Walch et al. (2020) found no effect of DIDS on \([K^+]_o \)-induced swelling in acute slices from C57Bl/6 mice after 5 min of exposure to 10.5 mM \([K^+]_o \). Since DIDS is a fluorescent compound that interferes with the Fluo signal, we could not use it to measure Fluo kinetics. The differing results for NBCe-1 mediated astrocytic swelling are discussed in greater detail in a recent review article (Walch and Fiacco, 2022). Inhibition of MCTs by phloretin or 4-CN- not reduce astrocytic Fluo accumulation and swelling, although release of lactate was shown to depend on \([K^+]_o \) in vitro and was associated with elevated \([K^+]_o \) in vivo in mice (Sotelo-Hitschfeld et al., 2015). Release of lactate may cause compensatory uptake of other anions (e.g. Fluo) to maintain electroneutrality. Elevated \([K^+]_o \) has been shown to activate astrocytic glycolysis (in organotypic hippocampal slices and cultured astrocytes) and bidirectional glucose transport via Glut-1 (in cultured astrocytes) (Ruminot et al., 2011; Köhler et al., 2018; Fernández-Moncada et al., 2021). Glut-1 passively transports water
K. Schoknecht et al.

Neurobiology of Disease 178 (2023) 106026

We thus asked whether Glut-1 also transports Fluo and found that inhibition of Glut-1 by cytochalasin B had no effect on K⁺-induced astrocytic Fluo accumulation and volume changes. Likewise, we saw no effect by inhibition of OATPs, which are expressed in astrocytes (Verkhratsky and Nedergaard, 2018) and have been shown to transport Fluo into human and rat hepatocytes (De Bruyn et al., 2011) and into insect cells that express human OATPs (Patik et al., 2015). We further tested if Fluo is released from astrocytes through VRACs, which open when cells swell (Osei-Owusu et al., 2018) and found no evidence thereof. Fluo release via VRACs would have indicated different transport mechanisms of Fluo uptake versus release.

As yet another mechanistic target, we investigated if Fluo accumulation is secondarily coupled to astrocytic buffering of [K⁺]. Schoknecht et al. (2018) proposed as mechanism that regulates activity-dependent perivascular efflux. [K⁺]o-induced astrocytic Fluo accumulation is strictly Na/K-ATPase dependent, whereas swelling of astrocytes, yet the effect on astrocytic Fluo accumulation was oppositional. [K⁺]o has been shown to rise to ceiling levels of 10–12 mM during electrical stimulation in vivo in cats and in rat hippocampal slices (Heinemann and Dieter Lux, 1977; Larsen and MacAulay, 2017). Quantitative data on activity-dependent changes of extracellular glutamate concentrations are sparse. Increases by 15 μM after high frequency electrical stimulation (100 Hz) were measured in mouse hippocampal slices (Ikegami et al., 2014), yet, higher concentrations of ~1 mM may be reached in the synaptic cleft (Clements et al., 1992). We saw astrocytic Fluo accumulation and swelling during electrical stimulation, which implies that [K⁺]o-induced Fluo uptake outweighed glutamate-induced efflux. [K⁺]o-induced swelling of astrocytic endfeet has been proposed as mechanism that regulates activity-dependent perivascular glymphatic flow (Hablitz and Nedergaard, 2021). According to our data this process may involve accumulation of anions and can be visualized by Fluo imaging. To rule out direct effects of astrocytic stimulation, action potential propagation was blocked by ttx. This prevented astrocytic Fluo accumulation, which supports signalling from neurons to astrocytes, presumably release of K⁺, to underlie astrocytic Fluo dynamics.

Similar to electrical stimulation of neuronal activity, both elevations of [K⁺]o (up to ~80 mM) and of extracellular glutamate were recorded during SDs (Dreier et al., 2018; Menyhárt et al., 2022). We saw astrocytic Fluo accumulation and swelling during focally induced SDs, which, as during electrical stimulation, indicates a predominant effect of [K⁺]o-induced accumulation of Fluo over glutamate-induced efflux. We further found that ouabain prevented astrocytic Fluo accumulation during SDs. While some slices showed reduced astrocytic swelling, there was no significant reduction by ouabain at the group level. This suggests that astrocytic Fluo accumulation is strictly Na/K-ATPase dependent, whereas swelling during SD is in part caused by different mechanisms, e. g. swelling induced by glutamate and by Gibbs-Donnan forces. Gibbs-Donnan forces are created mainly by the high concentration of negative charges in intracellular proteins that attract small solutes and water. Under physiological conditions Gibbs-Donnan forces are balanced by the high concentration of [Na⁺]o (maintained by the Na/K-ATPase), which similarly attracts water. This state is referred to as the double Gibbs-Donnan state (Dreier et al., 2013; Lemale et al., 2022). During SD, [Na⁺]o falls from ~150 mM to ~60 mM due to influx of Na⁺ into neurons, and, depending on the availability of ATP, due to reduced Na/K-ATPase activity. This causes a shift from the double Gibbs-Donnan state towards the simple Gibbs-Donnan equilibrium, where the Gibbs-Donnan forces are no longer balanced by [Na⁺]o resulting in swelling of cells during SD (Dreier et al., 2013; Lemale et al., 2022). Swelling due to Gibbs-Donnan forces reverses by activity of the Na/K-ATPase, which explains why ouabain could not prevent this component of swelling. Ouabain by itself did not aggravate swelling because the dosage was chosen to inhibit predominantly the astrocytic α2-isofrom and not the ‘housekeeping’ α1-isofrom (see §3 of the discussion and (O’Brien et al., 1994; Moseley et al., 2003)). The increase in Fluo signal in astrocytes indicates the accumulation of anions in astrocytes and can thereby help to identify fluxes of anions during SD, which are not well understood (Dreier et al., 2018).

4.1. Conclusions and future perspectives

Astrocytic endfeet ensheath parenchymal brain vessels, synapses and form the glia limitans at the pia mater (Abbott et al., 2006). Therefore, astrocytes are a key element of the glymphatic system (Hablitz and Nedergaard, 2021) connecting cerebrospinal fluid, interstitial fluid and blood vessels. Fluo may be used as a marker to visualize anion fluxes during [K⁺]o but not glutamate-induced or osmotic astrocytic swelling. Understanding the mechanisms of [K⁺]o-dependent astrocytic Fluo dynamics promises novel insights into anion and fluid movements between different compartments of the brain during physiological neuronal activity, pathological network activity, e.g. epileptic seizures and SDs, and during formation and regression of cerebral edema.

4.2. Limitations

All experiments of this study were performed in vitro, i.e. in absence of intracranial pressure and blood flood, and the extravascular fluid compartment is greatly enlarged in brain slice experiments. Pharmacological experiments can be affected by reduced target specificity or distribution kinetics within the limited wash in period. SR-101 has been shown to label oligodendrocytes in addition to astrocytes in acute cortical and hippocampal slices in mice (Wassef and Scherer, 2011; Hagos and Hülsmann, 2016).

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nbd.2023.106026.

Source of funding

This research was supported by the Deutsche Forschungsgemeinschaft (HI1414/7-1).

CRediT authorship contribution statement

Karl Schoknecht: Conceptualization, Investigation, Formal analysis, Writing - original draft, Writing - review & editing. Johannes Hirrlinger: Conceptualization, Writing – review & editing. Jens Eilers: Conceptualization, Writing – review & editing.

Declaration of Competing Interest

The authors declare no conflict of interest.

Data availability

Data will be made available on request.

Acknowledgement

The authors would like to thank Gudrun Bethge for technical assistance and Profs. Jens Dreier and Alon Friedman for helpful discussions. The publication costs were funded by the Open Access Publishing Fund of Leipzig University supported by the German Research Foundation within the program Open Access Publication Funding.
References

