
Lazy Synthesis of Symbolic Output-Feedback Controllers for
State-Based Safety Specifications

Mehrdad Zareian
KIT, Germany

mehrdad.zareian@kit.edu

Anne-Kathrin Schmuck
MPI-SWS, Germany

akschmuck@mpi-sws.org

ABSTRACT

This short paper presents a lazy symbolic output-feedback controller
synthesis algorithm for state-based safety specifications over large
transition systems. The novel idea of our approach is to integrate
an iterative algorithm for observer design with an online adaptable
safety controller synthesis algorithm. This allows us to iteratively
update the safety controller to observer refinements and to guide
these refinements by the existing controller. This results in efficient
lazy synthesis of a safety controller whose domain increases with
the time spent in synthesis. We present simulation results for a
synthetic robot motion planning example showing the benefits of
our algorithm compared to the standard approach.

ACM Reference Format:

Mehrdad Zareian and Anne-Kathrin Schmuck. 2023. Lazy Synthesis of
Symbolic Output-Feedback Controllers for State-Based Safety Specifications.
In Proceedings of the 26th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC ’23), May 09–12, 2023, San Antonio, TX, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3575870.3587111

1 INTRODUCTION

The problem of symbolic output-feedback control arises if a dynam-
ical system is controlled through a digital interface which limits the
sensing capabilities of the controller to a finite set of boolean output
variables [3, 6, 7]. Such restrictions arise for example due to the
deployment of sensors which only record threshold crossings of con-
tinuous variables. In contrast to classical output-feedback control,
where the output is a continuous signal with a functional relation-
ship to the continuous state variables, the symbolic output-feedback
control problem considers an output that switches between a finite
number of boolean outputs in a discontinuous manner. Due to the
lack of constant feedback, the construction of an observer for con-
troller synthesis is substantially different from classical Kalman or
Luenberger observer design.

The typical approach to solve symbolic output-feedback control
problems for dynamical systems is to first abstract the underlying
continuous system both in time and in space, to obtain a (typically
large but finite-state) discrete transition system. If the specification
is given over the available boolean output variables, the controller

Both authors were partially supported by DFG projects 389792660 TRR 248–CPEC and
SCHM 3541/1-1. This research was conducted while the first author was at MPI-SWS.

This work is licensed under a Creative Commons Attribution International
4.0 License.

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0033-0/23/05.
https://doi.org/10.1145/3575870.3587111

synthesis problem reduces to solving a two-player game under
imperfect information over a finite graph induced by the abstract
transition system [11, Sec.3]. In order to solve such games, one has
to first construct another transition system, called observer, which
incurs an exponential blow-up in the state space. Only after the
observer is constructed, a normal synthesis game can be solved
to obtain the controller. In the context of symbolic control for
continuous systems, this approach is not applicable, as the obtained
abstraction typically has a very large state space that prohibits
the efficient construction of an observer - let alone the subsequent
solution of the synthesis game.

To overcome this challenge, we propose a new lazy observer de-
sign approach which interleaves observer construction and safety
controller synthesis. Our technique overapproximates the true ob-
server by a deterministic finite transition system and uses this
overapproximation for controller synthesis. Thereafter, we refine
our approximate observer by adding more distinguished states
and transitions. By using an online safety controller synthesis al-
gorithm, we can update the controller for the refined transition
system without a full recomputation. In addition, we can utilize the
information from a previous synthesis attempt to lazily refine the
observer. This way, we yield an iterative synthesis technique that
only computes tight observations for parts of the underlying system
relevant for the posted synthesis question. In addition, the quality
of the controller, in terms of its domain, increases with the number
of refinements, and hence, with the resources spent in synthesis.
We show that for a robot motion planning example with symbolic
observations our technique outperforms a standard approach.

Related work. The construction of symbolic controllers was
addressed in [1, 10] for omega-regular properties under classical
output-feedback, i.e., where the output is a continuous function
of the state variable. This setting allows to incorporate classical
(non-)linear observer design methods before the abstraction step.
In the distinguished setting of symbolic output-feedback control
addressed in this paper, the problem of constructing observers for
infinite state systems [7] and the classical two-step approach of
observer and controller synthesis for output-based specifications
was investigated [8, 9]. Iterative approaches appeared in the context
of supervisory control [13], and, recently, for omega-regular spec-
ifications in the context of symbolic output-feedback control [4].
While [4] addresses the same synthesis problem as this paper, their
approach is orthogonal and their tool BOCoSy does not yet scale
to the size of the transition systems considered in our experiments.

2 PRELIMINARIES

Notation.We use 𝑓 : 𝐴 ⇒ 𝐵 and 𝑓 : 𝐴→ 𝐵 to denote a set-valued
and ordinarymap, respectively. Themap 𝑓 is called strict if 𝑓 (𝑎) ≠ ∅
for all 𝑎 ∈ 𝐴. We define the inverse map 𝑓 −1 (𝑏) = {𝑎 ∈ 𝐴|𝑏 ∈ 𝑓 (𝑎)}

https://doi.org/10.1145/3575870.3587111
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3575870.3587111
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575870.3587111&domain=pdf&date_stamp=2023-05-09

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mehrdad Zareian and Anne-Kathrin Schmuck

and lift maps to subsets of their domain in the usual way, i.e., for
𝑓 : 𝐴 ⇒ 𝐵 and 𝛼 ⊆ 𝐴 we have 𝑓 (𝛼) = {𝑏 |∃𝑎 ∈ 𝛼.𝑏 ∈ 𝑓 (𝑎)}.
Systems. We consider systems 𝑆 = (𝑋,𝑋0,𝑈 , 𝐹, 𝑌 , 𝐻) which con-
sists of a state space 𝑋 , set of initial states 𝑋0 ⊆ 𝑋 , a input space
𝑈 , a strict transition function 𝐹 : 𝑋 × 𝑈 ⇒ 𝑋 , an output space
𝑌 , and a strict output function 𝐻 : 𝑋 → 𝑌 . By some abuse of
notation we associate the functions 𝐹 and 𝐻 sometimes with their
corresponding relations 𝐹 ⊆ 𝑋 ×𝑈 ×𝑋 and𝐻 ⊆ 𝑋 ×𝑌 , respectively.
The system S is called finite if 𝑋 ,𝑈 and 𝑌 are finite sets.
Trace semantics. The set of all finite and infinite state-input traces
(trace for short) of system 𝑆 are denoted by Tr∗ (𝑆) and Tr𝜔 (𝑆) and
consist of all traces 𝜋 = 𝑥0𝑢0𝑥1𝑢1 ... s.t. 𝑥0 ∈ 𝑋0 and 𝑥𝑖+1 ∈ 𝐹 (𝑥𝑖 , 𝑢𝑖)
for all 𝑖 ∈ 𝑑𝑜𝑚(𝜋) where 𝑑𝑜𝑚(𝜋) = [0, 𝑘) for finite traces 𝜋 =

𝑥0𝑢0𝑥1𝑢1 ...𝑢𝑘−1𝑥𝑘 and 𝑑𝑜𝑚(𝜋) = N for infinite traces. We define
the map Ω𝑆 : 𝜋 ↦→ 𝑦0𝑢0𝑦1 ... such that ∀𝑖 ∈ 𝑑𝑜𝑚(𝜋) : 𝑦𝑖 = 𝐻 (𝑥𝑖) to
map a state-input trace to its corresponding input-output trace. We
collect all finite and infinite input-output traces in the sets ETr∗ (𝑆)
and ETr𝜔 (𝑆), respectively. The last state of a finite trace is Last(𝜋).
Safety specifications.We consider safety specifications defined
by a proper subset 𝐵 ⊂ 𝑋 of bad states. We collect all infinite
state/input and input/output traces respecting this specification in
the sets Tr𝜔¬𝐵 (𝑆) := {𝜋 ∈ Tr𝜔 (𝑆) | ∀𝑖 ∈ N : Last(𝜋[0:𝑖]) ∉ 𝐵} and
ETr𝜔¬𝐵 (𝑆) := {𝜋 ∈ ETr𝜔 (𝑆) | ∀𝑖 ∈ N : Last(Ω−1

𝑆
(𝜋[0:𝑖])) ∩ 𝐵 ≠ ∅},

respectively. We see that, by definition, 𝜈 ∈ ETr𝜔¬𝐵 (𝑆) iff for all
𝜋 ∈ Ω−1

𝑆
(𝜈) holds that 𝜋 ∈ Tr𝜔¬𝐵 (𝑆).

Controller. Given a system 𝑆 = (𝑋,𝑋0,𝑈 , 𝐹, 𝑌 , 𝐻), we define a
state-feedback and an output-feedback controller for 𝑆 as a function
𝐶 : 𝑋 ⇒ 𝑈 and𝐶 : 𝑌 (𝑈𝑌)∗ ⇒ 𝑈 .We collect all closed loop traces of
system 𝑆 controlled by𝐶 in the set Tr𝜔 (𝑆,𝐶) = {𝜋 ∈ Tr𝜔 (𝑆) | ∀𝑖 ∈
N : 𝑢𝑖+1 ∈ 𝐶 (Last(𝜋[0:𝑖]))} if𝐶 is a state-feedback controller and in
the set Tr𝜔 (𝑆,𝐶) = {𝜋 ∈ Tr𝜔 (𝑆) | ∀𝑖 ∈ N : 𝑢𝑖 ∈ 𝐶 (Ω𝑆 (𝜋[0:𝑖−1]))}
if𝐶 is an output-feedback controller. We define the initial domain of
𝐶 by dom0 (𝐶) := dom(𝐶)∩𝑋0 if𝐶 is a state-feedback controller, and
by dom0 (𝐶) := Ω−1

𝑆
(dom(𝐶) ∩ 𝑌) ∩ 𝑋0 if 𝐶 is an output-feedback

controller. A controller 𝐶 is called a safety controller for 𝑆 w.r.t.
𝐵 if ∅ ≠ Tr𝜔 (𝑆,𝐶) ⊆ Tr𝜔¬𝐵 (𝑆). In addition, a safety controller 𝐶
is said to have maximal domain if there does not exist another
safety controller 𝐶′ (of the same type, i.e., either state-feedback or
output-feedback) s.t. dom0 (𝐶) ⊊ dom0 (𝐶′) ⊆ 𝑋0.

3 PROBLEM STATEMENT

Starting with a dynamical system governed by non-linear dif-
ferentail equations, we assume that this system has already been
abstracted into a (large but) finite-state transition system 𝑆 using
standard techniques, e.g. SCOTS [12]. For this system 𝑆 we consider
the following synthesis problem.

Problem 3.1. Given a finite system 𝑆 with state space 𝑋 and
a safety specification 𝐵 ⊆ 𝑋 , construct an output-feedback safety
controller 𝐶 for 𝑆 w.r.t. 𝐵.

Problem 3.1 is a synthesis problem under partial observation -
the specification (i.e., its satisfaction) is not directly observable by
the output-feedback controller. The standard procedure to solve
this problem consists of three steps: (i) construction of an observer,
(ii) synthesis of a state-feedback controller on the observer, and
(iii) refinement of the abstract state-feedback controller into an

𝑥3 𝑥4 𝑥5

𝑥1 𝑥2
𝑢

𝑢𝑢𝑢
𝑢 𝑣 𝑣

𝑣𝑣

𝑣

𝛼 𝛼

𝛽 𝛽 𝛽

Figure 1: System 𝑆 for Ex.3.1 with states 𝑋 = {𝑥1, . . . , 𝑥5}, in-
puts𝑈 = {𝑢, 𝑣}, outputs 𝑌 = {𝛼, 𝛽} and specification 𝐵 = {𝑥5}.

output-feedback controller for the original system. Section 4 out-
lines this rather standard sequential synthesis approach. Thereafter,
Sec. 5 presents the main contribution of this paper, which is the
integration of all three steps into a dynamic algorithm that lazily
interleaves observer and controller design.

Example 3.1. We will use a running example to illustrate the
constructions given in the following sections. For this, we consider
the transition system illustrated in Fig. 1 with two symbolic outputs
𝛼 and 𝛽 , control inputs 𝑢 and 𝑣 and the set of bad states 𝐵 = {𝑥5}.

4 SEQUENTIAL SYNTHESIS

This section recalls necessary concepts used in the standard solu-
tion of Problem 3.1, which executes the full observer construction
(Sec. 4.1) before the synthesis step (Sec. 4.2) and then combines
both (Sec. 4.3) to derive an output feedback controller.

4.1 Knowledge-based Abstraction (KA)

This section presents a particular knowledge-based abstraction
(KA) algorithm, given in Alg. 1, which will allow us to integrate
the observer construction with the safety controller synthesis in
Sec. 5. As usual, this KA algorithm takes as input a system 𝑆 with
non-deterministic input/output behaviour and builds a deterministic
observer 𝑆 which has the same input-output behavior as 𝑆 . In par-
ticular, the states of the observer correspond to the state-subsets
of 𝑆 which are reachable by the same input/output trace and are
therefore indistinguishable by the output-feedback controller.

Algorithm 1 Knowledge-based Abstraction (KA)
Require: 𝑆 = (𝑋,𝑋0,𝑈 , 𝐹 ,𝑌 ,𝐻) ;
1: 𝑋0 ← {𝑋0 ∩𝐻 −1 (𝑦) |𝑦 ∈ 𝑌 }; 𝐿 ← 𝑋0;
2: while 𝐿 ≠ ∅ do
3: 𝐿𝑛𝑒𝑤 ← ∅
4: for 𝑥 ∈ 𝐿,𝑢 ∈ 𝑈 , 𝑦 ∈ 𝑌 do

5: 𝑥 ′ ← 𝐹 (𝑥,𝑢) ∩𝐻 −1 (𝑦) ≠ ∅;
6: 𝐿𝑛𝑒𝑤 ← 𝐿𝑛𝑒𝑤 ∪ {𝑥 ′ } \𝑋 ;
7: 𝑋 ← 𝑋 ∪ {𝑥 ′ }; 𝐹 ← 𝐹 ∪ { (𝑥,𝑢, 𝑥 ′) };
8: end for

9: 𝐿 ← 𝐿𝑛𝑒𝑤 ;
10: end while

11: 𝐻 (𝑥) = 𝑦 iff 𝑦 ∈ 𝐻 (𝑥) ;
12: return 𝑆 = (𝑋,𝑋0,𝑈 ,𝑌 , 𝐹,𝐻) ;

Alg. 1 operates on subsets of the state space. For avoiding am-
biguity, we call these subsets covers. The algorithm initially starts
with a distinct root vertex and successively generates a tree whose
vertices are labeled by covers. The first level of the tree consists of
nodes with covers which correspond to the subsets of initial states
generating the same output (line 1). Afterwards, we grow the tree
by exploration (line 5). Given a leaf node with cover 𝑥 ⊆ 𝑋 , we

Lazy Synthesis of Symbolic Output-Feedback Controllers HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

compute for every input 𝑢 ∈ 𝑈 a new child with cover 𝑥 ′ ⊆ 𝑋

s.t. 𝑥 ′ is the subset of states which are reachable by 𝑢 from 𝑥 , i.e.,
𝑥 ′ ⊆ 𝐹 (𝑥,𝑢), and have the same output, i.e., there exists a 𝑦 ∈ 𝑌
s.t. 𝑥 ′ = 𝐻−1 (𝑦). We only further explore a leaf node if there is not
already another node with the same cover in the tree (line 6 & 9).
The resulting KA-tree for Ex. 3.1 is depicted in Fig.2.

In order to extract the observer 𝑆 = (𝑋,𝑋0,𝑈 ,𝑌 , 𝐹, 𝐻) from the
KA-tree, we collect all distinct covers in the abstract state set 𝑋
(line 7). Further, a transition is contained in 𝐹 if and only if there
exist a transition in the tree between corresponding cover vertices.
Intuitively, this maps all nodes in the KA-tree with the same cover
on top of each other and removes the root-node of the tree. By
construction, every state 𝑥 in a cover 𝑥 ⊆ 𝑋 has the same output,
hence 𝐻 immediately defines the abstract output function 𝐻 (line
11). The observer 𝑆 for Ex. 3.1 is shown in Fig.3.

It follows directly from the exploration-step of Alg. 1 that for any
finite input/output sequence 𝜋 ∈ (𝑈𝑌)∗ the set of states reached
in 𝑆 by any state-input trajectory 𝜋 ′ ∈ Ω−1

𝑆
(𝜋) coincide with the

cover of the unique state reached in 𝑆 under this input, i.e.,

∀𝜋 ∈ (𝑈𝑌)∗ . Last(Ω−1
𝑆 (𝜋)) = Last(Ω−1

𝑆
(𝜋)). (1)

With this it immediately follows from the construction of 𝐹 and 𝐻
that Ω𝑆 (Tr𝜔 (𝑆)) = Ω

𝑆
(Tr𝜔 (𝑆)), i.e., the input/output behaviors of

𝑆 and 𝑆 coincide. We can therefore interpret 𝑆 as an observer for 𝑆
and specification 𝐵 by defining

𝐵 := {𝑥 ∈ 𝑋 |𝑥 ∩ 𝐵 ≠ ∅} (2)

and observing that this implies Ω
𝑆

(
Tr𝜔
¬𝐵
(𝑆)

)
= ETr𝜔

¬𝐵
(𝑆) =

ETr𝜔¬𝐵 (𝑆) as 𝐻 is deterministic. I.e., every input/output trace 𝜈

of 𝑆 for which all corresponding input/state traces 𝜋 ∈ Ω−1
𝑆
(𝜈) are

safe, corresponds to a safe input/state trace 𝜋 of 𝑆 w.r.t. the safety
specification 𝐵 over 𝑆 . In order to construct an output-feedback con-
troller for 𝑆 w.r.t. 𝐵 it therefore suffices to construct a state-feedback
controller for 𝑆 w.r.t. 𝐵. This is done next.

4.2 Online Safety Controller Synthesis

This section introduces a synthesis algorithm for a state-feedback
safety controller, which allows to update the controller online, when
states or transitions are added to the system. This algorithm is a
simplified version of the online strategy synthesis algorithm for
Büchi games [2], which is based on progress measures [5].

A progress measure 𝜌 for system 𝑆 is a map 𝜌 : 𝑋 →
{0, 1, . . . , |𝑋 |} ∪ {⊤} which assigns every state 𝑥 ∈ 𝑋 of 𝑆 either
an integer from the set {0, 1, . . . , |𝑋 |} or the top element ⊤. The
ordering over progress measures is the natural order over N and
𝑛 < ⊤ as well as ⊤ ≤ ⊤, for all 𝑛 ∈ {0, 1, . . . , |𝑋 |}]. We define

𝜌 (𝑥) + 1 :=

{
𝑛 + 1 𝜌 (𝑥) = 𝑛 < |𝑋 |
⊤ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (3)

Given 𝐵 ⊂ 𝑋 , a progress measure is called valid for 𝐵 over 𝑆 if

𝜌 (𝑥) =


max
𝑢∈𝑈

(
min

𝑥 ′∈𝐹 (𝑥,𝑢)
(𝜌 (𝑥 ′))

)
+ 1 𝑥 ∈ 𝑋 \ 𝐵

0 𝑥 ∈ 𝐵
(4)

for all 𝑥 ∈ 𝑋 . In order to compute a valid progress measure over
a system 𝑆 w.r.t. safety specification 𝐵 ⊂ 𝑋 one computes the
least fixed-point over an update function which iteratively updates
progress measures of single states, based on the current progress
measure of their neighbours by evaluating (4). This iterative com-
putation is initialized with the progress measure 𝜌0 (𝑥) = 0 for
all 𝑥 ∈ 𝑋 and formalized in Alg. 2. It is known that the progress
measure 𝜌∗ = PMUpdate(𝑋, 𝐹, 𝐵, 𝑋 \𝐵, 𝜌0) computed by Alg. 2 for
a system 𝑆 w.r.t. 𝐵 is indeed valid [2].

Algorithm 2 PMUpdate
Require: 𝑆𝑑 = (𝑋,𝑈 , 𝐹) , 𝐵,𝑄 , 𝜌 ;
1: while Q is not empty do

2: 𝑥 ← Q.dequeue();
3: if 𝑥 ∉ 𝐵 then 𝜌𝑛𝑒𝑤 = max

𝑢∈𝑈
(min
𝑥 ′∈𝐹 (𝑥,𝑢)

𝜌 (𝑥 ′)) + 1;

4: end if

5: if 𝜌𝑛𝑒𝑤 ≠ 𝜌 (𝑥) then
6: 𝜌 (𝑥) ← 𝜌𝑛𝑒𝑤 ; Q.queue ({𝑥𝑝𝑟𝑒 | (𝑥𝑝𝑟𝑒 , ·, 𝑥) ∈ 𝐹 }) ;
7: end if

8: end while

9: return 𝜌 ;

Intuitively, the valid progress measure 𝜌∗ represents the minimal
controllable distance of a state from any bad state. I.e., if 𝜌∗ (𝑥) =
𝑛 ∈ {0, 1, . . . , |𝑋 |} the controller can ensure that the system does not
visit a bad state for at least 𝑛 steps, independent on how the system
resolves the non-determinism in 𝐹 . Therefore, only states 𝑥 with
valid progress measure 𝜌∗ (𝑥) = ⊤ allow to remain safe infinitely
under control. By defining the set 𝑋⊤ := {𝑥 ∈ 𝑋 | 𝜌∗ (𝑥) = ⊤} we
have that

(∃𝑢 ∈ 𝑈 . 𝐹 (𝑥,𝑢) ⊆ 𝑋⊤) ⇔ 𝑥 ∈ 𝑋⊤ (5)
which is an immediate consequence of 𝜌∗ being a fixed-point of
the update equation in line 3 of Alg. 2. With this, we see that every
controller that enables every input 𝑢 with the property in (5) for
every state 𝑥 ∈ 𝑋⊤, defined by

𝐶 (𝑥) :=

{
{𝑢 ∈ 𝑈 | 𝐹 (𝑥,𝑢) ⊆ 𝑋⊤} 𝑥 ∈ 𝑋⊤
undefined otherwise

, (6)

is indeed a maximal state-feedback safety controller for 𝑆 w.r.t. 𝐵 if
𝑋0 ∩ 𝑋⊤ ≠ ∅. That is ∅ ≠ Tr𝜔 (𝑆,𝐶) ⊆ Tr𝜔¬𝐵 (𝑆).

Applying Alg. 2 and (6) to the observer 𝑆 w.r.t. the safety specifi-
cation 𝐵 in (2), we therefore obtain a maximal state-feedback safety
controller𝐶 for 𝑆 w.r.t. 𝐵. For the system 𝑆 in Fig. 1 and its observer
𝑆 in Fig. 3, the resulting valid progress measure is indicated by
purple numbers on the states of 𝑆 in Fig. 3 (left) and the resulting
state-feedback controller is depicted in Fig. 3 (right).

4.3 Controller Refinement

Given the observer construction and the abstract state-feedback
safety controller synthesis algorithms discussed in Sec. 4.1 and
Sec. 4.2, it remains to refine 𝐶 into a output-feedback safety con-
troller 𝐶 for 𝑆 w.r.t. 𝐵 which has maximal domain. This can be
obtained by defining

𝐶 (𝜋) := 𝐶 (Last(Ω−1
𝑆
(𝜋))) . (7)

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mehrdad Zareian and Anne-Kathrin Schmuck

ො𝑥5 ො𝑥6 ො𝑥5 ො𝑥7 ො𝑥3 ො𝑥8

ො𝑥3ො𝑥4ො𝑥7ො𝑥8ො𝑥6ො𝑥5ො𝑥9ො𝑥5ො𝑥6ො𝑥3ො𝑥4 ො𝑥5 ො𝑥9

ො𝑥6 ො𝑥4

ො𝑥3

Iterations:
𝑥1, 𝑥2 𝑥3, 𝑥4, 𝑥5

𝑥1 𝑥5 𝑥2 𝑥3 𝑥2 𝑥3, 𝑥4 𝑥1 𝑥4, 𝑥5

𝑥5 𝑥2 𝑥4

𝑥3 𝑥5

𝑥1 𝑥1 𝑥3 𝑥2 𝑥4 𝑥3𝑥2 𝑥4, 𝑥5 𝑥3, 𝑥4 𝑥5 𝑥1

ො𝑥1

ො𝑥3 ො𝑥4

ො𝑥2

Figure 2: KA tree for Ex.3.1. All iterations are displayed. Inputs and outputs are color-coded and states are labled by their cover.

𝑥1, 𝑥2

𝑥1

𝑥5 𝑥3
𝑥2

𝑥4

𝑥4, 𝑥5

𝑥3, 𝑥4, 𝑥5

𝑥3, 𝑥4

𝑥1, 𝑥2

𝑥2 𝑥3

𝑥1 𝑥4

(B)(A)

0

00

⊤ 0

⊤

⊤
⊤

⊤

ො𝑥1 ො𝑥2

ො𝑥8

ො𝑥7
ො𝑥4

ො𝑥5
ො𝑥6

ො𝑥3

ො𝑥1

ො𝑥3

ො𝑥9

ො𝑥9
ො𝑥5

ො𝑥5 ො𝑥6

Figure 3: (A) Observer 𝑆 extracted from the KA tree in Fig. 2.

Inputs and outputs are color-coded, states are labled with

their cover, states in 𝐵 are yellow filled. The progressmeasure

𝜌 (⊤ or 0) is displayed in in pink. (B) Abstract controller 𝐶

extracted from 𝑆 and 𝜌 via (6).

In order to see that 𝐶 is indeed a maximal output-feedback safety
controller for 𝑆 w.r.t. 𝐵, recall that (1) holds. This implies from the
construction of 𝐶 and the fact that 𝐻 is deterministic that

Ω𝑆 (Tr𝜔 (𝑆,𝐶)) = Ω
𝑆
(Tr𝜔 (𝑆,𝐶)). (8)

As 𝐶 is a safety controller with maximal domain, this immediately
implies that 𝐶 is a safety controller with maximal domain as well.

5 LAZY INTEGRATED SYNTHESIS

This section presents the main contribution of this paper, which is
an algorithm, called KAty, which combines observer construction
and abstract safety controller synthesis in a lazy iterative manner.

Overview. KAty starts by exploring the KA tree for a fixed small
number of steps. Given the knowledge on the transition structure
of 𝑆 obtained during those steps, KAty constructs an abstraction 𝑆 ,
which allows to synthesize an abstract safety controller 𝐶 via the
progress measure algorithm in Alg. 2 along with (6). The progress
measure 𝜌 computed over 𝑆 to extract 𝐶 is then used to guide the
further refinement of the KA tree, by only exploring “promising”
branches for a fixed small number of steps. If this exploration is
completed, a new, refined abstraction 𝑆 ′ is extracted. The main
insight that KAty exploits is that the computation of the progress
measure 𝜌′ over 𝑆 ′ can be warm-started with the progress measure
𝜌 from the previous abstraction 𝑆 . This insight makes our approach
computationally efficient.

Algorithm 3 Knowledge-based Abstraction & Safety (KAty)
Require: 𝑆 = (𝑋,𝑋0,𝑈 , 𝐹 ,𝑌 ,𝐻) and 𝐵 ⊆ 𝑋 ;
1: 𝑋0 ← {𝑋0 ∩𝐻 −1 (𝑦) |𝑦 ∈ 𝑌 };
2: 𝑋 ← {𝑟𝑜𝑜𝑡 } ∪𝑋0; 𝐹 ← {(𝑟𝑜𝑜𝑡, 𝜀, 𝑥) |𝑥 ∈ 𝑋0};
3: 𝜌 ← {(𝑥, 0) |𝑥 ∈ 𝑋0};
4: 𝐵 = {𝑥 ∈ 𝑋0 | 𝑥 ∩ 𝐵 ≠ ∅}; 𝐿 ← 𝑋0 \ 𝐵;
5: while TCond == false do

6: 𝑋 ← 𝑋 ; 𝐹 ← 𝐹 ; 𝐵 ← 𝐵;
7: for 𝑥 ∈ 𝐿,𝑢 ∈ 𝑈 , 𝑦 ∈ 𝑌 do

8: 𝑥 ′ ← 𝐹 (𝑥,𝑢) ∩𝐻 −1 (𝑦) ≠ ∅
9: 𝑋 ← 𝑋 ∪ 𝑥 ′; 𝐹 ← 𝐹 ∪ { (𝑥,𝑢, 𝑥 ′) };
10: 𝐵 ← 𝐵 ∪ {𝑥 ′ | 𝑥 ′ ∩ 𝐵 ≠ ∅};
11: if ∃ a smallest 𝑥 ∈ 𝑋 s.t. (𝑥 ′ ⊆ 𝑥) then

12: 𝐹 ← 𝐹 ∪ (𝑥,𝑢, 𝑥) ;
13: else

14: 𝐹 ← 𝐹 ∪ (𝑥,𝑢, 𝑥 ′) ; 𝐵 ← 𝐵 ∪ {𝑥 ′ }; 𝜌 (𝑥 ′) ← 0;
15: end if

16: end for

17: 𝜌 ←UpdatePM((𝑋,𝑈 , 𝐹), 𝐵, 𝐿, 𝜌);
18: 𝐿 ← ∅;
19: for 𝑥 ′ ∈ 𝑋 \𝑋 do

20: if ECond(𝑥 ′) == true then

21: 𝐿 ← 𝐿 ∪ {𝑥 ′ }; 𝜌 (𝑥 ′) ← 0;
22: else

23: 𝐹 ←
(
𝐹 \ { (·, ·, 𝑥 ′) }

)
∪
(
𝐹 ∩ { (·, ·, f (𝑥 ′)) }

)
;

24: end if

25: end for

26: end while

27: 𝐻 (𝑥) = y iff 𝑦 ∈ 𝐻 (𝑥) ;
28: return 𝑆 = (𝑋,𝑋0,𝑈 , 𝐹,𝑌 ,𝐻) , 𝜌

The pseudo-code of KAty is given in Alg. 3. It starts with an
initialization phase (line 1-4) which is almost identical to the initial-
ization step in the KA algorithm (Alg. 1). At the heart of KAty is an
iterative loop with three parts: (i) exploration (line 8-10), (ii) folding
(line 11-15) and (iii) progress measure update (line 17). Afterwards
an exploration condition ECond is checked, that determines which
leafs are explored in the next iteration (line 20-25). This overall iter-
ation loop of KAty terminates if a particular termination condition
TCond is fulfilled.
Folding. The folding step of KAty is inspired by the KAM algo-
rithm from [7]. Intuitively, folding takes leaf nodes with cover 𝑥 ′ of
the KA tree and maps them onto nodes in the upper part of the tree
with the tightest overapproximating cover 𝑥 ′′ s.t. 𝑥 ′ ⊆ 𝑥 ′′ (line 11-
15 of Alg. 3, illustrated in Fig. 4 (A) dashed purple), if one exists. This
folding is sound as the overapproximation of covers ensures that

Lazy Synthesis of Symbolic Output-Feedback Controllers HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

ො𝑥5 ො𝑥6

𝑥1, 𝑥2 𝑥3, 𝑥4, 𝑥5

𝑥1 𝑥5 𝑥2 𝑥3

ො𝑥1

ො𝑥3 ො𝑥4

ො𝑥2

ො𝑥5 ො𝑥6

ො𝑥7ො𝑥5ො𝑥6ො𝑥3

𝑥1, 𝑥2

𝑥1 𝑥5 𝑥2 𝑥3

𝑥1 𝑥3 𝑥2 𝑥4

ො𝑥1

ො𝑥3 ො𝑥4

𝑥3, 𝑥4, 𝑥5
ො𝑥2

𝑥1, 𝑥2

𝑥2 𝑥3

(A) (C)(B)01

⊤ 0

0

⊤⊤

⊤

ො𝑥4

𝑥2𝑥5
𝑥1

ො𝑥5

ො𝑥1

ො𝑥5 ො𝑥6

ො𝑥3

Figure 4: Illustation of the KAty tree for Ex. 3.1 after the first itation (A) and the second iteration (B) using the same visuations

as in Fig. 2-3. (C) shows the controller 𝐶 extracted from 𝑆 after the second iteration of KAty.

every future behavior of 𝑆 starting in node 𝑥 ′ is overapproximated
by all behaviors starting in 𝑥 ′′. If no behavior overapproximating
the future of a leaf is already explored, i.e., no upper-tree node with
overapproximating cover exits, we mark the leaf node bad, i.e., add
it to 𝐵 (line 13-14). This ensures that the safety controller computed
over 𝑆 w.r.t. 𝐵 surely underapproximates the safety controller for
the original system. This is formalized in the following proposition.

Proposition 5.1. Let 𝑆 be a system with specification 𝐵, 𝑆 =

KA(𝑆) the observer of 𝑆 computed via Alg. 1 with approximated
specification 𝐵 as in (2) and 𝑆 = (𝑋,𝑋0,𝑈 , 𝐹, 𝑌 , 𝐻) a system, where
𝑋 and 𝐹 are computed in some iteration of KAty(𝑆, 𝐵). Then

ETr𝜔
¬𝐵
(𝑆) ⊆ ETr𝜔

¬𝐵
(𝑆). (9)

Proof. Pick 𝜈 = 𝑦0𝑢0𝑦1𝑢1 . . . ∈ ETr𝜔
¬𝐵
(𝑆) and recall that 𝑆 and

𝑆 are deterministic. This implies the existence of unique runs 𝜋 =

𝑥0𝑢0𝑥1𝑢1 . . . ∈ Ω−1
𝑆
(𝜈) and 𝜋 = 𝑥0𝑢0𝑥1𝑢1 . . . ∈ Ω−1

𝑆
(𝜈). Further, as

𝜈 ∈ ETr𝜔
¬𝐵
(𝑆) we have 𝑥𝑖 ∉ 𝐵 for all 𝑖 ∈ N. Hence, it follows from

the construction of 𝐹 and 𝐹 that 𝑥𝑖 ⊆ 𝑥𝑖 and therefore from the
construction of 𝐵 and 𝐵 that 𝑥𝑖 ∉ 𝐵 for all 𝑖 ∈ N. □

Progress Measure Updates. With this insight in place, it remains
to show that we can indeed warm-start the computation of the
progress measure values from the previous iteration. As the valid
progress measure returned by UpdatePM is a smallest fixed-point
of the update equation in line 3 of Alg. 2, the online application of
this function after the transition system has changed (i.e., new leaf
nodes have been added and folded), is only valid if every node’s
current progress measure is smaller than the valid one it would
get, if we would re-run UpdatePM on the new transition system
with progress measure values initialized by 0. This is shown to
indeed be true for the systems 𝑆 iteratively computed by KAty in
the next proposition. Intuitively, this feature results from the fact
that the overapproximation of the observer 𝑆 and the corresponding
abstract bad state set 𝐵 is iteratively refined and therefore, it can
only become easier for the controller to win in every new iteration,
resulting in a higher progress measure of every node.

Proposition 5.2. Given the premisses of Prop. 5.1 let 𝜌
𝑆 𝑗 be the

progress measure returned by UpdatePM in line 17 in the 𝑗 th iteration
of Alg. 3. Further, let 𝜌∗

𝑆
be the progress measure computed by Alg. 2

on 𝑆 = KA(𝑆) when initialized with 0. Then 𝜌
𝑆𝑘−1 (𝑥) ≤ 𝜌

𝑆𝑘
(𝑥) ≤

𝜌∗
𝑆
(𝑥) for all 𝑥 ∈ 𝑋 .

Proof. To simplify notation we denote 𝜌
𝑆 𝑗 by 𝜌 𝑗 . We prove the

claim by induction. For the base case, observe that all progress mea-
sures are initialized to zero and are therefore equivalent in all cases.
Now assume that 𝑘 > 0 and 𝜌𝑘−1 (𝑥) ≤ 𝜌𝑘 (𝑥) ≤ 𝜌 (𝑥). We show
that 𝜌𝑘 (𝑥) ≤ 𝜌𝑘+1 (𝑥) ≤ 𝜌 (𝑥). Now let 𝐿𝑗 be the set computed in
line 21 of iteration 𝑗 of Alg. 3. Then we have three cases:
▶ 𝑥 ∉ 𝐿𝑘 : Then 𝐹 (𝑥,𝑢) = 𝐹 (𝑥,𝑢) = 𝐹 (𝑥,𝑢) for all 𝑢 ∈ 𝑈 by
construction. As 𝜌𝑘 (𝑥) ≤ 𝜌 (𝑥), the claim follows from the mono-
tonicity of the update equation in line ... of Alg. 2 and the fact that
𝜌 is the smallest fixed-point of that equation.
▶ 𝑥 ∈ 𝐿𝑘 and line 13 is true for all 𝑢 ∈ 𝑈 . Then 𝜌 (𝐹 (𝑥,𝑢)) = 0 by
construction, and therefore 𝜌𝑘+1 (𝑥) = 1 if 𝑥 ∉ 𝐵 and 𝜌𝑘+1 (𝑥) = 0
otherwise. In both cases this is the minimal element of the progress
measure and it follows again from monotonicity and the induc-
tion assumption that 𝜌𝑘+1 (𝑥) ≤ 𝜌 (𝑥). In addition, 𝑥 ∈ 𝐿𝑘 implies
𝜌𝑘 (𝑥) = 0, which proves the claim.
▶ 𝑥 ∈ 𝐿𝑘 and line 11 is true for some 𝑢 ∈ 𝑈 . Then it follows
from the above discussion that the progress measure for 𝑥 is deter-
mined by those inputs. Further, it follows from 𝑥 ′ ⊆ 𝑥 that 𝑥 ′ :=
𝐹 (𝑥,𝑢) ⊆ 𝐹 (𝑥,𝑢) =: 𝑥 ′. It remains to show that 𝜌𝑘 (𝑥 ′) ≤ 𝜌 (𝑥 ′). Let
𝜌 (𝑥 ′) = 𝛾 . Then there exists an infinite sequence 𝜈 := 𝑢0𝑦0𝑢1𝑦1 . . .
s.t. the (unique) input/state trace 𝜋 = 𝑥 ′𝑢0𝑥1𝑢1 . . . compliant with 𝜈
in 𝑆 and starting in 𝑥 ′ visits 𝐵 after 𝑛 steps if 𝛾 = 𝑛 (i.e., 𝑥𝑛 ∩𝐵 ≠ ∅),
or never, if 𝛾 = ⊤ (i.e., 𝑥𝑖 ∩ 𝐵 = ∅ for all 𝑖 ∈ N). Now consider the
(unique) input/state trace 𝜋 = 𝑥 ′𝑢0𝑥1𝑢1 . . . compliant with 𝜈 in 𝑆

and observe that, by construction, 𝑥𝑖 ⊆ 𝑥𝑖 . With this 𝑥𝑛 ∩ 𝐵 ≠ ∅
implies 𝑥𝑛 ∩ 𝐵 ≠ ∅, and hence 𝑥𝑛 ∈ 𝐵, giving 𝜌𝑘 (𝑥 ′) = 𝛾 . Of
cause, as 𝑥𝑖 ⊆ 𝑥𝑖 , there can exists an 𝑚 < 𝑛 s.t. 𝑥𝑚 ∈ 𝐵, giving
𝜌𝑘 (𝑥 ′) =𝑚 < 𝛾 , but not vice versa. This proves the claim. □

Exploration and Termination Conditions. Based on the
progress measure computed over 𝑆 KAty decides which leaf nodes
to further explore (line 20-25). That is ECond(𝑥 ′) == true iff

(1) the cover of 𝑥 ′ has not yet been explored, i.e., 𝑥 ′ ∉ 𝑋 ,
(2) 𝑥 ′ is not bad, i.e., 𝑥 ′ ∉ 𝐵,
(3) 𝑥 ′ cannot already be controlled to stay safe, i.e., a smallest 𝑥

existed in line 12 and has progress measure 𝜌 (𝑥) ≠ ⊤, and
(4) 𝑥 ′ is not the ancestor of a root 𝑥0 ∈ 𝑋0 s.t. 𝜌 (𝑥0) = ⊤.

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mehrdad Zareian and Anne-Kathrin Schmuck

If a leaf is further explored, it is added to 𝐿 and its progress measure
is initialized to zero. Else, the folding of this leaf is retained in 𝐹 , by
keeping the folded edge f (𝑥 ′) (line 23).

On the other hand, the termination condition determines when
KAty should terminate. We allow to either terminate if 𝐿 = ∅, or if
a pre-defined number of iterations is exhausted.
Controller Extraction.Whenever KAty returns the abstraction
𝑆 along with the progress measure 𝜌 over 𝑆 , we can then use (5) -
(6) with 𝐹 and 𝑋 to compute the abstract safety state-feedback con-
troller 𝐶 for 𝑆 w.r.t. 𝐵. We can then refine 𝐶 to an output-feedback
controller 𝐶 for 𝑆 by using (7) over 𝑆 and 𝐶 instead of 𝑆 and 𝐶 . The
resulting controller is indeed a safety controller for 𝑆 w.r.t. 𝐵. In
particular, if KAty terminates with 𝐿 being empty, we show that the
domain of 𝐶 is indeed maximal. This is formalized in the following
theorem, which includes the main result of this paper.

Theorem 5.3. In the context of Problem 3.1 let (𝑆, 𝜌) = KAty(𝑆, 𝐵)
s.t. 𝑋0,⊤ ≠ ∅ and 𝐶 extracted via (5)-(7) as discussed before. Then 𝐶
is an output-feedback safety controller for 𝑆 w.r.t. 𝐵. Further, if 𝐿 = ∅
upon termination, 𝐶 has maximal initial domain.

Proof. We first prove that𝐶 is a safety controller. Let 𝑆 = KA(𝑆).
Then it follows from Alg. 3 that 𝑋 ⊆ 𝑋 . It further follows from
the proof of Prop. 5.2 that 𝐹 (𝑥,𝑢) ⊆ 𝐹 (𝑥,𝑢) and 𝑋⊤ ⊆ 𝑋⊤. With
this, it follows from the construction of𝐶 and the fact that 𝐻 is still
deterministic, that

Ω𝑆 (Tr𝜔 (𝑆,𝐶)) = Ω
𝑆
(Tr𝜔 (𝑆,𝐶)) ⊆ Ω

𝑆
(Tr𝜔 (𝑆,𝐶)) . (10)

It further follows from Prop. 5.1, the construction of 𝐶 and the fact
that 𝐶 is a state-feedback controller for 𝑆 that

Ω𝑆 (Tr𝜔 (𝑆,𝐶)) ⊆ Ω
𝑆
(Tr𝜔
¬𝐵
(𝑆)) = ETr𝜔

¬𝐵
(𝑆) ⊆ ETr𝜔¬𝐵 (𝑆) (11)

which implies that 𝐶 is a safety controller for 𝑆 .
Now assume 𝐿 = ∅ upon termination. We need to show that for

all 𝑥0 ∈ 𝑋0 s.t. 𝜌 (𝑥0) < ⊤ holds that the progress measure 𝜌 of the
same node returned from first applying KA and then PMUpdate is
also not top, i.e., ˇ𝜌 (𝑥0) < ⊤. Due to the similarities of Alg. 1 and
Alg. 3 this implies that there exists a ancestor 𝑥 ∈ 𝑋 of 𝑥0 with
𝜌 (𝑥) < ⊤ and 𝜌 (𝑥) = ⊤. As 𝐿 = ∅ we know that for any such 𝑥

one of the four exploration conditions is violated. If (ii) is violated
𝜌 (𝑥) = 𝜌 (𝑥) = 0 in all cases, if (iii) is violated 𝜌 (𝑥) = 𝜌 (𝑥) = ⊤
and if (iv) is violated 𝜌 (𝑥0) = ⊤. Hence, the only interesting case
is whenever (i) is violated. However, in this case the folding does
not introduce any over-approximation as the future of 𝑥 and the
already explored node 𝑥 ′ it is folded to, have the same future. This
implies again that 𝜌 (𝑥) = 𝜌 (𝑥), which concludes the proof. □

Example. Fig. 4 depicts two iteration of KAty on Ex. 3.1. In the
first iteration (A), we start with two initial states 𝑥1 = {𝑥1, 𝑥2}
and 𝑥2 = {𝑥3, 𝑥4, 𝑥5} where 𝑥2 ∈ 𝐵 and hence 𝐿 = {𝑥1}. I.e., we
only explore 𝑥1, and observe that all resulting leaves can be folded
(dashed purple edges). Running the progress measure algorithm on
𝑆 (which only consists of 𝑥1 and 𝑥2 connected by the folding edges
in this case) results in the two indicated progress measures. As
𝑋⊤ = ∅, no safety controller can be extracted. We further observe
that for all nodes except for node 𝑥4 = {𝑥5} ∈ 𝐵 the exploration
condition is true and they are explored in the second iteration (B).

Figure 5: Example robot equipped with 2 sensors.

Again all new leaves can be folded and the progress measure can be
updated on the new state set 𝑋 . Now we can extract a controller 𝐶
via (6) which is depicted in Fig. 4 (C). We see that without condition
(iv) in place, KAty would run for one more iteration to only explore
node {𝑥4}. The resulting controller would then coincide with the
one depicted in Fig. 3 (B). However, in order to get a controller with
a maximal initial domain, i.e., a controller that can keep the system
safe from all initial states from which such a controller exists, two
iterations suffice.

6 EXPERIMENTAL EVALUATION

We implemented KAty in an OCaml-based tool with a BDD back-
end and applied it to a robot motion planning problem under partial
observation, depicted in Fig. 5. We run the experiment on a cluster
with Intel Xeon E5-2667 v2, with 256 GB of RAM.

We consider a robot with continuous dynamics described by the
following differental equation

¤𝑥1 = 𝑢1𝑐𝑜𝑠 (𝑥3) ¤𝑥2 = 𝑢1𝑠𝑖𝑛(𝑥3) ¤𝑥3 = 𝑢2

where 𝑥1 and 𝑥2 represent the position of the robot and 𝑥3 rep-
resents its heading. We used SCOTS [12] to construct a finite-
state abstraction of this system with time and space discretization
parameters 𝜏 = 0.3 and 𝜂 = [0.2, 0.2, 0.25𝜋] over the restricted
state space 𝑋 = [0, 5] × [0, 5] × [−1.25𝜋, 1.25𝜋] and input space
𝑈 = {(1, 0), (1, 𝜋), (1,−𝜋), (1, 2𝜋), (1,−2𝜋), (1, 3𝜋), (1,−3𝜋)}. This
returned a transition systemwith 7436 states and 646875 transitions.

We have added symbolic outputs to the problem modelling the
fact that the robot has only two radar sensors that tell it whether it
is close to a wall or not. This situation is depicted in Fig. 5. Here,
the blue and the violet sensor trigger if the robot moves to the
yellow region, giving in total 4 distinct logical outputs (blue on/off
and/or pink on/off), depending on the orientation and location of
the robot. The safety objective of the robot is to not collide with the
(black) wall, which happens if he senses the yellow region but keeps
moving towards the direction of the wall. The initial condition of
the robot is the entire state space.

We applied our tool on this example. We find an output-feedback
safety controller with maximal initial domain in 12694 seconds.
The constructed KA tree has 2842 states, however, the extracted
output-feedback controller has only 66 states. Our BDD-based re-
implementation of the standard KA algorithm from Alg. 1 times
out after 24h without returning an observer, with which we could
have initialized controller synthesis. Reducing the precision of the
abstraction does not help in this case, as then no feasible control
strategy under the given sensing constrains exists. Intuitively, the
discretization needs to be fine enough to allow the robot to react to
a wall detection in a timely and precise manner.

Lazy Synthesis of Symbolic Output-Feedback Controllers HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

REFERENCES

[1] WA Apaza-Perez, Antoine Girard, Christophe Combastel, and Ali Zolghadri. 2020.
Symbolic observer-based controller for uncertain nonlinear systems. IEEE Control
Systems Letters 5, 4 (2020), 1297–1302.

[2] Krishnendu Chatterjee and Monika Henzinger. 2014. Efficient and dynamic algo-
rithms for alternating Büchi games and maximal end-component decomposition.
Journal of the ACM (JACM) 61, 3 (2014), 1–40.

[3] Donglei Fan and Danielle C. Tarraf. 2018. Output Observability of Systems Over
Finite Alphabets With Linear Internal Dynamics. IEEE Trans. Automat. Control
63, 10 (2018), 3404–3417. https://doi.org/10.1109/TAC.2018.2793463

[4] Bernd Finkbeiner, Kaushik Mallik, Noemi Passing, Malte Schledjewski, and Anne-
Kathrin Schmuck. 2022. BOCoSy: Small but Powerful Symbolic Output-Feedback
Control. In 25th ACM International Conference on Hybrid Systems: Computation
and Control (Milan, Italy) (HSCC ’22). Association for Computing Machinery,
New York, NY, USA, Article 24, 11 pages.

[5] Marcin Jurdziński. 2000. Small Progress Measures for Solving Parity Games. In
STACS 2000, Horst Reichel and Sophie Tison (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 290–301.

[6] Steven M LaValle et al. 2012. Sensing and filtering: A fresh perspective based
on preimages and information spaces. Foundations and Trends® in Robotics 1, 4
(2012), 253–372.

[7] Rupak Majumdar, Necmiye Ozay, and Anne-Kathrin Schmuck. 2020. On
abstraction-based controller design with output feedback. In Proceedings of the
23rd International Conference on Hybrid Systems: Computation and Control. 1–11.

[8] Masashi Mizoguchi and Toshimitsu Ushio. 2018. Deadlock-free output feed-
back controller design based on approximately abstracted observers. Nonlinear
Analysis: Hybrid Systems 30 (2018), 58–71.

[9] Thomas Moor, Jörg Raisch, and Siu O’young. 2002. Discrete supervisory control
of hybrid systems based on l-complete approximations. Discrete Event Dynamic
Systems 12, 1 (2002), 83–107.

[10] Giordano Pola, Maria Domenica Di Benedetto, and Alessandro Borri. 2019. Sym-
bolic control design of nonlinear systems with outputs. Automatica 109 (2019),
108511.

[11] Jean-François Raskin, Thomas A Henzinger, Laurent Doyen, and Krishnendu
Chatterjee. 2007. Algorithms for omega-regular games with imperfect informa-
tion. Logical Methods in Computer Science 3 (2007).

[12] Matthias Rungger and Majid Zamani. 2016. SCOTS: A tool for the synthesis of
symbolic controllers. In Proceedings of the 19th international conference on hybrid
systems: Computation and control. 99–104.

[13] Jung-Min Yang, Thomas Moor, and Jörg Raisch. 2020. Refinements of behavioural
abstractions for the supervisory control of hybrid systems. Discrete Event Dynamic
Systems 30, 3 (2020), 533–560.

https://doi.org/10.1109/TAC.2018.2793463

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Statement
	4 Sequential Synthesis
	4.1 Knowledge-based Abstraction (KA)
	4.2 Online Safety Controller Synthesis
	4.3 Controller Refinement

	5 Lazy Integrated Synthesis
	6 Experimental Evaluation
	References

