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Abstract
When perceiving the world around us, we are constantly integrating pieces of information. The integrated experience consists
of more than just the sum of its parts. For example, visual scenes are defined by a collection of objects as well as the spatial
relations amongst them and sentencemeaning is computed based on individual word semantic but also syntactic configuration.
Having quantitative models of such integrated representations can help evaluate cognitive models of both language and scene
perception. Here, we focus on language, and use a behavioralmeasure of perceived similarity as an approximation of integrated
meaning representations. We collected similarity judgments of 200 subjects rating nouns or transitive sentences through an
online multiple arrangement task. We find that perceived similarity between sentences is most strongly modulated by the
semantic action category of the main verb. In addition, we show how non-negative matrix factorization of similarity judgment
data can reveal multiple underlying dimensions reflecting both semantic as well as relational role information. Finally, we
provide an example of how similarity judgments on sentence stimuli can serve as a point of comparison for artificial neural
networks models (ANNs) by comparing our behavioral data against sentence similarity extracted from three state-of-the-art
ANNs. Overall, ourmethod combining themultiple arrangement task on sentence stimuli withmatrix factorization can capture
relational information emerging from integration of multiple words in a sentence even in the presence of strong focus on the
verb.

Keywords Similarity · Semantics · Thematic roles · Multiple arrangement task · Factorization

Introduction

We perceive the world around us sequentially, a few bits
of information at a time (e.g., saccade by saccade, word by
word), but we rarely ponder each bit of information in isola-
tion (apples, bowl, table). Instead, we perceive entire scenes,
within which relations between objects are inherent (apples
IN bowls AND bowls ON tables) (Hafri & Firestone, 2021).
Similarly,when reading a sentence,we quickly integrate each
word into the larger sentencemeaning, by taking into account
both semantic as well as structural information.

B Sophie Arana
sophie.arana@psy.ox.ac.uk

1 Max Planck Institute for Psycholinguistics,
Nijmegen, The Netherlands

2 Donders Institute for Brain, Cognition and Behaviour,
Radboud University, Nijmegen, The Netherlands

3 Department of Psychology, University of Potsdam,
Potsdam, Germany

We can process isolatedwords based on their word seman-
tics. For example, we can categorize them purely based on
their semantic category (e.g., tool, profession). Nouns from
the same professional domain such as “doctor and nurse”
will be perceived as more similar to each other, compared to
nouns sampled from different professional domains such as
“doctor and carpenter”, although perceived similarity might
change depending on the wider context. Here we refer to
word semantics as the semantic categories relevant in a given
context.

Themeaning of a sentence is dependent onmultiplewords
and hence might stretch across multiple semantic categories.
For example, two sentences may both share nouns from sim-
ilar professional domains, but describe very different events
due to the verb semantics, i.e., the semantic category of the
verb. For example, the doctor praises the nurse is perceived as
very different from the nurse scolds the doctor. Additionally,
a complete understanding of a sentence involves monitor-
ing for structural information, e.g., expressed through word
order. Structural cues allow us to infer crucial information
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about thematic role assignment, i.e., who the agent and
patient of an event are. In the example given above, the
nurse is a receiver of praise in the first proposition but is
the person delivering scold in the second. Such thematic role
information is abstract, i.e., we can flexibly apply it to new or
unusual exemplars and complete reversal of roles can change
the propositional content in a profound way (e.g., “the dog
bit the old lady” vs. “the old lady bit the dog”). Sentence
comprehension thus relies on multiple streams of informa-
tion including the semantic categories of content words and
structural information such as thematic role assignment.

There is an ongoing debate in cognitive neuroscience
as to how integrated meaning combining both semantic as
well as relational information is processed and represented
(Rabovsky &McClelland, 2020; Puebla, Martin, & Doumas
2021). Empirical approaches to investigating integration of
meaning in multi-word utterances require quantitative mea-
sures of sentence meaning. Past studies have relied on
distributional semantics (Lyu et al., 2019) or constructedmin-
imal contrasts between sentences with shared or no shared
structure (Frankland & Greene, 2020b). In this study, we
explore the utility of empirical, perceived similarity judg-
ments as quantitativemodels of integrated sentencemeaning.
Specifically, we focus on whether they can capture relational
information.

Similarity as a window into sentence
representations

Similarity is a useful concept to investigate representational
content, when explicit quantitative models of a stimulus are
not available. The underlying assumptionwhen asking exper-
imental subjects to make explicit similarity judgments in
the lab under controlled conditions is that those judgments
presumably reflect some aspects of people’s mental repre-
sentations of the judged items at that instance. For example,
two sentences might differ in certain features such as a single
word or a thematic role assignment but are judged as highly
similar. This response would suggest that the discrepant fea-
ture was not part of the reader’s mental representation of that
sentence when making the judgement.

While similarity judgments have been used to quan-
tify representational content in the past, in the domain of
language, this has been mostly limited to quantifying single-
word meaning, and so similarity has not yet been shown to
capture more complex propositional meaning such as the-
matic role assignment, which emerges from the interaction
of multiple linguistic cues. There are reasons to believe,
however, that similarity judgments can capture structural
information beyond single words. Previous studies on visual
scene perception indicate that relational information might
indeed influence perceived similarity. For example, partic-
ipant’s judgment of scene similarity varied more strongly

when the diverging feature was structurally aligned across
scenes, i.e., a change in an existing element can be big or
small, as compared to when it was not structurally aligned,
i.e., adding a new element creates a difference independent
of its exact features (Markman &Gentner, 1996). Sentences,
just like visual scenes, include structural information, but
unlike scenes may be perceived as more fragmented due to
separation between words.

Context effects create bias in similarity ratings

While in principle, many aspects of a sentence may influ-
ence the representation it evokes in the receiver’s mind, in
practice only a few of those aspects will be dominant in any
given situation. Similarity judgments can change depending
on which feature is diagnostic in a given context, i.e., a fea-
ture that allows to differentiate some items from the others
would be diagnostic, whereas a feature that is shared across
all items would not be diagnostic (Tversky, 1977). When
asking to judge a sentence’s similarity in relation to other
sentences, the stimulus set provides a task context, which
influences the degree to which features will be taken into
account when judging each pairwise similarity. For exam-
ple, if a set of 20 sentences varied in two dimensions, e.g.,
the semantic categories of the nouns and verb that appear
in the sentences, the dimension with less variability may be
recognized first as a common denominator between sentence
pairs and hence be chosen as the diagnostic feature that drives
similarity judgments. If there were fewer verb semantic cat-
egories, for example, the verb semantics could become the
diagnostic feature which would lead to a behavioral bias to
judge sentences based on the verb more so than on the nouns
they contain. If this bias is strong enough, it might lead us to
conclude that the noun semantics do not modulate the men-
tal representation of the sentences in this task. Therefore, the
conditions under which similarity judgments were collected
always need to be carefully evaluated with respect to any
conclusions drawn from them.

Even during naturalistic processing, however, attentional
bias can be induced by a variety of linguistic (e.g., word
meaning, word order, morphological markers) and extra-
linguistic cues (concomitant gesture and eye gaze). For
example, natural language processing relies heavily on infor-
mation structure, i.e., some words are often emphasized or
deemphasized (“HIM, I do not like” vs. “I HATE him”)
through word ordering or intonation. As a consequence, it is
unlikely that all information is equally weighted during pro-
cessing. In the present study, we do not explicitly manipulate
intonation or information structure, but we discuss sources
of bias due to the unequal variation in semantic categories
across part of speech and demonstrate a method that allows
to infer rich representational content even in the presence of
attentional biases.
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Measuring similarity through behavior

Perceived similarity can be measured by means of different
behavioral tasks. Earlier used methods include asking peo-
ple to freely sort a set of items into piles (free sorting, e.g.,
Bencini andGoldberg 2000), tomake speeded same/different
judgments (implicit measure, inter-item confusability, e.g.,
Sergent and Takane 1987), to determine the odd one out of
three items (triad test, e.g., Roberson et al. (1999); Hebart
et al. (2020)), to rate the similarity of two items on a scale
(pairwise judgments, e.g., Migo et al. 2013) or to indi-
cate similarity between items geometrically by placing them
either close by when similar or far apart when dissimilar
(Richie et al. 2020). In the current study, we implement a
geometrical task because it provides several advantages over
other methods. All of these methods can in principle be used
to collect continuous similarity measures. Whenever binary
similarity judgments are acquired, e.g., in free sorting or the
triad test, continuous values can be obtained by combining
data across multiple participants or repeated presentations of
the samepair. Both pairwise judgments and geometrical tasks
have the advantage of probing continuous valued similarity
at the single participant level. Beyond that, geometrical tasks
additionally allow for the most time-efficient sampling. This
is because in a geometrical arrangement task, participants
are asked to arrange several items, randomly scattered across
a screen, within a circular 2D space, such that the distance
between items is proportional to eachpair’s similarity. Spatial
adjustment (via drag and drop) of each individual item hence
communicates multiple similarity judgments at once. The
time to acquire pairwise similarity judgments, in contrast,
grows quadratically as a function of total set size, since n(n-
1)/2 judgments are necessary for a set of n items. In practice,
the pairwise similarity judgements method has been shown
to last 5–6 times longer as compared to a geometrical task on
the same stimuli (Hout et al., 2013). Furthermore, the sim-
ilarity ratings attained through geometrical tasks have been
shown to correlate highly with pairwise similarity ratings.
Therefore, geometrical tasks are to be preferred over other
methods when sampling similarity judgments for larger sets
of items as well as for more complex items such as sentences
and complex scenes, which by their naturewill require longer
processing times than pictures of objects or single words.

High-dimensional representations

Pairwise similarity judgments across a set of items can be
converted into a Cartesian space that illustrates the under-
lying representational configuration, for example through a
technique called multidimensional scaling. Each item then
is mapped onto a point in that space, such that the dis-
tance between items approximately corresponds to their
relative similarity. The dimensionality of this Cartesian space

depends on the number of dimensions along which two stim-
uli can be compared. This could be visual features such as
color, shape, and texture in the case of visual stimuli or this
could be semantic dimensions such as valence, topic, etc., in
the case of words. Hence, the dimensionality of the approx-
imated representational space does not depend on the task,
but on the stimulus set and its perception by the subject. This
means that despite their 2D nature, geometrical tasks can
capture higher-dimensional representations already through
a single arrangement of a set of items, as has been shown for
both visual objects and singlewords (Richie et al., 2020;Hout
et al., 2013). Recent extensions of the geometric arrange-
ment task, which go beyond the single arrangement, have
made it even more sensitive to high-dimensional representa-
tions by probing for similarity repeatedly andwithin different
stimulus subsets, allowing for a more diverse and flexible
selection of the relevant dimensions. Kriegeskorte and col-
leagues developed an extension of the geometric arrangement
task, during which the subject sequentially arranges mul-
tiple displays, each containing subsets of the full item set
(Kriegeskorte & Mur, 2012). The final representational dis-
similarity matrix (RDM) is then computed by combining
evidence across all subset arrangements. Past studies have
successfully applied the multi-arrangement task to quan-
tify high-dimensional mental representations of naturalistic
images (King et al., 2019) and visual scenes (Groen et al.,
2018), though none of them have modeled relational infor-
mation specifically.

In the present study, we report online-acquired similarity
judgments on (1) isolated nouns selected from four seman-
tically distinct profession categories and on (2) transitive
sentences containing those nouns. The sentences described
events of one person acting on another (e.g., “Today the sur-
geon comforted a carpenter”). Verbs across sentences were
chosen from two distinct semantic categories. Any pair of
sentences differed in whether they contained a verb and or
nouns from the same versus different semantic categories.
Moreover, sentences differed on the relational information
they encoded about agent and patient roles of shared nouns.
We expected that perceived similarity of isolated nouns
would be fully determined by their semantic category. The
results of the noun task serve as a baseline for the sentence
task, verifying that the selected stimulus material evokes
the assumed word semantics and can be used to assess the
influence of thematic role assignment on similarity in sen-
tence contexts. Based on similarity judgements on the full
sentences, we then evaluate the underlying dimensionality
of integrated sentence meaning. We expect that beyond the
semantic categories of the nouns alone, their assignment to
thematic roles aswell as the semantic categoryof the verbwill
further modulate similarity judgments. We demonstrate that
factorization can be used to recover relational information
such as thematic role assignment in the presence of strong
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attentional biases towards the verb. Furthermore, we sug-
gest an additional use case of sentence similarity judgments,
namely, as a point of comparison for computational models
of human sentence processing.

Methods

Stimuli creation

We created a set of sentences (n = 48) describing simple tran-
sitive events, such that the similarity between events could
be captured by a small number of meaning dimensions. For
this, we selected 36 words that belonged to six semantic
categories, i.e., 24 nouns & 12 verbs describing four profes-
sional domains (medicine, manual labor, sport, and music)
and two action domains (communication and physical inter-
action) respectively (see Fig. 1). Stimuli were created in
German. Across semantic categories, words were matched
(nouns and verbs separately) according to number of let-
ters, number of syllables, and frequency. In addition, we took
care that noun categories did not systematically differ from
each other in their suffixes. Importantly, we chose words that
could be combined more or less arbitrarily without impos-
ing strong constraints with respect to meaning amongst each
other. For example, a surgeon can engage in either physi-
cal (e.g., pushing someone) or communicative (e.g., praising
someone) actions as both the agent and the patient of the
event.

From this vocabulary of 36 words, we formed sentences
by pseudorandomly combining nouns and verbs (e.g., “This
morning the paramedic praised the electrician.”, see full stim-
ulus set in Appendix). The randomization was generated
according to six constraints: Nouns were combined such that
each noun in agent position would be (1) paired equally often
with a patient from either the same semantic category or
one of the other semantic categories (e.g., “the paramedic
praised the electrician.” & “the paramedic encouraged the
nurse.”). Also, each noun (2) appeared in both object and
subject position (e.g., “the paramedic praised the electrician”
& “the boxer hit the paramedic”) and (3) each noun cate-
gory appeared equally often. Subsequently, noun pairs and
verbs were combined such that (5) each noun category would
occur equally often with verbs from both action categories.
Finally, in the beginning of each sentence, we added a tempo-
ral adverb (e.g., “This morning”,“Yesterday” etc.) and then
constructed the sentence according to VSO word order. The
temporal adverbs were distributed such that (6) each adverb
could precede two of the four noun categories and either of
the verb categories (see Fig. 2).

We formalize our predictions about the expected pairwise
sentence similarity in two reference measures. The first ref-
erence quantifies sentence similarity based on bag-of-words
sentence representation by counting howmanynoun andverb
semantic categories were shared across two sentences. The
second reference, hereafter referred to as “relational refer-
ence”, quantifies sentence similarity based on not only the
semantic categories but also the thematic role assignment.

Fig. 1 Stimulus vocabulary. Stimuli were presented in German as listed here. English translation in italic. Note that some words are homonyms in
English but two distinct words in German
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Fig. 2 Stimulus randomization. The diagram illustrates for all sen-
tences (rows) which elements make up any given sentence. Elements
are color-coded to indicate the identity of the temporal adverbs (1st
column), the semantic category of the verb (2nd column), the semantic
category of the agent role (3rd column) and the semantic category of
the patient role (4th column). Given any sequence of adverb, verb, and
agent, the patient semantic category is uncertain, since there are always
two categories that occur with equal probabilities

We count how many nouns from the same semantic cate-
gory occur in the same thematic roles across two sentences
and whether or not the verbs share the same semantic cate-
gory. As a result, values of predicted similarity range from
zero to three. For example, sentences with different seman-
tic categories for their nouns and verbs are expected to have
zero similarity under both references. However, when the
nouns are of the same semantic category but in reversed the-
matic roles, the relational reference measure gives a score
of zero while the bag-of-words measure gives a score of 2
(see Table 1 for further examples). Our definition of rela-
tional predictions in this paper is minimally constrained and
does not take into account any possible hierarchical effects
of thematic roles on comprehension. This allows for equal
contribution from both agent and patient roles towards the
expected similarity score. However, our method can also be
applied to more complex models of thematic role represen-
tations, such as those suggesting a hierarchy of thematic role
assignments (Baker, 1996; Rissman et al., 2015). If this were
the case, our method might result in a lower fit with our
relational reference measure because in our measure all the-
matic roles are equally weighted. Nevertheless, since there
is little agreement on thematic hierarchies and most theories
assume a general prominence of both agent and patient over
other roles (Rissman & Majid, 2019), we decided to pre-
dict similar effects for both roles. Finally, we had no prior
theoretical expectations about the similarity structure of tem-
poral adverbs. Nonetheless, our analysis recovered patterns

Table 1 Example sentences

1 Today the surgeon comforted a carpenter

Heute tröstete der Chirurg einen Tischler

2 Earlier, the nurse encouraged the plumber

Vorhin bestärkte der Pfleger den Klempner.

3 Today the mechanic beat up a plumber

Heute verprügelte der Mechaniker einen Klempner.

4 In the morning a sprinter pushed the athlete

Am Vormittag schubste ein Sprinter den Athleten.

Sentences are listed in English translation (original German stimuli in
italics below). 1 and 2 are considered most similar because semantic
categories of agent, patient and verb are shared. 2 and 3 are more dis-
similar in comparison, since verbs and agent are of different semantic
categories. Note that sentence 2 and 3 might have a higher visual simi-
larity due to sharing the identical final noun, but our predictions are on
the semantic and relational similarity of the sentences Sentences 1 and
4 are most dissimilar since they do not share any semantic category

of perceived similarity elicited by the adverbs as we will
demonstrate.

Onlinemulti-arrangement task

Two hundred native German speakers rated the perceived
similarity of our stimuli. During the multiple arrangement
task, participants were asked to arrange the nouns or sen-
tences on a computer screen inside a white circular arena by
using computer mouse drag and drop operations (see Fig. 3
for illustration). The distance of the placed sentences indi-
cates the perceived similarity. Usually, participants would
see the full stimulus set on the first trial and subsequent trials
consist of a subset of those stimuli. For the subset selection,
we rely on an adaptive procedure developed by Kriegeskorte
and Mur aimed at optimizing the trial efficiency given the
evidence and utility of each item pair. The evidence for a
given item pair similarity is computed as the square of the
signal-to-noise ratio for that pair. The signal-to-noise ratio is
proportional to the actual on-screen distance. This is possi-
ble because although distances are relative and havemeaning
only in the context of a single trial, the distortion of each
drag-and-drop placement due to a small placement error is
assumed to be constant across trials. If the distance between
two items is small to begin with, then the placement error
will lead to relatively stronger distortion, and hence lower
signal-to-noise ratio.

The utility of presenting any given item pair is defined
as a saturating function u(w) = 1 − e−w∗d of the current
evidence w of the same pair. This function ensures that addi-
tional evidence is weighted higher when there is only little
evidence for the similarity judgement and vice versa. In our
study, we set the exponent d = 10, such that the utility is sat-
urated when evidence reaches 0.5, which is the default value
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Initial display Mouse drag and drop Final arrangement
Place sentences according to event similarityPlace sentences according to event similarity Place sentences according to event similarity

Place all Place all Finishhelp help help

Fig. 3 Illustration of computer-based task. In the initial display, sen-
tences are arranged randomly outside the arena. In order to continue
to the next trial, all sentences need to be placed per drag-and-drop
inside the white arena. Sentences are selected by clicking on them and
can then be moved around. Items can be placed and replaced multiple

times. Items can be stacked on top of each other. Once all items are
inside the white arena, the Finish button on the bottom will become
active and upon clicking on the button the next trial will be initiated.
Distance between items will be measured from the center of the square
containing the sentence

proposed in the original implementation byKriegeskorte and
Mur. Since we could not present all items on the first display
the evidence for not yet seen item pairs will be zero after
the first trial and those items will be sampled until there is
some similarity judgement logged for all item pairs. Subse-
quently, the item pair with the least evidence will be selected
for the next subset. New items will be repeatedly added to
this subset, choosing items that maximize trial efficiency first
and halting as soon as any additional item will reduce trial
efficiency. A more detailed description of the subset selec-
tion procedure can be found in the publication introducing
the multiple arrangement method by Kriegeskorte and Mur
(Kriegeskorte &Mur, 2012). A consequence of the selection
procedure is that on later trials, displays contain fewer items.
This allowed participants to refine their judgments with dis-
tinctions that are more difficult to express in the context of
the whole set and the limited arena space. To extract one
single estimate of all pairwise similarities, the overlapping
subsets are first scaled and then combined as weighted aver-
ages (see Kriegeskorte and Mur (2012) for details). Due to
the iterative procedure, the task is very efficient at obtain-
ing reliable high-dimensional similarity judgments for our
48 individual sentences within 60 min per participant (or 24
nouns within 30 min). The behavioral data were collected
using the Meadows web-based platform for psychophysical
experiments (http://meadows-research.com). Online partic-
ipants were recruited from the Prolific online participant
pool (http://www.prolific.ac.uk). All subjects gave informed
consent via button click before participation and received
monetary compensation according to Prolific guidelines.

Half of the participants were presented with the nouns
that were used to generate sentences and the other half
rated the full sentences. Subjects were instructed to place
all nouns/sentences inside the white area in a manner that
reflects the similarity between the described people/events.
The instructions did not specifically mention that people
could be categorized into professions or that verbs could be

categorized into positive and negative actions. Nonetheless,
the majority of subjects mentioned those dimensions in their
debrief. In addition, those subjects seeing the events were
instructed to not place items only according to a single word
in the sentence but rather pay attention to all words. Prior to
the main task, an example was shown for how an arrange-
ment could look, using nouns/sentences that were not part of
the stimulus set.

Noun similarity

For the noun similarity task, we collected arrangement data
from 100 subjects (mean age = 31, SD = 9), of which 41 were
female. Subjects arranged all 24 unique nouns on the first trial
and each subsequent trial contained subsets of those nouns.
Subsets consisted of a minimum of three and a maximum of
24 nouns. There were no unseen item pairs and we did not
exclude any of the subjects. On average, subjects completed
37 trials (SD = 8) before they either reached a minimum
evidence level of 0.5 or 30 min had passed.

Event similarity

To our knowledge, we are the first to apply this task to
full sentences instead of individual words or pictures. In
order to present the sentence stimuli in a format suitable
for the task, we split each sentence into 3–4 lines, such
that it could be presented within a square box. In order to
minimize the influence of the verb, sentences were bro-
ken up, such that the verb never appeared on a line on
its own. In the sentence similarity judgment task, an addi-
tional practice trial preceded the main task. The practice was
based on three sentences, of which two were semantically
synonymous and the third describing a completely differ-
ent event. The main task was complete once a subject had
reached a minimum evidence level of 0.5 for each item pair
or 60 min had passed. On average, subjects completed 112
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trials (SD = 41). Due to space limitations, participants were
not presented with all sentences in the beginning. Instead,
they saw only ten sentences during the first trial, and at
least three items or up to a maximum of ten on each sub-
sequent trial. Fourteen subjects were excluded because they
executed too few trials within the 60 min, i.e., they rated
less than 50 item pairings. The remaining 86 subjects (mean
age = 30, SD = 9; 38 female) were all German native
speakers.

Matrix factorization

We used non-negative matrix factorization (NMF) (Lee &
Seung, 2000) to investigate which underlying dimensions
played a role in the sentence similarity ratings. For this, we
first concatenate all individual subject RDMs into a large
Matrix D of dimensions number of subjects × number of
item pairs. NMF allows us to decompose D into two non-
negative matrices, which gives a lower rank approximation
for D. Basically, we decompose this matrix into two matri-
ces, such that D = W × H , where W is the |n| × k mixing
matrix that contains the weights for constructing N observed
subject similarity judgments from the k components, and H
is a k × |t | factorization matrix that contains the k latent
components capturing underlying pattern of pairwise item
similarity.Note that, by definition, all Hi, j >= 0.We applied
the NMF implementation of scikit-learn (Pedregosa et al.,
2011), which finds the optimal decomposition by iteratively
optimizing the distance between D and the matrix prod-
uct WH using the squared Frobenius norm as the distance
function.

The NMF algorithm requires to specify the number of
latent components k to be extracted. In order to get an esti-
mate of what the optimal k would be, we computed the NMF
repeatedly (n = 1000) with different random initializations,
each time limiting the factorization to an increasing number
of components (1 < k < 20). For each of the 1000 random
initializations, we checked for each additional component
for how many subjects it would receive maximal mixing
weights. Although each additional component will further
optimize the fit to the data, we only regard it as informative,
if it captures general judgment patterns, i.e., receive maximal
weights for multiple subjects, rather than individual solu-
tions. On average, it took seven components to capture all
patterns in the data,which generalized across at least two sub-
jects. We then fixed the number of components to seven and
again computed 1000 factorizations using different random
initializations. Based on the resulting 7000 components, we
ran agglomerative hierarchical cluster analysis to determine
which underlying components are reliably found through-
out repeated factorizations. Based on visual inspection of
the within- and between-cluster similarity, we decided on a
distance threshold of 0.85, such that we could define five

clusters of components, which would reliably emerge across
multiple factorizations (at least 720 times out of 1000) and
were for the most part interpretable in terms of the under-
lying similarity patterns (see Fig. 5). From each cluster, we
computed one final component, by taking the average across
all cluster exemplars (centroid). Based on the resulting five
components, we again computed the unmixing matrix using
the same optimization algorithm. In order to qualitatively
assess the final factorization, we computed the Spearman
rank-ordered correlation between each of the components
and the upper triangular vectors of our binary model matri-
ces for the verb category, the agent category and the patient
category, respectively.

Sentence similarity based on ANN generated
embeddings

For our sentence stimuli, we extracted sentence embeddings
from three pre-trained ANN models, GPT2 (Radford et al.,
2019), BERT (Devlin et al., 2018) and SBERT (Reimers &
Gurevych, 2020b), and compared their pairwise similarity
to our behavioral similarity judgments. For the BERT and
GPT2 architectures, embeddings were extracted from mod-
els trained on German texts and implemented in PyTorch
with the Huggingface module. Specifically, we used the
bert-base-german-casedmodel (https://huggingface.co/bert-
base-german-cased) and german-gpt2 https://huggingface.
co/dbmdz/german-gpt2). For BERT embeddings, we
extracted activation based on units from layer 12 and spe-
cial token “[SEP]”, which marks the end of a sentence. For
theGPT2 embeddings,we extracted activation based on units
from layer 12 and the final word token, ignoring punctuation.
For the SBERT architecture, we used a pre-trained model
architecture implemented in PyTorch with the Sentence-
transformers module https://www.sbert.net/. SBERT is not
available in a German-only version, so we used the multi-
lingual model distiluse-base-multilingual-cased, which sup-
ports a range of languages including German (Reimers &
Gurevych, 2020a).

Results

Themulti-arrangement task provides pairwise distances (dis-
similarities) for all item pairs (e.g., pairs of nouns or pairs
of sentences). These pairwise distances for n items can be
visualized as a so-called representational dissimilaritymatrix
(RDM) H = n × n, such that each entry in the matrix Hi, j

contains the dissimilarity between item i and item j. For both
groups of subjects separately, we extracted one continuous
matrix by first normalizing the individual subject RDMs by
their standard deviation, and then averaging over all subjects.
Figure4 depicts the resulting group averages.
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Fig. 4 Mean dissimilarity for nouns and sentences. Left Nouns are
sorted (along rows and columns) according to thematic categories
(order: medicine, manual labor, sports and music) and within each cate-
gory the same order as depicted in Fig. 1 is maintained. Right Sentences
are sorted according to the full stimulus list (see appendix or Fig. 2),

i.e., all sentences containing communicative verbs and both agent and
patient from the category “medicine” first, followed by all sentences
containing communicative verbs and agent from category “medicine”
plus patient from the category “manual labor” etc

Results for the noun similarity task reflect that subjects
easily picked up on the semantic categories and arranged
nouns according to profession. The average dissimilarity
within any given category was lower (mean = 1.6, SD =
0.08) as compared to the average dissimilarity across cat-
egories (mean = 3.3, SD = 0.04) and the correlation with
a binary, descriptive model of noun similarity, encoding all

within-category pairs with a distance of 0 and all across-
category pairs with a distance of 1, was high (rho = 0.71). In
the event similarity task, the average dissimilarities are most
highly correlated with a binary descriptive model of verb
category (rho = 0.86). Based on the average, it is therefore
not clear whether participants arranged sentences only based
on the verb categories (i.e., positive communication actions

Fig. 5 Clustering of latent factors driving event similarity task results.
A Pairwise similarity between all components (1000 repetitions of
factorization into seven components each yields 7000 components in
total) is depicted. Lighter color codes for similarity (absolute Pear-
son correlation). Components are sorted according to order determined
by hierarchical clustering algorithm. B Truncated dendrogram show-
ing only the last ten merges across all components. On the x-axis, for
each cluster the label indicates the amount of leaf nodes (components)

belonging to the depicted cluster. Horizontal lines indicate a merge of
leaves into a new cluster. The height of the horizontal lines indicates the
distance between the merged sub-clusters. As can be seen, some sub-
clusters merge only relatively few components (e.g., 19 in left branch of
orange cluster). The threshold of distance 0.85 for determining clusters
was in part motivated to result in roughly equally sized clusters (B) that
seem most coherent based on their inter- & intra-cluster similarity (A)
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versus negative physical actions) or whether they addition-
ally took into account the thematic role assignment of noun
categories (professional domains) to agent and patient roles
(Fig. 5).

Factorizing high-dimensional representations

Even though it seems as if event similarity ratings are
mostly driven by the semantic category of the verb, sub-
jects reported multiple strategies for solving the task. Indeed,
a data-driven factorization revealed underlying components
that influenced similarity judgments beyond verb seman-

tics. We identified five components (see Fig. 6A), which
robustly resulted across 1000 factorizations with random ini-
tial weights and together explain more than 95% of variance
in the data. The first component reflected the verb similarity
(correlation with a binary verb category model was 0.87).
The second component did not reflect any of our categor-
ical dimensions, instead, after inspection we found that it
reflected sorting according to verb identity, i.e., whether two
sentences shared the same verb or not (see Fig. 6B left).
Component three reflected sorting according to the temporal
adverb of each sentence (see Fig. 6B, right). Finally, compo-
nent four reflected sorting of sentences according to semantic

Fig. 6 Latent non-negative factors. A Each factor is visualized as a
sentence-by-sentence matrix (n = 48) with sentences in the same order
as listed in the full stimulus list (see appendix or Fig. 2), i.e., all sen-
tences containing communicative verbs and both agent and patient from
the category “medicine” first, followed by all sentences containing com-
municative verbs and agent from category “medicine” plus patient from
the category “manual labor” and so on and so forth. For each factor, its
Spearman correlation with the theoretical semantic category models for
verb (blue), agent role (green) and patient role (pink) is shown for those

semantic dimensions best capturing the similarity pattern expressed
by the factor. Both factors 2 and 3 were poorly correlated with any
of the semantic category models. Their patterns are visualized by re-
ordering sentences according to verb ID (B, left) and temporal adverb
identity (B, right), respectively. The order of the temporal adverbs was
the following: “Today” / “This morning”, “Earlier”,“In the morning”
or “Yesterday” / “Yesterday evening”. C Mixing weights are depicted
per subject (rows) and factor (columns). Darker color indicates higher
weights. Subjects are sorted according to their maximal factor weight
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similarity of both the agent (rho = 0.57) and the patient (rho =
0.37) of the sentence. Component five remained elusive but
was negatively correlated with the model for verb semantics
(rho = – 0.42). Based on the mixing matrix (see Fig. 6C),
we observed that similarity according to verb semantic cat-
egory was weighted highest for most subjects. Nonetheless,
themajority of subjects took into account additional semantic
dimensions when arranging the sentences, namely the spe-
cific verb identity, the temporal information, the semantics
of the agent role, and the semantics of the patient role.

The correlationwith the agent and patient categorymodels
in component four provides a first indication that relational
information is influencing peoples’ similarity reports to some
degree, the patient role of a sentence being more influential
compared to the agent. Importantly, within each model, both
semantic and structural information is taken into account. For
example, the agent and patient model RDMs code sentences
as highly similar if they share a noun from the same semantic
category in the same relational role (e.g., as agent or patient,
respectively) and as dissimilar if they either share a noun in
a different role or if they don’t share the same semantic cate-
gories at all. Therefore, it could be thatmodel correlations are
partly driven by the mismatch in semantics across sentences
and not just the mismatch in relational information.

To test whether relational role information modulated
similarity ratings, we devised a comparison between sub-
sets of sentences, that controls for semantic overlap. This
was achieved by comparing the average pairwise similarities
across subsets of sentences, where three given subsets were

selected such that they share the semantics of one noun, but
only two of the subsets additionally share the thematic role
it appeared in. For example, we averaged over all pairwise
similarities between events describing medical professionals
acting on manual labor professionals and either (1) events
describing manual labor professionals acting on each other
(shared semantics & role, teal square in Fig. 7A) or (2) events
describing athletes acting on medical professionals (shared
semantics only, yellow square in Fig. 7A). If thematic roles
influence similarity judgments, those sentences sharing both
semantic category as well as corresponding role should be
judged as more similar compared to when they share seman-
tics only.We computed this difference in perceived similarity
on all possible subsets, controlling for semantic overlap and
verb semantics within each comparison. Further, we com-
puted this comparison based on both the factorized results,
specifically component four as well as on all subject-specific
RDMs.When computing this contrast on each subject’s orig-
inal RDM, the average difference in perceived similarity over
all subjects was not significantly different from 0 (p = 0.46,
one-sided t test, (Fig. 7B)). The same analysis run on the
factorized data, however, revealed clearly that similarity was
higher between subsets of sentences sharing both semantics
and relational role compared to those sharing only semantics
(mean difference = 0.06 normalized dissimilarity, p = 0.039
one-sided t test on mean subset similarity). This was true for
all four different pairings of subsets (Fig. 7A). Hence, once
the verb bias is factored out, the results reveal an effect of
relational role information on similarity judgments.

Fig. 7 Cross-sentence correlations controlled for semantic overlap.
Average pairwise dissimilarity is shown for two subsets of sentences,
that either share a noun semantic category in the same or a different
thematic role with a third subset of sentences (the reference). A Dis-
similarities are shown based on component four after factorizing the
RDMs. Each point plots the average dissimilarity across one distinct

subset of cross-sentence dissimilarities. Pairs of subsets within which
semantic overlap is controlled are connected through lines. B Differ-
ence in dissimilarity is shown for each individual subject. For each pair
of subsets, the difference in dissimilarity was computed. Each point
plots the average difference in dissimilarity across all four subsets per
participant
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Sentence similarity based on ANNs

We evaluated the pairwise similarity based on sentence
embeddings generated by three ANN models. All models
produced embeddings that captured verb, agent, and patient
categories to some extent (pairwise cosine similarity between
sentence pairs was on average higher for items that shared
categories than itemswith different categories across all three
dimensions). Nonetheless, we observed differences in the
strength with which each model captured different dimen-
sions of event meaning. For example, while the GPT2 model
had overall a low fit to our relational reference, it cap-
tured each dimension more or less equally. In contrast, both
BERT and SBERT produced embeddings that loaded more
strongly on certain dimensions. While BERT embeddings
most strongly encoded the agent and the verb dimensions,
the embeddings produced by SBERT contain less informa-
tion about verb semantics. SBERT in turn appears to better
encode the patient role filler compared to the other models.
Interestingly, while SBERT is the only model optimized
specifically for pairwise sentence similarity judgments (the
training goal most resembling the multiple arrangement
task), it is also producing sentence embeddings with the
worst fit to our observed human behavioral data (see Fig. 8).
Out of all three models, BERT produces similarities that are
most correlated with the human judgments. While sentence
similarities according toGPT2 in comparison have lower cor-

relations with human data, they match the human data better
than any of the individual meaning dimensions.

Discussion

We applied a geometrical multiple arrangement task to
acquire similarity judgments for 24 nouns and 48 sentences
describing simple transitive events. Similarity judgments
revealed a sensitivity to the semantic category of professions
when arranging nouns. Although sentences contained those
same nouns, the semantic category of profession was less
prominent in the sentence-by-sentence similarity judgments.
Instead, average sentence similarity judgments seemed to be
highly sensitive to the semantic category of the main verb.
Matrix factorization, however, revealed that subjects addi-
tionally took into account both the semantic domain of the
nouns as well as relational role information when arranging
the sentences.

We observed that the similarity judgments are more corre-
latedwith amodel of the noun semantic categorymodel of the
patient noun compared to the agent noun. This demonstrates
that the thematic roles do not affect sentence comprehension
equally. The direction of the difference contradicts previous
eye-tracking results (Wilson et al., 2011), which suggested
a prominence of the agent role. Our data, in contrast, point
towards a more prominent effect of the patient role on offline

Fig. 8 Representational similarity matrix for all stimulus sentences
based on ANN generated embeddings. Pairwise cosine similarity is
plotted for each sentence pair ni, j (i = 1,2,...,48 and j = 1,2,...,48) of
the stimulus set and three different ANN architectures. Sentences are
sorted according to the full stimulus list (see appendix or Fig. 2), i.e., all
sentences containing communicative verbs and both agent and patient

from the category “medicine” first, followed by all sentences containing
communicative verbs and agent from category “medicine” plus patient
from the category “manual labor” and so on and so forth. Pearson cor-
relation coefficients for theoretical models of either verb (blue), agent
(green), patient (pink) semantic category as well as correlation with
human data are depicted below each model
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similarity judgments. Interpretation of this result should be
cautious, however, because we did not vary sentence struc-
ture. Therefore the order of role is confounded with order of
words.

Overall, the multi-arrangement task is suited for efficient
sampling of similarity judgments even for linguistic stimuli
beyond the single-word level. Importantly, combined with
matrix factorization, it allowedus to quantify complexmental
representations of integrated meaning.

Verb bias

event templates We found the verb similarity to be the dom-
inant dimension according to which subjects arranged the
sentences in our study. Although our study design does not
directly test what causes the prominence of the verb, we can
speculate about possible explanations for this finding: First
of all, the importance of the verb may not come as a sur-
prise given its special linguistic status in the sentence. It has
been argued in the past that subtle features of verb semantics,
such as subcategorization information, immediately affect
online comprehension and can even be exploited to predict
sentence structure (Hare et al., 2004; McRae et al., 1997).
Furthermore, verbs are thought to be linked to so-called
“event templates” (Tenny, 1994; Jackendoff, 1992; McKoon
& Macfarland, 2002). Event templates formally conceptual-
ize an event by establishing which primitive “event kind” it
belongs to and by specifying the syntactic argument positions
of its entities in a sentence. In our stimulusmaterial, the phys-
ical verbs can be said to instantiate the semantic primitive
ACT(x,y). This means that the event involves entity x acting
upon entity y, where x and y map onto syntactic subject and
syntactic object, respectively. The exact meaning of the verbs
will further specify the event, e.g., entity x is acting upon
entity y through negative, physical impact for a verb like “to
hit”. The verb “to break”, on the other hand,would instantiate
a very different event template, i.e., CAUSE(a,BECOME in
STATE(x)), where entity x undergoes a change of state (intact
to broken) through external force of a. The two verbs “to
break” and “to hit” hence differ in the number of sub-events
that it takes to characterize them. It has been experimentally
demonstrated that such event templates are implicitly taken
into account as we process sentences. For example, words
that are presented in the same template across sentences can
prime each other later on McKoon and Ratcliff (2008) and
more complex event templates will slow down reaction times
during lexical decisions (McKoon & Macfarland, 2002). In
the present study, people may have been naturally biased
towards attending the verb of a sentence (rather than the
nouns) given that it carries crucial information about the event
template.

Interactions between verb and noun semantics Verbs can
not only determine an underlying event template but they
also directly shape our representations of event participants.
This is because relational features of nouns interact with verb
semantics in complex ways. For example, if sentences con-
tain bidirectional verbs (e.g., John greeted Mary vs. Mary
greeted John), their perceived similarity under role reversal
might decrease less as opposed to sentences describing more
unidirectional actions, since the role assignment of agent
and patient becomes ambiguous. Furthermore, roles are not
rigidly defined in terms of syntactic arguments only (e.g.,
subject, object) but carry semantic content (Holyoak, 2005).
For verbs that convey a mental state, such as “to surprise” or
“to notice”, the roles of the agent and patient can be defined
as the causal element of the experience (the stimulus) and the
undergoer of the experience (the experiencer), respectively.
There exists an asymmetry between Subject–Experiencer
and Object–Experiencer thematic structures. Specifically,
the mapping between syntactic subject and syntactic object
on the one hand and agent/stimulus and patient/experiencer
roles on the other will depend on the specific verb seman-
tics. For example, the cat (subject) surprising in example 1
below, maps better onto the woman (object) being noticed
than the deer (subject) noticing in example 2 since they are
both causal for the events described (Frankland & Greene,
2020b).

1. The cat surprised the man.
2. The deer noticed the woman.

In the current study, verb–noun combinationswere chosen
to be somewhat arbitrary to allow for role-reversal given the
same verb (e.g., “the electrician encourages the guitarist”,
“the guitarist pushes the athlete”). Nonetheless, verbs were
unidirectional and will likely have modulated the semantic
feature space evoked by a given thematic role. The agent of
“to beat”might be perceived as an aggressive person,whereas
the patient associated with the same verb might be perceived
as pitiful. If verbs indeed modify the semantic interpretation
of nouns within a phrase, the verb semantics would not only
define the action of an event but could indirectly contribute
to the representations of the corresponding entities involved.

Context & salience affect similarity judgments Within our
study we cannot distinguish an a priori verb bias from other
factors such as valence or context-specific effects such as
salience. We specifically chose contrasting verbs that could
either express a positive, communicative event or a nega-
tive, physical contact event. This difference in valence might
have made the verb semantic information more salient as
compared to that of the nouns. Additionally, in the context
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of the larger stimulus set, verbs could be broadly divided
into only two categories, whereas nouns were more var-
ied, stemming from four distinct semantic categories. The
fact that there were fewer semantic categories for verbs may
have added to their overall salience. Note, however, that the
temporal adverbs could also be categorized into two groups,
namely those referring to the same day and those referring to
the day before. This binary categorization can be observed
in the similarity patterns of factor three. In addition, each
individual adverb appeared more frequently than each indi-
vidual verb, potentially increasing salience for the temporal
adverbs. Nonetheless, adverbs did not drive the similarity rat-
ings as much as the verbs did. The overall pattern of the data
hence speaks to a more fundamental attentional bias towards
the verb beyond simple saliency due to stimulus distribution
across semantic categories.

Alternative models of similarity have been developed to
address the effects of salience as well as other supposed
shortcoming of the geometric approach such as the assump-
tion of symmetry (distance(A,B) = distance(B,A)), which
has been disconfirmed in empirical data (Tversky, 1977). As
a solution, Tversky suggested a set-theoretic model, within
which similarity between two items is a function of the set of
their shared features and the two respective sets of their dis-
tinctive features. This approach allows context to modulate
how strongly certain features are activated and as a conse-
quence influence similarity, accounting for salience effects.
For example, when adding a single item to a set of items,
which varies in a specific feature, that so far had been shared
by all items. The addition of the new variance in that feature
will increase perceived similarity of all original items.

It is correct that geometric models per definition impose
certain assumptions such as symmetry onto similarity rela-
tions. Similarity judgments collected throughout multiple
arrangements, however, are not completely incompatible
with observations of asymmetry and salience effects. In fact,
the repeated sampling of subsets of the total stimulus set
assumes the existence of a multitude of conceptual spaces,
some more and some less salient, under which similarity
can be defined. Under this assumption, distance from A
to B might differ from distance from B to A, if the order
of comparison evokes different similarity spaces (Decock
& Douven, 2011). When combining similarity judgments
across subset arrangements those subtle differences get lost
and the principle of symmetry will be enforced. Although the
final similarity matrix cannot explicitly speak to the multiple
underlying dimensions anymore, we have shown that they
can nonetheless be extracted through data-driven factoriza-
tion. The same holds true for more or less salient features
within a stimulus set.

Neural processing of relational information It is still an
open question how our brains process and represent rela-

tional information such as who is the agent or the patient
of an event. Many studies that rely on sentence similarity
structure to investigate the neural processing of thematic
role information, have modeled the similarity structure as a
binary metric, distinguishing between item pairs being either
maximally similar or not similar at all e.g., Frankland and
Greene (2020a); Wang et al. (2017). We have shown that
it is possible to retrieve continuous quantitative measures
of relational stimuli from empirical data, even in the pres-
ence of bias, through perceived similarity judgement tasks.
These quantitative models can be compared against brain
activity using multivariate analysis techniques (Kriegeskorte
et al., 2008). Representational models of individual words
have already advanced our understanding of the neurobiol-
ogy of semantics. For example, through explicitly modeling
word semantics, researchers could not only confirm a cru-
cial role for the anterior temporal lobe (in line with previous
patient data) but also identify additional frontal and parietal
brain areas to be sensitive to modality-independent semantic
representations (Bruffaerts et al., 2019). Further, similarity
judgments of images have been shown to capture perceptual
representations (Hebart et al., 2020) that correlatewithmulti-
variate neural representations and have been used to study the
temporal dynamics of object recognition in the brain (Cichy
et al., 2019).

Quantifying similarity through vector spacemodels

An alternative approach to quantify semantic representations
is based on distributional semantics. Distributional semantics
rely on the idea that associated words cooccur in similar con-
texts. Consequently, given a large variety of contexts, we can
find a function that maps each word onto a high-dimensional
numerical vector (embedding) capturing aword’s association
to all other words in the vocabulary. Recently, artificial neu-
ral networks (ANNs) have become prominent for generating
word embeddings as a byproduct of unsupervised learning
tasks. ANNs are usually trained to predict a word based on its
preceding or surrounding context and require large linguistic
corpus data for training. Themost recent generation ofANNs
(e.g., Vaswani et al. (2017); Devlin et al. (2018); Radford
et al. (2019)) is able to capture contextualized word mean-
ings, taking into account local sentence context. For example,
they will assign distinct vector representations to the word
“bank” if preceded by either “river” or “money”. This newest
generation of algorithms excels at multiple natural language
processing tasks such as text generation, translation, question
answering, and cloze tasks (Brown et al., 2020).

Due to their broad success at language tasks, ANNs have
caught the interest of language scientists not only as tools for
natural language processing but also as mechanistic models
for the brain’s language processing. Indeed, several research
groups have shown that internal representations in ANNs,
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emerging during training, predict brain activity above chance
(Pereira et al., 2018; Mitchell et al., 2008; Abnar et al., 2019;
Schrimpf et al., 2021; Toneva et al., 2020). Specifically, those
models implementing attention mechanisms (Vaswani et al.,
2017), like the GPT2model, seem to outperform other archi-
tectures (Schrimpf et al., 2021). At the same time, several
researchers have raised the criticism that ANNs cannot cap-
ture structural relational meaning (Gershman & Tenenbaum,
2015; Puebla et al., 2021). This is an empirical question so
that we need focused test-sets, that explicitly probe those
semantic dimensions impacting human behavior in order to
evaluate what representations these models are learning and
how similar they are to neural representations in humans.

We propose that similarity judgments sensitive to rela-
tional information might provide a meaningful benchmark
for evaluating ANNs as models for human language pro-
cessing. Previously, ANNs’ have been evaluated not only
in terms of their ability to predict brain signals but also
with respect to human linguistic behavior such as for exam-
ple reading times and gaze duration (Schrimpf et al., 2021;
Van Schijndel & Linzen, 2018; Merkx & Frank, 2020), and
there is a long history of that (e.g., McClelland and Rumel-
hart 1981). Measures of perceived similarity can provide
an additional benchmark of human behavior against which
computational models could be evaluated. This approach of
evaluating computational models based on human similarity
ratings has already proven to deliver insights with respect
to ANNs trained on visual object recognition (Jozwik et al.,
2017; Peterson et al., 2017). For example, researchers are
starting to identify which parameters of the model architec-
ture (e.g., layer depth) are crucial for learning human-like
representations (Jozwik et al., 2017). We have shown that
similarity judgments are useful tools to investigate repre-
sentational content of stimuli containing relational features
such as thematic roles, even if perception is biased towards
single meaning dimensions. Similarity judgments could fur-
ther serve as a point of comparison for models of human
language processing, specifically with respect to emerging
relational knowledge. As an example, we compared contex-
tualized embeddings of our stimuli from three state-of-the-art
ANNs: GPT2, BERT and its extension, SBERT (Reimers &
Gurevych, 2020b). While all ANN models seemed to cap-
ture information about thematic roles to some degree, none
of them reproduced the verb bias we observed in our behav-
ioral data. This could suggest that current out-of-the-shelf
word prediction ANNs might not exploit information in the
same way humans do. Whether these ANNs are unable to
capture human biases needs to be further tested, however,
with a larger behavioral dataset and carefully controlled stim-
uli to exclude saliency effects of local context. Of course, a
comparison with human behavioral data cannot speak to the
predictive performance and utility of ANNs as engineering
solutions for language tasks. Instead, similarity judgments

provide a benchmark to evaluate the ANNs’ utility as mech-
anistic models of human sentence processing irrespective of
their highly successful application as chatbots or for machine
translation.

A strength of artificial language models is their ability
to quickly process large amounts of data. Can the multiple
arrangement task be scaled up to generate amatching number
of human judgements? In principle, themultiple arrangement
task provides a first noisy estimate of all pairwise similari-
ties rather fast, given that all stimulus items are presented
within the first display. Every consecutive display provides
additional evidence and so the estimates will get more accu-
rate with time. Hence scaling up is in principle possible but
whether the task is practically feasible in terms of duration
will depend on the required level of detail. In addition, it
is desirable that all stimulus items can be observed in full
on the initial display in order to identify those dimensions
that are common across the entire stimulus set. In the cur-
rent study, with 48 full sentences as items, we found that in
practice the physical screen size limits the number of items
that can be placed around the arena without overlap. We
therefore restricted the initial display to ten sentences. We
observe that given the subsampling procedure proposed by
Kriegeskorte and Mur (Kriegeskorte & Mur, 2012) an aver-
age of 58 trials (SD = 11.7 trials) per subject are necessary
to collect at least one similarity judgement for every single
item pair. For reference, the total number of trials completed
was 101 on average (SD = 47 trials). Limiting the size of
the initial display to be smaller than the full stimulus set
hence greatly reduced the paradigm’s efficiency as the sub-
sampling procedure did not strictly optimize for unseen pairs.
Beyond limitations due to screen size, human memory con-
straints only minimally affect the number of items that can
be compared in this task, because on each given trial a sub-
ject can base their similarity judgements on a selection of the
most important dimensions given a trial-specific item con-
text. Even with hundreds of items, the complexity of the
comparison can be reduced for example by creating a small
number of piles such that all items are assigned to contrasting
points along one dimension. In this case, only the summed
duration of all drag-and-drop movements will place a max-
imum constraint on the number of items possible. Many of
the mentioned practical limitations in extending the multiple
arrangement taskmay be bypassed, however, by pooling data
from multiple subjects. For example, Hebart and colleagues
combined pooling approaches with widespread online distri-
bution to collect a large dataset containing similarity ratings
for over 1 million images (Hebart et al., 2020).

Conclusion and outlook

In conclusion, we evaluated the multiple arrangement task
combined with matrix factorization as a suitable tool for
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quantifying integrated meaning representations. The similar-
ity judgments presented here captured multiple dimensions
of sentence meaning while also being sensitive to biases in
human sentence comprehension. In the future, the multiple
arrangement task could be used to collect perceived sentence
similarity on a larger scale. Such a database could provide
an additional benchmark when evaluating ANNs as models
for human language processing.
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Appendix: Stimuli

Table 2 Full set of sentences

Sentence

Heute Morgen bestärkte der Therapeut einen Sanitäter

Heute ermunterte der Sanitäter den Pfleger

Heute Morgen bejubelte der Radiologe den Internisten

Table 2 continued

Sentence

Vorhin ermutigte der Pfleger einen Chirurgen

Vorhin tröstete der Chirurg den Radiologen

Vorhin lobte ein Internist den Therapeuten

Heute Morgen ermunterte der Therapeut den Handwerker

Heute Morgen lobte der Sanitäter den Mechaniker

Heute tröstete der Chirurg einen Tischler

Heute Morgen ermutigte der Internist einen Zimmermann

Vorhin bestärkte der Pfleger den Klempner

Vorhin bejubelte der Radiologe den Elektriker

Am Vormittag bejubelte der Bassist den Pianisten

Am Vormittag ermutigte der Sänger den Gitarristen

Gestern Abend ermunterte der Pianist einen Geiger

Gestern tröstete der Geiger den Sänger

Gestern bestärkte der Gitarrist einen Musiker

Gestern Abend lobte der Musiker den Bassisten

Am Vormittag bestärkte der Bassist einen Läufer

Am Vormittag lobte der Pianist den Sportler

Am Vormittag tröstete der Sänger einen Athleten

Am Vormittag ermunterte der Gitarrist den Fußballer

Gestern Abend ermutigte der Geiger den Sprinter

Gestern Abend bejubelte der Musiker einen Boxer

Heute Morgen schlug der Zimmermann einen Handwerker

Heute verprügelte der Mechaniker einen Klempner

Heute stieß der Klempner einen Tischler

Heute Morgen verscheuchte der Tischler einen Elektriker

Vorhin schubste der Handwerker den Mechaniker

Vorhin schüttelte der Elektriker den Zimmermann

Heute Morgen schubste der Klempner einen Sänger

Heute Morgen verscheuchte der Mechaniker einen Gitarristen

Heute stieß der Elektriker den Bassisten

Vorhin schüttelte der Zimmermann den Pianisten

Vorhin schlug ein Handwerker den Geiger

Vorhin verprügelte der Tischler den Musiker

Am Vormittag schüttelte der Sportler den Radiologen

Am Vormittag schlug der Läufer den Chirurgen

Am Vormittag verscheuchte der Athlet einen Internisten

Gestern Abend schubste der Boxer einen Sanitäter

Gestern stieß ein Sprinter einen Pfleger

Gestern Abend verprügelte ein Fußballer einen Therapeuten

Am Vormittag verscheuchte der Boxer einen Läufer

Am Vormittag schubste ein Sprinter den Athleten

Am Vormittag schlug der Fußballer einen Boxer

Gestern Abend verprügelte der Läufer den Sportler

Gestern stieß der Sportler den Sprinter

Gestern Abend schüttelte der Athlet den Fußballer
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