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Brain oscillations are prevalent in all species and are involved in numerous perceptual operations. a oscillations are thought
to facilitate processing through the inhibition of task-irrelevant networks, while b oscillations are linked to the putative reac-
tivation of content representations. Can the proposed functional role of a and b oscillations be generalized from low-level
operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language com-
prehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded.
We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependen-
cies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predict a
and b power from the dependency features. Results showed that dependency features predict a and b power in language-
related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language
comprehension in a, while frontal and parietal, higher-order language regions, and motor regions are involved in b.
Critically, a- and b-band dynamics seem to subserve language comprehension tapping into syntactic structure building and
semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the
temporal similarity of the a-b responses, their potential functional dissociation remains to be elucidated. Overall, this study
sheds light on the role of a and b oscillations during naturalistic spoken language comprehension, providing evidence for the
generalizability of these dynamics from perceptual to complex linguistic processes.
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Significance Statement

It remains unclear whether the proposed functional role of a and b oscillations in perceptual and motor function is general-
izable to higher-level cognitive processes, such as spoken language comprehension. We found that syntactic features predict a
and b power in language-related regions beyond low-level linguistic features when listening to naturalistic speech in a known
language. We offer experimental findings that integrate a neuroscientific framework on the role of brain oscillations as “build-
ing blocks” with spoken language comprehension. This supports the view of a domain-general role of oscillations across the
hierarchy of cognitive functions, from low-level sensory operations to abstract linguistic processes.

Introduction
Out of the many neural phenomena that exist, brain oscillations are
prevalent in all species and are involved in numerous perceptual
operations. Are brain oscillations the “building blocks” of cognitive
function, from low-level sensory to higher-level processes? Extensive
prior research focused on the role of a and b oscillations in basic
perceptual and motor functions. Here, we asked whether their pro-
posed role in low-level operations generalizes to higher-level cogni-
tive functions, in particular language comprehension. We adopted a
forward-modeling approach predicting brain responses from high-
level, syntactic features to test the role of a and b oscillations during
naturalistic spoken language comprehension.

Alpha oscillations (8-12Hz) are thought to reflect a mecha-
nism of active inhibition, which fine-tunes sensory processing by
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guiding attention and suppressing distracting input (Klimesch et
al., 2007; Jensen and Mazaheri, 2010). a power increases with
working memory load during retention, reflecting inhibition of
task-irrelevant regions (Jensen et al., 2002; Tuladhar et al., 2007;
Scheeringa et al., 2009; Pan et al., 2018), and is associated with
behavioral performance (Haegens et al., 2010, 2011b, 2012).
Traditionally, b oscillations (15-30Hz) are considered a motor
rhythm (Kilavik et al., 2013), associated with top-down process-
ing and long-distance network communication (Varela et al.,
2001). b power increases during information retention, attrib-
uted to active maintenance of the current cognitive set (Engel
and Fries, 2010). Spitzer and Haegens (2017) proposed that b
oscillations support the reactivation of content representations,
via the transitioning of latent items into active working memory
(Rose et al., 2016). To date, there is extensive research investigat-
ing the oscillatory correlates of language processing (Bastiaansen
et al., 2010; Obleser and Weisz, 2012; Lewis et al., 2015; Zoefel
and VanRullen, 2015; Ding et al., 2016; Kösem et al., 2016;
Martin and Doumas, 2017; L. Meyer, 2018; Brennan and Martin,
2020; Kaufeld et al., 2020; L. Meyer et al., 2020; van Bree et al.,
2021; Bai et al., 2022; Coopmans et al., 2022; Hauswald et al.,
2022; ten Oever et al., 2022a). However, few steps have been
taken to begin to link investigations of a and b oscillations in
sensory and perceptual neuroscience to cognitive functions that
are fundamentally derivative of sensory processing, such as lan-
guage comprehension from speech or sign perception.

Here, we operationalized high-level linguistic processing
using attributes from dependency parsing, describing syn-
tactic sentence structure as relations between pairs of words
(Mel’cuk, 1988; Tesnière, 2015). Dependencies are created
when a nonunified word (“dependent constituent”) is encoun-
tered. Processing load increases with the number of dependen-
cies being processed (Vos et al., 2001; Demberg and Keller,
2008). Dependencies are resolved once the linking word (“de-
pendent”) is encountered, recruiting unification or integration
processes (Hagoort, 2005; Martin, 2016, 2020; Kapteijns and
Hintz, 2021). Integration is thought to require reactivation of
any dependent constituent (McElree et al., 2003; Martin and
McElree, 2008; Foraker and McElree, 2011). As resolving lin-
guistic dependencies is crucial for language comprehension, it
can be argued that dependency resolution exemplifies higher-
level cognitive operations. We therefore hypothesized that a
and b power would be modulated by dependencies, and
used dependency parsing as a proxy for this processing.

Specifically, we compared MEG responses while partici-
pants listened to comprehended (Dutch) versus uncompre-
hended (French) spoken stories. We identified three states
at each word: number of opened/remained open/resolved
dependencies. We constructed forward models to predict a
and b power from these dependency features, controlling
for low-level linguistic features. We predicted that Dutch
compared with French stories would elicit stronger modu-
lations of a and b power in typical language-processing brain
regions. Additionally, we hypothesized that our dependency
features would predict a and b power in language processing-
related regions beyond low-level linguistic features. We further
hypothesized that the opening of dependencies would be asso-
ciated with a increases/decreases at task-irrelevant/-relevant
areas linked to inhibition, while “maintenance” of dependencies
would be associated with b power increases, attributed to an-
ticipatory and active ongoing processes. Finally, we predicted
that b power would increase during dependency resolution,
related to content reactivation.

Materials and Methods
Participants
Twenty-two adults (18 female) aged between 18 and 63 years old
(mean 6 SD age, 346 15years) took part in the experiment. Prescreening
required that participants were monolingual Dutch native speakers, right-
handed, without hearing problems, reading problems, or epilepsy. All par-
ticipants self-reported zero use and minimal understanding of French at the
level of isolated words but not whole sentences before taking part
in the experiment. Before the experiment, participants were pro-
vided with written and verbal information about the MEG system
and safety regulations and gave written informed consent. They
received monetary reimbursement after participation. The study
falls under the general ethics approval (CMO 2014/288 “Imaging
Human Cognition”) in accordance with the Declaration of Helsinki.

Stories
In order to tap into language comprehension, we compared brain
responses recorded with MEG while participants listened to spoken
stories in a language they comprehend (Dutch, mother tongue) versus a
language they do not comprehend (French, a familiar but uncompre-
hended language). Stories in French were selected as a control to confirm
that our effects are because of comprehension and not acoustic proper-
ties of speech, with which participants would be familiar because of re-
gional proximity. Behavioral performance and debriefing demonstrated
that Dutch native speakers were not able to understand the French narra-
tives, despite their familiarity with the acoustic properties and some com-
mon words in French. French thus constituted a stronger control than
a language with which participants would be completely unfamiliar.
Critically, compared with traditional studies using artificial word or
sentence stimuli, the use of natural speech in prerecorded stories
allowed for a more ecologically valid approach as (1) the natural pros-
ody of the voice recording guides comprehension via auditory cues, (2)
processing requires constant effortful attention throughout, and (3) it
lacks the brain responses induced by certain properties of artificial
stimuli, such as abrupt voice modulations or unnatural syllable timing.

The following three Dutch (NL) stories were used: Het Lelijke Jonge
Eendje by H.C. Andersen, De Ransel, het Hoedje en het Hoorntje and De
Gouden Vogel by the Grimm brothers. All NL stories were spoken by
female voices. The following three French (FR) stories were used: L’eau
de la vie by the Grimm brothers (male voice), L’ange by H.C. Andersen
(female voice), and an excerpt from Le Canard Ballon by E.A. Poe
(female voice). The NL stories and the last FR story were retrieved from
www.librivox.org, and the rest from www.litteratureaudio.com. In order
to reduce fatigue, stories were split into parts of short duration (NL: 9
story parts, mean6 SD, 5.56 0.6min; FR: 4 story parts, duration 5.36
0.7min). Stories that were already ,6min were not split further. All
audio files were normalized to an equal perceived loudness.

Five MCQs with four choices each were included after each story
part (65 in total) to (1) ensure that participants paid attention to the spo-
ken stories and (2) confirm the lack of understanding of the French sto-
ries. A Dutch and a French native speaker composed the questions for
the Dutch and French stories, respectively. All were content questions,
for example:Who lives in the old house? A. An old man B. An old lady C.
Nobody D. A family; What did the traveler take from the table? A. The
tablecloth B. The bread C. The potatoes D. The wine.

Procedure
Participants were seated in the MEG system in a dimly lit room. They
were informed that they would listen to stories in Dutch and French
during MEG recording. Further, they were instructed to pay attention to
the stories as they would be prompted to answer MCQs after each story
part. Responding to the MCQs was done by pressing four keys of a
response box in a self-paced manner. Resting-state MEG was recorded
for 10 s before the onset of each story part but was not included in the
analysis. The presentation order of the story parts was pseudorandom-
ized across participants: NL and FR story parts were interleaved but care
was taken so that their order remained intact (e.g., the second part of a
story could be presented only if the first part of that same story was
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previously heard). The overall procedure lasted for ;1.5 h. The experi-
ment was programmed with custom MATLAB (The MathWorks)
scripts using Psychtoolbox (Brainard and Vision, 1997).

Data acquisition and MEG preprocessing
MEG data were recorded at a sampling rate of 1200Hz using a 275 chan-
nel axial gradiometer system (CTF MEG systems, VSM MedTech)
located in a magnetically shielded room. Eight sensors were excluded
because of permanent malfunction, leaving a total of 267 usable sensors.
Three fiducial localization coils were placed at the participant’s nasion
and left and right ear canals to (1) allow for real-time monitoring of the
participant’s head position and adjustment in between story parts if nec-
essary, and (2) provide anatomic landmarks for offline coregistra-
tion of the MEG data with T1-weighted MRI images for source
reconstruction. After completion of the task, the x, y, z coordinates
of the three fiducial points as well as the participant’s head shape
were digitized using a Polhemus 3D tracking device. Furthermore,
individual structural MRI scans were acquired in a 3T Siemens
Magnetom Skyra MR scanner using earplugs with a drop of vita-
min E at the subject’s ear canals to facilitate subsequent alignment
with the MEG data.

Continuous MEG data were downsampled to 100Hz and epoched
from the onset until the offset of each story part. Data from sensors with
consistently poor signal quality, as observed by visual inspection, were
removed and interpolated based on neighboring sensors. Finally, inde-
pendent component analysis was performed to correct for eye-blinks
and heartbeat artifacts. Custom-written scripts in MATLAB and the
FieldTrip toolbox (Oostenveld et al., 2011) were used for analysis of the
MEG data.

Data analysis
Behavioral data
To assess participants’ understanding of the stories, we calculated the
percentage of correct responses in the MCQs separately for NL and FR
stories. A paired t test was used to compare the two conditions and a
one-sample t test to compare performance accuracy to chance level at
25%.

Source reconstruction of MEG data
MRI preprocessing. First, coregistration of the MRI with the CTF and

Polhemus fiducials was performed. Individual MRIs were normalized in
MNI space and segmented. Realistic volume conduction models were
created for each participant based on the single-shell model of their
MRIs (Nolte, 2003). For each participant, 5798 dipole positions were
defined with an 8 mm resolution.

Spatial filters. A spatial filter for the source reconstruction analysis
was calculated for each participant. Covariance matrices were computed
over single trials (13 Dutch and French story parts) and then averaged.
Leadfields for all grid points, combined with the covariance matrices,
were used to compute a spatial filter with the Linearly Constrained
Minimum Variance (Veen et al., 1997) method. The source orientation
was fixed to the dipole orientation with the highest strength.

Forward models predicting a and b power from linguistic features
We attempted to quantify higher-level operations during spoken lan-
guage comprehension in response to the processing of dependencies
that opened/remained open/were resolved at each word. We then con-
structed forward models predicting a and b power from the depend-
ency features controlling for low-level linguistic features (acoustic edges,
word onset, and word frequency).

To investigate the relationship between linguistic features and a and
b power, we constructed a time series for each feature. Each word fea-
ture was time-aligned with the auditory stimulus using the forced-align-
ment function of the web-service MAUS (Kisler et al., 2017). In order to
align the linguistic features with the auditory stimuli, a single impulse-
like value representing the magnitude of the feature was assigned at the
onset of each word (except for acoustic edges where the impulses could
be at different time points, see below).

Dependency features.
Dependency parsing. We operationalized high-level linguistic proc-
essing during spoken language comprehension using attributes from de-
pendency parses. This is mainly motivated by the trade-off between
coverage of features and accessibility in parsing models; it is not a strong
theoretical commitment to one parsing framework over another.
Dependency grammars describe the syntactic structure of a sentence as a
set of relations between two words (Mel’cuk, 1988; Tesnière, 2015). The
links begin from the head and end on the dependent word and are assigned
a label representing the type of dependency (e.g., subject, object, determi-
nant, etc.). Each sentence has a root, usually the verb, which is the head of
the entire structure (for an example of dependency parsing, see the graph in
Fig. 1A, top). Dependency grammars often reveal nonadjacent, complex
dependencies. Previous work has used dependency structures as a measure
of or proxy for syntactic complexity, as words that form dependencies often
appear in nonadjacent positions (e.g., Wilson et al., 2020).

We used an automated parser (Stanford parser “Stanza”) (Qi et al.,
2020) to generate dependency graphs for each sentence in the stories.
Stanza uses universal dependencies (Nivre et al., 2016), which is a set of
dependency relations that are cross-linguistically applicable (for the
types of universal dependencies in our stories, see Table 1). Based on
those, three dependency measures were extracted for each word using
custom-written scripts: (1) number of opened dependencies, (2) number
of dependencies that remained open, and (3) number of resolved
dependencies. As we did not have any hypothesis about left- versus
right-branching dependencies, we summed over both directions (Fig.
1A). Dependency features were represented as valued impulses at the
word onsets of the respective words where the dependency took place.

(1) Opened dependencies: the number of dependencies that open at
a given word. In the example of Figure 1A, one dependency opens at
each word (nsubj, obj, det, amod, respectively) except for the last one
(zero opened dependencies).

(2) Remained open dependencies: the number of dependencies that
are already open but remain unresolved. In Figure 1A, the obj depend-
ency is still unresolved at word “the,” while both the obj and det depend-
encies are unresolved at word “big.”

(3) Resolved dependencies: the number of dependencies that are
resolved at this word. In Figure 1A, the nsubj relation is resolved at word
“opened”; the rest of the dependencies are resolved at the last word
“presents.”

As mentioned earlier, we were interested in investigating high-level
cognitive processing associated with comprehension. Content words
(nouns, verbs, adjectives, adverbs) are known to have a lexical semantic
content, whereas function words (pronouns, articles, prepositions, auxil-
iary verbs) contribute mostly to the grammatical structure and have a
relatively less lexical semantic meaning (Corver and van Riemsdijk,
2013), although they clearly have consequences for syntactic and seman-
tic compositional meaning. Therefore, we focused our analysis on de-
pendency relations between content words only. This was done by using
relations that were comprised of two content words, while excluding
relations in which at least one of the two words was a function word. For
instance, in Figure 1A, three dependency relations are resolved at the last
word of the sentence “presents”: “opened presents,” “the presents,” and
“big presents.” However, only two of those relations are comprised of
two content words (“opened presents” and “big presents”), as the rela-
tion “the presents” contains a function word, the article “the.” By subtract-
ing the number of relations containing function words, we are left with
two resolved dependencies instead of three. This process is performed sep-
arately for the construction of each of the three dependency features.

Low-level features: control variables. To make sure that potential de-
pendency effects are not because of low-level linguistic properties, we
considered the following features as our base model:
Acoustic edges. Abrupt changes in the acoustics are tracked by neu-
ral activity. It is possible that, through cross-frequency coupling, the
neural tracking of syllables in low frequencies (d -u band) (Doelling
et al., 2014) modulates the a and b frequency bands. Notably, it is
still a matter of debate whether the tracking of low frequencies is
implemented as endogenous oscillations or as a series of evoked
responses to acoustic landmarks (Kojima et al., 2020). We thus
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controlled for low-level acoustic properties by incorporating acoustic
edges in our feature set, extracted from the speech envelope. First, we gen-
erated broadband envelopes of the audio files using gammatone filter
banks (method following Fishbach et al., 2001). Then, we calculated the
derivative of the envelope and defined as acoustic edges the points when
the derivative exceeds its 97.5th percentile. Acoustic edges were repre-
sented as nonzero, equally valued pulses.
Word onset. Neural activity has been found to track the onset of words
because of the brain’s parsing of the acoustic input to form discrete
meaningful units (Ding and Simon, 2014). Word onsets were repre-
sented as nonzero, equally valued pulses at the time points defined by
the forced alignment procedure.
Word frequency. The frequency of a word outside the sentential con-
text has been shown to modulate neural responses (Brodbeck et al.,
2018). Two online databases were used to calculate word frequency,

SUBTLEX-NL for Dutch (Keuleers et al., 2010) and Lexique for French
(New et al., 2004). The number of instances of each word was divided by
the total number of instances of all words. Word frequency was defined
as the negative logarithm of that number, so that the higher the value,
the lower the frequency.

Before using the above features in the linear regression analysis, we
examined the feature inter-correlations by calculating Pearson’s r coeffi-
cient between features. All correlations were low to moderate (Fig. 1F).
To detect multicollinearity between features, the variance inflation factor
was computed, which indicates whether the variation of one feature is
largely explained by a linear combination of the other features. Variance
inflation factor was low for all features (NLac_edges = 1, NLfreq = 1.34,
NLopened = 1.18, NLremained_open = 1.10, NLresolved = 1.24; FRac_edges = 1,
FRfreq = 3.09, FRopened = 1.44, FRremained_open = 1.66, FRresolved = 1.70),
indicating no concern for multicollinearity (for feature descriptives, see

Example of mismatch model

A

C

       1st   2nd   3rd   4th   5th

Story 1 actual    0   1   0   0     3
Story 2 actual    0   0   4    2     0
Story 1 mismatch   0   4   0   0     2

Jenny opened the big presents

Opened 1 1 1 1 0
Remained open 0 0 1 2 0

Resolved 0 1 0 0 2

nsubj amod
det

MEG

stories

α + β
power

features

linear
model TRFs

leave-one-out cross-validation

reconstruction accuracy (Pearson’s r)

predicted
MEG

  Feature      Model name
         Base   Open.   Rem. Res.     Full    
 Acoustic edges  x   x    x     x          x
  Word onset  x   x    x     x      x
Word frequency  x   x    x     x      x
    Opened     x          x
Remained open        x        x
      Resolved           x      x

obj

B

D

Forward models

TRF calculation and evaluation

Example of dependency parsing
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Figure 1. Methodological aspects of the TRF analysis using linguistic features as predictors for a and b power during naturalistic story listening. A, Example of dependency parsing
(Mel’cuk, 1988) and the extracted dependency features (number of opened/remained open/resolved dependencies). The automated Stanford parser “Stanza” (Qi et al., 2020) generated depend-
ency graphs for each sentence. Green arrows represent relations between two content words (nouns, verbs, adjectives, adverbs). Red arrows represent relations containing at least one function
word (pronouns, articles, prepositions, auxiliary verbs). The dependency features were constructed based on relations comprised of two content words (green values), excluding relations con-
taining function words (red values). B, Model construction. The base model includes low-level linguistic features (acoustic edges, word onset, word frequency), which are included in the de-
pendency models. C, Schematic of the TRF analysis pipeline. D, Example of mismatch model construction. The actual feature values are replaced by those of another story while keeping the
initial positions. E, Grand average power spectrum over all data, participants, and sensors. The FOOOF algorithm (Donoghue et al., 2020) was used to separate the fractal from the oscillatory
components of the original signal. F, Correlation plots between all features (except word onset as it is a constant) separately for NL and FR stories.
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Table 2). Finally, for each linguistic feature, values were standardized to
have unit variance and zero mean.

a and b power estimation
Following our hypotheses focusing on genuine brain oscillations, we
used spectral analysis of the MEG data to confirm the presence of two
distinct peaks separately for a and b , as an index of oscillatory activity.
Welch’s method was used to compute the power spectra. Subsequently,
the Fitting Oscillations & One Over F (FOOOF) algorithm (Donoghue
et al., 2020) was applied to confirm the presence of peaks with power
over and above the aperiodic 1/f signal (Fig. 1E).

Sensor-level. The time course of the a (mean of 8–12Hz) and b (15–
30Hz) power was estimated throughout all story parts. Preprocessed
MEG data were convolved with a sliding window Hanning taper (adapt-
ive window length). The time-frequency representation was calculated
with 1 Hz steps using 6-cycle wavelets over the course of each story part.
Then, the wavelet convolved values were averaged over the frequency band.

Source-level. First, the complex Fourier coefficients were estimated sep-
arately for the a and b bands with same parameters as in the sensor-level
analysis. Then, the coefficients were multiplied with the participant’s spatial
filter, and, finally, the power of that product was calculated.

Finally, the spectral data were normalized by subtracting the
mean a and b power over all time points of all stories from each
time point, separately for each sensor/source, before estimation of
the temporal response functions (TRFs).

TRF analysis
We constructed linear forward models (TRFs) (Crosse et al., 2016) to
predict a and b power from these dependency features, controlling for
low-level linguistic features (Fig. 1C). TRF analysis is capable of disen-
tangling overlapping neural responses because of consecutive events
with high temporal proximity, and can handle confounding covariates.
TRFs are forward or encoding models based on the assumption that the
output of a system relates to the input via a linear convolution (Ding and

Simon, 2012; Broderick et al., 2018). Here we assume that the neural
responses (a and b power) at each sensor can be expressed as a linear
combination of linguistic features shifted by different latencies (for a sche-
matic of the TRF analysis pipeline, see Fig. 1C). Specifically, the instanta-
neous MEG response rðt; nÞ of times t ¼ 1:::T at channel n is expressed
by the convolution of a linguistic feature, sk tð Þ, with a kernel or TRF,
wkðt ; nÞ. The TRF covers a specified range of time lags, t , relative to
time t. The forward model can be represented by the following equation:

r t; nð Þ ¼
X

k

X
t
wk t ; nð Þskðt � tÞ1«ðt; nÞ (1)

where «ðt; nÞ is a white noise process, capturing part of the signal unre-
lated to the stimulus. Contributions from each feature are linearly com-
bined. The TRF is estimated by minimizing the mean-squared error
between the MEG response, rðt; nÞ, and the predicted MEG response,
r̂ðt; nÞ as follows:

argminw « t; nð Þ ¼
X

t
r t; nð Þ � r̂ t; nð Þ� �2 (2)

The solution to (2) can be computed in closed-form using the pseudo
inverse as follows:

w ¼ ðSTSÞ�1STr (3)

where S is the concatenation of the lagged time series of each linguistic
feature, sk.

TRF analysis was conducted using the MATLAB mTRF Toolbox
(Crosse et al., 2016). Here we used the function mTRFtrain to estimate
the TRF coefficients for each linguistic feature, separately for NL and FR
stories. By visual inspection of the TRF coefficients, the time lags over
which TRFs were analyzed were from �1 to 1.5 s. The TRF at time t
indexes how a unit change in a given linguistic feature affects the MEG
response t seconds later. For Ridge regression, a regularization term is
added to leverage the fact that the inversion of STS is unstable, and thus
prevent overfitting because of fitting high-frequency noise. This happens
when the columns of S are correlated. With continuous regressors, the
lagged time series forming the columns of S comprise a highly autocor-
related signal. However, in our case, all columns of the lagged time series
are independent, as they are not continuous and contain nonzero val-
ues only at word onsets. The lagged time series is thus not correlated,
hence adding a regularization term was not necessary and would lead
to underfitting.

Model validation. Validation of the TRF models was performed by
comparing the Pearson’s r correlation between the actual MEG and the
reconstructed MEG response. This was implemented using the function
mTRFcrossval of the mTRF Toolbox following a leave-one-out cross-val-
idation approach. Specifically, a story part was used as the test set and
the remaining M-1 story parts were used as the training set. The TRF
model was then estimated for each story part of the training set, and
their average TRF is computed. Subsequently, the averaged model was
convolved with the test set to predict the MEG responses. Pearson’s r
was computed between the actual MEG and the reconstructed MEG
responses of the test set from �1 to 1.5 s. The aforementioned process
was repeatedM times, so that all story parts were assigned to the test set
once. The Pearson’s r values were then averaged over all M validations.
This procedure was done separately for NL and FR stories.

Statistical evaluation
Model comparison
We first assessed the contribution of the low-level linguistic features to a
and b power modulations by evaluating their reconstruction accuracy.
Results showed that all features (acoustic edges, word onset, word
frequency) explain a substantial amount of variance of the MEG
response (Fig. 2A). As there is evidence that word surprisal affects
neural responses (Weissbart et al., 2020), we also evaluated the con-
tribution of surprisal. Surprisal values were estimated from the
GPT2 language model (from huggingface transformer model,

Table 2. Descriptive statistics of features used in the modelsa

NL FR

Feature Mean SD Range Mean SD Range

Word frequency 3.13 1.39 1.39-7.64 3.36 1.37 1.45-8.26
Opened 1.29 0.66 1-5 1.33 0.62 1-5
Remained open 1.70 0.86 1-7 1.53 0.74 1-5
Resolved 1.46 0.79 1-6 1.20 0.47 1-4
aMean, SD, and range of word frequency, opened, remained open, and resolved features. Acoustic edges and
word onset are not presented as they have a single value.

Table 1. Universal dependency types in NL and FR storiesa

Universal dependency type NL FR

Adverbial modifier 13.72 8.73
Nominal subject 10.63 8.53
Conjunct 9.25 8.03
Oblique nominal 8.72 9.90
Object 7.21 9.23
Verb 7.04 5.47
Determiner 6.34 9.34
Adjectival modifier 5.41 5.88
Case marking 4.78 6.19
Coordinating conjunction 4.12 3.34
Parataxis 3.00 1.04
Nominal modifier 2.81 5.84
Adverbial clause modifier 2.76 2.63
Open clausal complement 2.73 4.08
Marker 2.58 2.04
Auxiliary 2.09 1.45
aPercentage of trials belonging in each type of Universal Dependency Relation (for more information, see
https://universaldependencies.org/u/dep/index.html), separately for NL and FR stories, showing only types
occurring .2% of the time.
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available at https://huggingface.co/GroNLP/gpt2-small-dutch) (de
Vries and Nissim, 2020). Results showed that (1) surprisal did not
explain a substantial amount of variance, neither in the a nor in the
b band (i.e., adding surprisal to a model with acoustic edges and
word onset or to a model with acoustic edges, word onset and word fre-
quency did not significantly improve reconstruction accuracy of the model);
and (2) word frequency and surprisal are highly correlated (Pearson’s
r=0.574, p, 0.001); therefore, we decided to include only acoustic edges,
word onset, and word frequency in the base model. The respective model
coefficients of the low-level features are shown in Figure 2C.

Comparison with base model. In order to test whether the depend-
ency features predict the neural data over and beyond the base model,
we compared reconstruction accuracy between the base model (includ-
ing only the low-level linguistic features) against the base model aug-
mented with each and all of the dependency features (opened/remained
open/resolved/full) (for model construction, see Fig. 1B).

As dependencies do not occur at every word instance, dependency fea-
tures had a substantially lower number of nonzero values (“trials” from now
on) compared with the base features (base features: Nword_onset, word_frequency =
8535; dependency features: Nopened = 2691; Nremained_open = 5596; Nresolved =
2381). This would affect the signal-to-noise ratio in the estimated TRF and,
therefore, the associated reconstruction accuracy. Because of the different
number of trials between features, we needed to equalize the number of
trials of the features of the two contrasting models at each time (i.e., a de-
pendency model vs the base model) by randomly selecting an equal
number of trials across features. To make sure this random selection was
not particular in any way, we followed a bootstrapping procedure. More
specifically, the feature with the smallest number of trials was first identi-
fied. Then, an equal number of trials was randomly selected in the rest of
the features of the two models being compared at that time, while the ex-
cessive trials were converted to zero. This was performed for every fea-
ture except acoustic edges, as those trials were not aligned with word
onset and were therefore relatively independent to the rest of the fea-
tures. To make sure that our effects would not be because of a certain
random selection during bootstrapping, we repeated this procedure
10,000 times. Subsequently, we tested in how many of these iterations
reconstruction accuracy of the dependency model was significantly
higher than the base model. To do this, reconstruction accuracy was
first averaged over sensors exhibiting improved accuracy over the base
model (i.e., where the z-scored difference between models exceeded
1 SD). Then, paired t tests were conducted between models. Results
showed that all models significantly improved reconstruction accuracy
compared with the base model across the 10,000 iterations (percentage
of significant iterations .95%) of the bootstrapping procedure (for the
t value distributions, see Fig. 2B). Therefore, reconstruction accuracy
was averaged over all iterations to perform the final statistical evalua-
tion. Reconstruction accuracy was then averaged over the sensors of
which the z score difference exceeded 1 SD in.50% of the iterations.

Here is a summary of the bootstrapping pipeline for dependency
model versus base model comparisons:

1. Among the two contrasting models, find the feature with the small-
est number of trials (“trials” defined as nonzero feature values).

2. For all features, randomly select an equal number of trials and set
the remaining trials to zero.

3. Compare average reconstruction accuracy between the two models.
4. Repeat Steps 2 and 3 for 10,000 iterations.
5. Calculate the percentage of times Step 3 was significant and compute

improvement by subtracting the average reconstruction accuracy of
the base model from the dependency model.

We performed a 3 (model: opened/remained open/resolved) � 2
(frequency band: a vs b ) repeated-measures ANOVA with reconstruc-
tion accuracy improvement (dependency model – base model) as the de-
pendent variable. Improvement was also compared to zero with one-
sample t tests, for each model. As results showed that all three depend-
ency features were significant, the full model was evaluated in a 4
(model: opened/remained open/resolved/full)� 2 (frequency band: a vs
b ) repeated-measures ANOVA, and was compared to zero. All post hoc
contrasts were Bonferroni-corrected for multiple comparisons.

Comparison with mismatch model. In order to perform comparisons
to chance levels of reconstruction accuracy, we constructed null models
to which the full dependency model was compared. To confirm that
reconstruction accuracy improvement with the dependency features is
not merely because of (1) the addition of features or (2) the existence or
not of a dependency state independent of its value, we compared the full
model with mismatch models. Mismatch models are models of which
the feature values of one of the features is replaced by those from another
story, while keeping the value positions of the actual story (Fig. 1D).
This allows to compare models with matching number of predictors.

As the mismatch models have the same number of trials per feature
with the actual models, there was no need for a bootstrapping approach
here. We performed a 4 (model: opened/remained open/resolved/full)�
2 (frequency band: a vs b ) repeated-measures ANOVA with reconstruc-
tion accuracy improvement as the dependent variable, averaged over sen-
sors with z-scored difference between mismatch – actual exceeding 1 SD.
One-sample t tests compared reconstruction accuracy improvement from
zero.

Control analysis: comparison with mismatch model in French stories.
As participants did not understand French, we used the French
stories as a control condition to confirm that the a and b power
modulations by the dependency features in Dutch is linked to
comprehension rather than acoustic or speech properties. Similar to
the above analysis, we performed one-sample t tests (compare to zero)
and a 3� 2 ANOVA on the reconstruction accuracy difference between
actual versus mismatch models, averaged over the identified sensors with
maximal improvement.

Reconstruction accuracy between NL versus FR stories
Considering the multiple comparisons problem and the lack of a specific
hypothesis about the location of the effects, we used a nonparametric
cluster permutation approach (Maris and Oostenveld, 2007) to compare
the reconstruction accuracy in NL versus FR on source level. As there
were nine story parts in NL, but only four in FR, we performed a boot-
strapping procedure with replacement by randomly selecting four of the
NL story parts over which we compared the reconstruction accuracy
with the FR. This was done over 50 iterations, all showing significant dif-
ferences between conditions. Reconstruction accuracy was then averaged
over all iterations to perform the final statistical evaluation. The cluster
permutation procedure addresses the multiple comparison problem by
combining neighboring source points that show the same effect into
clusters and comparing those with the null distribution. Paired samples t
tests were computed for each source point, testing NL versus FR condi-
tions. Spatially adjacent source points whose t values exceeded an a pri-
ori threshold (uncorrected p value, 0.05) were combined into the same
cluster, with the cluster-level statistic calculated as the sum of the t values
of the cluster. Finally, the values of the cluster-level statistic were eval-
uated by calculating the probability that it would be observed under
the assumption that the two compared conditions are not signifi-
cantly different (a = 0.05, two-tailed). To obtain a null distribution to
evaluate the statistic of the actual data, values were randomly assigned
to the two conditions and the statistics recomputed 1,000 times
(Monte-Carlo permutation).

a and b band modulations by dependency features
Comparison of dependency models with base model: reconstruction

accuracy. To identify the neural sources of the dependency feature con-
tributions, we used beamformer source reconstruction in the a and b
bands (see Materials and Methods sections “Source reconstruction of
MEG data” and “a and b power estimation”). The reconstruction accu-
racy of each dependency model was compared with the base model. A
bootstrapping approach with replacement was used as described in sec-
tion “Model comparison”, so that all features of the two models under
comparison had the same number of trials. Reconstruction accuracy at
each source point was averaged over iterations. A cluster-based permutation
approach was used for statistical evaluation as described in Reconstruction
accuracy between NL versus FR stories (a = 0.0001, two-tailed; 1,000 per-
mutations), by shuffling the labels between dependency and base
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Figure 2. Evaluation of features based on reconstruction accuracy (Pearson’s r). A, Evaluation of the effect of speech features of the base models (see Table 2 at the right side in Fig. 2B.):
reconstruction accuracy of each model (averaged over sensors .1 SD) separately for the a (black) and b (gray) bands, and for NL (left) and FR (right) stories. Error bars indicate61 SEM.
Horizontal lines indicate statistical significance (p, 0.005). B, Histograms of t values between the reconstruction accuracy of the models opened/remained open/resolved versus the base
model over 10,000 iterations with random trial subselection (for details on the bootstrapping procedure, see Comparison with base model). C, Time courses of the TRF coefficients of all sensors
for each low-level feature (acoustic edges, word onset, and word frequency), separately for the a and b band. The colors of the sensors are denoted in the topography at the bottom.
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model. This analysis was performed separately for the a and b
bands.

TRF coefficients. In order to define the contribution of the de-
pendency features in time, the TRF coefficients were analyzed.
Specifically, the coefficients of each dependency feature were aver-
aged over significant sources, as identified from the analysis above;
therefore, the comparison was done over the temporal, but not
spatial, dimension. Subsequently, paired-sample t tests were per-
formed to identify the time instances at which the TRF coefficients
were significantly different from those of a mismatch model (fea-
ture values replaced by those from another story) (FDR-corrected
at p = 0.05).

The Brainnetome Atlas (Fan et al., 2016) was used to identify the
regions (parcel labels) where the effects were found. According to this
atlas, each hemisphere is divided into 123 parcels, while the parcella-
tion is based on both structural and functional connectivity.

Control analysis in the d , u , and g band. To test the frequency spec-
ificity of our effects, we constructed similar TRF models in other fre-
quency bands (d , u , and g ). Specifically, we filtered the signal in
the d band (bandpass at 0.5–4Hz, filter order 206) and u band (bandpass
at 4–6.5Hz, filter order 206), to get the respective phase-locked brain
responses. Furthermore, the time course of u (4–6.5Hz) and g power
(40–80Hz) was estimated by convolving the signal with a sliding window
Hanning taper (adaptive window length) as described in Sensor-level.
We note that it is questionable whether activity in the g band here is truly
oscillatory, however, it was analyzed for completeness. A nonparametric
cluster-based permutation procedure (described in Reconstruction ac-
curacy between NL versus FR stories; here a = 0.05, two-tailed;
1,000 permutations) was performed at the temporal and spatial
dimension between the TRF coefficients of the actual versus the
mismatch models, by shuffling the labels between dependency and
mismatch models. This analysis was performed separately for each
dependency feature and frequency band.

Data availability. Data and code used in the main analyses
are available from the corresponding author on reasonable
request.

Results
Comprehension of Dutch but not French stories
To confirm that participants paid attention to and understood
the NL stories but not the FR stories, we calculated perform-
ance accuracy as the percentage of correct answers in the mul-
tiple-choice comprehension questions. Results revealed that
participants comprehended NL stories (mean = 89.0, SD = 6.3)
significantly better than FR stories (mean = 25.7, SD = 10.7)
(t(21) = 23.907, p, 0.001, Cohen’s d= 7.189). Performance
was significantly higher than chance level (25%) only for NL
(t(21) = 47.337, p, 0.001, Cohen’s d = 10.092), but not for FR
(t(21) = 0.298, p = 0.768, Cohen’s d= 0.063).

Dependency features predict a and b power beyond low-level
linguistic features
Dependency features improve reconstruction accuracy from base
model
To evaluate whether each of the dependency features explains
variance of a and b power over and beyond the base model (i.
e., based on acoustic edges, word onset, word frequency), we
compared the reconstruction accuracy (Pearson’s r) improve-
ment by adding opened/remained open/resolved/all features to
the base model (Fig. 3A). Reconstruction accuracy was aver-
aged over sensors exhibiting improved accuracy over the base
model (z-scored improvement. 1 SD). A bootstrapping method
with replacement was used to ensure equal number of trials
between features of each model (for more details on the bootstrap-
ping method, see section “Model comparison”).

Reconstruction accuracy improvement was significantly higher
than zero in all models and bands (a-opened: t(21) = 2.915,
p= 0.008; remained open: t(21) = 4.903, p, 0.001; resolved:
t(21) = 5.889, p, 0.001; b -opened: t(21) = 6.205, p, 0.001;
remained open: t(21) = 5.746, p, 0.001; resolved: t(21) = 7.418,
p, 0.001).

A 3 (model: opened/remained open/resolved) � 2 (band:
a/b ) repeated-measures ANOVA revealed a significantmodel�
band interaction (F(2,42) = 3.254, p=0.049, h 2 = 0.134). Planned
contrasts in the b band were significant: resolved was higher
than opened (t(21) = 4.465, p, 0.001, Cohen’s d=1.030) and
remained open (t(21) = 6.170, p=0.001, Cohen’s d=1.708), and
opened was higher than remained open (t(21) = 4.001, p= 0.001,
Cohen’s d= 0.984). In the a band, resolved was higher than
remained open, but this did not survive Bonferroni correction at
a = 0.005 (t(21) = 2.257, p=0.035, Cohen’s d= 0.491). Resolved
was also higher for b compared with a, but this was not signifi-
cant after multiple comparison correction either (t(21) = 2.552,
p= 0.019, Cohen’s d= 0.549). None of the other contrasts was
significant (p. 0.2).

The ANOVA also revealed a significant effect ofmodel, which
was because of resolved being higher than remained open
(t(21) = 4.776, p, 0.001, Cohen’s d = 1.151), while there was
a trend for resolved being higher than opened (t(21) = 2.190,
p = 0.040, Cohen’s d = 0.470) and the same for opened com-
pared with remained open (t(21) = 2.096, p = 0.048, Cohen’s
d = 0.522). There was no significant main effect of frequency
band (p= 0.131).

As all three dependency features contributed to explained
variance of the a and b power, we created a full model with all
features included. A 4 (model: opened/remained open/resolved/
full)� 2 (band: a/b ) repeated-measures ANOVA revealed a sig-
nificant main effect of model (F(3,63) = 6.004, p= 0.001, h 2 =
0.222), which was because of the full model being higher than
the remained open (t(21) = 3.269, p=0.004, Cohen’s d=0.981)
and a trend for the full being higher than the opened (t(21) =
2.190, p=0.040, Cohen’s d= 0.508). The full model was not sig-
nificantly different from the resolved model (t(21) = 1.385, p=
0.181, Cohen’s d= 0.324). There was no main effect of band or
interaction between the variables (p, 0.4). Finally, recon-
struction accuracy improvement of the full model was sig-
nificantly higher than zero (a: t(21) = 2.831, p = 0.010; b :
t(21) = 6.710, p, 0.001).

Dependency features improve reconstruction accuracy from
mismatch model
To test whether reconstruction accuracy improved merely
because of the addition of extra features, we compared the
full model with mismatch models (Fig. 3A) (for details see
section “Model comparison”). Reconstruction accuracy improve-
ment was significantly higher than zero in all models and bands
(a-opened: t(21) = 5.432, p, 0.001; remained open: t(21) =
2.784, p= 0.011; resolved: t(21) = 4.074, p= 0.001; full: t(21) =
4.340, p, 0.001; b -opened: t(21) = 2.726, p = 0.013; remained
open: t(21) = 2.688, p=0.014; resolved: t(21) =5.352, p, 0.001;
full: t(21) = 4.232, p, 0.001). A 4 (model: opened/remained
open/resolved/full) � 2 (band: a/b ) repeated-measures ANOVA
revealed a significant main effect of model (F(3,63) = 4.514,
p = 0.006, h 2 = 0.177). This was because of the full model show-
ing higher improvement than both opened (t(21) = 2.797,
p=0.011, Cohen’s d=0.757) and remained open (t(21) =3.484,
p=0.002, Cohen’s d=0.634). There was no other significant main
effect or interaction between the variables (p. 0.06).
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Control analysis: reconstruction accuracy did not improve in
French stories
In order to confirm that the effect of the dependency was because
of language comprehension rather than any speech properties,
we tested whether reconstruction accuracy was significantly higher
in dependency versus mismatch models in the French stories.
Conducting the same analysis as in Dutch stories, but for French,
we found that reconstruction accuracy was not significantly higher
than zero in any of the three dependency models (p. 0.1). There
was no significant main effect or interaction between the variables
(p. 0.1; Fig. 3B).

Dependency features modulate a power peaking in left temporal
regions

Effect of comprehension: NL versus FR stories. First, we
wanted to investigate the effect of comprehension by comparing
the reconstruction accuracies of the full model (acoustic edges,
word onset, word frequency, opened, remained open, resolved
dependencies) in NL versus FR stories. A nonparametric cluster
permutation test on source level revealed a significant cluster

mostly located in left temporal areas (cluster-corrected p=0.006)
for which NL exhibited higher reconstruction accuracy compared
with FR (Fig. 4A). The mean t values of the significant cluster as
well as the percentage of significant source points (voxels) per par-
cel (based on an anatomic atlas) are shown in Table 3.

Effect of dependency features. In order to identify the contri-
butions of each dependency feature, we performed a cluster per-
mutation test of the reconstruction accuracies in each dependency
model (opened/remained open/resolved) versus the base model
(Fig. 4B, bottom). We found significant clusters for opened versus
base model (p, 0.001), remained open versus base (p=0.022),
and, finally, resolved versus base (p, 0.001). The mean t values of
the significant clusters as well as the percentage of significant sour-
ces per parcel are shown in Table 3 (parcels including cortical
areas only, subcortical excluded).

Subsequently, we analyzed the temporal profiles of the afore-
mentioned effects, as demonstrated by their respective TRFs
(Fig. 4B, top). The arbitrary units in Figure 4B,D represent the
TRF model coefficients, as the degree of change in a/b power
for every unit of change in the features. A positive value thus
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represents power increase, while a negative value represents
power decrease relative to the onset of the respective feature
event. Specifically, we averaged the TRF coefficients over the sig-
nificant sources as identified above. Paired-sample t tests identi-
fied the time instances at which the TRF coefficients were

significantly different from those of a mismatch model (FDR-
corrected at p=0.05). With regard to the effect of the opened fea-
ture, results revealed a long-lasting positive-going wave from
;�0.75 to 1.1 s, peaking at word onsets (0 s). The remained
open feature modulated a power negatively ;�1 to 0 s, and
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positively between 0 and 1 s. Resolved dependencies showed a
long-lasting negativity from ;�1 to 0.75 s and a later positivity
;1 to 1.5 s.

Dependency features modulate b power peaking in left frontal,
parietal, and temporal regions

Effect of comprehension: NL versus FR stories.We also wanted
to investigate the effect of comprehension in the b band by com-
paring the reconstruction accuracies of the full model in NL ver-
sus FR stories. A nonparametric cluster permutation test on
source level revealed significant clusters, mostly located in left
frontal areas (p= 0.002), for which NL exhibited higher recon-
struction accuracy compared with FR (Fig. 4C; Table 3).

Effect of dependency features. A cluster permutation test of the
reconstruction accuracies in each dependency model (opened/
remained open/resolved) versus the base model (Fig. 4D, bottom;
Table 3) revealed significant clusters for opened versus base model
(p, 0.001), remained open versus base (p=0.025), and resolved
versus base (p, 0.001).

Further, we averaged over the TRF coefficients of the afore-
mentioned significant sources and compared those to a mis-
match model (Fig. 4D, top). Similar to the a band, in the b
band, dependency opening was associated with an early positive-
going wave from ;�0.80 to 0.70 s, but also a negativity after
;1 s. Remained open started with a negativity ;�1 to �0.30,
and showed a sharp positivity just after word onset, until 0.70 s.
Finally, the resolved feature showed an early negativity up until
;0.50 s, and a positive rebound after word onset at;1-1.5 s.

Control analysis in the d , u , and g band
To test the frequency specificity of our effects, we constructed
similar TRF models in d , u , and g . A nonparametric cluster-
based permutation test at sensor level between the reconstruction
accuracy of each dependency model versus the base model was
performed (a = 0.05, two-tailed; 1,000 permutations). Results

revealed a positive significant cluster for the d band (opened:
p= 0.004; remained open: p=0.002; resolved: p=0.002) and u
power (opened: p=0.030; remained open: p=0.032; resolved: p=
0.002), but no clusters for u band or g power (no cluster or
p. 0.4) (Fig. 5, bottom). TRF coefficients were averaged over
significant sensors and compared with a mismatch model using
paired-samples t tests (FDR correction at p=0.05) (Fig. 5, top).
TRFs were significantly different from the mismatch model for
remained open (~ �1 to 0.30 s and 0.80 to 1.30 s) and for resolved
(0.10 to 1 s). There were no significant time instances in the d band.

Discussion
In this study, we tested whether the functional role that a and b
oscillations play in low-level perceptual processing can be gener-
alized to naturalistic spoken language processing. Dutch native
speakers listened to stories in Dutch and French while MEG was
recorded. We identified three states at each word: number of
opened/remained open/resolved dependencies. We then con-
structed forward models to predict a and b power from the de-
pendency features, controlling for low-level linguistic features.
We report the following key findings: (1) high-level syntactic fea-
tures predict a and b power beyond acoustic, lexical, low-level
linguistic features; (2) left temporal language-related regions are
involved in language comprehension for a, while frontal and pa-
rietal, higher-order language regions, and motor regions play a
critical role for b ; and (3) a and b band dynamics subserve
comprehension by contributing to higher-level operations, poten-
tially associated with inhibition and reactivation or propagation
processes, during structured meaning composition. Contrary to
our expectations, the temporal profiles of a and b responses
were highly similar, and dependency features also modulated
lower-frequency bands, findings that do not align with func-
tional specificity or dissociation of a and b in language
comprehension.

Table 3. Results of source localization analysis of dependency featuresa

Parcel

NL vs FR Opened Remained open Resolved

t % t % t % t %

Alpha band
Middle frontal gyrus 0 0 2.23 8.82 0 0 2.85 65.86
Inferior frontal gyrus 1.77 1.70 2.71 91.15 0 0 4.47 100b

Precentral gyrus 0 0 3.38 40.38 0 0 4.43 67.63
Superior temporal gyrus 2.25 37.80 3.83 95.55 2.45b 6.93 5.07 100b

Middle temporal gyrus 3.09b 92.15b 4.60b 99.98b 3.40b 42.37b 6.53b 100b

Inferior temporal gyrus 3.81b 98.35b 4.76b 99.99b 3.15b 50.68b 6.93b 100b

Posterior superior temporal sulcus 2.71b 61.75b 5.61b 100.00b 2.32 11.80b 7.26b 100b

Superior parietal lobe 0 0 0 0 0 0 1.98 23.25
Inferior parietal lobe 2.03 2.24 3.99 57.21 0 0 4.24 78.68
Postcentral gyrus 0 0 3.75 43.47 0 0 4.49 68.61

Beta band
Middle frontal gyrus 2.94 50.39 3.09 36.90 1.66 0.01 3.93 60.36
Inferior frontal gyrus 3.16b 75.21b 4.12 68.62 2.13 4.02 4.62 100b

Precentral gyrus 3.27b 83.51b 4.73 69.25 2.42 5.75 4.81 99.66
Superior temporal gyrus 2.51 35.62 5.21b 75.83 2.99b 5.86 5.22 94.86
Middle temporal gyrus 2.75 20.58 4.78 93.47 0 0 5.68b 99.87b

Inferior temporal gyrus 1.59 0.01 3.94 99.92b 0 0 5.85b 100b

Posterior superior temporal sulcus 0 0 6.95b 100b 2.07 7.49b 7.77 100b

Superior parietal lobe 2.38 15.27 1.94 1.29 0 0 2.86 80.88
Inferior parietal lobe 2.48 33.58 4.45 94.04b 3.23b 11.79b 5.13 98.01
Postcentral gyrus 2.96b 74.09b 4.81b 72.59 3.03b 14.78b 5.08 96.81

aDescriptive statistics of source localization of dependency features effects in the left hemisphere (Fig. 4). Columns “t” show the mean t value over significant voxels for NL versus FR and opened/remained open/resolved versus
base models, while columns “%” show the percentage of significant voxels in the given parcel.
bHighest values per column.
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As expected, high-level syntactic features predicted a and b
power beyond low-level linguistic features for NL, but not for FR
stories. Our results provide evidence for the following: (1) de-
pendency features are related to a and b modulations in com-
prehended but not in an uncomprehended spoken language,
thus tapping into comprehension processes; and (2) a and b
oscillations are modulated by higher-level operations associated
with dependency formation and resolution in spoken language
processing, beyond low-level features.

Consistent with our hypothesis, language comprehension
seems to involve left temporal areas in a. Previous research dem-
onstrated the role of those regions in lexical retrieval and crea-
tion of syntactic hierarchies (den Ouden et al., 2012; Klaus et al.,
2020). The pMTG is argued to receive input from phonological
networks and convert sequences of morphemes into nonlinear
hierarchical structures, which are then mapped onto semantic
networks (Matchin and Hickok, 2020). The anterior temporal
lobe is associated with syntactic processing (Matchin et al.,
2017), although mostly with semantic composition during com-
binatorial operations (Hagoort, 2013; Del Prato and Pylkkänen,
2014; Westerlund and Pylkkänen, 2014; Murphy, 2015; Segaert
et al., 2018). Schoffelen et al. (2017) found that MTG exhibited a
high degree of causal outflow to anterior temporal areas and the
IFG, propagating information about lexical items to areas per-
forming integration during sentence reading. In our study, de-
pendency resolution was related to integration and unification of
the dependent in the sentential context, while dependency for-
mation was responsible for meaning construction during sen-
tence evolution.

On the other hand, linguistic features modulated b band dy-
namics in a range of temporal, parietal, and frontal regions. The
role of these regions in syntactic hierarchical structure and

semantic composition, as well as linguistic unification and inte-
gration processes, has been demonstrated (Friederici and von
Cramon, 2000; M. Meyer et al., 2002; Dronkers et al., 2004; Rodd
et al., 2005; Berwick et al., 2013; Zaccarella et al., 2017). The IFG
is linked to binding words together into syntactic hierarchies,
integration of abstract linguistic features with the existing con-
text (Zaccarella et al., 2017; Friederici and von Cramon, 2000;
ten Oever et al., 2022b), as well as encoding syntactic predictions
(Matchin et al., 2017). Connections originating from temporal
areas peak at a, whereas connections originating from parietal
or frontal regions peak at b (Schoffelen et al., 2017). Finally,
the contributions of motor and somatosensory areas might
be related to motor-auditory system interactions for efficient
speech comprehension (Morillon et al., 2014; Park et al., 2015,
2018; Morillon and Baillet, 2017; Assaneo and Poeppel, 2018;
Keitel et al., 2018; Rimmele et al., 2018; Terporten et al., 2019;
Abbasi and Gross, 2020; Poeppel and Assaneo, 2020; ten
Oever and Martin, 2021).

Surprisingly, a and b power exhibited a similar time course
of activation. Power increased before and decreased after the
opening of new dependencies, especially b . The effects were
widespread, both bands peaking in posterior superior temporal
sulcus, and to a lesser extent in MTG and ITG for a, but in STG
and PCG for b . The time courses are difficult to interpret; never-
theless, potential explanations of the power increases before de-
pendency opening could lie in reduced interference from already
open dependencies (Worden et al., 2000; Sauseng et al., 2009) or
the motor system preparing the auditory system for processing
of upcoming information (Abbasi and Gross, 2020). Encoding of
new dependencies might be reflected in a and b decrease fol-
lowing the opening of dependencies signaling increased cortical
excitability and active processing (Palva and Palva, 2007;
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Sauseng et al., 2009) or, speculatively, reflecting coordinate trans-
form from sensory information across the linguistic hierarchy
(Martin, 2016, 2020).

A power increase followed unresolved dependencies for b ,
peaking in temporo-parietal regions, and to a lesser extent for a,
in temporal regions. Processing difficulty increases with open
dependencies (Vos et al., 2001; Demberg and Keller, 2008), while
increased load is typically associated with power decreases in
task-relevant regions (Jensen and Mazaheri, 2010). Therefore,
the observed power increases were surprising. Nevertheless,
there is evidence for higher b power in long- than short-distance
dependencies, interpreted as active “maintenance” of the current
processing mode (Meyer et al., 2013). Considering that low-level
features were associated with faster power modulations after
word onset, the temporally diffuse effects for dependency fea-
tures are possibly because of syntactic and anticipatory processes,
linked to incremental effects spanning beyond the single-word
level (Bastiaansen et al., 2010).

Finally, we observed power decreases before and a positive
rebound following dependency resolution. These peaked in
temporal regions, while frontal and parietal modulations were
stronger in b than in a. Typically, a and b power decreases are
associated with upregulation of the cortex, making it more sus-
ceptible to processing upcoming information (Schubert et al.,
2009; Haegens et al., 2011a; Ede et al., 2011) via increased neu-
ronal excitability (Gastaldon et al., 2020; Iemi et al., 2022).
The observed power decreases could reflect preparation for de-
pendency resolution processing, by a release of language-related
regions from inhibition. The subsequent b increase is in line
with the proposition on b oscillations supporting reactivation of
latent content representations (Antzoulatos and Miller, 2016;
Spitzer and Haegens, 2017), based on studies showing content-
specific b modulations during information recall (Haegens et
al., 2011a, 2017; Spitzer and Blankenburg, 2011; Spitzer et al.,
2014; Wimmer et al., 2016). Importantly, the dependent constit-
uent’s representation is retrieved from memory and reactivated
during dependency resolution, to be integrated with the current
context (Bever and McElree, 1988; Nicol and Swinney, 1989;
McElree et al., 2003; Martin and McElree, 2008). We therefore
speculate that the power increases reflect reactivation of the de-
pendent constituent linked to integration and interpretation.

Previous studies found distinct roles of a and b in language
processing. Röhm et al. (2001) and Scharinger et al. (2015)
found reduced a power during sentence processing with higher
processing load compared with baseline reading. Furthermore,
a desynchronization was linked to syntactic/semantic violations
(Davidson and Indefrey, 2007). Meyer et al. (2013) interpreted
increased a power in sentences with long- than short-distance
dependencies as suppression of interference, and increased b
power at dependency resolution in long-dependency sentences as
syntactic integration. A gradual b increase in syntactically
structured sentences was observed in b but not in other bands
(Bastiaansen et al., 2010). Lewis and Bastiaansen (2015) pro-
posed that b may carry top-down predictive information based
on the sentence context to regions responsible for hierarchically
“lower” sensory and perceptual processing.

We acknowledge our findings should be interpreted with
caution, especially with regard to the frequency specificity of
the effects and the distinct role of a and b oscillations in lan-
guage comprehension. First, in contrast with our hypothesis,
the observed effects were highly similar between a and b in
the temporal domain. Therefore, our findings do not provide
robust evidence for distinct functional roles of a and b .

However, there was a spatial distinction in the Dutch versus
French contrast tapping into the neural correlates of compre-
hension. It could thus be that dependency features recruited
a and b oscillations in a time-locked manner, engaging dif-
ferent brain systems with the same timing. Second, control
analysis showed that the dependency features also modulate
lower-frequency bands (although we did not observe distinct spec-
tral peaks for these lower bands). This finding does not align with
the idea that dependency features specifically modulate a and b .
Future studies using controlled-trial paradigms are needed to elu-
cidate the effects of high-level linguistic features on a and b .

Overall, our study offers novel contributions for studying a
and b dynamics “in the wild” using naturalistic stimuli and
TRFs. Our findings are consistent with an account where oscilla-
tory building blocks are reconfigured as a function of language
processing. Assuming that dependency features tap into domain-
general operations, our results provide support for the general-
ization of the a and b functional roles from sensory operations
to complex linguistic processing. However, the specificity of a
and b modulations by high-level features and the functional dis-
tinction between the two bands were only partially supported by
the findings.
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