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Brain oscillations are prevalent in all species and are involved in numerous perceptual operations.a oscillations are thought
to facilitate processing through the inhibition of task-irrelevant networks, whileb oscillations are linked to the putative reac-
tivation of content representations. Can the proposed functional role ofa and b oscillations be generalized from low-level
operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language com-
prehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded.
We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependen-
cies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predicta
and b power from the dependency features. Results showed that dependency features predicta and b power in language-
related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language
comprehension ina, while frontal and parietal, higher-order language regions, and motor regions are involved inb.
Critically,a- and b-band dynamics seem to subserve language comprehension tapping into syntactic structure building and
semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the
temporal similarity of thea-b responses, their potential functional dissociation remains to be elucidated. Overall, this study
sheds light on the role ofa andb oscillations during naturalistic spoken language comprehension, providing evidence for the
generalizability of these dynamics from perceptual to complex linguistic processes.
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Significance Statement

It remains unclear whether the proposed functional role ofa andb oscillations in perceptual and motor function is general-
izable to higher-level cognitive processes, such as spoken language comprehension. We found that syntactic features predicta
andb power in language-related regions beyond low-level linguistic features when listening to naturalistic speech in a known
language. We offer experimental findings that integrate a neuroscientific framework on the role of brain oscillations as“build-
ing blocks” with spoken language comprehension. This supports the view of a domain-general role of oscillations across the
hierarchy of cognitive functions, from low-level sensory operations to abstract linguistic processes.

Introduction
Out of the many neural phenomena that exist, brain oscillations are
prevalent in all species and are involved in numerous perceptual
operations. Are brain oscillations the“building blocks” of cognitive
function, from low-level sensory to higher-level processes? Extensive
prior research focused on the role ofa and b oscillations in basic
perceptual and motor functions. Here, we asked whether their pro-
posed role in low-level operations generalizes to higher-level cogni-
tive functions, in particular language comprehension. We adopted a
forward-modeling approach predicting brain responses from high-
level, syntactic features to test the role ofa andb oscillations during
naturalistic spoken language comprehension.

Alpha oscillations (8-12 Hz) are thought to reflect a mecha-
nism of active inhibition, which fine-tunes sensory processing by
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guiding attention and suppressing distracting input (Klimesch et
al., 2007; Jensen and Mazaheri, 2010). a power increases with
working memory load during retention, reflecting inhibition of
task-irrelevant regions (Jensen et al., 2002; Tuladhar et al., 2007;
Scheeringa et al., 2009; Pan et al., 2018), and is associated with
behavioral performance (Haegens et al., 2010, 2011b, 2012).
Traditionally, b oscillations (15-30 Hz) are considered a motor
rhythm (Kilavik et al., 2013), associated with top-down process-
ing and long-distance network communication (Varela et al.,
2001). b power increases during information retention, attrib-
uted to active maintenance of the current cognitive set (Engel
and Fries, 2010). Spitzer and Haegens (2017)proposed thatb
oscillations support the reactivation of content representations,
via the transitioning of latent items into active working memory
(Rose et al., 2016). To date, there is extensive research investigat-
ing the oscillatory correlates of language processing (Bastiaansen
et al., 2010; Obleser and Weisz, 2012; Lewis et al., 2015; Zoefel
and VanRullen, 2015; Ding et al., 2016; Kösem et al., 2016;
Martin and Doumas, 2017; L. Meyer, 2018; Brennan and Martin,
2020; Kaufeld et al., 2020; L. Meyer et al., 2020; van Bree et al.,
2021; Bai et al., 2022; Coopmans et al., 2022; Hauswald et al.,
2022; ten Oever et al., 2022a). However, few steps have been
taken to begin to link investigations ofa and b oscillations in
sensory and perceptual neuroscience to cognitive functions that
are fundamentally derivative of sensory processing, such as lan-
guage comprehension from speech or sign perception.

Here, we operationalized high-level linguistic processing
using attributes from dependency parsing, describing syn-
tactic sentence structure as relations between pairs of words
(Mel’cuk, 1988; Tesnière, 2015). Dependencies are created
when a nonunified word (“dependent constituent”) is encoun-
tered. Processing load increases with the number of dependen-
cies being processed (Vos et al., 2001; Demberg and Keller,
2008). Dependencies are resolved once the linking word (“de-
pendent”) is encountered, recruiting unification or integration
processes (Hagoort, 2005; Martin, 2016, 2020; Kapteijns and
Hintz, 2021). Integration is thought to require reactivation of
any dependent constituent (McElree et al., 2003; Martin and
McElree, 2008; Foraker and McElree, 2011). As resolving lin-
guistic dependencies is crucial for language comprehension, it
can be argued that dependency resolution exemplifies higher-
level cognitive operations. We therefore hypothesized thata
and b power would be modulated by dependencies, and
used dependency parsing as a proxy for this processing.

Specifically, we compared MEG responses while partici-
pants listened to comprehended (Dutch) versus uncompre-
hended (French) spoken stories. We identified three states
at each word: number of opened/remained open/resolved
dependencies. We constructed forward models to predicta
and b power from these dependency features, controlling
for low-level linguistic features. We predicted that Dutch
compared with French stories would elicit stronger modu-
lations ofa and b power in typical language-processing brain
regions. Additionally, we hypothesized that our dependency
features would predicta and b power in language processing-
related regions beyond low-level linguistic features. We further
hypothesized that the opening of dependencies would be asso-
ciated with a increases/decreases at task-irrelevant/-relevant
areas linked to inhibition, while“maintenance” of dependencies
would be associated withb power increases, attributed to an-
ticipatory and active ongoing processes. Finally, we predicted
that b power would increase during dependency resolution,
related to content reactivation.

Materials and Methods
Participants
Twenty-two adults (18 female) aged between 18 and 63 years old
(mean6 SD age, 346 15years) took part in the experiment. Prescreening
required that participants were monolingual Dutch native speakers, right-
handed, without hearing problems, reading problems, or epilepsy. All par-
ticipants self-reported zero use and minimal understanding of French at the
level of isolated words but not whole sentences before taking part
in the experiment. Before the experiment, participants were pro-
vided with written and verbal information about the MEG system
and safety regulations and gave written informed consent. They
received monetary reimbursement after participation. The study
falls under the general ethics approval (CMO 2014/288“Imaging
Human Cognition”) in accordance with the Declaration of Helsinki.

Stories
In order to tap into language comprehension, we compared brain
responses recorded with MEG while participants listened to spoken
stories in a language they comprehend (Dutch, mother tongue) versus a
language they do not comprehend (French, a familiar but uncompre-
hended language). Stories in French were selected as a control to confirm
that our effects are because of comprehension and not acoustic proper-
ties of speech, with which participants would be familiar because of re-
gional proximity. Behavioral performance and debriefing demonstrated
that Dutch native speakers were not able to understand the French narra-
tives, despite their familiarity with the acoustic properties and some com-
mon words in French. French thus constituted a stronger control than
a language with which participants would be completely unfamiliar.
Critically, compared with traditional studies using artificial word or
sentence stimuli, the use of natural speech in prerecorded stories
allowed for a more ecologically valid approach as (1) the natural pros-
ody of the voice recording guides comprehension via auditory cues, (2)
processing requires constant effortful attention throughout, and (3) it
lacks the brain responses induced by certain properties of artificial
stimuli, such as abrupt voice modulations or unnatural syllable timing.

The following three Dutch (NL) stories were used:Het Lelijke Jonge
Eendjeby H.C. Andersen,De Ransel, het Hoedje en het HoorntjeandDe
Gouden Vogelby the Grimm brothers. All NL stories were spoken by
female voices. The following three French (FR) stories were used:L’eau
de la vieby the Grimm brothers (male voice),L’angeby H.C. Andersen
(female voice), and an excerpt fromLe Canard Ballonby E.A. Poe
(female voice). The NL stories and the last FR story were retrieved from
www.librivox.org, and the rest fromwww.litteratureaudio.com. In order
to reduce fatigue, stories were split into parts of short duration (NL: 9
story parts, mean6 SD, 5.56 0.6 min; FR: 4 story parts, duration 5.36
0.7 min). Stories that were already, 6 min were not split further. All
audio files were normalized to an equal perceived loudness.

Five MCQs with four choices each were included after each story
part (65 in total) to (1) ensure that participants paid attention to the spo-
ken stories and (2) confirm the lack of understanding of the French sto-
ries. A Dutch and a French native speaker composed the questions for
the Dutch and French stories, respectively. All were content questions,
for example:Who lives in the old house? A. An old man B. An old lady C.
Nobody D. A family; What did the traveler take from the table? A. The
tablecloth B. The bread C. The potatoes D. The wine.

Procedure
Participants were seated in the MEG system in a dimly lit room. They
were informed that they would listen to stories in Dutch and French
during MEG recording. Further, they were instructed to pay attention to
the stories as they would be prompted to answer MCQs after each story
part. Responding to the MCQs was done by pressing four keys of a
response box in a self-paced manner. Resting-state MEG was recorded
for 10 s before the onset of each story part but was not included in the
analysis. The presentation order of the story parts was pseudorandom-
ized across participants: NL and FR story parts were interleaved but care
was taken so that their order remained intact (e.g., the second part of a
story could be presented only if the first part of that same story was
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previously heard). The overall procedure lasted for; 1.5 h. The experi-
ment was programmed with custom MATLAB (The MathWorks)
scripts using Psychtoolbox (Brainard and Vision, 1997).

Data acquisition and MEG preprocessing
MEG data were recorded at a sampling rate of 1200 Hz using a 275 chan-
nel axial gradiometer system (CTF MEG systems, VSM MedTech)
located in a magnetically shielded room. Eight sensors were excluded
because of permanent malfunction, leaving a total of 267 usable sensors.
Three fiducial localization coils were placed at the participant’s nasion
and left and right ear canals to (1) allow for real-time monitoring of the
participant’s head position and adjustment in between story parts if nec-
essary, and (2) provide anatomic landmarks for offline coregistra-
tion of the MEG data with T1-weighted MRI images for source
reconstruction. After completion of the task, thex, y, z coordinates
of the three fiducial points as well as the participant’s head shape
were digitized using a Polhemus 3D tracking device. Furthermore,
individual structural MRI scans were acquired in a 3T Siemens
Magnetom Skyra MR scanner using earplugs with a drop of vita-
min E at the subject’s ear canals to facilitate subsequent alignment
with the MEG data.

Continuous MEG data were downsampled to 100 Hz and epoched
from the onset until the offset of each story part. Data from sensors with
consistently poor signal quality, as observed by visual inspection, were
removed and interpolated based on neighboring sensors. Finally, inde-
pendent component analysis was performed to correct for eye-blinks
and heartbeat artifacts. Custom-written scripts in MATLAB and the
FieldTrip toolbox (Oostenveld et al., 2011) were used for analysis of the
MEG data.

Data analysis
Behavioral data
To assess participants’ understanding of the stories, we calculated the
percentage of correct responses in the MCQs separately for NL and FR
stories. A pairedt test was used to compare the two conditions and a
one-samplet test to compare performance accuracy to chance level at
25%.

Source reconstruction of MEG data
MRI preprocessing.First, coregistration of the MRI with the CTF and

Polhemus fiducials was performed. Individual MRIs were normalized in
MNI space and segmented. Realistic volume conduction models were
created for each participant based on the single-shell model of their
MRIs (Nolte, 2003). For each participant, 5798 dipole positions were
defined with an 8 mm resolution.

Spatial filters.A spatial filter for the source reconstruction analysis
was calculated for each participant. Covariance matrices were computed
over single trials (13 Dutch and French story parts) and then averaged.
Leadfields for all grid points, combined with the covariance matrices,
were used to compute a spatial filter with the Linearly Constrained
Minimum Variance (Veen et al., 1997) method. The source orientation
was fixed to the dipole orientation with the highest strength.

Forward models predictinga andb power from linguistic features
We attempted to quantify higher-level operations during spoken lan-
guage comprehension in response to the processing of dependencies
that opened/remained open/were resolved at each word. We then con-
structed forward models predictinga and b power from the depend-
ency features controlling for low-level linguistic features (acoustic edges,
word onset, and word frequency).

To investigate the relationship between linguistic features anda and
b power, we constructed a time series for each feature. Each word fea-
ture was time-aligned with the auditory stimulus using the forced-align-
ment function of the web-service MAUS (Kisler et al., 2017). In order to
align the linguistic features with the auditory stimuli, a single impulse-
like value representing the magnitude of the feature was assigned at the
onset of each word (except for acoustic edges where the impulses could
be at different time points, see below).

Dependency features.
Dependency parsing. We operationalized high-level linguistic proc-
essing during spoken language comprehension using attributes from de-
pendency parses. This is mainly motivated by the trade-off between
coverage of features and accessibility in parsing models; it is not a strong
theoretical commitment to one parsing framework over another.
Dependency grammars describe the syntactic structure of a sentence as a
set of relations between two words (Mel’cuk, 1988; Tesnière, 2015). The
links begin from the head and end on the dependent word and are assigned
a label representing the type of dependency (e.g., subject, object, determi-
nant, etc.). Each sentence has a root, usually the verb, which is the head of
the entire structure (for an example of dependency parsing, see the graph in
Fig. 1A, top). Dependency grammars often reveal nonadjacent, complex
dependencies. Previous work has used dependency structures as a measure
of or proxy for syntactic complexity, as words that form dependencies often
appear in nonadjacent positions (e.g.,Wilson et al., 2020).

We used an automated parser (Stanford parser“Stanza”) (Qi et al.,
2020) to generate dependency graphs for each sentence in the stories.
Stanza uses universal dependencies (Nivre et al., 2016), which is a set of
dependency relations that are cross-linguistically applicable (for the
types of universal dependencies in our stories, seeTable 1). Based on
those, three dependency measures were extracted for each word using
custom-written scripts: (1) number of opened dependencies, (2) number
of dependencies that remained open, and (3) number of resolved
dependencies. As we did not have any hypothesis about left- versus
right-branching dependencies, we summed over both directions (Fig.
1A). Dependency features were represented as valued impulses at the
word onsets of the respective words where the dependency took place.

(1) Opened dependencies: the number of dependencies that open at
a given word. In the example ofFigure 1A, one dependency opens at
each word (nsubj, obj, det, amod, respectively) except for the last one
(zero opened dependencies).

(2) Remained open dependencies: the number of dependencies that
are already open but remain unresolved. InFigure 1A, the obj depend-
ency is still unresolved at word“the,” while both the obj and det depend-
encies are unresolved at word“big.”

(3) Resolved dependencies: the number of dependencies that are
resolved at this word. InFigure 1A, the nsubj relation is resolved at word
“opened”; the rest of the dependencies are resolved at the last word
“presents.”

As mentioned earlier, we were interested in investigating high-level
cognitive processing associated with comprehension. Content words
(nouns, verbs, adjectives, adverbs) are known to have a lexical semantic
content, whereas function words (pronouns, articles, prepositions, auxil-
iary verbs) contribute mostly to the grammatical structure and have a
relatively less lexical semantic meaning (Corver and van Riemsdijk,
2013), although they clearly have consequences for syntactic and seman-
tic compositional meaning. Therefore, we focused our analysis on de-
pendency relations between content words only. This was done by using
relations that were comprised of two content words, while excluding
relations in which at least one of the two words was a function word. For
instance, inFigure 1A, three dependency relations are resolved at the last
word of the sentence“presents”: “opened presents,” “ the presents,” and
“big presents.” However, only two of those relations are comprised of
two content words (“opened presents” and “big presents”), as the rela-
tion “the presents” contains a function word, the article“the.” By subtract-
ing the number of relations containing function words, we are left with
two resolved dependencies instead of three. This process is performed sep-
arately for the construction of each of the three dependency features.

Low-level features: control variables.To make sure that potential de-
pendency effects are not because of low-level linguistic properties, we
considered the following features as our base model:
Acoustic edges. Abrupt changes in the acoustics are tracked by neu-
ral activity. It is possible that, through cross-frequency coupling, the
neural tracking of syllables in low frequencies (d-u band) (Doelling
et al., 2014) modulates thea and b frequency bands. Notably, it is
still a matter of debate whether the tracking of low frequencies is
implemented as endogenous oscillations or as a series of evoked
responses to acoustic landmarks (Kojima et al., 2020). We thus
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controlled for low-level acoustic properties by incorporating acoustic
edges in our feature set, extracted from the speech envelope. First, we gen-
erated broadband envelopes of the audio files using gammatone filter
banks (method followingFishbach et al., 2001). Then, we calculated the
derivative of the envelope and defined as acoustic edges the points when
the derivative exceeds its 97.5th percentile. Acoustic edges were repre-
sented as nonzero, equally valued pulses.
Word onset. Neural activity has been found to track the onset of words
because of the brain’s parsing of the acoustic input to form discrete
meaningful units (Ding and Simon, 2014). Word onsets were repre-
sented as nonzero, equally valued pulses at the time points defined by
the forced alignment procedure.
Word frequency. The frequency of a word outside the sentential con-
text has been shown to modulate neural responses (Brodbeck et al.,
2018). Two online databases were used to calculate word frequency,

SUBTLEX-NL for Dutch (Keuleers et al., 2010) and Lexique for French
(New et al., 2004). The number of instances of each word was divided by
the total number of instances of all words. Word frequency was defined
as the negative logarithm of that number, so that the higher the value,
the lower the frequency.

Before using the above features in the linear regression analysis, we
examined the feature inter-correlations by calculating Pearson’s r coeffi-
cient between features. All correlations were low to moderate (Fig. 1F).
To detect multicollinearity between features, the variance inflation factor
was computed, which indicates whether the variation of one feature is
largely explained by a linear combination of the other features. Variance
inflation factor was low for all features (NLac_edges= 1, NLfreq = 1.34,
NLopened= 1.18,NLremained_open= 1.10,NLresolved= 1.24;FRac_edges= 1,
FRfreq = 3.09,FRopened= 1.44,FRremained_open= 1.66,FRresolved= 1.70),
indicating no concern for multicollinearity (for feature descriptives, see

Example of mismatch model

A

C

       1st   2nd   3rd   4th   5th

Story 1 actual    0   1   0   0     3
Story 2 actual    0   0   4    2     0
Story 1 mismatch   0   4   0   0     2

Jenny opened the big presents

Opened 1 1 1 1 0
Remained open 0 0 1 2 0

Resolved 0 1 0 0 2
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  Feature      Model name
         Base   Open.   Rem. Res.     Full    
 Acoustic edges  x   x    x     x          x
  Word onset  x   x    x     x      x
Word frequency  x   x    x     x      x
    Opened     x          x
Remained open        x        x
      Resolved           x      x
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Figure 1. Methodological aspects of the TRF analysis using linguistic features as predictors fora andb power during naturalistic story listening.A, Example of dependency parsing
(Mel’cuk, 1988) and the extracted dependency features (number of opened/remained open/resolved dependencies). The automated Stanford parser“Stanza” (Qi et al., 2020) generated depend-
ency graphs for each sentence. Green arrows represent relations between two content words (nouns, verbs, adjectives, adverbs). Red arrows represent relations containing at least one function
word (pronouns, articles, prepositions, auxiliary verbs). The dependency features were constructed based on relations comprised of two content words (green values), excluding relations con-
taining function words (red values).B, Model construction. The base model includes low-level linguistic features (acoustic edges, word onset, word frequency), which are included in thede-
pendency models.C, Schematic of the TRF analysis pipeline.D, Example of mismatch model construction. The actual feature values are replaced by those of another story while keeping the
initial positions.E, Grand average power spectrum over all data, participants, and sensors. The FOOOF algorithm (Donoghue et al., 2020) was used to separate the fractal from the oscillatory
components of the original signal.F, Correlation plots between all features (except word onset as it is a constant) separately for NL and FR stories.
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Table 2). Finally, for each linguistic feature, values were standardized to
have unit variance and zero mean.

a andb power estimation
Following our hypotheses focusing on genuine brain oscillations, we
used spectral analysis of the MEG data to confirm the presence of two
distinct peaks separately fora and b , as an index of oscillatory activity.
Welch’s method was used to compute the power spectra. Subsequently,
the Fitting Oscillations & One Over F (FOOOF) algorithm (Donoghue
et al., 2020) was applied to confirm the presence of peaks with power
over and above the aperiodic 1/f signal (Fig. 1E).

Sensor-level.The time course of thea (mean of 8–12 Hz) andb (15–
30 Hz) power was estimated throughout all story parts. Preprocessed
MEG data were convolved with a sliding window Hanning taper (adapt-
ive window length). The time-frequency representation was calculated
with 1 Hz steps using 6-cycle wavelets over the course of each story part.
Then, the wavelet convolved values were averaged over the frequency band.

Source-level.First, the complex Fourier coefficients were estimated sep-
arately for thea and b bands with same parameters as in the sensor-level
analysis. Then, the coefficients were multiplied with the participant’s spatial
filter, and, finally, the power of that product was calculated.

Finally, the spectral data were normalized by subtracting the
meana and b power over all time points of all stories from each
time point, separately for each sensor/source, before estimation of
the temporal response functions (TRFs).

TRF analysis
We constructed linear forward models (TRFs) (Crosse et al., 2016) to
predicta and b power from these dependency features, controlling for
low-level linguistic features (Fig. 1C). TRF analysis is capable of disen-
tangling overlapping neural responses because of consecutive events
with high temporal proximity, and can handle confounding covariates.
TRFs are forward or encoding models based on the assumption that the
output of a system relates to the input via a linear convolution (Ding and

Simon, 2012; Broderick et al., 2018). Here we assume that the neural
responses (a and b power) at each sensor can be expressed as a linear
combination of linguistic features shifted by different latencies (for a sche-
matic of the TRF analysis pipeline, seeFig. 1C). Specifically, the instanta-
neous MEG responserðt; nÞof timest ¼ 1:::T at channeln is expressed
by the convolution of a linguistic feature,sk tð Þ, with a kernel or TRF,
wkðt ; nÞ. The TRF covers a specified range of time lags,t , relative to
time t. The forward model can be represented by the following equation:

r t; nð Þ¼
X

k

X
t
wk t ; nð Þskðt � t Þ1 «ðt; nÞ (1)

where«ðt; nÞis a white noise process, capturing part of the signal unre-
lated to the stimulus. Contributions from each feature are linearly com-
bined. The TRF is estimated by minimizing the mean-squared error
between the MEG response,rðt; nÞ, and the predicted MEG response,
r̂ðt; nÞas follows:

argminw « t; nð Þ¼
X

t
r t; nð Þ� r̂ t; nð Þ

� � 2 (2)

The solution to (2) can be computed in closed-form using the pseudo
inverse as follows:

w ¼ ðSTSÞ� 1STr (3)

whereSis the concatenation of the lagged time series of each linguistic
feature,sk.

TRF analysis was conducted using the MATLAB mTRF Toolbox
(Crosse et al., 2016). Here we used the functionmTRFtrainto estimate
the TRF coefficients for each linguistic feature, separately for NL and FR
stories. By visual inspection of the TRF coefficients, the time lags over
which TRFs were analyzed were from� 1 to 1.5 s. The TRF at timet
indexes how a unit change in a given linguistic feature affects the MEG
responset seconds later. For Ridge regression, a regularization term is
added to leverage the fact that the inversion ofSTSis unstable, and thus
prevent overfitting because of fitting high-frequency noise. This happens
when the columns ofS are correlated. With continuous regressors, the
lagged time series forming the columns ofScomprise a highly autocor-
related signal. However, in our case, all columns of the lagged time series
are independent, as they are not continuous and contain nonzero val-
ues only at word onsets. The lagged time series is thus not correlated,
hence adding a regularization term was not necessary and would lead
to underfitting.

Model validation.Validation of the TRF models was performed by
comparing the Pearson’s r correlation between the actual MEG and the
reconstructed MEG response. This was implemented using the function
mTRFcrossvalof the mTRF Toolbox following a leave-one-out cross-val-
idation approach. Specifically, a story part was used as the test set and
the remainingM-1 story parts were used as the training set. The TRF
model was then estimated for each story part of the training set, and
their average TRF is computed. Subsequently, the averaged model was
convolved with the test set to predict the MEG responses. Pearson’s r
was computed between the actual MEG and the reconstructed MEG
responses of the test set from� 1 to 1.5 s. The aforementioned process
was repeatedM times, so that all story parts were assigned to the test set
once. The Pearson’s r values were then averaged over allM validations.
This procedure was done separately for NL and FR stories.

Statistical evaluation
Model comparison
We first assessed the contribution of the low-level linguistic features toa
and b power modulations by evaluating their reconstruction accuracy.
Results showed that all features (acoustic edges, word onset, word
frequency) explain a substantial amount of variance of the MEG
response (Fig. 2A). As there is evidence that word surprisal affects
neural responses (Weissbart et al., 2020), we also evaluated the con-
tribution of surprisal. Surprisal values were estimated from the
GPT2 language model (from huggingface transformer model,

Table 2. Descriptive statistics of features used in the modelsa

NL FR

Feature Mean SD Range Mean SD Range

Word frequency 3.13 1.39 1.39-7.64 3.36 1.37 1.45-8.26
Opened 1.29 0.66 1-5 1.33 0.62 1-5
Remained open 1.70 0.86 1-7 1.53 0.74 1-5
Resolved 1.46 0.79 1-6 1.20 0.47 1-4
aMean, SD, and range of word frequency, opened, remained open, and resolved features. Acoustic edges and
word onset are not presented as they have a single value.

Table 1. Universal dependency types in NL and FR storiesa

Universal dependency type NL FR

Adverbial modifier 13.72 8.73
Nominal subject 10.63 8.53
Conjunct 9.25 8.03
Oblique nominal 8.72 9.90
Object 7.21 9.23
Verb 7.04 5.47
Determiner 6.34 9.34
Adjectival modifier 5.41 5.88
Case marking 4.78 6.19
Coordinating conjunction 4.12 3.34
Parataxis 3.00 1.04
Nominal modifier 2.81 5.84
Adverbial clause modifier 2.76 2.63
Open clausal complement 2.73 4.08
Marker 2.58 2.04
Auxiliary 2.09 1.45
aPercentage of trials belonging in each type of Universal Dependency Relation (for more information, see
https://universaldependencies.org/u/dep/index.html), separately for NL and FR stories, showing only types
occurring. 2% of the time.
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available athttps://huggingface.co/GroNLP/gpt2-small-dutch) (de
Vries and Nissim, 2020). Results showed that (1) surprisal did not
explain a substantial amount of variance, neither in thea nor in the
b band (i.e., adding surprisal to a model with acoustic edges and
word onset or to a model with acoustic edges, word onset and word fre-
quency did not significantly improve reconstruction accuracy of the model);
and (2) word frequency and surprisal are highly correlated (Pearson’s
r = 0.574,p, 0.001); therefore, we decided to include only acoustic edges,
word onset, and word frequency in the base model. The respective model
coefficients of the low-level features are shown inFigure 2C.

Comparison with base model.In order to test whether the depend-
ency features predict the neural data over and beyond the base model,
we compared reconstruction accuracy between the base model (includ-
ing only the low-level linguistic features) against the base model aug-
mented with each and all of the dependency features (opened/remained
open/resolved/full) (for model construction, seeFig. 1B).

As dependencies do not occur at every word instance, dependency fea-
tures had a substantially lower number of nonzero values (“trials” from now
on) compared with the base features (base features:Nword_onset, word_frequency=
8535; dependency features:Nopened= 2691;Nremained_open= 5596;Nresolved=
2381). This would affect the signal-to-noise ratio in the estimated TRF and,
therefore, the associated reconstruction accuracy. Because of the different
number of trials between features, we needed to equalize the number of
trials of the features of the two contrasting models at each time (i.e., a de-
pendency model vs the base model) by randomly selecting an equal
number of trials across features. To make sure this random selection was
not particular in any way, we followed a bootstrapping procedure. More
specifically, the feature with the smallest number of trials was first identi-
fied. Then, an equal number of trials was randomly selected in the rest of
the features of the two models being compared at that time, while the ex-
cessive trials were converted to zero. This was performed for every fea-
ture except acoustic edges, as those trials were not aligned with word
onset and were therefore relatively independent to the rest of the fea-
tures. To make sure that our effects would not be because of a certain
random selection during bootstrapping, we repeated this procedure
10,000 times. Subsequently, we tested in how many of these iterations
reconstruction accuracy of the dependency model was significantly
higher than the base model. To do this, reconstruction accuracy was
first averaged over sensors exhibiting improved accuracy over the base
model (i.e., where thez-scored difference between models exceeded
1 SD). Then, pairedt tests were conducted between models. Results
showed that all models significantly improved reconstruction accuracy
compared with the base model across the 10,000 iterations (percentage
of significant iterations. 95%) of the bootstrapping procedure (for the
t value distributions, seeFig. 2B). Therefore, reconstruction accuracy
was averaged over all iterations to perform the final statistical evalua-
tion. Reconstruction accuracy was then averaged over the sensors of
which thez score difference exceeded 1 SD in. 50% of the iterations.

Here is a summary of the bootstrapping pipeline for dependency
model versus base model comparisons:

1. Among the two contrasting models, find the feature with the small-
est number of trials (“trials” defined as nonzero feature values).

2. For all features, randomly select an equal number of trials and set
the remaining trials to zero.

3. Compare average reconstruction accuracy between the two models.
4. Repeat Steps 2 and 3 for 10,000 iterations.
5. Calculate the percentage of times Step 3 was significant and compute

improvement by subtracting the average reconstruction accuracy of
the base model from the dependency model.

We performed a 3 (model: opened/remained open/resolved)� 2
(frequency band:a vs b ) repeated-measures ANOVA with reconstruc-
tion accuracy improvement (dependency model– base model) as the de-
pendent variable. Improvement was also compared to zero with one-
samplet tests, for each model. As results showed that all three depend-
ency features were significant, the full model was evaluated in a 4
(model: opened/remained open/resolved/full)� 2 (frequency band:a vs
b ) repeated-measures ANOVA, and was compared to zero. Allpost hoc
contrasts were Bonferroni-corrected for multiple comparisons.

Comparison with mismatch model.In order to perform comparisons
to chance levels of reconstruction accuracy, we constructed null models
to which the full dependency model was compared. To confirm that
reconstruction accuracy improvement with the dependency features is
not merely because of (1) the addition of features or (2) the existence or
not of a dependency state independent of its value, we compared the full
model with mismatch models. Mismatch models are models of which
the feature values of one of the features is replaced by those from another
story, while keeping the value positions of the actual story (Fig. 1D).
This allows to compare models with matching number of predictors.

As the mismatch models have the same number of trials per feature
with the actual models, there was no need for a bootstrapping approach
here. We performed a 4 (model: opened/remained open/resolved/full)�
2 (frequency band:a vsb ) repeated-measures ANOVA with reconstruc-
tion accuracy improvement as the dependent variable, averaged over sen-
sors withz-scored difference between mismatch– actual exceeding 1 SD.
One-samplet tests compared reconstruction accuracy improvement from
zero.

Control analysis: comparison with mismatch model in French stories.
As participants did not understand French, we used the French
stories as a control condition to confirm that thea and b power
modulations by the dependency features in Dutch is linked to
comprehension rather than acoustic or speech properties. Similar to
the above analysis, we performed one-samplet tests (compare to zero)
and a 3� 2 ANOVA on the reconstruction accuracy difference between
actual versus mismatch models, averaged over the identified sensors with
maximal improvement.

Reconstruction accuracy between NL versus FR stories
Considering the multiple comparisons problem and the lack of a specific
hypothesis about the location of the effects, we used a nonparametric
cluster permutation approach (Maris and Oostenveld, 2007) to compare
the reconstruction accuracy in NL versus FR on source level. As there
were nine story parts in NL, but only four in FR, we performed a boot-
strapping procedure with replacement by randomly selecting four of the
NL story parts over which we compared the reconstruction accuracy
with the FR. This was done over 50 iterations, all showing significant dif-
ferences between conditions. Reconstruction accuracy was then averaged
over all iterations to perform the final statistical evaluation. The cluster
permutation procedure addresses the multiple comparison problem by
combining neighboring source points that show the same effect into
clusters and comparing those with the null distribution. Paired samplest
tests were computed for each source point, testing NL versus FR condi-
tions. Spatially adjacent source points whoset values exceeded ana pri-
ori threshold (uncorrectedp value, 0.05) were combined into the same
cluster, with the cluster-level statistic calculated as the sum of thet values
of the cluster. Finally, the values of the cluster-level statistic were eval-
uated by calculating the probability that it would be observed under
the assumption that the two compared conditions are not signifi-
cantly different (a = 0.05, two-tailed). To obtain a null distribution to
evaluate the statistic of the actual data, values were randomly assigned
to the two conditions and the statistics recomputed 1,000 times
(Monte-Carlo permutation).

a andb band modulations by dependency features
Comparison of dependency models with base model: reconstruction

accuracy.To identify the neural sources of the dependency feature con-
tributions, we used beamformer source reconstruction in thea and b
bands (see Materials and Methods sections“Source reconstruction of
MEG data” and“a and b power estimation”). The reconstruction accu-
racy of each dependency model was compared with the base model. A
bootstrapping approach with replacement was used as described in sec-
tion “Model comparison”, so that all features of the two models under
comparison had the same number of trials. Reconstruction accuracy at
each source point was averaged over iterations. A cluster-based permutation
approach was used for statistical evaluation as described in Reconstruction
accuracy between NL versus FR stories (a = 0.0001, two-tailed; 1,000 per-
mutations), by shuffling the labels between dependency and base
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