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Brain oscillations are prevalent in all species and are involved in numerous perceptual operstitasons are thought

to facilitate processing through the inhibition of task-irrelevant networks jwdstgllations are linked to the putative reac-
tivation of content representations. Can the proposed functional mlanofb oscillations be generalized from low-level
operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language
prehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was reco
We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened depe
cies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to pre
and b power from the dependency features. Results showed that dependency featurasapddalipower in language-
related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in langt
comprehension i, while frontal and parietal, higher-order language regions, and motor regions are invdlved in
Critically,a- and b-band dynamics seem to subserve language comprehension tapping into syntactic structure building a
semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of
temporal similarity of th@-b responses, their potential functional dissociation remains to be elucidated. Overall, this stud
sheds light on the role afandb oscillations during naturalistic spoken language comprehension, providing evidence for the
generalizability of these dynamics from perceptual to complex linguistic processes.
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/S

It remains unclear whether the proposed functional relentl b oscillations in perceptual and motor function is genetral-
izable to higher-level cognitive processes, such as spoken language comprehension. We found that syntactic &eatlires predi
andb power in language-related regions beyond low-level linguistic features when listening to naturalistic speech |n a knowr
language. We offer experimental findings that integrate a neuroscientific framework on the role of brain ostiliakibns|as
ing blocks with spoken language comprehension. This supports the view of a domain-general role of oscillations jacross the
hierarchy of cognitive functions, from low-level sensory operations to abstract linguistic processes.
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guiding attention and suppressing distracting inptimesch et  Materials and Methods

al., 2007 Jensen and Mazaheri, 201@ power increases With participants

working memory load during retention, reflecting inhibition of Twenty-two adults (18 female) aged between 18 and 63years old
task-irrelevant regionslensen et al., 200Puladhar et al., 2007 (mean6 SD age, 38 15years) took part in the experiment. Prescreening
Scheeringa et al., 200Ran et al., 20)8and is associated with required that participants were monolingual Dutch native speakers, right-
behavioral performanceHaegens et al., 201@011h 201). handed, without hearing problems, reading problems, or epilepsy. All par-
Traditionally, b oscillations (15-30 Hz) are considered a motorticipants self-reported zero use and minimal understanding of French at the
rhythm (Kilavik et al., 201} associated with top-down process- !evel of isolgted words but not Wholg sentenceg pefore taking part
ing and long-distance network communicatiovdrela et al., " the experiment. Before the_ experiment, participants were pro-
200). b power increases during information retention, attrib- Y/ded With written and verbal information about the MEG system
uted to active maintenance of the current cognitive sendel and safety regulations and gave written informed consent. They

. . received monetary reimbursement after participation. The study
and Fries, 2010 Spitzer and Haegens (201joposed thatb falls under the general ethics approval (CMO 2014/288aging

oscillations support the reactivation of content representationgjyman Cognitiort) in accordance with the Declaration of Helsinki.

via the transitioning of latent items into active working memory

(Rose et al., 20).6To date, there is extensive research investigatstories

ing the oscillatory correlates of language procesdtasijaansen In order to tap into language comprehension, we compared brain
et al., 201PObleser and Weisz, 201Rewis et al., 201~ oefel responses recorded with MEG while participants listened to spoken
and VanRullen, 2015Ding et al., 2016Kdsem et al., 20316 stories in a language they comprehend (Dutch, mother tongue) versus a
Martin and Doumas, 2017.. Meyer, 2018Brennan and Martin, language they do not comprehend (French, a familiar but uncompre-
2020 Kaufeld et al., 2020.. Meyer et al., 202an Bree et al., hendedlanguage). Stories in French were selected as a control to confirm
2021 Bai et al., 2022Coopmans et al., 2022auswald et al., that our effects are begause of_ c_omprehensmn and r_pt acoustic proper-
2022 ten Oever et al., 202paHowever, few steps have beent'(.es of spegch, with Whl_ch participants would be far_nll'lar because of re-
taken to begin to link investigations af and b oscillations in gional proximity. Behavioral performance and debriefing demonstrated

d | - itive f . hthat Dutch native speakers were not able to understand the French narra-
sensory and perceptual neuroscience to cognitive functions t %es, despite their familiarity with the acoustic properties and some com-

are fundamentally derivative of sensory processing, such as lafon words in French. French thus constituted a stronger control than
guage comprehensu_)n fro_m Spet_ech or sign perception. ~ a language with which participants would be completely unfamiliar.
Here, we operationalized high-level linguistic processingritically, compared with traditional studies using artificial word or

using attributes from dependency parsing, describing synsentence stimuli, the use of natural speech in prerecorded stories
tactic sentence structure as relations between pairs of wora@dowed for a more ecologically valid approach as (1) the natural pros-
(Mel'cuk, 1988 Tesniére, 2016 Dependencies are created ody of the voice recording guides comprehension via auditory cues, (2)
when a nonunified word ‘{dependent constitueh) is encoun- Processing requires constant effortful attention throughout, and (3) it
tered. Processing load increases with the number of dependeﬁ-cks the brain responses induced by certain properties of artificial

; ; timuli, such as abrupt voice modulations or unnatural syllable timing.
cies being processed/@s et al., 2001Demberg and Keller, S . ) o
2009. Dependencies are resolved once the linking wdtk¢ The following three Dutch (NL) stories were usétket Lelljke_.]onge

- " . ; . Eendjeby H.C. AndersenDe Ransel, het Hoedje en het Hooratjd De

pendent) is encountered, recruiting unification or integration

. - Gouden Vogdby the Grimm brothers. All NL stories were spoken by
processesHagoort, 2005Martin, 2016 2020 Kapteijns and  femae voices. The following three French (FR) stories were Lt

Hintz, 202). Integration is thought to require reactivation of ge |a vieby the Grimm brothers (male voice)angeby H.C. Andersen

any dependent constituentV(cElree et al., 2003Viartin and  (female voice), and an excerpt froire Canard Ballorby E.A. Poe

McElree, 2008Foraker and McElree, 20).1As resolving lin-  (female voice). The NL stories and the last FR story were retrieved from

guistic dependencies is crucial for language comprehension,vitww.librivox.org and the rest fronwww.litteratureaudio.comin order

can be argued that dependency resolution exemplifies highete reduce fatigue, stories were split into parts of short duration (NL: 9

level cognitive operations. We therefore hypothesized that story parts, meaé SD, 5.5 0.6 min; FR: 4 story parts, duration 53

and b power would be modulated by dependencies, and®7 r_nin_). Stories that were already6 min were not split further. All

used dependency parsing as a proxy for this processing. aud|c_) files were nprmahzed to_ an equal percelyed loudness.
Specifically, we compared MEG responses while partici- Five _MCQs with four choices eac_h_ were |ngluded aﬁer each story

pants listened to comprehended (Dutch) versus uncomprepart (65 in total) to (1) ensure that participants paid attention to the spo-

. . . ken stories and (2) confirm the lack of understanding of the French sto-
hended (French) spoken stories. We identified three stat s. A Dutch and a French native speaker composed the questions for

at each word: number of opened/remained open/resolveghe putch and French stories, respectively. All were content questions,
dependencies. We constructed forward models to predict for exampleWho lives in the old house? A. An old man B. An old lady C.
and b power from these dependency features, controllingNobody D. A family; What did the traveler take from the table? A. The
for low-level linguistic features. We predicted that Dutchtablecloth B. The bread C. The potatoes D. The wine.

compared with French stories would elicit stronger modu-

lations ofa and b power in typical language-processing brainProcedure

regions. Additionally, we hypothesized that our dependencyarticipants were seated in the MEG system in a dimly lit room. They
features would predica and b power in language processing- ere informed that_ they would listen to s_torles in Dutch and French
related regions beyond low-level linguistic features. We furthef!"ng MEG recording. Further, they were instructed to pay attention to

f : . e stories as they would be prompted to answer MCQs after each story
hypothesized that the opening of dependencies would be asstgart. Responding to the MCQs was done by pressing four keys of a

Clatedl.wll(th da |ncr:%§§es/der$:easgs at task-lfr :jelevar(ljt/-re!eva Esponse box in a self-paced manner. Resting-state MEG was recorded
areas linked to inhibition, whilémaintenanceof dependencies (19 s pefore the onset of each story part but was not included in the

would be associated with power increases, attributed to an- gnaysis. The presentation order of the story parts was pseudorandom-
ticipatory and active ongoing processes. Finally, we predictgged across participants: NL and FR story parts were interleaved but care
that b power would increase during dependency resolutionwas taken so that their order remained intact (e.g., the second part of a
related to content reactivation. story could be presented only if the first part of that same story was
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previously heard). The overall procedure lasted;fdr.5 h. The experi- Dependency features.

ment was programmed with custom MATLAB (The MathWorks) Dependency parsing. We operationalized high-level linguistic proc-

scripts using PsychtoolboB(ainard and Vision, 1997 essing during spoken language comprehension using attributes from de-
pendency parses. This is mainly motivated by the trade-off between

Data acquisition and MEG preprocessing coverage of features and accessibility in parsing models; it is not a strong

MEG data were recorded at a sampling rate of 1200 Hz using a 275 chafi€oretical commitment to one parsing framework over another.

nel axial gradiometer system (CTF MEG systems, VSM MedTeC@ependency grammars describe the syntactic structure of a sentence as a
located in a magnetically shielded room. Eight sensors were exclud&ft Of relations between two wordsi¢lcuk, 1988 Tesniere, 2035 The
because of permanent malfunction, leaving a total of 267 usable sensdtdks begin from the head and end on the dependent word and are assigned
Three fiducial localization coils were placed at the particifsanasion & label representing the type of dependency (e.g., subject, object, determi-
and left and right ear canals to (1) allow for real-time monitoring of the nant, e_tc.). Each sentence has a root, usually the verb,'whlch is the head.of
participants head position and adjustment in between story parts if necthe entire structure (for an example of dependency parsing, see the graph in
essary, and (2) provide anatomic landmarks for offline coregistrafFi9- 1A, top). Dependency grammars often reveal nonadjacent, complex
tion of the MEG data with T1-weighted MRI images for source dependencies. Previous work has used dependency structures as a measure
reconstruction. After completion of the task, they, z coordinates ~ ©f OF Proxy for syntactic complexity, as words that form dependencies often
of the three fiducial points as well as the participantead shape &PPearin nonadjacent positions (e\yison etal., 202D _

were digitized using a Polhemus 3D tracking device. Furthermore, W€ used an automated parser (Stanford pafsanza) (Qi et al.,

individual structural MRI scans were acquired in a 3T Siemen<020 to generate dependency graphs for each sentence in the stories.

Magnetom Skyra MR scanner using earplugs with a drop of vitaStanza uses universal dependendiésré et al., 201p which is a set of

min E at the subjecs ear canals to facilitate subsequent alignmenfl€Pendency relations that are cross-linguistically applicable (for the
with the MEG data. types of universal dependencies in our stories, Bagle ). Based on

Continuous MEG data were downsampled to 100 Hz and epocheﬁmse* three dependency measures were extracted for each word using
from the onset until the offset of each story part. Data from sensors Witﬁ:us(tjom-w(rjltten_ SC”F::S: @ numbgr of opened ddegenden(kz)les, (f2) nuTbeé
consistently poor signal quality, as observed by visual inspection, Wepé ependencies that remained open, and (3) number of resolve

removed and interpolated based on neighboring sensors. Finally, indéi__eﬁegdencri]e_zs. gs we ddid _not have any hé/potheiistﬁbdqut It.Eﬂf VErsus
pendent component analysis was performed to correct for eye-blin ght-branching dependencies, we summed over bo irectidng. (

and heartbeat artifacts. Custom-written scripts in MATLAB and the ). Dependency features were represented as valued impulses at the

: : . word onsets of the respective words where the dependency took place.
I\F/:EIgTC;g)tet‘oolbox Oostenveld et al, 20} fvere used for analysis of the (1) Opened dependencies: the number of dependencies that open at

a given word. In the example dfigure 1A, one dependency opens at
) each word (nsubj, obj, det, amod, respectively) except for the last one
Data a_naIyS|s (zero opened dependencies).
Behavioral data i i (2) Remained open dependencies: the number of dependencies that
To assess participantsnderstanding of the stories, we calculated theg already open but remain unresolved Aigure 1A, the obj depend-
percentage of correct responses in the MCQs separately for NL and RRRcy s still unresolved at wotthe” while both the obj and det depend-
stories. A paired test was used to compare the two conditions and agpcies are unresolved at wdtiig”

one-sample test to compare performance accuracy to chance level at (3) Resolved dependencies: the number of dependencies that are

25%. resolved at this word. lirigure JA, the nsubj relation is resolved at word
“opened; the rest of the dependencies are resolved at the last word
Source reconstruction of MEG data “presents.

MRI preprocessinirst, coregistration of the MRI with the CTFand ~ As mentioned earlier, we were interested in investigating high-level
Polhemus fiducials was performed. Individual MRIs were normalized irtognitive processing associated with comprehension. Content words
MNI space and segmented. Realistic volume conduction models wefgouns, verbs, adjectives, adverbs) are known to have a lexical semantic
created for each participant based on the single-shell model of thefontent, whereas function words (pronouns, articles, prepositions, auxil-
MRIs (Nolte, 2003. For each participant, 5798 dipole positions werejary verbs) contribute mostly to the grammatical structure and have a
defined with an 8 mm resolution. relatively less lexical semantic meanin@over and van Riemsdijk,

Spatial filtersA spatial filter for the source reconstruction analysis 2013, although they clearly have consequences for syntactic and seman-
was calculated for each participant. Covariance matrices were computgél compositional meaning. Therefore, we focused our analysis on de-
over single trials (13 Dutch and French story parts) and then averagegendency relations between content words only. This was done by using
Leadfields for all grid points, combined with the covariance matricesselations that were comprised of two content words, while excluding
were used to compute a spatial filter with the Linearly Constrainedtelations in which at least one of the two words was a function word. For
Minimum Variance {een et al., 1997method. The source orientation instance, irFigure 1A, three dependency relations are resolved at the last

was fixed to the dipole orientation with the highest strength. word of the sentencépresents. “opened presents: the present,and
“big presents. However, only two of those relations are comprised of
Forward models predictirgand b power from linguistic features two content words ‘(opened presentsand “big presenty, as the rela-

We attempted to quantify higher-level operations during spoken lan+ion “the presentscontains a function word, the articléhe?’ By subtract-

guage comprehension in response to the processing of dependencigg the number of relations containing function words, we are left with

that opened/remained open/were resolved at each word. We then comwo resolved dependencies instead of three. This process is performed sep-

structed forward models predicting and b power from the depend- arately for the construction of each of the three dependency features.

ency features controlling for low-level linguistic features (acoustic edges, Low-level features: control variablEs.make sure that potential de-

word onset, and word frequency). pendency effects are not because of low-level linguistic properties, we
To investigate the relationship between linguistic featuresaand  considered the following features as our base model:

b power, we constructed a time series for each feature. Each word feAeoustic edges. Abrupt changes in the acoustics are tracked by neu-

ture was time-aligned with the auditory stimulus using the forced-align—al activity. It is possible that, through cross-frequency coupling, the

ment function of the web-service MAUKsler et al., 201)7In orderto  neural tracking of syllables in low frequenciab ¢ band) (Doelling

align the linguistic features with the auditory stimuli, a single impulse-et al., 201%¥modulates thea and b frequency bands. Notably, it is

like value representing the magnitude of the feature was assigned at thgll a matter of debate whether the tracking of low frequencies is

onset of each word (except for acoustic edges where the impulses coidplemented as endogenous oscillations or as a series of evoked

be at different time points, see below). responses to acoustic landmarkkofima et al., 2020 We thus
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A B
Example of dependency parsing Forward models
: 3 I - _l Feature Model name
Relation: Base Open. Rem. Res. Full
Example sentence: Jenny opened the big presents  Acoustic edges X X X X X
) ) ) . ) ) Word onset X X X X X
/function word: : F ( Word frequency  x X X X X
Opened Opened X X
Remained open Remained open X X
Resolved Q Resolved X X
=3-1
C D

TRF calculation and evaluation Example of mismatch model

reconstruction accuracy (Pearsonesr)

Word lst 2nd 3rd 4lh 5'[h

v Story
+ ¥ Story 1 actual 0 1 0 0 3
MEG power NJ linear redicted Story 2 actual 0 0,4 2.0
model [*] TRFS pMEG Story 1 mismatch 0 40 072
stories ¥ features
[

leave-one-out cross-validation

E F
Grand average power spectrum Dutch French
X10-28 . @] . o
25r @ @ ‘3" @ ) @ g @
Al original =2 2 » 2 2 o
15} fractal acoust. -0.01| 0 [-0.01|-001| [-0.02|-0.01|-0.02|-0.01
5 y mmm oscillatory
S freq.| 0.36 | -0.16 | 0.40 053 0.60.
o
open.|-0.20 | 0.13 0.19 | 0.34
-1 . . L . 1 rem. | -0.25 0.27
10 15 20 25 30
Frequency (Hz —
quency (Hz) N 5 1
Pearsonesr

Figure 1. Methodological aspects of the TRF analysis using linguistic feataretbasqwedidtoisdoraturalistic storyAidtemimple of dependency parsing
(Metuk, 1988nd the extracted dependency features (number of opened/remained open/resolved dependeri§es)ziDiecaatqr?pfen Statefo dbparsar
ency graphs for each sentence. Green arrows represent relations between two content words (nouns, verbg, retitiotssso atzweiras a thessa ooevBIrepies
word (pronouns, articles, prepositions, auxiliary verbs). The dependency features were constructed basedrds (gletimneatoes)yisrd wditvgor elatiems won
taining function words (redB/lieefe). construction. The base model includes low-level linguistic features (acoustic edges, word onset, wald-frequency)
pendency mo@esehematic of the TRF analy$isEipetiple. of mismatch model construction. The actual feature values are replaced by those of another
initial positidi$srand average power spectrum over all data, participants, and sensbnddtelE@OD)-&iEgOute (0 separate the fractal from the oscillat
components of the origin& §ignalation plots between all features (except word onset as it is a constant) separately for NL and FR stories.

controlled for low-level acoustic properties by incorporating acousticSUBTLEX-NL for Dutch Keuleers et al., 20y@nd Lexique for French
edges in our feature set, extracted from the speech envelope. First, we géew et al., 2004 The number of instances of each word was divided by
erated broadband envelopes of the audio files using gammatone filtée total number of instances of all words. Word frequency was defined
banks (method followindrishbach et al., 20D1Then, we calculated the as the negative logarithm of that number, so that the higher the value,
derivative of the envelope and defined as acoustic edges the points whiae lower the frequency.

the derivative exceeds its 97.5th percentile. Acoustic edges were repre-Before using the above features in the linear regression analysis, we
sented as nonzero, equally valued pulses. examined the feature inter-correlations by calculating Peassaroeffi-
Word onset. Neural activity has been found to track the onset of wordscient between features. All correlations were low to moderiaig. (IF).
because of the brai parsing of the acoustic input to form discrete To detect multicollinearity between features, the variance inflation factor
meaningful units Ding and Simon, 2014 Word onsets were repre- was computed, which indicates whether the variation of one feature is
sented as nonzero, equally valued pulses at the time points defined aygely explained by a linear combination of the other features. Variance
the forced alignment procedure. inflation factor was low for all featureN(ac edges 1, NLireq = 1.34,
Word frequency. The frequency of a word outside the sentential con-NLypened= 1.18,NLiemained_oper™ 1.10,NLiesoved™ 1.24;FRyc edges 1,

text has been shown to modulate neural respon&gedbeck et al., FRreq= 3.09,FRypened= 1.44,FRemained opere 1.66,FResonved™ 1.70),
2019. Two online databases were used to calculate word frequencindicating no concern for multicollinearity (for feature descriptives, see
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Table 1. Universal dependency types in NL and FR stories Simon, 2012Broderick et al., 2098 Here we assume that the neural

Universal dependency type NL reg@@_nse_sa( ano_l b poyver) at each sensor can be expres_sed as a linear
combination of linguistic features shifted by different latencies (for a sche-

Adverbial modifier 13.72 Bnédic of the TRF analysis pipeline, $éig. IC). Specifically, the instanta-

Nominal subject 10.63 &B3us MEG responget; nbof timest ¥4 1:::T at channeh is expressed

Conjunct 9.25 8.08y the convolution of a linguistic feature,& b with a kernel or TRF,

Oblique nominal 8.72 9@t ; nk The TRF covers a specified range of time lagselative to

Object 7.21 9.23imet. The forward model can be represented by the following equation:

Verb 7.04 5.47 < X

Determiner 6.34 9.34

Adjectival modifier 5.41 5.88 rainpa o wainsd  tH «&nb @

Case marking 4.78 6.19

Coordinating conjunction 4.12 wBg£«d; nbis a white noise process, capturing part of the signal unre-

Parataxis 3.00 1.0ated to the stimulus. Contributions from each feature are linearly com-

Nominal modifier 2.81 Skred. The TRF is estimated by minimizing the mean-squared error

Adverbial clause modifier 2.76 betgasen the MEG responsey; nk and the predicted MEG response,

Open clausal complement 2.73 f& 1aigas follows:

Marker 2.58 2.04 X

Auxiliary 2.09 1.45 argmin, «&; n s ranp £ np? @)

*Percentage of trials belonging in each type of Universal Dependency Relation (for more information, see

https://universaldependencies.org/u/Jesépdeatbtynfor NL and FR stories, showing onl es i . .
ocsurrmgg% of theptime_ guige o 9 y'l'%% solution to (2) can be computed in closed-form using the pseudo

inverse as follows:

Table 2. Descriptive statistics of features used in the models

WY& 'S (3)
NL FR
Feature Mean SD Range Mean SD waegsS is the concatenation of the lagged time series of each linguistic
features;.
Word frequency ~ 3.13 139 139-7.64  3.36 1.37 11ﬁ:%<a2rglysis was conducted using the MATLAB mTRF Toolbox
Opened 129 066 15 133 062 1'§rosse et al., 20).6Here we used the functiomTRFtrainto estimate
Remained open 1.70 0.86 1-7 1.53 0.74 @ TRF coefficients for each linguistic feature, separately for NL and FR
Resolved 1.46 0.79 1-6 1.20 0.47

Stories. By visual inspection of the TRF coefficients, the time lags over

“Mean, SD, and range of word frequency, opened, remained open, and resolved feawtighATIREE welges amblyzed were froni to 1.5 s. The TRF at time

word onset are not presented as they have a single value. indexes how a unit change in a given linguistic feature affects the MEG
responsd seconds later. For Ridge regression, a regularization term is

Table 2. Finally, for each linguistic feature, values were standardized tadded to leverage the fact that the inversiorSb§is unstable, and thus

have unit variance and zero mean. prevent overfitting because of fitting high-frequency noise. This happens
when the columns oB are correlated. With continuous regressors, the
aand b power estimation lagged time series forming the columns®¢omprise a highly autocor-

Following our hypotheses focusing on genuine brain oscillations, weelated signal. However, in our case, all columns of the lagged time series
used spectral analysis of the MEG data to confirm the presence of tware independent, as they are not continuous and contain nonzero val-
distinct peaks separately farand b, as an index of oscillatory activity. ues only at word onsets. The lagged time series is thus not correlated,
WelcHs method was used to compute the power spectra. Subsequenthgnce adding a regularization term was not necessary and would lead
the Fitting Oscillations & One Over F (FOOOF) algorithi@@noghue  to underfitting.
et al., 202Pwas applied to confirm the presence of peaks with power Model validation.Validation of the TRF models was performed by
over and above the aperiodic 1/f signald. IE). comparing the Pearsdsir correlation between the actual MEG and the
Sensor-leveThe time course of tha (mean of 812Hz) andb (15~  reconstructed MEG response. This was implemented using the function
30Hz) power was estimated throughout all story parts. PreprocessedTRFcrossvalf the mTRF Toolbox following a leave-one-out cross-val-
MEG data were convolved with a sliding window Hanning taper (adaptidation approach. Specifically, a story part was used as the test set and
ive window length). The time-frequency representation was calculatethe remainingM-1 story parts were used as the training set. The TRF
with 1 Hz steps using 6-cycle wavelets over the course of each story partodel was then estimated for each story part of the training set, and
Then, the wavelet convolved values were averaged over the frequency baifietir average TRF is computed. Subsequently, the averaged model was
Source-levekirst, the complex Fourier coefficients were estimated sepeonvolved with the test set to predict the MEG responses. Peanson
arately for thea and b bands with same parameters as in the sensor-levelas computed between the actual MEG and the reconstructed MEG
analysis. Then, the coefficients were multiplied with the particisasgiatial  responses of the test set fronl to 1.5 s. The aforementioned process
filter, and, finally, the power of that product was calculated. was repeatet¥l times, so that all story parts were assigned to the test set
Finally, the spectral data were normalized by subtracting thence. The Pears@r values were then averaged overMlvalidations.
meana and b power over all time points of all stories from each This procedure was done separately for NL and FR stories.
time point, separately for each sensor/source, before estimation of

the temporal response functions (TRFs). Statistical evaluation
Model comparison
TRF analysis We first assessed the contribution of the low-level linguistic featuras to

We constructed linear forward models (TRF§)rfsse et al., 20160 and b power modulations by evaluating their reconstruction accuracy.
predicta and b power from these dependency features, controlling forResults showed that all features (acoustic edges, word onset, word
low-level linguistic features{g. IC). TRF analysis is capable of disen- frequency) explain a substantial amount of variance of the MEG
tangling overlapping neural responses because of consecutive evergsponse Fig. 2A). As there is evidence that word surprisal affects
with high temporal proximity, and can handle confounding covariates.neural responsed/Neissbart et al., 2020we also evaluated the con-
TRFs are forward or encoding models based on the assumption that thebution of surprisal. Surprisal values were estimated from the
output of a system relates to the input via a linear convolutbm@ and  GPT2 language model (from huggingface transformer model,
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available athttps://huggingface.co/GroNLP/gpt2-small-dujckde Comparison with mismatch mod#gi.order to perform comparisons
Vries and Nissim, 2020 Results showed that (1) surprisal did not to chance levels of reconstruction accuracy, we constructed null models
explain a substantial amount of variance, neither in theor in the  to which the full dependency model was compared. To confirm that
b band (i.e., adding surprisal to a model with acoustic edges angkconstruction accuracy improvement with the dependency features is
word onset or to a model with acoustic edges, word onset and word frenot merely because of (1) the addition of features or (2) the existence or
quency did not significantly improve reconstruction accuracy of the model)hot of a dependency state independent of its value, we compared the full
and (2) word frequency and surprisal are highly correlated (Pe&@sonmodel with mismatch models. Mismatch models are models of which
r=0.574,, 0.001); therefore, we decided to include only acoustic edgegie feature values of one of the features is replaced by those from another
word onset, and word frequency in the base model. The respective modstbory, while keeping the value positions of the actual stéfig.(1D).
coefficients of the low-level features are showRigure Z. This allows to compare models with matching number of predictors.

Comparison with base modéi. order to test whether the depend-  As the mismatch models have the same number of trials per feature
ency features predict the neural data over and beyond the base modgfith the actual models, there was no need for a bootstrapping approach
we compared reconstruction accuracy between the base model (inclubere. We performed a 4 (model: opened/remained open/resolved/full)
ing only the low-level linguistic features) against the base model aug (frequency banda vs b) repeated-measures ANOVA with reconstruc-
mented with each and all of the dependency features (opened/remaing@n accuracy improvement as the dependent variable, averaged over sen-
open/resolved/full) (for model construction, sEgy. 1B). sors withz-scored difference between mismatelactual exceeding 1 SD.

As dependencies do not occur at every word instance, dependency feane-sample tests compared reconstruction accuracy improvement from
tures had a substantially lower number of nonzero valtiesle’ from now  zerq.
on) compared with the base features (base featMigsi_onset, word_frequertcy Control analysis: comparison with mismatch model in French stories.

8535; dependency featurépened= 2691 Nremained_ope™ 5596 Nresoved™  As participants did not understand French, we used the French
2381). This would affect the signal-to-noise ratio in the estimated TRF andiories as a control condition to confirm that th@and b power

therefore, the associated reconstruction accuracy. Because of the differgfqulations by the dependency features in Dutch is linked to

number of trials between features, we needed to equalize the number @ mprehension rather than acoustic or speech properties. Similar to
trials of the features of the two contrasting models at each time (i.e., @ dgje ahove analysis, we performed one-samyifests (compare to zero)
pendency model vs the base model) by randomly selecting an equghq a 3 2 ANOVA on the reconstruction accuracy difference between

number of trials across features. To make sure this random selection wggya| versus mismatch models, averaged over the identified sensors with
not particular in any way, we followed a bootstrapping procedure. Morgnayimal improvement.

specifically, the feature with the smallest number of trials was first identi-

fied. Then, an equal number of trials was randomly selected in the rest ?{econstruction accuracy between NL versus FR stories

the features of the two models being compared at that time, while the eéonsiderin the multiple comparisons problem and the lack of a specific
cessive trials were converted to zero. This was performed for every fed- thesi 9 bout thepl i p of the gﬁ ¢ ed o p otri
ture except acoustic edges, as those trials were not aligned with wo pothesis abou ocation ECts, We used a nonparametric

onset and were therefore relatively independent to the rest of the fe luster permutafuon approacW(ans and Oostenveld, 20Dt compare
tures. To make sure that our effects would not be because of a certaifc rec_onstructlon accuracy In NL Versus FR on source level. As there
random selection during bootstrapping, we repeated this procedurl@'ere niné story parts n NL, but only four in FR, we performed a boot-
10,000 times. Subsequently, we tested in how many of these iteratio %applng procedure W'th replacement by randomly Selecmg four of the
reconstruction accuracy of the dependency model was significantly- SIOTY parts over which we compared the reconstruction accuracy
higher than the base model. To do this, reconstruction accuracy w. ith the FR. This was done over 50 iterations, all showing significant dif-
first averaged over sensors exhibiting improved accuracy over the ba&&€nces between conditions. Reconstruction accuracy was then averaged
model (i.e., where the-scored difference between models exceede®@Ve all iterations to perform the final statistical evaluation. The cluster
1 SD). Then, paired tests were conducted between models. Result@ermutation procedure addresses the multiple comparison problem by
showed that all models significantly improved reconstruction accurac§®Mpining neighboring source points that show the same effect into
compared with the base model across the 10,000 iterations (percentaﬂHSterS and comparing those with the nu_II dlstrlputlon. Paired samiples _
of significant iterations 95%) of the bootstrapping procedure (for the [eSts were computed for each source point, testing NL versus FR condi-
t value distributions, seBig. 2B). Therefore, reconstruction accuracy tons- Spatially adjacent source points whosalues exceeded anpri-

was averaged over all iterations to perform the final statistical evalug1 threshold (uncorrecteg value, 0.05) were combined into the same
tion. Reconstruction accuracy was then averaged over the sensors@fSter, with the cluster-level statistic calculated as the sum dfitateies
which thez score difference exceeded 1 SD i0% of the iterations. of the cluster. Finally, the values of the cluster-level statistic were eval-

Here is a summary of the bootstrapping pipeline for dependency/ated by calculating the probability that it would be observed under
model versus base model comparisons: the assumption that the two compared conditions are not signifi-

cantly different @ = 0.05, two-tailed). To obtain a null distribution to
1. Among the two contrasting models, find the feature with the small-evaluate the statistic of the actual data, values were randomly assigned
est number of trials"trials’ defined as nonzero feature values). to the two conditions and the statistics recomputed 1,000 times
2. For all features, randomly select an equal number of trials and set1onte-Carlo permutation).
the remaining trials to zero.

Compare average reconstruction accuracy between the two models, .
Repeat Steps 2 and 3 for 10,000 iterations. d and b band modulations by dependency features

Calculate the percentage of times Step 3 was significant and compute Comparison of dependency models with base model: reconstruction

. . - afccuracyfl'o identify the neural sources of the dependency feature con-
improvement by subtracting the average reconstruction accuracy Yibutions, we used beamformer source reconstruction in ghand b
the base model from the dependency model. ’

bands (see Materials and Methods sectit8surce reconstruction of

We performed a 3 (model: opened/remained open/resolved? =~ MEG datd and“a and b power estimatiof). The reconstruction accu-
(frequency banda vs b) repeated-measures ANOVA with reconstruc- racy of each dependency model was compared with the base model. A
tion accuracy improvement (dependency moddlase model) as the de- bootstrapping approach with replacement was used as described in sec-
pendent variable. Improvement was also compared to zero with ongion “Model comparisoh, so that all features of the two models under
samplet tests, for each model. As results showed that all three depengomparison had the same number of trials. Reconstruction accuracy at
ency features were significant, the full model was evaluated in a @ach source point was averaged over iterations. A cluster-based permutation
(model: opened/remained open/resolved/full)2 (frequency banda vs  approach was used for statistical evaluation as described in Reconstruction
b) repeated-measures ANOVA, and was compared to zergdsit hoc  accuracy between NL versus FR stores(0.0001, two-tailed; 1,000 per-
contrasts were Bonferroni-corrected for multiple comparisons. mutations), by shuffling the labels between dependency and base

arw
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