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During listening, brain activity tracks the rhythmic structures of speech signals. Here, we directly dissociated the 

contribution of neural envelope tracking in the processing of speech acoustic cues from that related to linguistic 

processing. We examined the neural changes associated with the comprehension of Noise-Vocoded (NV) speech 

using magnetoencephalography (MEG). Participants listened to NV sentences in a 3-phase training paradigm: (1) 

pre-training, where NV stimuli were barely comprehended, (2) training with exposure of the original clear version 

of speech stimulus, and (3) post-training, where the same stimuli gained intelligibility from the training phase. 

Using this paradigm, we tested if the neural responses of a speech signal was modulated by its intelligibility 

without any change in its acoustic structure. To test the influence of spectral degradation on neural envelope 

tracking independently of training, participants listened to two types of NV sentences (4-band and 2-band NV 

speech), but were only trained to understand 4-band NV speech. Significant changes in neural tracking were 

observed in the delta range in relation to the acoustic degradation of speech. However, we failed to find a direct 

effect of intelligibility on the neural tracking of speech envelope in both theta and delta ranges, in both auditory 

regions-of-interest and whole-brain sensor-space analyses. This suggests that acoustics greatly influence the neural 

tracking response to speech envelope, and that caution needs to be taken when choosing the control signals for 

speech-brain tracking analyses, considering that a slight change in acoustic parameters can have strong effects 

on the neural tracking response. 
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. Introduction 

Speech presents inherent rhythmic dynamics ( Ding et al., 2017 ;

reenberg et al., 2003 ) to which brain activity synchronizes. Neural

ynamics in the delta range (1–4 Hz) and theta range (4–8 Hz) in par-

icular follow the slow temporal structure of speech ( Ahissar et al., 2001 ;

ross et al., 2013 ; Luo and Poeppel, 2007 ). This neural tracking of

peech envelope is thought to be an important mechanism that would

ontribute to syllabic and phrasal level segmentation ( Greenberg et al.,

003 ) therefore influencing speech perception ( Giraud and Poep-

el, 2012 ; Peelle and Davis, 2012 ). Yet, a longstanding debate resides

n the exact mechanistic role of neural tracking in speech processing

 Ding and Simon, 2014 ; Doelling and Assaneo, 2021 ; Kösem and van

assenhove, 2017 ; Lakatos et al., 2019 ; Obleser and Kayser, 2019 ).

peech comprehension requires a complex series of processing stages

o extract meaning from sound. Therefore, neural envelope tracking
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ould affect speech comprehension by modulating early auditory analy-

is, and/or later abstract linguistic processing. In the present paper, we

sked which processing stages neural envelope tracking is involved in. 

To test if neural envelope tracking has a specific role in speech pro-

essing, experimental designs usually contrast the neural response to

peech with the response to an unintelligible “control" signal. The con-

rol often results from a modulation of the clear speech’s acoustics, for

nstance by reversing temporally the speech signal or varying its tem-

oral properties ( Ahissar et al., 2001 ; Broderick et al., 2018 ; Di Lib-

rto et al., 2015 ; Doelling et al., 2014 ; Gross et al., 2013 ; Howard and

oeppel, 2010 ; Hincapié-Casas et al., 2021 ; Kayser et al., 2015 ; Pe-

kou et al., 2017), by degrading the spectral resolution ( Chen et al.,

022 ; Hincapié-Casas et al., 2021 ; Meng et al., 2021 ; Molinaro and

izarazu, 2018 ; Peelle et al., 2013 ), or by changing the auditory back-

round ( Ding and Simon, 2013 ; Rimmele et al., 2015 ; Zion Golumbic

t al., 2013 ; Zoefel and VanRullen, 2015b ). These studies mostly report
megen, The Netherlands. 
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Fig. 1. Experimental design. The experiment consisted of three phases: pre-training (A), 4-band training (B), and post-training (C). In the pre- and post-training 

phases, the participants were tested on their ability to understand the 4-band and 2-band vocoded speech stimuli. They were presented with the speech signal 

binaurally and were asked to report the sentences afterwards. During the training phase, participants listened to clear-speech versions of the 4-band pre-training 

sentences followed by the NV versions. At the same time, they read the text of the sentences on the screen. The experiment’s duration was of 60–70 min approximately, 

it could slightly change depending on the how fast the participants repeated the stimuli. 
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hat neural envelope tracking is stronger when listening to intelligible

peech as compared to unintelligible signals in both theta ( Ahissar et al.,

001 ; Doelling et al., 2014 ; Peelle et al., 2013 ) and delta ranges ( Di Lib-

rto et al., 2015 ; Ding and Simon, 2013 ; Doelling et al., 2014 ), though

ome failed to observe a direct link between neural envelope tracking

trength and intelligibility ( Hincapié-Casas et al., 2021 ; Howard and

oeppel, 2010 ; Pefkou et al., 2017; Zoefel and VanRullen, 2015c ). Yet,

s speech’s intelligibility covaries with acoustical changes, it is unclear

rom these findings whether changes in neural envelope tracking re-

ect linguistic processing, or whether changes in acoustics alone can

odulate neural envelope tracking ( Ding et al., 2013 ; Kösem and van

assenhove, 2017 ; Meng et al., 2021 ; Pinto et al., 2022 ; Glushko et al.,

022 ; Chalas et al., 2023 ). 

In this current study, therefore, we directly dissociated the contribu-

ion of neural envelope tracking in the processing of speech acoustic cues

rom those related to linguistic processing. To achieve this, we examined

he neural changes associated with the comprehension of Noise-Vocoded

NV) speech ( Davis et al., 2005 ; Shannon et al., 1995 ). The intelligibil-

ty of a NV sentence is dependent on its amount of spectral degrada-

ion, as directly indexed by the number of frequency bands used in the

oise-vocoding procedure ( Davis et al., 2005 ). However, the intelligi-

ility of initially unintelligible NV speech can be recovered by training

specifically via exposure to the original clear version of the sentence)

 Dahan and Mead, 2010 ; Sohoglu and Davis, 2016 ). We recorded the

ortical activity using magnetoencephalography (MEG) while partici-

ants listened to NV sentences in a 3-phase training paradigm: (1) pre-

raining, where the NV stimulus was barely comprehended, (2) training

ith exposure of the original clear version of speech stimulus, and (3)

ost-training, where the same stimulus was more intelligible after the

raining phase ( Fig. 1 ). Using this paradigm, we tested if the neural re-

ponses to a speech signal were modulated by its intelligibility without

hanging its acoustic structure. To test the influence of spectral degra-

ation on neural envelope tracking independently of training, partici-

ants were listening to two NV type of sentences (4-band and 2-band

V speech), but were trained to understand only 4-band NV speech. 

. Materials and methods 

.1. Participants 

Thirty-two participants were recruited. The experimental procedure

as approved by the local ethics committee (CMO region Arnhem-

ijmegen), and all participants gave informed consent in accordance

ith the Declaration of Helsinki. All participants were right-handed na-

ive Dutch speakers, and had no known history of neurological, lan-
2 
uage, or hearing problems. One participant was excluded because she

as unable to finish the experiment; leaving thirty-one participants (15

emales; mean ± SD, 23 ± 3.1 years) in the analysis. 

.2. Stimuli 

We used the same NV speech stimuli as in previous behavioral and

EG studies ( Dai et al., 2017 , 2022 ). The original speech were se-

ected from a corpus with daily conversational Dutch sentences, dig-

tized at a 44,100 Hz sampling rate and recorded either by a native

ale or a native female speaker ( Versfeld et al., 2000 ). The stimulus-

et was created and validated as efficient measurement of the speech

eception threshold ( Versfeld et al., 2000 ), so that sentences from this

et were equally intelligible in adverse listening conditions. Each sen-

ence consisted of 5–8 words (e.g., ‘Mijn handen en voeten zijn ijsk-

ud’, in English: ‘My hands and feet are freezing’). Two semantically

ndependent sentences recorded by the same speaker were combined

nto one stimulus, separated by a 300-ms silence gap (average dura-

ion = 4.2 s, min = 4.0 s, max = 4.5 s). In total, 160 stimuli were con-

tructed, half of them were spoken by the male speaker and half by

he female speaker. The two-sentence stimuli were then manipulated

y noise-vocoding ( Shannon et al., 1995 ) with Praat software (Version:

.0.39 from http://www.praat.org ), using either 4 or 2 frequency bands

ogarithmically spaced between 50 and 8000 Hz, resulting in 80 trials

er noise vocoding condition. The same 2-band and 4-band NV stimuli

ere presented to all participants. As the 2-band and 4-band NV stimuli

ere generated with distinct spoken segments their temporal envelope

as uncorrelated. The noise-vocoding technique degrades the spectral

ontent of the acoustic signal (i.e., the fine structure) but keeps the tem-

oral information (i.e., speech envelope) largely intact (Fig. S1 describes

ower and modulation spectra ( Ding et al., 2017 ) of the speech materi-

ls). All stimuli were presented at ∼70 dB SPL. 

.3. Procedure 

The training used in this MEG experiment was similar to our pre-

ious studies ( Dai et al., 2017 , 2022 ), but combined with more testing

rials. The experiment included three phases: pre-training, training, and

ost-training. In the pre-training and post-training phases, the partici-

ants were tested on their ability to understand the 4-band and 2-band

ocoded speech stimuli. For each trial, participants heard a speech stim-

lus binaurally and were asked to repeat the sentences afterwards. Par-

icipants’ responses were recorded by a digital microphone with a sam-

ling rate of 44,100 Hz. In both pre-training and post-training phases,

articipants were exposed to the same 160 trials, with the order of

http://www.praat.org


A. Kösem, B. Dai, J.M. McQueen et al. NeuroImage 272 (2023) 120040 

p  

a  

t  

w  

v  

e  

s  

t  

a  

w  

2

 

t  

p  

t  

g  

c  

s  

a  

c  

A  

t  

t  

3  

o

2

 

(  

1  

c  

M  

w  

t  

n  

h  

w  

e  

a

2

 

t  

t  

5  

s  

r  

l  

S  

w  

s  

c  

b  

7  

D  

c  

c  

v  

r  

n  

t  

t

2

 

i  

w  

E  

c  

s  

t  

a  

l  

l  

f  

t  

c

 

b  

s

𝐶

W  

s  

s  

v  

(  

c  

t  

n  

m  

E  

5  

t  

a  

d  

t  

e  

w

4  

b  

q  

S  

a  

t

3

 

s  

c  

s  

p  

t  

w  

t  

(  

t

 

t  

w  

b  

a  

f

-  

f  

b  

t  
resentation fully randomized in each phase. In between pre-training

nd post-training, participants performed a training session to improve

he intelligibility of the 4-band vocoded speech stimuli. For this, they

ere presented one time to the clear version of a trial, followed by the

ocoded version of that trial; simultaneously, to enhance the training

ffect, they could read the written version of the trial on a computer

creen. 2-band vocoded speech was not trained in this phase. The par-

icipant remained in the MEG during training session, which lasted for

bout 20 min. The experiment was implemented using Presentation soft-

are (Version 16.2, www.neurobs.com ), and took about 70 min in total.

.4. Behavioral analysis 

The intelligibility of vocoded speech was measured by calculating

he percentage of correct content words (excluding function words) in

articipants’ reports for each trial. Words were regarded as correct if

here was a perfect match (correct word without any tense errors, sin-

ular/plural form changes, or changes in sentential position). The per-

entage of correct content words was chosen as a more accurate mea-

ure of intelligibility based on acoustic cues than percentage correct of

ll words, considering that function words can be guessed based on the

ontent words ( Brouwer et al., 2012 ). A two-way repeated-measures

NOVA was performed with factors of NV band (trained 4-band and un-

rained 2-band) and Time (pre- and post-training). As the data violated

he assumption of homogeneity of variance (Levene’s statistic (absolute)

0.6, p < 0.001), we also performed non-parametric statistical testing

n the interaction effect using Wilcoxon Signed-rank test statistic. 

.5. MEG measurement 

MEG data were recorded with a 275-channel whole-head system

CTF Systems Inc., Port Coquitlam, Canada) at a sampling rate of

200 Hz (with anti-aliasing low-pass filter at 300 Hz) in a magneti-

ally shielded room. Data of four channels (MLC11, MLC32, MLF62,

RF66) were not recorded due to channel malfunctioning. Participants

ere seated in an upright position. Head location was measured with

wo coils in the ears (fixed to anatomical landmarks) and one on the

asion. To reduce head motion, a neck brace was used to stabilize the

ead. Head motion was monitored online throughout the experiment

ith a real-time head localizer and if necessary corrected between the

xperimental blocks. The speech signal was delivered through plastic

ir tubes connected to foam earpieces in the MEG scanner. 

.6. MEG data preprocessing 

MEG Data analysis was conducted in MATLAB using the FieldTrip

oolbox (fieldtrip-20,190,327) ( Oostenveld et al., 2011 ) during pre-

raining and post-training sessions. Trials were defined as data between

00 ms before the onset of sound signal and 4000 ms thereafter. Three

teps were taken to remove artifacts. Firstly, trials were rejected if the

ange and variance of the MEG signal differed, on visual inspection, by at

east an order of magnitude from the other trials of the same participant.

econdly, independent component analysis (ICA) was performed. Data

as decomposed into 270 independent components. Based on visual in-

pection of the ICA components’ time courses and scalp topographies,

omponents showing clear signature of eye blinks, eye movement, heart-

eat and noise were identified and removed from the data. On average

 (SD = 2) independent components were removed with this procedure.

ata was back-projected to sensor space after removal of the bad ICA

omponents. Visual inspection of trials was performed again after ICA

omponent rejection, and trials were rejected based on the range and

ariance. In total, 16 trials (5% of total trials, SD = 8) were removed,

esulting in an average of 304 included trials per participant (average

umber of trials in condition pre-training 4-band: 76 (SD = 3), post-

raining 4-band: 77 (SD = 2), pre-training 2-band: 75 (SD = 3), post-

raining 2-band: 76 (SD = 2)). 
3 
.7. MEG analysis 

Region of Interest: A data-driven approach was first performed to

dentify the reactive channels for sound processing. Event-related fields

ere computed between (-300, 400 ms) relative to sentence onset. For

RF analyses, epoched data was low-pass filtered at 35 Hz, and baseline-

orrected using a baseline window (-300, 0 ms) relative to sentence on-

et. The M100 (within the time window between 80 and 120 ms after

he first word were presented) response was measured on the data over

ll experimental conditions, after planar gradient transformation. We se-

ected the 6 channels with the relatively strongest response at the group

evel on each hemisphere, and the averages of these channels were used

or all subsequent analysis. The locations of the identified channels cover

he classic auditory areas ( Fig. 3 A). Description of M100 responses per

ondition is provided in supplementary Fig. S2. 

Speech-brain coherence: Magnitude-squared coherence between the

roadband envelope of the speech signal ( env ) and MEG activity for each

ensor ( brain ) for each frequency f , following the formula: 

 𝑜ℎ 𝑠𝑝𝑒𝑒𝑐ℎ − 𝑏𝑟𝑎𝑖𝑛 ( 𝑓 ) = 

|
|
|
𝐶 𝑆𝐷 𝑠𝑝𝑒𝑒𝑐ℎ − 𝑏𝑟𝑎𝑖𝑛 ( 𝑓 ) 

|
|
|

2 

𝐴𝑆 𝐷 𝑠𝑝𝑒𝑒𝑐ℎ ( 𝑓 ) 𝐴𝑆 𝐷 𝑏𝑟𝑎𝑖𝑛 ( 𝑓 ) 

here 𝐶𝑆𝐷 𝑠𝑝𝑒𝑒𝑐ℎ − 𝑏𝑟𝑎𝑖𝑛 represents the cross-spectral density between

peech and brain signals, and 𝐴𝑆 𝐷 𝑠𝑝𝑒𝑒𝑐ℎ 𝐴𝑆 𝐷 𝑏𝑟𝑎𝑖𝑛 the auto-spectral den-

ities of speech and brain signals respectively. Broad-band speech en-

elopes were computed by band-pass filtering the acoustic waveforms

fourth-order Butterworth filter with [250–4000 Hz] cut-off frequen-

ies), and by computing the absolute value of the Hilbert transform of

he filtered signal. Cross- and auto- spectral density analysis of MEG sig-

als was performed using discrete prolate spheroidal sequence (dpss)

ulti-tapers with a ± 1 Hz smoothing window of the speech envelopes.

pochs were redefined for speech-brain coherence analysis: the first

00 ms of each epoch were removed to exclude the evoked response

o the onset of the sentence. The speech-brain coherence was measured

t different frequencies (1 to 30 Hz, 1 Hz step). Finally, the coherence

ata were projected into planar gradient representations. We repeated

he same analysis described above to quantify the speech-brain coher-

nce for each condition. For the investigation of our main hypotheses,

e restricted the speech-brain coherence analyses to delta band (1–

 Hz) and theta band (4–8 Hz) activity and for this we averaged speech-

rain coherence within the two frequency ranges of interest. These fre-

uency bands were chosen based on the previous literature ( Ding and

imon, 2014 ; Kösem and van Wassenhove, 2017 ). For supplementary

nalyses, we also explored speech-brain coherence within other defini-

ions of the delta frequency range: (0.5–4 Hz), (0.5–1.5 Hz), and (2.5–

.5 Hz) (Fig. S5). 

ROI analyses: The speech-brain coherence was averaged within the

trongest 6 channels on each hemisphere. We tested the speech-brain

oherence in the delta and theta range using a three-way repeated mea-

ure ANOVA with factors NV band (4-band, 2-band), Time (pre-training,

ost-training) and Hemisphere (left, right). Data verified the assump-

ions of the ANOVA, as homogeneity of variance between conditions

as not violated (Levene’s statistic (absolute), delta: 1.41, p = 0.20,

heta: 0.65, p = 0.71) and residuals followed a normal distribution

Kolmogorov–Smirnov limiting form’s statistic, delta: 0.69, p = 0.71,

heta: 0.92, p = 0.36). 

Whole sensor space analysis: We performed cluster-based permuta-

ion statistics across subjects ( Oostenveld et al., 2011 ) to test whether

e could observe a main effect of NV-band across sensors on speech-

rain coherence Coh (by contrasting between Coh 4-band and Coh 2-band ,

veraged across pre- and post- training sessions) and an interaction ef-

ect between NV-band and Time (by contrasting between ( Coh 4-band, post 

 Coh 4-band , pre ) and ( Coh 2-band, post - Coh 2-band , pre ) in both delta and theta

requency ranges. Pairwise t-tests were then computed for each sensor

etween the two conditions. Sensors with a p-value associated to the

 -test of 5% or lower were selected as cluster candidates (a minimum

http://www.neurobs.com
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Fig. 2. Behavioral results. (A) Proportion of corrected reported content words pre- and post-training for both NV-speech conditions. (B) Performance change Post –

Pre training. The intelligibility of trained 4-band (red) significantly improved by 23% on average with training, while untrained 2-band (blue) NV speech remained 

mostly unintelligible post-training. The open dots connected by lines (panel A) and the large black dots (panel B) indicate the grand average performance in each 

condition. The rainclouds indicated the distributions of individual data, and each small dot corresponds to one participant. 
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f two significant adjacent sensors was required to form a cluster). The

um of the t-values within a cluster was used as the cluster-level statis-

ic. The reference distribution for cluster-level statistics was computed

y performing 1000 permutations between the two conditions. The con-

rast was considered significant if the probability of observing a cluster

est statistic of that size in the reference distribution was 0.025 or lower

two-tailed test). 

Source reconstruction analysis: Anatomical MRI scans were obtained

fter the MEG session using either a 1.5 T Siemens Magnetom Avanto

ystem or a 3 T Siemens Skyra system for each participant (anatomical

RI was not recorded for two participants, their data were excluded

or the source reconstruction analysis). The co-registration of MEG data

ith the individual anatomical MRI was performed via the realignment

f the fiducial points (nasion, left and right pre-auricular points). Lead

elds were constructed using a single shell head model based on the

ndividual anatomical MRI. Each brain volume was divided into grid

oints of 1 cm voxel resolution, and warped to a template MNI brain. For

ach grid point the lead field matrix was calculated. The sources of the

bserved delta and theta speech-brain coherence were computed using

eamforming analysis with the dynamic imaging of coherent sources

DICS) technique to the coherence data ( Gross et al., 2001 ). 

. Results 

.1. Behavioral results 

We compared the participants’ comprehension of NV speech be-

ore and after training. Consistent with previous findings ( Dai et al.,

017 , 2022 ; Davis et al., 2005 ; Sohoglu and Davis, 2016 ), and as

hown in Fig. 2 , the training significantly improved the perception of

-band NV speech. A two-way repeated-measure ANOVA showed that

he main effects of noise vocoding (2-band vs . 4-band) and time (pre-

s . post-training) were significant (noise vocoding: ( F (1, 30) = 331.48,

 < 0.001, 𝜂2 = 0.92; time: F (1,30) = 183.46, p < 0.001, 𝜂2 = 0.86).

rucially, a significant interaction between noise vocoding and time

as observed ( F (1,30) = 180.99, p < 0.001, 𝜂2 = 0.86), meaning that

he intelligibility of 4-band NV speech was significantly improved com-

ared to that of 2-band NV speech (4-band(post-pre) vs. 2-band(post-

re): Wilcoxon Signed rank test Z = 4.89, p < 0.001). After training,

-band NV sentences had a score of 43.38 ± 2.53% recognition accu-

acy (23.06 ± 1.69% improvement during training; values here and

elow indicate mean ± SEM), while 2-band NV sentences remained
4 
ostly unintelligible with a score of 2.39 ± 0.43% recognition accuracy

1.58 ± 0.28% improvement during training). 

.2. MEG results 

The behavioral results confirmed that intelligibility and spectral

omplexity could be dissociated in the present study. We then inves-

igated how speech-brain coherence in auditory regions was impacted

y the training session ( Fig. 3 ). In line with previous studies ( Meng et al.,

021 ; Peelle et al., 2013 ), we show that the neural envelope tracking of

-band NV speech was stronger than that to 2-band NV speech ( Fig. 3 B–

). This was observed in the delta but not the theta frequency range

main effect of NV band, delta: F (1, 30) = 25.95, p < .001, 𝜂2 = 0.46;

heta: F (1, 30) = 4.11, p = .052, 𝜂2 = 0.12, Fig. 3 E–F). 

However, the neural envelope tracking of NV speech was not sig-

ificantly affected by training at delta frequencies ( Fig. 3 E, delta, main

ffect of time: ( F (1, 30) = .24, p = .63, 𝜂2 = 0.008; Fig. 3 E and F). Theta

eural envelope tracking overall reduced after training: ( F (1, 30) = 5.23,

 = .030, 𝜂2 = 0.15)). But importantly, if neural envelope tracking re-

ected intelligibility, we specifically predicted that neural tracking to

V speech envelope would be stronger after training for the intelligible

-band NV sentences. Yet, this was not observed (interaction between

V-band and Time, delta: F (1, 30) = 4.16, p = .051, 𝜂2 = 0.12; theta:

 (1, 30) = .52, p = .48, 𝜂2 = 0.02). As such, the change in speech-brain

oherence post - pre training was not significantly correlated with change

n speech intelligibility (Fig. S2). 

Looking at speech-brain coherence effects at each hemisphere (Fig.

3 A and B), theta neural tracking was significantly stronger in right than

n left auditory ROIs ( F (1, 30) = 4.58, p = .041, 𝜂2 = 0.13), while delta

eural envelope tracking was not significantly different across hemi-

pheres ( F (1, 30) = 2.56, p = .12, 𝜂2 = 0.08). Effect of training and NV-

and were not significantly different between the left and right ROIs

interaction between Hemisphere and NV-band, delta : F (1, 30) = 0.01,

 = .92, 𝜂2 = 0.00, theta: F (1, 30) = 0.99, p = .37, 𝜂2 = 0.03; interac-

ion between Hemisphere and Time, delta: : F (1, 30) = 2.84, p = .10,

2 = 0.09, theta: F (1, 30) = 0.08, p = .78, 𝜂2 = 0.00; interaction be-

ween Hemisphere, NV-band, and Time, delta: F (1, 30) = 2.91, p = .10,

2 = .09, theta: F (1, 30) = 1.81, p = .19, 𝜂2 = .06). 

Further whole brain analysis showed a similar pattern of results

 Figs. 4 A, B and S4). Cluster-based permutation tests revealed a main

ffect of NV-band in the delta range (cluster p < 0.001), but not in the

heta range. No significant interaction effects were observed. 
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Fig. 3. Neural envelope tracking responses in 

auditory cortices as a function of intelligibility 

and acoustic spectral complexity. (A) Topog- 

raphy of the M100 response. The highlighted 

six channels showed the relatively strongest re- 

sponse at the group level on each hemisphere, 

and the average within these channels was used 

for all subsequent region-of-interest analysis. 

(B) Average speech-brain coherence between 

conditions across selected channels. Shaded ar- 

eas denote standard error of the mean. (C) To- 

pography of speech-brain coherence averaged 

across all conditions within the delta range (1–

4 Hz). (D) Topography of average speech-brain 

coherence within the theta range (4–8 Hz). (E) 

between neural activity and 4-band NV speech 

(red) or 2-band NV speech (blue) in the delta 

(1–4 Hz) range averaged across selected chan- 

nels. The open dots connected by lines indi- 

cate the grand average speech brain coherence 

in the pre- and post-training phases. The rain- 

clouds indicated the distribution of individual 

data, and each small dot corresponds to one 

participant. (F) Coherence between neural ac- 

tivity and 4-band NV speech (red) or 2-band 

NV speech (blue) in the theta (4–8 Hz) range 

averaged across selected channels. 
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We considered speech-brain coherence analysis in the delta fre-

uency band within (1- 4 Hz) range, which was justified upon pre-

ious literature. Considering that the speech envelope contained dis-

inct peak dynamics within this range, as well as strong power around

.5 Hz (Fig. S1), we additionally performed exploratory speech-brain

oherence analyses across different delta frequency ranges (Fig. S5).

idening the delta frequency range to (0.5–4 Hz) did not change the

ain patterns of results in ROI (Fig. S5A and B) and whole-brain results

Fig. S5E). There was no significant main effect of time (F(1, 30) = 1.2,

 = .28, 𝜂2 = 0.04), a main effect of NV-band (F(1, 30) = 26.9, p < .001,

2 = 0.47), and no significant interaction between NV-band and Time,

(1, 30) = 1.35, p = .25, 𝜂2 = 0.04). Restricting analyses to low-delta

0.5–1.5 Hz) (Fig. S3C), we observed, in addition to the significant NV-

and effect band (F(1, 30) = 18.4, p < .001, 𝜂2 = 0.38), a significant

ffect of time (F(1, 30) = 7.1, p = .01, 𝜂2 = 0.19). This means that

ow-delta speech-brain coherence increased post-training compared to
5 
re-training, irrespective of the NV speech condition. Important, there

as no significant interaction effect in ROIs (NV-band ∗ Time, F(1,

0) = 1.14, p = .29, 𝜂2 = 0.04) and whole brain analyses (Fig. S5F). A

econd peak in speech envelope dynamics was observable around (2.5

3.5 Hz) (Fig. S1). Analyzing speech-brain coherence at this range, we

id not observe a significant main effect of time (F(1, 30) = 3.2, p = .08,

2 = 0.10), though the main effect of NV-band was observable (F(1,

0) = 23.3, p < .001, 𝜂2 = 0.44). For this frequency range, we did ob-

erve a significant interaction effect (F(1, 30) = 13.1, p = .001, 𝜂2 = 0.30)

Fig. S5D). However, importantly, this interaction is due to a reduction

n neural-speech tracking for 4 band-NV speech after training compared

o before training. This reduction in tracking strength post-training is in

he opposite direction than we expected (neural tracking strength should

ncrease with intelligibility, and here we observe a decrease). Further-

ore, the interaction effect was not significant in whole-brain sensor

nalyses (Fig. S5G). 
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Fig. 4. Whole brain analysis. (A) Main effect of NV-band. Topographies and 

reconstructed source represent the contrast in neural tracking of 4-band vs 2- 

band NV speech envelope. Left panel: A main effect of NV-band is observed in 

the delta range (dots represent spatial topography of the significant cluster). 

Delta tracking is stronger for 4-band NV speech as compared to 2-band NV, 

irrespective of training. Right panel: No significant changes in neural tracking of 

speech envelope in the theta range irrespective of their spectral complexity. (B) 

Interaction effects NV-band ∗ Time. No significant effect of training is observed, 

specifically the gain in intelligibility of the 4-band NV speech after training is 

not associated with a gain in neural envelope tracking. 
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Overall, the results suggest that neural envelope tracking is influ-

nced by the acoustic structure of the speech signal (by its spectral

egradation in particular), but we failed to find a positive correlation

etween strength in neural envelope tracking and speech intelligibility.

. Discussion 

In the present study, we tested the effect of intelligibility on the neu-

al tracking of speech envelope. We used NV speech that could gain

n intelligibility via training. With this manipulation we could dissoci-

te gains in intelligibility linked to acoustic cues (spectral degradation),

rom those linked to linguistic processing of the speech signal. The train-

ng increased the intelligibility of NV speech but did not change its neu-

al tracking response. In contrast, neural envelope tracking in the delta

ange was still modulated by the acoustic detail of the NV speech sig-

al. These results are in line with previous reports showing that neu-

al tracking of the speech envelope reduces with the amount of spec-

ral degradation ( Chen et al., 2022 ; Meng et al., 2021 ; Peelle et al.,

013 ), and others failing to find a correlation between the neural track-

ng of speech envelope in auditory cortex and speech intelligibility when

coustic details are controlled ( Kösem et al., 2016 ; Millman et al., 2015 ;
6 
eña and Melloni, 2012 ; Zoefel and VanRullen, 2015a ; Baltzell et al.,

017 ). Therefore, the results suggest that brain-speech tracking in au-

itory areas reflects relevant neural mechanisms during the processing

f speech acoustics, but does not unequivocally reflect the processing of

ore abstract linguistic information in speech. 

This interpretation seems in apparent contradiction with other find-

ngs. Ding and colleagues ( Ding et al., 2016 ) have found that neural

scillations in the delta range could track sentential and phrasal linguis-

ic structures in speech in the absence of acoustic cues (although neural

scillatory peaks at constituent phrases could also partially reflect non-

yntactic information ( Kalenkovich et al., 2022 ), such as prosodic cues

 Boucher et al., 2019 ; Glushko et al., 2022 )). A recent study reanalyzing

he data of ( Millman et al., 2015 ) has found that delta tracking of speech

s increased when the NV speech is intelligible as compared to when it

s not understood ( Di Liberto et al., 2018 ). In noisy environments, neu-

al envelope tracking of the attended speech signal is stronger when

he attended speech is fully understood ( Dai et al., 2022 ; Keitel et al.,

018 ), or when the attended speech is in competition with unstructured

peech (words were presented in random order) as compared to struc-

ured speech (speech with phrasal structure) ( Har-Shai Yahav and Zion-

olumbic, 2021 ). The language proficiency of the listener also affects

he neural envelope tracking of naturally spoken speech ( Lizarazu et al.,

021 ). 

One difference between these other studies and the present one con-

erns the intelligibility level of the stimuli. In the prior studies, intelli-

ibility ratings were very high as compared to our design, where max-

mum intelligibility reached 40–60%. This means that our participants

ay have learned to extract some phonological and lexical cues from the

peech, but may not have enough information to extract the full content

f the sentences or be able to predict their linguistic structure. In con-

rast, in the prior studies, the intelligible stimuli were understood for the

ost part. Moreover, the syntactic structure of the stimuli was clearly

redictable in some experimental designs: in Ding et al. (2016) sen-

ences with similar phrasal and sentential structure were presented in

locks; in Di Liberto et al. (2018) the same sentence was repeated over

nd over. Sentence structure priming is known to increase the neural

racking of primed speech, this without correlating with intelligibility

 Baltzell et al., 2017 ). Therefore, delta tracking may reflect the process-

ng of intelligible and predictable linguistic information (as in the prior

tudies), but may not do so (as in the current study) when the speech sig-

al is too noisy, does not have a predictable syntactic structure, and/or

s not fully intelligible. 

It is also important to point out that, in the prior studies mentioned

bove, the effect of intelligibility on brain-speech tracking seemed to

e restricted to delta dynamics ( < 4 Hz) and was less clearly observ-

ble for theta dynamics. These data supports the predominant role in

elta tracking in the processing of linguistic structure, while theta track-

ng may affect the processing of acoustic and phonological information

 Kösem and van Wassenhove, 2017 ). Still, we did not find an effect of

ntelligibility in delta dynamics, and we show that spectral degradation

ifferently affected delta and theta neural tracking of speech envelope.

he increased spectral degradation of speech was associated with de-

reased delta tracking in auditory areas, while theta tracking remained

naffected by the amount of noise vocoding. These results suggest that

heta dynamics may primarily track broadband envelope temporal in-

ormation (that is unaffected by the amount of vocoding), while neural

racking of speech envelope in the delta range may be impacted by the

pectral complexity of the speech signal ( Ding et al., 2013 ; Meng et al.,

021 ). 

The current experimental design, while allowing us to change in-

elligibility levels for the same acoustic signal, presents limitations. It

ould be argued that the participants primarily relied on memory to

erform the task: participants may have recognized the stimuli in the

ost-training phase and not listened to the stimuli anymore because they

ave memorized it. Therefore, neural data would not reflect speech pro-

essing but memory effects. We argue that the memory hypothesis can
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nlikely account for the present results. A total of 160 sentential stim-

li were presented to the participants, including 80 trials for the trained

-band NV condition. The trials are composed of two semantically unre-

ated sentences of 5–8 words each, therefore a trial was 13 words on av-

rage. The task given to the participant in pre- and post-training sessions

as to exactly repeat the trials. In each pre- and post- training sessions,

he presentation of the trials was fully randomized and unpredictable.

n this situation, it is unlikely that the participants relied on memory

nd stopped paying attention to the acoustic stimuli. Furthermore, if

articipants stopped paying attention to the 4-band NV condition after

raining, we would have then expected a severe drop in speech-brain co-

erence in the 4-band condition as we know that the tracking response

s highly dependent on attention ( Zion Golumbic et al., 2013 ), but this

s not what we observed. 

We have focused our investigation on the tracking of the acous-

ic temporal envelope, as this has been proposed to reflect relevant

echanisms involved in speech processing ( Giraud and Poeppel, 2012 ;

eelle and Davis, 2012 ). We do not claim that neural tracking can-

ot reflet linguistic processing, as previous studies reported that neural

racking can track semantic and syntactic structures ( Brodbeck et al.,

018 ; Ding et al., 2016 ; Verschueren et al., 2022 ). Additionally, while

e failed to find significant effects outside auditory cortex, our study

oes not exclude that other brain areas could track linguistic structures

n speech. Frontal motor and parietal regions in particular have previ-

usly been shown to be influenced by linguistic content, and to top-

own modulate neural tracking in auditory cortex ( Chalas et al., 2022 ;

incapié-Casas et al., 2021 ; Keitel et al., 2018 ; Park et al., 2015 ). 

In conclusion, we failed to find a direct effect of intelligibility on the

eural tracking of speech envelope in both theta and delta ranges in au-

itory cortices. Significant changes in neural tracking were still observed

n the delta range in relation to the acoustic degradation of speech. These

ndings suggest that acoustics greatly influence the neural tracking of

peech envelope. They also suggest that caution is required when choos-

ng the control condition for analyses of tracking responses because, as

e have shown, a slight change in acoustic parameters can have strong

ffects on the neural tracking response. Finally, they suggest that neural

nvelope tracking is not necessarily modulated by the intelligibility of

he speech signal. 
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