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Abstract – The method of successive approximations is applied to solve the Maxwell

equations in cylindrical plasma waveguide geometry for electromagnetic waves with

arbitrary azimuthal wave index and small axial wavenumber. The theory of surface

flute waves is used as zeroth approximation. The study generalizes previous

investigations whose results are utilized for the verification of newly obtained

conclusions. The influences of several plasma waveguide parameters as magnitude and

sign of the azimuthal wave index, the width of the dielectric layer between plasma and

waveguide wall and the magnitude of its dielectric constant, the radii of the plasma

column and the metal wall, and the external axial static magnetic field on the wave

dispersion properties are analyzed.
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I. Introduction

Studying electromagnetic flute waves with zero axial wavenumber (݇௭ = 0), can

be of interest in different fields of plasma physics. A comprehensive overview of

surface wave applications in the fields of plasma electronics, plasma-antenna systems,

description of phenomena in the plasma periphery of magnetic confinement fusion

devices, nano-technologies, and for plasma production is given in [1]. In particular,
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surface flute waves can be of interest for plasma electronics due to their efficient

interaction with an annual electron beam, which gyrates along large Larmor orbits

around the plasma column [2-9].

Studying flute waves has the advantage that they are electromagnetic waves of

ordinary (with the components ,௭ܧ , andܪ ఝ of the wave fields) and extraordinaryܪ

(with the components ,௭ܪ , andܧ ఝ of the wave fields) polarization, which propagateܧ

in an axial static magnetic field independently of each other. In addition, the Maxwell

equations can be solved for these two polarizations separately. The subset of Maxwell

equations for each polarization can be written in the form of second order differential

equations, e. g., for either ௭ orܧ .௭, respectivelyܪ

On the other hand, studying flute waves also has an obvious disadvantage. They

describe specific waves with ݇௭ = 0 only. However, the theory of flute waves can be

and has been used as base for studying electromagnetic waves with small axial

wavenumbers, ݇௭ ≠ 0 [1, 9-11]. In particular, the paper [11] was devoted to the

investigation of surface flute waves in circular metal waveguides entirely filled with

cold plasma in the presence of an axial static magnetic field. The dispersion properties

of surface flute waves in circular metal waveguides partially filled by plasma without

any magnetic field were studied in [10]. The initial stage of the interaction of long-

wavelength waves of surface type with an annular electron beam gyrating around the

plasma column along large Larmor orbits was investigated in [9].

The present study is devoted to investigation of the dispersion properties of surface

type waves which propagate with arbitrary azimuthal wave index m and small axial

wavenumber ݇௭ in circular metal waveguides partially filled with cold collisionless

plasma in presence of an axial static magnetic field ሬ⃗ܤ . Such statement of the problem

significantly differs from both considered in [10,11]. The present study generalizes the

results in [10] by taking into account an axial static magnetic field, which is applied in

many technological devices. At the same time, the investigation carried out in [11] is

generalized in the present paper by introducing the dielectric layer. The latter can, for
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instance, play an important role in a plasma device preventing interaction between the

plasma and the metal wall.

Taking into account the plasma particles’ thermal motion is known to result in the

appearance of a number of new physical effects. In particular, the propagation of

potential surface waves, which do not exist in the Voigt geometry in a cold plasma,

becomes possible. Moreover, these “new” waves propagate in different frequency

ranges than in the case of cold plasmas. From the mathematical point of view, these

new phenomena are the result of including a term proportional to the kinetic pressure

gradient into the quasi-hydrodynamic equations of motion for the plasma particles. In

other words, the account for the plasma particle thermal motion modifies the plasma

permittivity tensor by introducing terms proportional to the Larmor radius squared.

This causes the increase of the order of the differential equation which describes the

spatial distribution of the wave field with the consequences similar to mode coupling

described in the present paper. The properties of the surface waves at the plasma-metal

interface, which arise when a hot plasma permittivity tensor is taken into account in

the Voigt geometry, were presented in particular in [12,13].

The paper is arranged as follows. The motivation of the study is provided in the

present Section I. The model of the plasma-dielectric-metal structure under the

consideration, and basic assumptions are described in Section II. The spatial

distribution of the wave fields is given in Section III and the dispersion relation is

derived in Section IV. Then, the numerical analysis of the dispersion relation is given

in Section V. Finally, the obtained results are discussed in the Conclusions, Section VI.

II. Statement of the problem

The following plasma waveguide structure is under consideration (see Fig. 1). A

circular metal waveguide with inner radius b and infinite electrical conductivity is

assumed to be infinite in axial direction z. The plasma cylinder with radius a is placed

concentrically inside the waveguide. The plasma column is separated from the metal

wall by a dielectric layer with dielectric constant ௗ. A static magnetic field is directedߝ

along the waveguide axis, ሬ⃗ܤ ||⃗ݖ.
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The electrodynamic properties of the

plasma column are described in terms of

the cold collisionless plasma dielectric

permittivity tensor :ߝ
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The components of the tensor are given by:

ଵߝ = 1 − ∑ ఆഀ
మ

ఠమିனഀ
మఈ , ଶߝ = − ∑ ఆഀ

మ ఠഀ

ఠ൫ఠమିனഀ
మ ൯ఈ ,

ଷߝ = 1 − ∑ ఆഀ
మ

ఠమఈ . (2)

In (2),  is the plasma frequency of theߗ

particle of species α (α = ݅ for ions and α = ݁ for electrons), and ߱ is the

corresponding cyclotron frequency.

The present paper employs the method of variable separation. Specifically, one can

search for the solution of the Maxwell equations in the following form:

,ݎ⃗)௭ܪ (ݐ = ݖexp[݅(݇௭(ݎ)௭ܪ + ݉߮ − (3)                              .[(ݐ߱݅

In (3), ݇௭, ݉, and ߱ are the axial wavenumber, azimuthal wave index, and angular
wave eigenfrequency, respectively. In this approach, the Maxwell equations can be
written in the form of two coupled differential equations of the second order [10,11]:

ଵ


ௗ
ௗ

ቀ 
఼

మ
ௗு

ௗ
ቁ − ௭ܪ ቂ1 + మ

మ఼
మ − 


ௗ

ௗ
ቀ ఓ

఼
మ ቁቃ = ௭,                     (4)ܧܭ

ଵ
మ

ௗ
ௗ

ቀݎ ௗா

ௗ
ቁ + ௭ܧ ቂ ఌయ

ଵି
మ/఼

మ − ఝܰ
ଶቃ = ௭.                        (5)ܪܯ

In (4), and (5), ݇ୄ
ଶ = ݇ଶ

ୄܰ
ଶ, ܰୄ

ଶ = ଵߝ) − ௭ܰ
ଶ)(ߤଶ − 1) > 0, and ߤ = ఌమ

൫ఌభିே
మ൯

, ݇ =

߱/ܿ, ௭ܰ = ݇௭/݇, ఝܰ = The right hand sides of eqs. (4) and (5) are small .(݇ݎ)/݉

values proportional to the first order of ݇௭:

௭ܧܭ = ேேകா


ௗ

ௗ
ቀ ଵ

ே఼
మቁ + ݅ ௭ܰ

ௗா

ௗ
ௗ

ௗ
ቀ ఓ

఼
మ ቁ − ேఓఌయா

ே఼
మ ,                    (6)

Fig. 1. Schematic of the waveguide
geometry
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௭ܪܯ = ଵ
ଵି

మ/఼
మ ቄே

఼
మ

ௗு

ௗ
ௗఓ
ௗ

+ ݅ ௭ܰܪ௭[ߤ − ఓ


ௗ
ௗ

ቀ ఓ
఼

మ ቁ + 


ௗ
ௗ

ቀ ଵ
఼

మ ቁ]ቅ.          (7)

The presence of a few terms proportional to ݇௭
ଶ in the left hand sides of eqs. (4) and (5)

provides turning of these equations into those known for the case of wave propagation

in a dielectric and/or plasma without any external static magnetic field.

III. Spatial distribution of the wave fields

In the dielectric region, the wave field distribution is well-known precisely:

(ݎ)௭ܪ = ܬ]ܩ
ᇱ (ݎߢ)ܰ(ܾߢ) − ܰ

ᇱ (8)                         ,[(ݎߢ)ܬ(ܾߢ)

(ݎ)ఝܧ =
݅݇
ߢ−

ܬൣܩ
ᇱ ᇱܰ(ܾߢ)

(ݎߢ) − ܰ
ᇱ ᇱܬ(ܾߢ)

(ݎߢ)൧

− 
మ (ݎߢ)ܰ(ܾߢ)ܬ]ܨ − ܰ(ܾߢ)ܬ(ݎߢ)],                (9)

(ݎ)௭ܧ = (ݎߢ)ܰ(ܾߢ)ܬ]ܨ − ܰ(ܾߢ)ܬ(ݎߢ)].                      (10)

In eqs. (8)-(10), ଶߢ = ݇ଶߝௗ − ݇௭
ଶ > 0. The expressions (8) and (10) for the amplitudes

of the axial electric and magnetic wave fields contain only two constants of integration
G and F since two other constants are determined from the boundary conditions: the
tangential electric wave fields ఝ andܧ ,௭ are equal to zero at the metal wallܧ ݎ = ܾ.

Within the plasma column, the radial distribution of the wave fields is found by the

method of successive approximations. The wave field amplitudes are presented in the

form:

(ݎ)௭ܪ = ௭ܪ
()(ݎ) + ௭ܪ

(ଵ)(ݎ), ቚܪ௭
(ଵ)(ݎ)ቚ ~ ቚ݇௭ܪ௭

()(ݎ)ቚ ≪ ቚܪ௭
()(ݎ)ቚ,          (11)

(ݎ)௭ܧ = ௭ܧ
()(ݎ) + ௭ܧ

(ଵ)(ݎ), ቚܧ௭
(ଵ)(ݎ)ቚ ~ ቚ݇௭ܧ௭

()(ݎ)ቚ ≪ ቚܧ௭
()(ݎ)ቚ.            (12)

The wave field amplitudes ௭ܪ
()(ݎ) and ௭ܧ

()(ݎ), are assumed to be known from zero

approximation, in which ݇௭ = 0. In other words, ௭ܪ
()(ݎ) and ௭ܧ

()(ݎ) are the solutions

of eqs. (4) and (5) with zero right hand sides:

௭ܪ
()(ݎ) = (ݎ)߶ଵܣ + (13)                                   ,(ݎ)ଶ߶෨ܣ

௭ܧ
()(ݎ) = (ݎ)ଵ߰ܥ + ଶܥ ෨߰(ݎ).                                   (14)
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In (13) and (14), ଵ,ଶ andܣ ଵ,ଶ are the constants of integration, the functionsܥ and (ݎ)߶
,are the solutions of eqs. (4) and (5), respectively, with zero right hand sides (ݎ)߰
which are finite at the axis, ݎ = 0.

The functions ߶෨(ݎ) and ෨߰(ݎ) are the solutions of the same equations which are
linearly independent from the functions and (ݎ)߶ ,they are singular at the axis ;(ݎ)߰
ݎ = 0. The singularity makes it possible immediately to determine two constants of
integration, ଶܣ = 0 and ଶܥ = 0.

To find the first order corrections ௭ܪ
(ଵ)(ݎ) and ௭ܧ

(ଵ)(ݎ) to the radial distributions of

the wave fields one can substitute the wave field amplitudes ௭ܪ
()(ݎ) and ௭ܧ

()(ݎ) into

the right-hand sides of eqs. (4) and (5) instead of full expressions without any loss in

precision. Then the corrections ௭ܪ
(ଵ)(ݎ) and ௭ܧ

(ଵ)(ݎ) are derived by the method of

constant variation:

௭ܪ
(ଵ)(ݎ) = ߶෨ ∫ ఼

మ థா
(బ)ௗ

ௐ൫థ,థ෩ ൯


 − ߶ ∫ ఼
మ థ෩ ா

(బ)ௗ
ௐ൫థ,థ෩ ൯


 ,                             (15)

௭ܧ
(ଵ)(ݎ) = ෨߰ ∫ మటெு

(బ)ௗ
ௐ൫ట,ట෩ ൯


 − ߰ ∫ మట෩ ெு

(బ)ௗ
ௐ൫ట,ట෩ ൯


 .                            (16)

In (15) and (16), ܹ൫߶, ߶෨൯ and ܹ൫߰, ෨߰൯ are the Wronskians of the two pairs of

functions,

ܹ൫߶, ߶෨൯ = ߶ డథ෩

డ
− ߶෨ డథ

డ
, ܹ൫߰, ෨߰൯ = ߰ డట෩

డ
− ෨߰ డట

డ
.                    (17)

IV. Dispersion relation

The calculations presented above describe the radial distribution of the wave field

which is sufficient for studying the dispersion properties of electromagnetic waves with

arbitrary azimuthal wave indices and small axial wavenumbers in circular metal

waveguides with inhomogeneous radial profile of the plasma particle density.

However, in the following numerical calculations, a plasma column with uniform

plasma particle density profile is considered to investigate the effect of the non-zero

axial wavenumber rather than that of plasma density non-uniformity.
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The waves under study should be of surface type. This means that the plasma is

nontransparent for these waves. The waves do not propagate in absence of the plasma-

dielectric interface in infinite plasma media. A sufficiently dense plasma is considered,

so that ߗ
ଶ ≫ ω

ଶ. In this case, surface type waves propagate in the following frequency

ranges:

|߱|ටఆ
మାమ

మ

ఆ
మାఠ

మ  <߱ < |߱|, |߱| <߱ < ߱ି. (18)

The range (18) encloses the electron cyclotron frequency and is referred hereinafter as
low frequency (LF) one. One more range lies above the upper hybrid frequency and is
called here as high frequency (HF) one:

ඥ߱
ଶ + ߗ

ଶ + ܿଶ݇௭
ଶ<߱ < ߱ା. (19)

In (18) and (19), ߱∓ are the cut-off frequencies for bulk modes:

߱∓ = ∓0.5|߱|+ ඥ0.25߱
ଶ + ߗ

ଶ + ܿଶ݇௭
ଶ ඥ.ଶହఠ

మାఆ
మ±.ହ|ఠ|

ଶඥ.ଶହఠ
మାఆ

మ(ඥ.ଶହఠ
మାఆ

మ∓.ହ|ఠ|)
.     (20)

Dissipativeless boundary conditions at the plasma-dielectric interface are applied to

the solutions derived above for these two regions (plasma column and dielectric layer).

The dispersion relation is obtained in the form of a 4x4 determinant, หܽห = 0. In this

respect the present problem is much more complicated than those solved earlier in [10,

11]. The components of the determinant are listed in Annex 1.

Electron beam excitation of long-wavelength surface waves in the HF range was

demonstrated in [9] to be much less efficient as compared with the LF range. That is

why the following consideration is restricted to the LF range, though the derived

dispersion relation is applicable for studying the dispersion properties of the waves in

HF range (19) as well.

V. Results of the numerical analysis

The dispersion relation is solved numerically. The shape of the dispersion curves

are similar to those obtained earlier in [10, 11]. The dependencies of the wave
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dispersion properties on ݇௭, , magnitude and sign ofܤ m, ,ௗߝ a and b are studied. The

dispersion curves are presented in the form of dependencies of normalized

eigenfrequencies ߱/|߱| on ݇௭ܽ.

The results of the numerical studies are presented in Figs. 2-6. As already

mentioned, the product ݇௭ܽ is chosen as abscissa axis. The present consideration is

only valid for small magnitudes of the axial wavenumber. It was analytically derived

in [10,11] that the method of successive approximations is applicable in this case of

݇௭ ≪ ݉/ܽ. The latter condition is fulfilled for all the calculations presented in Figs. 2-

6.

The wave eigenfrequency normalized by the electron cyclotron frequency, ߱/|߱|

is chosen as ordinate axis in Figs. 2-5. Since Fig. 6 demonstrates the influence of the

external axial static magnetic field on the wave dispersion properties, there the

eigenfrequency is normalized by the Langmuir (electron plasma) frequency, .ߗ/߱

In the case of surface flute waves, the ratio ݉/ܽ is the appropriate observable to

play the role of the wavenumber and it seems to be natural to normalize this

wavenumber by the skin-depth ߜ = . Then the effective wavenumber isߗ/ܿ ݇ ≡

which in Figs. 2-6 is chosen as ,ܽ/ߜ|݉| ݇ = 0.6 to make it possible to compare the

present results with those reported earlier in [10].

Since ordinary and extraordinary waves are coupled in the present problem, one can

see two branches of the dispersion curve in the figures. This is the main distinguishing

feature which differs the dispersion properties of surface waves with non-zero axial

wavenumber from those of surface flute waves [1].

The branch which turns to surface flute waves in the limit ݇௭ → 0 (it almost looks

like a horizontal line) is the high frequency (HF) branch. The other branch is

characterized by smaller magnitudes of the wave eigenfrequencies (the frequencies are

approximately proportional to ݇௭). That is why this branch is referred here as low

frequency (LF) one.

In general, the shapes of all the dispersion curves are similar. For example, in the

curve marked by “3” in Fig. 2, the HF branch starts with ߱/|߱|=1.903 for ݇௭ = 0.
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For small ݇௭ < 0.8/ܽ the normalized

wave eigenfrequency increases to ߱/

|߱| = 1.939 approximately

proportionally to ݇௭
ଶ. This circumstance

is predictable from the mathematical

point of view. The dispersion relation

derived in the present paper can be

presented in the following form which is

common for the problems of coupled

waves:

ைܦܦ + (ଶ)ܦ = 0.             (21)

In (21), ܦ = 0 is the dispersion relation

of extraordinary surface flute waves [1],

and ைܦ = 0 is the dispersion relation of electromagnetic waves with ordinary

polarization, the term .is of the second order of smallness in the axial wavenumber (ଶ)ܦ

The solution of the eq. (21) can be presented as a series in ݇௭: ߱ = ߱() + Δ߱, where

߱() is the solution of the dispersion relation in zeroth approximation, ൫߱()൯ܦ = 0.

Then the correction Δ߱ to the eigenfrequency is given by:

Δ߱ = − (మ)

ೀ
ቀడ

డఠ
ቁ

|ఠୀఠ(బ)
∝ ݇௭

ଶ.                              (22)

For larger magnitudes of the axial wavenumber, 0.8/ܽ < ݇௭ < 1.1138/ܽ, the HF
branch decreases to ߱/|߱|=1.766 to meet with the LF branch. The LF branch
decreases almost linearly with decreasing axial wavenumber approaching to the
frequency range lower limit (19). For the maximum magnitude of ݇௭ = 1.1138/ܽ, the
wave group velocity turns to infinity, ߲߱/߲݇௭ → ∞. In the vicinity of this point, the
modal representation of the wave fails.

The axial wavenumber for which the frequencies of the HF and LF branches
coincide is denoted as ݇௭ = ݇. Nearby ݇ the representation of electromagnetic
eigenwaves in the harmonic form, ∝ exp[݅(݇௭ݖ + ݉߮ − fails. Near the point in ,[(ݐ߱
question, the dispersion curve ݇௭(߱) can be approximately described by the quadratic
parabola ݇௭(߱) = ݇ − (߱ − ߱)ଶ/ߙ (where is a constant having the dimension ߙ

Fig. 2. Surface wave eigenfrequency vs
axial wavenumber for different positive

azimuthal wave indices m=1, 2, 3
(indicated by the numbers near the
curves). ௗߝ = 2, ∆= (ܾ − ܽ)/ܽ =

0.1, ݇ = 0.6, ܼ = Ω/|߱| = 7.5
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Fig. 3. Surface wave eigenfrequency vs
axial wavenumber for azimuthal wave

indices of different signs m=±1, ±2
(indicated by numbers near the curves).

ௗߝ = 2, ∆= 0.1, ݇ = 0.6, ܼ = 7.5.
Dashed curves correspond to positive
indices, solid curves correspond to the

negative indices

Fig. 4. Surface wave eigenfrequency vs
axial wavenumber for different

magnitudes of dielectric constant
ௗߝ = 1, 2, 3 (indicated by numbers near

the curves). ݉ = 1, ∆= 0.1,
݇ = 0.6, ܼ = 7.5

of acceleration, cm/s2). In this case, an electromagnetic pulse with the field proportional

to exp൫−ݐଶ/(2߬ଶ)൯cos[݇ݖ + ݉߮ − ߱ݐ] (where τ is the pulse duration) spreads out

from the point at which it was originally formed in the axial direction over a distance

of about .ଶ/2 [11]߬ߙ

Increasing azimuthal wave index m is demonstrated in Fig. 2 to cause an increase

of the HF branch, which is in agreement with the theory of surface flute waves

[1,10,11], and to expansion of the ݇௭ range where the present consideration is

applicable. The increase of m from 1 to 3 is accompanied by broadening the ݇௭ range

from ݇௭ = 0.257/ܽ for m=1 to ݇௭ = 0.640/ܽ for m=2 and then to ݇௭ = 1.114/ܽ for

m=3 (by 77%).

Figure 3 shows how the sign of the azimuthal wave index influences the wave

dispersion properties. The surface flute waves with negative azimuthal wave indices

have smaller magnitudes of their eigenfrequencies. That is why the dispersion curves

of the waves with ݉ < 0 are shown in Fig. 3 by solid curves which lie lower than those
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for the waves with positive azimuthal wave indices. The range of axial wavenumbers,

where the waves exist, is smaller for the waves with ݉ < 0 than for the waves with

positive azimuthal wave indices.

The results presented in Fig. 3 are most appropriate to be compared with those

obtained in [10]. In absence of an external static magnetic field ሬ⃗ܤ  , the dispersion

properties of electromagnetic waves are known to be degenerate in respect to the sign

of the azimuthal wave index m. Therefore, the influence of the sign of ݉ on the wave

dispersion properties was not studied in [10]. There, the dispersion curve of surface

type long-wavelength waves was given for the same plasma waveguide parameters as

those applied for the calculations in Fig. 3 of the present paper: |݉| = 2, ௗߝ = 2, ∆=

0.1, ݇ = 0.6. However, an external static magnetic field was not considered in [10].

Application of ሬ⃗ܤ  causes the splitting of the dispersion curve. The HF branch of the

dispersion curve, which was shown in Fig. 1 of [10], lies in the middle between the HF

branches shown in Fig. 3 for ݉ = ±2. The axial wavenumber, for which the

frequencies of the HF and LF branches coincide in Fig. 1 of [10], is approximately

equal to the arithmetic mean of those for the dispersion curves presented here in Fig. 3

for ݉ = ±2.

The dispersion curves in Fig. 4 demonstrate that the decrease of the HF branch

eigenfrequencies does not unambiguously mean narrowing of the ݇௭ range where the

present consideration is applicable. These curves show the effect of the magnitude of

the dielectric constant ௗ on the wave dispersion properties. Increasingߝ ௗ fromߝ ௗߝ = 1

to ௗߝ = 2 and then to ௗߝ = 3 results in decreasing maximum magnitude of the HF

branch of eigenfrequencies from ߱/|߱| = 1.943 for ௗߝ = 1 to ߱/|߱| = 1.471 for

ௗߝ = 2 and then to ߱/|߱| = 1.262 for ௗߝ = 3 (or in other words, by 35% in general),

while the maximum of the observed axial wavenumbers increase from ݇௭ = 0.237 for

ௗߝ = 1 to ݇௭ = 0.257 for ௗߝ = 2 and then to ݇௭ = 0.274 for ௗߝ = 3 (by 14% only).

The decrease of the ݇௭ range with increasing magnitude of the HF branch

eigenfrequencies is pointed out because it is observed in Fig. 4 on the contrary to the

tendencies given by Figs. 2, 3, 5 and 6.
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Fig. 5. Surface wave eigenfrequency vs
axial wavenumber for different widths
of dielectric layer ܾ/ܽ = 1.1, 1.2, 1.3

(indicated by numbers near the curves).
݉ = 1, ௗߝ = 2, ݇ = 0.6, ܼ = 7.5

Fig. 6. Surface wave eigenfrequency vs
axial wavenumber for different

magnitudes of external static axial
magnetic field (numbers near the
curves indicate the dimensionless

parameters ܼ = 5.0, 7.5, 10.0). ݉ =
1, ܾ/ܽ = 1.1, ௗߝ = 2, ݇ = 0.6

The dispersion properties of the waves depend also on the width of the dielectric

layer where the waves are of bulk nature (oscillating along the radial coordinate). The

wider the layer is, the larger are the eigenfrequencies of the HF branch, and the wider

is the ݇௭ range where the present consideration is applicable (see Fig. 5). Increasing

dielectric layer width from ∆= (ܾ − ܽ)/ܽ = 0.1 to ∆= 0.2 and then to ∆= 0.3 (by

67%), causes an increase of the maximum of the wave eigenfrequency of the HF branch

from ߱/|߱| = 1.471 for ∆= 0.1 to ߱/|߱| = 1.757 for ∆= 0.2 and then to ߱/|߱| =

1.905 for ∆= 0.3 (by 23%), while the maximum magnitude of the axial wavenumber

increases from ݇௭ = 0.257 for ∆= 0.1 to ݇௭ = 0.318 for ∆= 0.2 and then to ݇௭ =

0.355 for ∆= 0.3 (by 28%).

The results presented in Fig. 5 are most appropriate to be compared with those

obtained in [11]. Propagation of long-wavelength electromagnetic waves of surface

type in circular metal waveguides entirely filled by cold plasma in presence of an axial

static magnetic field was studied there. Surface flute waves are known to be

unidirectional in circular metal waveguides entirely filled by cold plasma [1]. In other
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words, they propagate with azimuthal wave indices of definite sign: ݉ > 0 in the LF

range (18) and ݉ < 0 in the HF range (19). Turning the width of the dielectric layer to

zero, ܾ/ܽ → 1, makes it impossible for LF surface flute waves with negative ݉ to

propagate. This is one reason more why the dispersion curves shown in Fig. 5 are

calculated just for positive azimuthal wave index.

The influence of the magnitude of the external axial static magnetic field  on theܤ

dependence of the wave eigenfrequency on the axial wavenumber is shown in Fig. 6.

Increasing  is associated with the decrease of the dimensionless parameterܤ ܼ =

Ω/|߱| which is inversely proportional to . Doubling ofܤ ܼ from ܼ = 5.0 to ܼ = 7.5

and then to ܼ = 10.0 causes the decrease of the maximum of the wave eigenfrequency

of the HF branch from ߗ/߱ = 0.219 for ܼ = 5.0 to ߗ/߱ = 0.20 for ܼ = 7.5 and

then to ߗ/߱ = 0.186 for ܼ = 10.0  (by 15%), while the maximum magnitude of the

axial wavenumber decreases from ݇௭ = 0.296 for ܼ = 5.0 to ݇௭ = 0.257 for ܼ = 7.5

and then to ݇௭ = 0.240 for ܼ = 10.0 (by 19%).

The results of the numerical analysis presented in Fig. 2 are applied in the following to

demonstrate the wave field radial distribution in Figs. 7 and 8. The following plasma

waveguide parameters are chosen for the calculations: ݉ = 2, ௗߝ = 2,

∆= (ܾ − ܽ)/ܽ = 0.1, ݇ = 0.6, ܼ = Ω/|߱| = 7.5. The axial wavenumber is

chosen in the middle of the range wherein the surface waves exist as ݇௭ܽ = 0.3. In this

case surface waves from the LF branch propagate with the frequency ߱/|߱| ≈ 0.632,

and those from HF branch – with the frequency ߱/|߱| ≈ 1.738. The radial

distribution is presented for the axial magnetic and electric wave fields by solid and

dashed curves, respectively. The field amplitudes are given in arbitrary units. They are

normalized in such a way that maxima of the electric field amplitudes are equal to unit.

The wave field radial distributions are calculated from eqs. (8), (10), (15), and (16).

Both magnetic and electric wave fields turn to zero with approaching to the axis, ݎ =

0. The electric wave field turns to zero also at the metal wall, ݎ = ܽ. The magnetic

wave field has zero radial derivative at the metal wall.
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Fig. 7. Radial distribution of the
surface wave fields for the LF branch.
The solid curve corresponds to the
axial magnetic field, and the dashed
curve relates to the axial electric field.
 ܾ/ܽ = 1.1, ݉ = 2, ௗߝ = 2, ݇ =
0.6, ݇௭ܽ = 0.3, ܼ = 7.5, ߱/|߱| ≈
0.632

Fig. 8. The same as in Fig. 7, but for
the HF branch with ߱/|߱| ≈ 1.738

VI. Conclusions

The transition from surface flute waves to long-wavelength waves with small

magnitude of the axial wavenumber ݇௭ is accompanied by the appearance of a second

branch of the dispersion curve ߱ = ߱(݇௭). This happens due to weak coupling

between waves of ordinary and extraordinary polarizations.

The following conclusions can be made from analyzing the influence of different

physical observables on the wave dispersion properties. It is the azimuthal wave index

m which causes the most influence on the width of the ݇௭ range where the waves

propagate. The influence of the magnitude of m is much more pronounced than those

of the width (which is characterized by the dimensionless parameter ∆) of the dielectric

layer between plasma and waveguide wall, and the magnitude of an external axial static

magnetic field . The weakest affect is caused by the magnitude of the dielectricܤ

constant .ௗ of the layerߝ
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To summarize the results concerning the group velocity the following issues should

be underlined. First, the wave group velocity of the HF branch is small and changes its

sign from positive to negative with increasing axial wavenumber. Second, the transfer

from the HF branch to the LF branch is accompanied by an increase of the group

velocity going to infinity. In addition, the group velocity changes its sign from negative

to positive during this transfer. Third, the group velocity of the LF branch does not

depend on ݇௭, except of the small range of ݇௭ near the points of transfer from one

branch into the other. Fourth, the group velocity of the LF branch varies with varying

azimuthal wave index and dielectric constant, and does not vary with the change in the

sign of the azimuthal wave index, the width of the dielectric layer, and the magnitude

of the external axial static magnetic field.

There is no mathematical problem to generalize the suggested method of solving

the Maxwell equations to the case of bulk waves. In the case of uniform radial profile

of the plasma particle density, the bulk waves propagate in another frequency range

than for surface waves, and are described by Bessel functions of the first and second

kinds rather than by the modified Bessel functions.

The suggested method of successive approximations can also be applied for solving

the Maxwell equations for electromagnetic waves with small axial wavenumbers in

plasma waveguides with inhomogeneous plasma particle density. In this case, even the

numerical solution of the Maxwell equations can be simplified since one needs to solve

two uniform differential equations of the second order which are independent rather

than the similar coupled equations. Including an inhomogeneity of the plasma particle

density modifies the surface wave dispersion relation. The latter can be written in

implicit form incorporating the solutions of the Maxwell equations in zeroth approach

which are assumed to be known like it is presented in eqs. (15) and (16).

The present study substantially contributes to the development of the theory of

plasma waveguides. It generalizes the results of investigating the dispersion properties

of long-wavelength electromagnetic waves of surface type in isotropic metal

waveguides partially filled by plasma obtained in [10] by introducing an axial static
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magnetic field. The latter is often applied in modern plasma technological devices. On

the other hand, it generalizes the outcomes of research into the eigenfrequencies and

spatial distribution of the long-wavelength electromagnetic wave of surface type in

magneto-active metal waveguides entirely filled by plasma presented in [11] by taking

into account a dielectric layer between the plasma column and the metal wall. In [11],

the dispersion relation had the form of the second order determinant on the contrary to

the present case and that studied in [10] when the dispersion relation has the form of a

fourth order determinant. Combination of these two elements (presence of both axial

static magnetic field and the dielectric layer) not only makes the analytic and numerical

calculations more complicated but also brings the theoretical model much closer to real

conditions of experimental setups.

The presented results can be of interest in the field of plasma electronics and high-

power microwave generation and amplification to analyze the interaction of surface-

type electromagnetic waves with annual electron beams gyrating in a static axial

magnetic field around the plasma column along large Larmor orbits, e.g. in large orbit

gyrotrons with circular waveguide cavity [1-9]. In such so-called higher harmonic LOG

gyrotrons the azimuthal index of the transverse electric cavity mode is equal to the

harmonic number. It operates very close to its cutoff frequency, so that the present

approximation of very small axial wavenumber is perfectly fulfilled. The important

advantage of the higher harmonic gyro-interaction is, that the necessary strength of the

static axial magnetic field in the cavity is divided by the harmonic number, which

makes the needed, very often super-conducting magnet, much cheaper.

Annex 1.

The components of the determinant ܽ  which form the dispersion relation of the
studied waves read:

ܽଵଵ = ,(ଵݔ)ܫ ܽଵସ = ܽଷଷ = 0,                                 (A.1)

ܽଵଶ = ߤ(ଵݔ)ܭ ௭ܰݔଶ
ଶܳ,                                         (A.2)

ܽଵଷ = (ସݔ)′ܰ(ଷݔ)ܬ − (A.3)                          ,(ଷݔ)ܰ(ସݔ)′ܬ
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ܽଶଵ = ఓ
௫భ

మ (ଵݔ)ܫ + ூᇱ(௫భ)
௫భ

,                                     (A.4)

ܽଶଶ = ଶݔ
ଶ ቀ1 − 

మ

఼
మ ቁ ௭ܰܳ ቀఓ

௫భ
మ (ଵݔ)ܭ + ᇱ(௫భ)

௫భ
ቁ + ఓே௫మூᇱ(௫మ)

௫భ
మ + ே

௫భ
మ (A.5)   ,(ଶݔ)ܫ

ܽଶଷ = ଵ
௫య

(ଷݔ)′ܰ(ସݔ)′ܬ] − (A.6)                 ,[(ସݔ)′ܰ(ଷݔ)′ܬ

ܽଶସ = ே
௫య

మ ܽଷସ,                                             (A.7)

ܽଷଵ = 1)/ܳߤ௭݇ܽଶ݇(ଶݔ)ܭ − ݇௭
ଶ/݇ୄ

ଶ),                      (A.8)

ܽଷଶ = (A.9)                                           ,(ଶݔ)ܫ−

ܽଷସ = (ଷݔ)ܰ(ସݔ)ܬ − (A.10)                  ,(ସݔ)ܰ(ଷݔ)ܬ

ܽସଵ = ఓ
఼

(ଵݔ)′ܫ + 
఼

మ 
(ଵݔ)ܫ + ᇲ

(௫మ)௫మఓொ
ଵି

మ/఼
మ ,            (A.11)

ܽସଶ = − ௫మ


(A.12)                                       ,(ଶݔ)′ܫ

ܽସଷ = − 
௫య

మ ܽଵଷ ,                                        (A.13)

ܽସସ = 

(ଷݔ)′ܰ(ସݔ)ܬ]  − (A.14)                     ,[(ସݔ)ܰ(ଷݔ)′ܬ

ܳ = మ

௫భ
మି௫మ

మ (ଵݔ)ାଵܫ(ଶݔ)ܫଵݔ] − (A.15)            ,[(ଶݔ)ାଵܫ(ଵݔ)ܫଶݔ

ଵݔ = ݇ୄܽ, ଶݔ = ܽ݇ට− ఌయ

ଵି
మ/఼

మ , ଷݔ = ,ܽߢ ସݔ = (A.16)             .ܾߢ
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