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To understand language, we need to recognize words and combine them into phrases and sentences. During this process, responses
to the words themselves are changed. In a step toward understanding how the brain builds sentence structure, the present study
concerns the neural readout of this adaptation. We ask whether low-frequency neural readouts associated with words change as a
function of being in a sentence. To this end, we analyzed an MEG dataset by Schoffelen et al. (2019) of 102 human participants
(51 women) listening to sentences and word lists, the latter lacking any syntactic structure and combinatorial meaning. Using tem-
poral response functions and a cumulative model-fitting approach, we disentangled delta- and theta-band responses to lexical infor-
mation (word frequency), from responses to sensory and distributional variables. The results suggest that delta-band responses to
words are affected by sentence context in time and space, over and above entropy and surprisal. In both conditions, the word fre-
quency response spanned left temporal and posterior frontal areas; however, the response appeared later in word lists than in sen-
tences. In addition, sentence context determined whether inferior frontal areas were responsive to lexical information. In the theta
band, the amplitude was larger in the word list condition ;100 milliseconds in right frontal areas. We conclude that low-fre-
quency responses to words are changed by sentential context. The results of this study show how the neural representation of
words is affected by structural context and as such provide insight into how the brain instantiates compositionality in language.

Key words: combinatorial processing; lexical processing; sentence comprehension; surprisal; temporal response functions;
word frequency

Significance Statement

Human language is unprecedented in its combinatorial capacity: we are capable of producing and understanding sentences
we have never heard before. Although the mechanisms underlying this capacity have been described in formal linguistics and
cognitive science, how they are implemented in the brain remains to a large extent unknown. A large body of earlier work
from the cognitive neuroscientific literature implies a role for delta-band neural activity in the representation of linguistic
structure and meaning. In this work, we combine these insights and techniques with findings from psycholinguistics to show
that meaning is more than the sum of its parts; the delta-band MEG signal differentially reflects lexical information inside
and outside sentence structures.

Introduction
During language comprehension, listeners recognize words, re-
trieve stored information about them, and use this knowledge to
combine the words into phrases and sentences. Psycholinguistic
experiments have long shown that the behavioral responses to
words change under the influence of the syntactic and sentential
context that the words appear in (Marslen-Wilson and Welsh,
1978; Tyler and Wessels, 1983; Katz et al., 1987). In a step toward
understanding how the brain builds sentence structure, the pres-
ent study concerns the neural readout of this process. We ask (1)
whether low-frequency neural readouts associated with words sys-
tematically change as a function of being or not being in a sen-
tence context and (2) whether neural readouts are modulated by
purely lexical properties over and above sensory and distributional
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variables. We do this by contrasting MEG responses to words in
sentences with word lists, the latter lacking any syntactic structure
or coherent lexical and combinatorial meaning.

In psycholinguistic models, language comprehension is
instantiated as a cascaded process in which information can
flow bidirectionally (Marslen-Wilson and Welsh, 1978; Martin,
2016, 2020). Put simply, this means that speech sounds cue
stored representations of words, and while the next words are
being recognized, the retrieved information about words cues
representations of phrase and sentence structure. At the same
time, the already formed representations of sentences, phrases,
and words cue lower-level representations: the information flows
in two directions (Schoffelen et al., 2017).

As words are being combined into phrases and sentences,
then, responses to words change as a consequence of the top-
down information flow. Indeed, a long tradition of research in
psycholinguistics has shown that words in sentences are rec-
ognized faster than those same words appearing in isolation
(Marslen-Wilson and Welsh, 1978; Tyler and Wessels, 1983).
This effect is so powerful that it reduces effects of properties
of the words themselves, such as word frequency. In isolation,
highly frequent words are recognized faster than low-frequency
words. In sentence context, this effect tends to be reduced: low-
frequency words are recognized faster in sentence context than
in isolation, although there is little change in recognition times
for the high-frequency words (Schuberth and Eimas, 1977;
Simpson et al., 1989).

To gain a full understanding of human sentence compre-
hension, those in the field currently face the challenge of inte-
grating these findings with knowledge of neural processing.
Although previous studies provide insight into the neural corre-
lates of sentence structure (Ding et al., 2016; Meyer et al., 2017;
Nelson et al., 2017; Ding et al., 2018; Brennan and Martin, 2020;
Kaufeld et al., 2020; Bai et al., 2022; Coopmans et al., 2022;
Tavano et al., 2022; ten Oever et al., 2022), much about the pro-
cess of building these structures remains unknown (ten Oever et
al., 2022). Furthermore, although we know that the neural signal
is sensitive to lexical information (Brodbeck et al., 2018a,b;
Armeni et al., 2019; Weissbart et al., 2020; Heilbron et al., 2021)
we do not know how neural responses to words are transformed
in the process of comprehension.

In this study, therefore, we aim to add to our understanding
of how the brain leverages linguistic information when building
sentence structure by finding a neural readout of the context
effect on responses to words above and beyond statistical pre-
dictability effects as quantified through entropy and surprisal. To
this end, we analyzed a published MEG dataset by Schoffelen et
al. (2019) of participants listening to sentences and word lists.
Despite these conditions being the main experimental manipula-
tion in this open dataset, they have not previously been directly
compared. Using temporal response functions (TRFs), we disen-
tangled delta- and theta-band responses to individual words from
responses to the speech envelope and word onsets, as well as en-
tropy and surprisal. This method allowed us to model any differ-
ences between the conditions that go beyond our difference of
interest (structured/unstructured), and, as such, control for them.
We compared the responses to individual words between word
lists and sentences. Any differences between the lexical responses
in these conditions reflect the effect of structure building on the
processing of words.

The lexical response was modeled using word frequency.
We chose this feature because word frequency is a proxy for
the likely familiarity of the listener with the word and relatedly

of ease of processing. Any modulation as a consequence of word
frequency, therefore, captures the presence of word identity infor-
mation in the signal. Furthermore, word frequency is unigram; in
other words, it does not depend on the context. Therefore, the
value corresponding to a given word is the same in a sentence and
a word list. Differences between the neural readout of both condi-
tions will therefore be because of the sentence context supplying
structure and meaning and not the predictor itself.

We hypothesized that the delta-band responses to word fre-
quency would be different in word lists and sentences as a conse-
quence of the (in)availability of sentence context (Huizeling et al.,
2022; Meyer, 2018; Meyer et al., 2020a,b). Studies that investigated
the presence of lower-level features in the neural signal as a func-
tion of the availability of linguistic information suggest that lower-
level features are represented by the delta-band neural signal more
reliably when higher-level information is available. For example,
mutual information between the speech signal and the neural sig-
nal is higher in the presence of structure and meaning
(Kaufeld et al., 2020; Coopmans et al., 2022; ten Oever et
al., 2022), and the strength of speech tracking is dependent
on the listener’s knowledge of the language (Molinaro and
Lizarazu, 2018; Blanco-Elorrieta et al., 2020) and general
comprehension (Keitel et al., 2018). Following these results, we
expected a stronger presence of the word frequency response (the
lower-level feature) in the sentence condition than in the word list
condition (the higher-level information) in the delta band specifi-
cally. Theta-band effects tend to be found as a function of acoustic
rather than abstract linguistic manipulations (Sohoglu et al., 2012;
Molinaro and Lizarazu, 2018; Etard and Reichenbach, 2019;
Blanco-Elorrieta et al., 2020). In this study, we expected to observe
this distinction between delta- and theta-band activity through an
absence of effects in the theta band.

Materials and Methods
To answer our research question, we analyzed a part of the open-access
large multimodal MEG dataset (N = 204) Mother of all Unification
Studies published by Schoffelen et al. (2019). In addition, we performed
two types of control analyses, an analysis of a dataset published by ten
Oever et al. (2022) and a set of simulations. Methods for all analyses are
described below.

Participants
A total of 102 native speakers of Dutch (51 men, 51 women) with a
mean age of 22 years (range, 18–33) were included in this analysis. In
this half of the dataset, participants were presented with the stimuli audi-
torily (as opposed to the other half, where stimuli were presented visu-
ally). All participants were right-handed, reported normal hearing, had
normal or corrected-to-normal vision, and had no history of neurologic,
developmental, or linguistic deficits. All participants provided informed
consent, and the study was approved by the local ethics committee
(Committee on Research Involving Human Subjects in the Arnhem-
Nijmegen region, The Netherlands) and followed guidelines of the
Helsinki Declaration. Participants took part in an fMRI and an MEG
session, during which they listened to sentences and word lists. Only
the MEG data are included in the present study.

Materials
The complete set of stimuli consisted of 360 natural Dutch sentences of
9–15 words (mean, 11.6), with varying syntactic structures, and 360
word lists. To create the word lists, the words from the sentences were
scrambled so that more than two consecutive words did not form a
coherent fragment. The stimuli were recorded by a female native speaker
of Dutch. The sentences were pronounced naturally. The word lists were
pronounced with neutral prosody and with a clear pause between each
word. The files were recorded in stereo at 44 100Hz. The sentences had
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an average duration of 4.27 s (SD 0.61), and the word lists of 7.67 s (SD
1.04). During the postprocessing, the audio files were low-pass filtered at
8500Hz and normalized so that all the audio files had the same peak am-
plitude and peak intensity. In the word list condition, the individual
words were spliced together with variable silence between them. This
created conditions with different acoustic properties. We address this
issue in the sections below, beginning with MEG preprocessing. In both
conditions, the transition from silence to speech was ramped at the onset
and offset with a rise/fall time of 10ms. Word onsets and offsets were
determined manually for each audio file using Praat software (Boersma
andWeenink, 2018).

The stimuli were divided over two sets, A and B. During the MEG
session, participants were presented with 120 sentences from set A and
120 word lists from set B (or the reverse). Across participants, all stimuli
were presented the same number of times in the sentence and word list
condition.

Procedure
Before the task, participants read written instructions and were allowed
to ask clarification questions. The experimenter emphasized that the sen-
tences and word lists should be attended to carefully and discouraged
attempts to integrate the words in the word list condition. To familiarize
the participants with the task, all participants performed a practice block
with stimuli not included in the study. During the MEG measurement,
the stimuli were presented in 24 blocks, alternating between sentence
blocks (each containing five sentences) and word list blocks (each con-
taining five word lists). The starting block type (either sentences or word
lists) was randomized across participants. At the start of each block there
was a 1500ms presentation of the block type: zinnen (sentences in
Dutch) or woorden (words in Dutch). The intertrial interval was jittered
between 3200 and 4200 ms. During this period, an empty screen was
presented, followed by a fixation cross.

To ensure participants paid attention to the stimuli, 20% of the tri-
als were followed by a Yes/No question about the content of the pre-
ceding sentence/word list. Half the questions on the sentences
addressed the content of the sentence (e.g., Did grandma give a
cookie to the girl?), whereas the other half and all the questions about
the word lists addressed one of the main content words (e.g., Was a
grandma mentioned?). Participants answered the question by press-
ing a button for Yes/No with their left index and middle finger,
respectively. Although the tasks were not identical between the condi-
tions, the randomized order of appearance of question types ensured
that participants could not approach the sentences any differently
from the word lists; any sentence or list trial could be followed by the
word monitoring task.

The stimuli were presented via plastic tubes and ear pieces in both
ears. The hearing threshold was determined individually for each partici-
pant before the experiment, and the stimuli were presented at an inten-
sity of 50 dB above the hearing threshold.

The experiment was run using Presentation software (version 16.0,
Neurobehavioral Systems, www.neurobs.com). MEG was continuously
recorded with a 275-channel axial gradiometer system (CTF) at a sam-
pling frequency of 1200Hz (cutoff frequency of the analog antialiasing
low-pass filter was 300Hz). Three head localizer coils were attached to
the participant’s head (nasion, left- and right ear canals) to determine
the position of the head relative to the MEG sensors. The head position
was monitored throughout the measurement. If needed, the participant
was asked to reposition to correct for head position changes during
breaks. The audio signal of the stimuli presented in the scanner was
recorded along with the MEG data using an analog-to-digital converter
channel.

Structural MRI images for source reconstruction were acquired
using a T1-weighted magnetization-prepared rapid gradient echo
pulse sequence with the following acquisition parameters: volume
TR = 2300ms, TE = 3.03ms, flip angle = 8 degrees, 1 slab, slice ma-
trix size = 256� 256, slice thickness = 1 mm, field of view = 256
mm, isotropic voxel size = 1.0 � 1.0 � 1.0 mm. A vitamin E capsule
was placed as a fiducial behind the right ear to allow visual confir-
mation of left–right consistency.

MEG preprocessing
The MEG data were preprocessed with custom-written MATLAB scripts
using the FieldTrip toolbox (Oostenveld et al., 2011; Donders Institute for
Brain, Cognition and Behavior, Radboud University, The Netherlands;
http://fieldtriptoolbox.org). Before filtering, the data were epoched from
audio onset to audio offset. The epochs were baseline corrected and band-
pass filtered into the designated frequency band using a windowed-sinc fi-
nite impulse response (FIR) filter (15 s data padded), after which they
were resampled to 120Hz for TRF estimation.

The frequency band of interest was defined on the basis of the rate of
occurrence of words in the stimuli, the differences in speech–brain co-
herence between conditions, and the literature (Blanco-Elorrieta et al.,
2020; Donhauser and Baillet, 2020; Molinaro and Lizarazu, 2018;
Weissbart et al., 2020). The word rate in the word lists was 1.5Hz (SD
0.1), and in the sentences 2.7Hz (SD 0.3). To compute speech–brain co-
herence, we first computed the broadband speech envelope by taking the
absolute value of the Hilbert transform of the speech signal, low passing
it at 20Hz, and scaling the output between zero and one. We computed
the magnitude squared coherence estimate of the broadband speech enve-
lope and the MEG signal using Welch’s method. The differences between
word lists and sentences were estimated using a cluster-based permutation
test. This revealed three peaks in the low-frequency signal—one between 1
and 3Hz, one between 4.5 and 7Hz, and one between 9.5 and 12Hz (Fig.
1; Lam et al., 2018). On the basis of these clusters and frequency bands an-
alyzed in the literature (Donhauser and Baillet, 2020), we analyzed two fre-
quency windows, delta (0.5–4Hz) and theta (4–10Hz). To account for
differences in speech–brain coherence that were exclusively because of
acoustic differences between the conditions, we included the speech enve-
lope as a predictor in all the models of the data (Fig. 1B, modulation spec-
tra). Details of the models are below in Temporal response functions and
Stimulus representation.

Source reconstruction
MRI images were coregistered to the MEG headspace coordinate system
by aligning the positions of the preauricular points and the nasion MEG
coil to the MRI images using the MNE-Python coregistration GUI
(Gramfort et al., 2013). For each participant, we reconstructed the corti-
cal surface using the watershed algorithm from FreeSurfer. We created a
surface-based source space with oct6 spacing, meaning ;5 mm was
between the source points. This generates 4098 sources per hemisphere.
We created a single-layer Boundary element model (BEM) model with
surface ico downsampling of 5120, from which the lead field was com-
puted. The sources were reconstructed using a scalar Linear-constraint
minimum-variance (LCMV) beamformer approach with a unit-noise
gain beamformer to deal with depth bias. The data covariance used for
computing LCMV filters was whitened using the covariance matrix of
resting-state data. The resting-state data were bandpass filtered into the
appropriate frequency band (i.e., 0.5–4Hz for the delta band, and 4–
10Hz for the theta band). After application of the LCMV beamformer filters
to the epoched MEG data, the source-localized epochs were morphed to fsa-
verage for group statistics. These source-localized, morphed epochs were
then entered into the pipeline for temporal response function estimation.
Source localization failed for 11 participants because of convergence issues
for the noise covariance matrix or missing resting-state data (Nsource = 91).

Temporal response functions
To characterize the effect of linguistic structure and meaning on the neu-
ral response, we estimated TRFs with different acoustic and linguistic
features. This approach has been used to determine responses to differ-
ent linguistic features, ranging from the speech envelope and phonemic
information (di Liberto et al., 2015; Donhauser and Baillet, 2020) to lexi-
cal information (Broderick et al., 2018; Weissbart et al., 2020) and even
syntactic embedding (Nelson et al., 2017). The response function of in-
terest here is the response to word frequency as this is a unigram feature
and therefore has the same per-word values in both conditions.

The TRFs were estimated using linear regression. We modeled the
neural response by convolving the TRF kernel with the stimulus represen-
tation signal. In summary, this method reduces to a multivariate multiple
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linear regression, where we used lagged time series of stimulus features as
predictors. The model equation reads as follows:

ycðtÞ ¼
P

f

P

k
xf ðtÞb f ðt � t kÞ1 hðtÞ; (1)

where fycgt; fxf gt; fb f gt represent the recorded MEG signal of channel
c, the input feature f, and its temporal response function respectively;
fhgt is a Gaussian noise process accounting for measurement noise.
This linear model can be easily rewritten in its vectorized form and further
concatenated such that we model at once all channel equations independ-
ently. We estimate the coefficients of the TRFs b̂ f by minimizing the
squared error between the measured MEG signals and the reconstructed
signal obtained from Equation 1 while keeping the norm of TRFs coeffi-
cients, jjb jj2 low to avoid overfitting. This minimization problem is
solved in a closed form by the following:

b̂ ¼ ðXTX1l IdÞ�1XTY; (2)

where Y 2 RN�C is the matrix representation of the measured MEG sig-
nal (for C channels arranged columnwise, each with N data samples);
b̂ 2 RðK:FÞ�C contains the estimated TRFs with K lags, F features for all
C channels; X 2 RN�ðK:FÞ is a matrix containing all lagged feature time
series of length N; l is a regularization coefficient; and Id is the identity
matrix. The regularization coefficient is needed to avoid overfitting,
which in this case translates to the square matrix XTX not being full
rank. Numerically, small eigenvalues or simply ill-conditioned matrices
suffice to make the inversion unstable and thus will require regulariza-
tion. In our case, this happens when features present some amount of
autocorrelation (as columns of X are a time-lagged version of other col-
umns). Continuous regressors such as the acoustic envelope (see below,
Stimulus representation) will present strong autocorrelation and thus
call for regularization.

In Equation 1, the vector of weights b f ðtÞ represents the coefficients
parametrizing the temporal response functions. They form a time course
reminiscent of an event-related potential that tells us at which point in
time (and, potentially, where) a feature modulates the neural signal.
Thus, an increase at a certain lag for a given feature reflects an increase
in the associated brain response to this feature at that given sensor and
at the given time lag after stimulus onset. The concept of stimulus onset,
especially for a continuous regressor such as the envelope, here reduces
to a situation where the brain would be stimulated by an impulse of
sound. Eventually, we estimate, from a system identification perspective,
the transfer function mapping input to output when the brain is consid-
ered as a linear time-invariant system.

To evaluate how our models perform at reconstructing the neural
data, we computed the Pearson’s correlation coefficient between the true
data and data reconstructed using the estimated TRFs. The correlation
between the reconstruction and the original MEG indicates how much
of the variance in the neural signal is explained by the features. The
TRFs were not estimated on the same portion of data used to score the
model. As further explained (see below, Model fitting), we used a nested
cross-validation procedure to tune the regularization parameter, esti-
mate the TRF coefficients, and finally score the resulting model. Unless
specified otherwise, all analyses described below were done with custom-
made Python scripts using MNE-Python (Gramfort et al., 2013). The
whole analysis was conducted both in sensor and in source space.

Stimulus representation
Its multivariate character makes the TRF especially suitable for the cur-
rent analysis: it allows for controlling for differences between conditions
that are not currently under discussion by modeling them. To character-
ize the speech signal and part of its linguistic content, we constructed the
following five different features: word frequency (the feature of interest)
and four control features consisting of the speech envelope, word onsets,
entropy, and surprisal.

The speech envelope feature was computed for each stimulus by
taking the absolute value of the Hilbert transform and downsampling it
to 120Hz to match the downsampled MEG sampling rate. The enve-
lope feature was added to represent the acoustic response and as such
captures the difference between conditions observed in the cerebro-
acoustic coherence that was caused by differences in the acoustic input
(Fig. 1A,B).

The word onset feature was added to capture broadly any time-
locked response to word onset for which the variance is not already
explained by other features. As such, this feature can also capture any
effects of segmentation that were different between the conditions. The
word onsets and offsets were transcribed manually for each stimulus.
We used a train of unit impulses, where the feature signal is one at the
word onset sample and zero otherwise as follows:

xðtÞ ¼ P

words
d ðt � tonsetÞ: (3)

These impulse trains were convolved with a Gaussian kernel with an
SD of 15ms. Such temporal smoothing has the effect of inflating the
autocorrelation of the signal. We designed the width of this smoothing
so that the smoothed impulses end up with energy spanning a frequency
band comparable to our continuous regressor (envelope). The Fourier
transform of a Gaussian is also a Gaussian, and the 15ms SD of the tem-
poral smoothing kernel equates to a spectral SD of 21.22Hz. This ensured

BA

Figure 1. A, Speech–brain coherence. Shaded area indicates SD. Black bars indicate frequencies that were part of clusters that contributed to the significant difference between sentence
and word list coherence. B, Modulation spectra of the broadband speech envelopes (part of the TRF base model). The modulation spectra were obtained by concatenating the stimuli per stimu-
lus type and performing a fast Fourier transform on snippets of 5 s. The resulting spectra were averaged.

4870 • J. Neurosci., June 28, 2023 • 43(26):4867–4883 Slaats et al. · Responses to Words Change in Sentence Context



that all features required a similar degree of regularization in the regres-
sion analysis and made it possible to include impulse-like features such as
word onsets and the envelope in the same regularized regression. Notably,
this also translates into some uncertainty about or knowledge of the exact
word onset timings.

Like the word onset feature, the word frequency feature was con-
structed as an impulse train of zeros everywhere but at word onset. Here,
we used the respective word frequency value to modulate the height of
the impulses. We used the log-transformed value of occurrence per mil-
lion words, obtained from the SUBTLEX-NL corpus (Keuleers et al.,
2010), as follows:

xwf ðtÞ ¼
P

words
�logðPðwÞÞ � d ðt � tonsetÞ; (4)

where P(w) represents the unigram probability estimated from occur-
rence per million words.

If a word did not exist in the corpus, the fallback value of 0.301 (log/
million) was used, corresponding to the lowest word frequency in the
corpus. The values were z-scored across all stimuli. The resulting signal
was convolved with the same Gaussian kernel as the word onset feature.

The entropy feature consists of lexical entropy, a weighted probabil-
ity measure that quantifies the uncertainty about the upcoming word on
the basis of the previous words. It provides a numeric answer to the
question, Given the n previous words, with what degree of certainty can
we predict the upcoming word? as follows:

HðwiÞ ¼ �P

k
Pðwkjwi�1:::wi�nÞ � log2ðPðwkjwi�1:::wi�nÞÞ: (5)

The value was derived from a trigram model trained on the
NLCOW2012 corpus using WOPR (van den Bosch and Berck, 2009). If
a value was missing, the average of all entropy values was used. Like the
word frequency feature, the entropy values were z-scored relative to all
stimuli and inserted in a stick function, after which the stick function
was convolved with the same Gaussian window. This feature was added
to ensure that any effects on the word frequency feature were of a com-
positional semantic and structural nature rather than a probabilistic one.

The surprisal feature reflects how surprising a given word is in its im-
mediate context. From an information-theoretic perspective, this reflects
the information content, or self-information, of a word. It was calculated
as the log 10 transformation of the conditional probability of a word,
which was taken from the same trigram model as the entropy values.
This means that surprisal is always based on the two preceding words;
given the two preceding words, how high was the chance that the
observed word would indeed appear? If the chance was low, surprisal is
high. The feature was constructed in the same way as the word frequency
and entropy features; the values were z-scored across all stimuli, inserted
in a stick function at word onsets, and convolved with the Gaussian win-
dow as follows:

IðwÞ ¼ �log10ðPðwijwi�1:::wi�nÞÞ: (6)

Because the three numerical lexical features (frequency, entropy, sur-
prisal) might be correlated to some extent, we need to assert that the
degree of multicollinearity present in our stimulus representation will
not hinder the TRF coefficient interpretation. We checked whether the
variance inflation factor (VIF) was below five (considered a relatively
conservative measure of multicollinearity; Sheather, 2009; Tomaschek et
al., 2018). The VIF was computed by correlating the z-scored entropy,
surprisal, and word frequency values and by taking the diagonal of the
inverted correlation matrix. This was done for all the stimuli and for
both conditions separately. The VIF was never higher than five; the high-
est VIF was for surprisal at 4.8 in the word list condition.

Model fitting
The features were fitted in a cumulative manner to assess the contribu-
tion of each feature. This led to a total of seven models per frequency

band, an Envelope model, consisting of only the speech envelope; an
Onset model, consisting of the speech envelope and the word onset fea-
tures; a Frequency model, consisting of the speech envelope, word onset,
and word frequency features; an Entropy model, containing the speech
envelope, word onset, and entropy features; a Surprisal model, consisting
of the speech envelope, word onset, and surprisal features; and cross-
combinations of those with and without the word frequency feature. An
overview of all models and the corresponding features is provided in
Table 1.

Before model fitting, the data were split pseudorandomly into a
training and testing set at a 80/20 ratio. Care was taken that the sentences
and word lists were evenly divided across the training and test sets. The
sentence and word list models were each trained on 96 of 120 trials. The
regularization parameter was optimized individually per participant, fre-
quency band, and model (but not per condition) using an eightfold
cross-validation procedure with 20 log-spaced values around the
eigenvalues of the covariance matrix of the lagged speech envelope
(l = 60470.9) ranging from l � 10�3 to l � 103. The best regulari-
zation parameter was determined as the value for which the average
(across sensors) reconstruction accuracies were highest. Occasionally,
reconstruction accuracies would not increase with a higher degree of regu-
larization; instead, increasing the regularization would leave the recon-
struction accuracy at the same value until overregularization occurred and
reconstruction accuracy went down. In this case, the highest lambda value
before a drop in accuracy occurred was chosen to ensure some degree of
regularization. Each model was fitted on the complete training set using
the regularization parameter from the cross-validation procedure, yielding
the TRFs.

In the analysis of the source-localized MEG data, the manipulations
were simplified because of computational limitations. The two maximal
models were fitted, with word frequency as the only difference as follows:
the Entropy/Surprisal model, consisting of the speech envelope, word
onsets, entropy, and surprisal features; and the full model, consisting of
all features. The cross-validation procedure was brought down to five-
fold with 10 log-spaced values around the eigenvalue of the stimuli
(60470.9) ranging from l � 10�2 to l � 102.

Model evaluation
Each model was evaluated by convolving the estimated TRFs with the
unseen stimuli from the test dataset. This yields, in essence, a prediction
of the neural signal according to the model. The predicted neural signal
was then correlated with the original neural signal from the test set using
the Pearson product-moment correlation on a sensor-by-sensor or
source-by-source basis. For every individual participant, this yielded a
set of sensor- or source-based reconstruction accuracies for each model.

Statistical analysis
The TRF analysis has two deliverables. First, the TRF (the development
of the estimated coefficients across time) is an ERP-like waveform that
captures how the neural signal changes as a function of, for example,
word frequency, and, second, the reconstruction accuracy, which is a
metric of model fit. Here, we wanted to know (1) whether the responses
to word frequency differ between sentences and word lists in time and

Table 1. The fitted encoding models

Feature

Model name Envelope Word onset Entropy Surprisal Word frequency

Envelope X
Onset X X
Entropy X X X
Surprisal X X X
Frequency X X X
Entropy/Surprisal X X X X
Entropy/Frequency X X X X
Surprisal/Frequency X X X X
Full X X X X X

X indicates that a feature was included in the model.
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space, so we compared the TRFs between conditions, and (2) whether
the presence of the word frequency response differed between sentences
and word lists, so we tested whether the word frequency predictor con-
tributed differently to the reconstruction accuracy of a model in the two
conditions.

Throughout, evaluation for statistical significance of the difference
between TRFs was done using cluster-based permutation tests. Cluster-
based permutation tests address the null hypothesis of exchangeability
across conditions by a Monte Carlo estimate of the randomization distri-
bution of a cluster-based test statistic, optimizing statistical sensitivity
while controlling the false alarm rate. Here, we used the t statistic as the
test statistic. In these tests, we create matrices of all sensors and samples.
Then, we compute the difference between two conditions and express it
as a t statistic for each of these data points. The t values are thresholded
at an a priori threshold, and the thresholded t values are summed across
clusters on the basis of spatial and temporal adjacency. The significance
of the test statistic of the resulting largest cluster is compared with 1024
of similarly obtained test statistics, after random permutation of the con-
dition labels. We used the function spatio_temporal_cluster_test from
the MNE-Python library (Gramfort et al., 2013) with the t statistic as the
test statistic and 1024 permutations.

To assess whether the responses to word frequency differed qualita-
tively between conditions in sensor space, the difference between the
word frequency TRFs for the sentence and word list conditions was eval-
uated using a cluster-based permutation test. In addition, to characterize
the response in each condition separately, we performed two cluster-
based permutation tests with the same methods in which we contrasted
the response against zero in each condition separately. In total, we per-
formed three cluster-based permutation tests on the sensor TRFs, one
on the difference between conditions and one on the TRF for each of the
two conditions separately (against zero). In all cases, we calculated the
threshold on the basis of the t distribution with a significance level of
5� 10�8 with 101 (number of participants minus one) degrees of free-
dom. This equals three times the recommended threshold for the num-
ber of participants. The threshold was increased to yield the most
informative results (i.e., to ensure not every sensor and time lag would
be significant). Subsequent comparisons were done with a threshold cal-
culated using a Bonferroni adjusted significance level (i.e., divided by
two) to correct for multiple comparisons; everything else was the same.

In addition, we wanted to evaluate whether there was a latency differ-
ence between the responses in the two conditions. To this end, we com-
pared the responses from the sentences and word list conditions in a
cross-correlation. The cross-correlation was done on the grand-average
TRF waveforms of overlapping sensors between conditions from the
clusters resulting from the one-sample tests. We sequentially cross-cor-
related each sensor and normalized the values by dividing them by the
maximal value from the cross-correlation for that sensor. We then
obtained the peaks for every sensor. This number corresponds to the lag
at which the two signals had the highest correlation and shows how dif-
ferent the responses are in time. Subsequently, we shifted the sentence
response in time by the number of samples of the peak. We then corre-
lated the shifted sentence response and the original word list response.
To check for significance, we performed the same procedure for ran-
domly selected channels and repeated this process 10,000 times.

In source space, we compared the TRFs for word lists and sentences
using a cluster-based permutation test in two time windows on the basis
of the results from the analysis in sensor space, 200–400 and 500–700 ms
post stimulus onset (PSO), respectively. We did this to get a more reli-
able estimate of the spatial distribution of the effects, although cluster-
based permutation tests account only for a difference between the distri-
bution overall, therefore any spatial or temporal differences are
approximations and inconclusive (Maris and Oostenveld, 2007;
Sassenhagen and Draschkow, 2019). The threshold was set to the t distri-
bution with an alpha of 0.025 (98.75th and 1.25th percentile) to correct
for multiple comparisons, with 90 (number of participants minus one)
degrees of freedom. Sources along the medial wall were excluded.

In the sensor space analysis, the reconstruction accuracies were aver-
aged over sensors and submitted to a linear mixed model using lme4 in
R software (Bates et al., 2015). The model had the factor condition (two

levels, sentence and word list) and a random intercept for participant. In
addition, the model contained three binomial factors, frequency, entropy,
and surprisal, describing whether a feature was (1) or was not (0) in the
model to calculate a slope for each feature separately as follows:

accuracies; condition � ðfrequency þ entropy þ surprisalÞ
þ ð1jparticipantÞ:

We used a stepwise variable selection to evaluate the contribution of
each of these factors. To evaluate the contribution of a given factor (or
interaction), a model with the factor was compared with a model with-
out it, and the goodness-of-fit statistics were compared using a chi-
square test. If the removal of a factor did not decrease goodness of fit,
the next factor was removed. When the removal of a given feature or
interaction significantly decreased model fit, the removal of features was
stopped. The prefinal model should then describe the data best. As a
final check, the Akaike information criterion (AIC) of the models was
compared using the R package AICcmodavg (Mazerolle, 2020). Post hoc
t tests were done between the Entropy/Surprisal and Full model to evalu-
ate whether the effects held between the largest models.

In source space, a cluster-based permutation test was done to localize
the interaction effect using the function permutation_cluster_test from
the MNE-Python library. The test statistic was an F statistic from a two-
way ANOVA with factors Condition (levels: word list, sentence) and
Model (levels: Entropy/Surprisal, Full). The data were permuted 1024
times.

Control analysis I: data
The word lists were presented with variable silences between words. The
sentences, on the other hand, were natural, with pauses occurring spar-
ingly. This caused differences of word rate and signal length between the
conditions that may affect our results. To examine potential effects of
the pauses in the word list condition, we analyzed a second dataset of 16
participants listening to word lists and sentences using the same meth-
ods. Importantly, the word lists in this condition were naturally spoken,
as were the sentences. This means that there were no pauses between the
words in the word list condition, and there was coarticulation between
words (Kaufeld et al., 2020). The data were supplied by ten Oever et al.
(2022).

Control analysis I: Participants. A total of 20 native speakers of Dutch
(4 men, 16 women with a mean age of 39.5 years) participated in the
experiment. Four participants were excluded from this analysis for a variety
of reasons (e.g., session was not completed). All participants were right-
handed, reported normal hearing, had normal or corrected-to-normal
vision, and had no history of neurologic, developmental, or linguistic defi-
cits. All participants provided informed consent. The study was approved
by the ethical Commission for Human Research Arnhem/Nijmegen
(project number CMO2014/288). Participants were remunerated for
their participation.

Control analysis I: Materials. The stimuli were identical to the stim-
uli used in Kaufeld et al. (2020). The experiment consisted of three con-
ditions in total, sentences, jabberwocky, and word lists. Only the
sentences and the word lists are analyzed here. The stimuli consisted of
10 words, which were all disyllabic except for de (the in Dutch) and en
(and in Dutch). Sentences had a fixed syntactic structure of two coordi-
nate clauses: [Adj N V N conj Det Adj N V N], for example, timid heroes
pluck flowers and the brown birds gather branches. The word lists were
scrambled versions of these sentences, and care was taken so there were
no plausible internal combinations of words. The stimuli were recorded
by a female native speaker of Dutch at a sampling rate of 44.1 kHz (mono-
phonic). After recording, any pauses were normalized to ;150ms in all
stimuli, and the intensity was scaled to 70dB using Praat voice analysis
software (Boersma andWeenink, 2018).

Participants were asked to perform four different tasks on these
stimuli—a passive listening task, a syllable recognition task, a word rec-
ognition task, and a word combination recognition task. In this analysis,
we did not distinguish among tasks. ten Oever et al. (2022) describes the
tasks performed.
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Control analysis I: Procedure. At the beginning of each trial, partici-
pants were instructed to look at a fixation cross presented at the middle of
the screen on a gray background. The audio was presented binaurally
through tubes after an interval randomly jittered between 1.5 and 3 s. One
second after audio offset, the task prompt (e.g., the syllables or words for
recognition) was presented, which required participants to press a button
on a button box. There were eight blocks of ;8min. After each block,
participants could take a break, during which the head position was cor-
rected. MEG was recorded using a 275-channel axial gradiometer CTF
MEG system at a sampling rate of 1200Hz. After the session, head shape
was collected using the Polhemus digitizer (using as fiducials the nasion
and the entrance of the ear canals as positioned with ear molds).

Control analysis I: MEG preprocessing. The MEG data were proc-
essed with custom-written Python scripts using MNE-Python (Gramfort
et al., 2013). As in the main analysis, the raw MEG data were filtered
using a windowed-sinc FIR filter between 0.5 and 4Hz for the delta band,
and 4 and 10Hz for the theta band, after which the data were epoched from
audio onset to audio offset and resampled to 120Hz for TRF estimation.

Control analysis I: Stimulus representation. In this analysis, we used
the envelope, word onset, and word frequency representations from the
main analysis (see above, Stimulus representation).

Control analysis I: Model fitting.We used the model-fitting approach
described earlier (see above, Model fitting). We fit three models, Envelope
(with only the envelope feature), Onset (envelope and word onset fea-
tures), and Frequency (envelope, word onset, and word frequency features).
The data were split pseudorandomly into a training and a testing set at an
80:20 ratio, ensuring that the sets contained 50% of items from each condi-
tion. The regularization parameter was optimized individually per par-
ticipant and model, using an eightfold nested cross-validation procedure
with 20 log-spaced values around 60,000 (l = 60,000) ranging from l �
10�2 to l � 102.

Control analysis I: Model evaluation. For model evaluation, we used
the procedure described earlier (see above, Model evaluation).

Control analysis I: Statistical analysis. Like in the main analysis, we
assessed whether the responses to word frequency qualitatively differed
between conditions by evaluating the difference between the word fre-
quency TRFs for the sentence and word list conditions using a cluster-
based permutation test. In addition, to characterize the response in each
of the conditions separately, we performed two additional cluster-based
permutation tests with the same methods in which we contrasted the
response against zero in each condition separately. In total, we per-
formed three cluster-based permutation tests on the TRFs, one on the
difference between conditions and one on the TRF for each condition
separately (against zero). In all tests, we calculated the threshold on the
basis of the t distribution with a significance level of 0.05 with 16 (num-
ber of participants minus one) degrees of freedom. Only clusters with a
p value smaller than 0.01 were considered. Subsequent comparisons
were done with a threshold calculated using a Bonferroni-adjusted sig-
nificance level to correct for multiple comparisons; everything else was
the same. For comparison to the main analysis, we also compared the
word onset response between conditions with the methods described
above.

To evaluate the effect of word frequency in each condition, we com-
pared the reconstruction accuracies from the Onset and Frequency mod-
els in interaction with condition. The reconstruction accuracies were
averaged over all sensors (conservative measure). After checking for nor-
mality and sphericity through (1) visual inspection of Q-Q plots and
histograms; (2) statistical testing using the Shapiro–Wilk test, Anderson–
Darling test, and D’Agostino’s K2 test for kurtosis and skewness as imple-
mented in SciPy algorithms; and (3) the Mauchly test for sphericity as
implemented in the Pingouin package (Vallat, 2018), the averaged recon-
struction accuracy values were submitted to a repeated-measures ANOVA
using the Statsmodels package.

Control analysis II: simulations
Using simulations, we evaluated whether the interword interval has an
impact on TRF model evaluation. We did this by simulating raw MEG
data consisting of a signal (different impulse responses) and a variable
amount of noise.

The simulated response was equivalent to the forward model, namely
a noisy output of a convolution between a predefined kernel (the ground
truth for the TRF estimate) and an impulse train (for the input signal).
We generated those data with a variable amount of noise (i.e., explicitly
manipulating the broadband signal-to-noise ratio) and with varying the
interstimulus interval (ISI) while keeping the signal length the same and
the number of impulses, or events, constant (in which case a shorter
interstimulus interval results in the end portion of the output signal con-
taining only noise).

We then scored the forward model by computing both the R2 score
and the Pearson’s correlation coefficient between the reconstruction ŷ
and the true signal using a test portion of the data, not used to estimate
the coefficients b . Importantly, we then computed the scores in two
ways, (1) from the fixed signal length data described above, as we also
used a fixed number of impulses, or events, this resulted in a portion of
the stimulated output signal to contain only noise (2) or from a short-
ened signal, where we truncated all signals to the last stimulus event.
This resulted in shorter signals for a shorter ISI.

Data availability
The code is available at https://osf.io/ky9bj/, with the exception of the pre-
processing scripts. The preprocessed data are available on request. The
raw data can be downloaded from the Donders Institute repository at
https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?0.

Results
Behavioral results
We compared participants’ responses to the task that was present
in both conditions, which targeted one of the main content
words (e.g., Was a grandma mentioned?). To balance the num-
ber of trials included in the accuracy scores, we took a random
subset of questions from the word lists (12 or 13 trials). The aver-
age proportion of correct responses was higher in the sentence
condition (meansent = 0.88; sdsent = 0.08) than in the word lists
(meanlist = 0.72; sdlist = 0.14; t = 10.08, p , 0.001), meaning that
participants remembered the words from the sentences better
than the words from the word lists (Fig. 2).

Delta band
Sensor-level analysis
The cluster-based permutation test revealed differences between
word lists and sentences in three clusters between 0 and 700ms.

Figure 2. Accuracy scores for the behavioral task performed during the MEG recording.
The accuracy scores include responses to word monitoring only. The word list accuracy scores
are a random subset of the full set of responses to balance the number of trials (n = 12) in
the word list and sentence conditions.
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Figure 3A suggests that the peak of
the response to word frequency was
delayed by ;300ms in the word list
condition. To evaluate whether this was
the case, we conducted one-sample
cluster-based permutation tests and com-
puted the cross-correlation between the
two conditions for overlapping sensors
from the clusters in both conditions. The
one-sample cluster-based permutation
test revealed a response in temporal
areas in both conditions that peaks
;250 ms in the sentence condition,
and ;600 ms in the word list condi-
tion (Fig. 3B,C).

The cross-correlation on overlap-
ping sensors between the two condi-
tions (time courses and sensors; Fig.
4A) revealed a high correlation between
the word list and the sentence responses
at a delay of 330 ms (mean r = 0.9).
Random sampling of sensors and lags
revealed the distribution shown in
Figure 4D; the observed values are in
the upper 0.05% percentile, indicating
that the observed correlation is likely
not caused by chance.

Because we wondered whether the
delay could be because of the differen-
ces in the presentation rate, we exam-
ined differences between the TRFs for
the other word-level feature that was
numerically identical between condi-
tions, word onsets (unit-spike-train in
both conditions). We compared the
word onset response from a model with
only the envelope and word onset fea-
tures. This model is equivalent to an
ERP analysis that corrects for overlap-
ping event windows (as is the case in
the sentence condition) and controls
for acoustic differences. A small delay
of ;100ms appears in this model. This
delay is in accordance with findings of
an ERP-analysis on high- versus low-
constraining contexts (Liu et al., 2006;
León-Cabrera et al., 2017). Importantly,
this model collapses over variance
caused by the lexical features included
in the full model (word frequency, en-
tropy, and surprisal). In other words,
this underspecified model attributes
variance that is in fact because of word
frequency, entropy, or surprisal to the
word onset predictor. When we include
the other lexical predictors in the model and compared the con-
ditions again, no such difference between the word onset
responses is observed (Fig. 3D). In this response, there were
some differences around time point zero before as well as slightly
after; these differences may indicate differences in temporal ex-
pectancy of word onset between conditions.

The reconstruction accuracies were evaluated with the model
accuracies; condition * (frequency1 entropy1 surprisal)1 (1/

participant). The explanatory value of the interaction between
condition and each of the lexical factors was evaluated; each
interaction significantly improved model fit [frequency, x 2(1) =
6.88, p, 0.01; entropy, x 2(1) = 4.48, p, 0.05; surprisal, x 2(1) =
7.24, p , 0.01], so the full model was interpreted. The results of
this model are summarized in Table 2.

Reconstruction accuracies were higher in the word list condi-
tion than in the sentence condition (b = 1.67 * 10�2, SE = 9.43 *
10�4, t(1530) = 17.69, p, 0.01). As can be seen in Figure 5A, each

Figure 3. A, The word frequency TRF in both conditions in the delta band. Shown here is the mean of the sensors that were
included in clusters that were different between the two conditions. Black bars indicate time points that contributed to clusters that
allowed us to reject the null hypothesis. Shaded area indicates SD. B, Word frequency TRF in the sentence condition. Individual lines
represent sensors. Sensors in bold contributed to the clusters that allowed us to reject the null hypothesis. C, Word frequency TRF in
the list condition. Individual lines represent sensors. Sensors in bold contributed to the clusters that allowed us to reject the null hy-
pothesis. D, The word onset TRF in both conditions in the delta band. Shown here is the mean of the sensors that were included in
clusters that were different between the two conditions. Black bars indicate time points that contributed to clusters that allowed us
to reject the null hypothesis. Shaded area indicates SD. Vertical gray lines indicate the time points of the scalp maps.
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feature contributed positively to the reconstruction of the neural
signal in the sentence condition, less so in the word list condi-
tion, hinting at an interaction effect. Indeed, the factor frequency
interacted with condition (b = 2.47 * 10�3, SE = 9.43 * 10�4,
t(1530) = 2.63, p , 0.01), showing that reconstruction accuracies
improved more from the addition of the word frequency predic-
tor in the sentence condition than in the list condition (Fig. 5B).

Further, although we do not discuss these effects, entropy and
surprisal interacted with condition as well (entropy, b = 2.00 *
10–3, SE = 9.43 * 10�4, t(1530) = 2.12, p, 0.05; surprisal, b = 2.54
* 10�3, SE = 9.43 * 10�4, t(1530) = 2.69, p, 0.01).

To gain more insight into the effect of frequency, we per-
formed a post hoc t test comparing the two largest models
(Entropy/Surprisal and Full). These tests confirmed that the
word frequency predictor enhanced reconstruction accuracy in
the sentence condition (t(101) = 5.35; p , 0.01), but not in the
word list condition (t(101) =�0.15, p = 1; Bonferroni corrected).

Finally, we hypothesized that the higher reconstruction accu-
racy in the word list condition was because of the salience of iso-
lated words, possibly evoking a larger auditory response. If this is
true, a model with only the envelope predictor, and no word-
level feature, should also fit the list condition better. To evaluate
this hypothesis, we compared the reconstruction accuracies
(averaged over all sensors) for the Envelope model between con-
ditions. This model was not included in the analyses of the word
frequency effect. And indeed, this was the case; reconstruction
accuracies were higher for word lists than sentences using only
the envelope as predictor (t(101) = 13.40, p, 0.01).

In sum, the response to word frequency differed between word
lists and sentences. The TRFs in sensor space revealed a left-lateral-
ized frontotemporal response to the feature that peaked ;250 ms
after word onset in the sentence condition, and ;600 ms in the
word list condition. The sentence effect is in line with other studies
that used word frequency as a feature in TRF models of natural lan-
guage comprehension (Brennan and Hale, 2019; Weissbart et al.,
2020). A cross-correlation analysis between a set of left (and one
right) temporal and frontal sensors that were involved in the
response in both conditions suggested that the word list
response peaks ;300 ms later. The reconstruction accuracies in
sensor space suggests that the word frequency predictor explains
more variance over and above acoustics, entropy, and surprisal in
the sentence condition, but not in the word list condition.

Figure 4. A, TRF time courses for shared sensors between the sentence (solid lines) and word list (dashed lines). Colors indicate sensor position. B, Cross-correlation between the sentence
and word list responses for overlapping sensors between conditions from the clusters (scaled between �1 and 1). Colors indicate sensor position. C, The shifted response from the sentence
condition (solid lines) to overlap with the word list condition (dashed lines). Colors indicate sensor position. D, Kernel density plots of means and SDs from correlations between randomly
selected sensors at shifted randomly selected lags; the red bar indicates the values observed from the sensors selected after the cluster-based permutation test shifted at the lags from the
cross-correlation. Coeff: coefficient.

Table 2. Results of the LME on the reconstruction accuracies in the delta
band

Factor b coefficient SE df t value p value

(Intercept) 8.61 � 10�2 1.82 � 10�3 1306 47.22 ***
Word frequency 3.61 � 10�4 6.66 � 10�4 1530 0.54 n.s.
Surprisal 6.24 � 10�4 6.66 � 10�4 1530 0.94 n.s.
Entropy �3.88 � 10�4 6.66 � 10�4 1530 �0.58 n.s.
Condition �1.67 � 10�2 9.43 � 10�4 1530 �17.69 ***
Word frequency * condition 2.47 � 10�3 9.43 � 10�4 1530 2.63 **
Surprisal * condition 2.54 � 10�3 9.43 � 10�4 1530 2.69 **
Entropy * condition 2.00 � 10�3 9.43 � 10�4 1530 2.12 *

SE: standard error, df: degrees of freedom, n.s. not significant, *p , 0.05, **p , 0.01, ***p , 0.001.

Table 3. Results of the LME on the reconstruction accuracies in the theta
band

Factor b coefficient SE df t value p value

(Intercept) 4.02 � 10�2 1.29 � 10�3 1382 31.04 ***
Word frequency 1.17 � 10�3 5.64 � 10�4 1530 2.07 *
Surprisal 7.26 � 10�4 5.64 � 10�4 1530 1.29 n.s.
Entropy 2.43 � 10�3 3.99 � 10�4 1530 6.10 ***
Condition �2.09 � 10�3 6.90 � 10�4 1530 �3.02 **
Word frequency * condition 1.55 � 10�3 7.97 � 10�4 1530 1.95 n.s.
Surprisal * condition 1.59 � 10�3 7.97 � 10�4 1530 1.99 *
Entropy * condition

The factor Entropy * condition is not included in the model that was interpreted; SE: standard error, df:
degrees of freedom, n.s. not significant, *p , 0.05, **p , 0.01, ***p , 0.001.

Slaats et al. · Responses to Words Change in Sentence Context J. Neurosci., June 28, 2023 • 43(26):4867–4883 • 4875



Source reconstruction
In source space, we compared the TRFs for word lists and sen-
tences using a cluster-based permutation test in two time win-
dows on the basis of the results from the analysis in sensor space,
200–400 and 500–700 ms post stimulus onset, respectively. The
cluster-based permutation test on the TRFs from the source
reconstructed MEG revealed two clusters in the early time bin
and four clusters in the late time bin. In line with the analysis in
sensor space, coefficients were higher in the sentence condition
than in the word list condition in the early time-bin (200–400 ms
PSO). These differences appeared bilaterally in the posterior
superior and middle frontal gyrus (dorsolateral and dorsomedial
prefrontal cortex) and cingulate gyrus (Fig. 6A). In the right
hemisphere, the cluster extended to the inferior frontal gyrus
(Fig. 6A).

In the late time bin (500–700 ms PSO; Fig. 6B), coefficients
were higher in the word list condition than in the sentence
condition in three of four clusters. Those clusters appeared in
the left hemisphere in the posterior temporal lobe across the
superior, middle, and inferior gyri/sulci, the temporal pole,
and the parahippocampal gyrus. In the right hemisphere, the
effects appeared in superior temporal, inferior parietal, and
caudal frontal areas, as well as cingulate gyrus. In a final cluster
in the late time bin, the coefficients were higher in the sentence
than in the word list condition. This cluster spanned left infe-
rior frontal areas, orbital cortex, as well as a small portion of
the middle frontal gyrus.

In addition, we observed a difference between the responses
in left orbitofrontal and ventrolateral prefrontal cortex, in-
cluding the inferior frontal gyrus. In this area, the response
peaked in the late time bin in the sentence condition only.
That this area is where we found a difference in late time lags
is not surprising given the large literature implicating the left
inferior frontal cortex, or Broca’s area, in syntactic processes
(Friederici, 2011, 2012, 2015; Hagoort, 2013, 2016; Matchin
and Hickok, 2020).

Given our finding that the word list response appeared
delayed in comparison to the response in the sentence condition,
we also considered responses in the sentence and word list con-
ditions separately through one-sample cluster-based permuta-
tion tests. Here, we observed a widespread response in both

conditions; and indeed, this response appears in the early time
window in the sentence condition (Fig. 6C) and in the late time
window in the word list condition (Fig. 6F).

As we already observed in the contrast, in the late time win-
dow, the response to word-internal information encompasses
the left posterior superior, middle, and inferior temporal gyri
(including parahippocampal gyrus) and the temporal poles, as
well as bilateral somatosensory areas in both conditions. These
areas are traditionally associated with lexical and semantic
memory (Binder and Desai, 2011; Hagoort, 2013, 2016).
Furthermore, as we observed in the early time window, this
response includes the bilateral dorsolateral prefrontal cortex.
These areas are part of the dorsal attention network and have
been implied to control activation and selection of information
stored in temporoparietal cortices (Binder and Desai, 2011). In
addition, like we observed in the contrast between conditions,
in the sentence condition a late response appears in the left in-
ferior frontal gyrus (Fig. 6E). This response was absent in the
word list condition. We compared the reconstruction accuracies
using a cluster-based two-way ANOVA with factors Condition
(levels: word list, sentence) and Model (levels: Entropy/Surprisal,
Full). There were no significant differences (all p values. 0.1).

Together, these findings indicate that (1) much, but not all, of
the response to word internal information is shared between
conditions in space; (2) the response develops differently in time,
with a delay in the word list condition; and (3) word internal in-
formation modulates activity in the left inferior frontal gyrus
only in the presence of a coherent context.

Theta band
Sensor-level analysis
In the theta band, the cluster-based permutation test revealed no
differences between the word list and sentence TRFs for the
word frequency feature (Fig. 7). The one-sample tests indicated,
however, a response between 100 and 200 ms in the word list
condition that was absent in the sentence condition.

Like in the delta band, the full model was accuracies ;
condition * (frequency 1 entropy 1 surprisal) 1 (1/partici-
pant). Removing the interaction between frequency and
condition, or the interaction between surprisal and condi-
tion, decreased model fit [marginally; frequency, x 2(1) =

CBA

Figure 5. Reconstruction accuracies in the delta band. A, Reconstruction accuracy difference with the envelope model for each model in the sentence condition. Middle line indicates the me-
dian, the white diamond indicates the mean. B, Reconstruction accuracy difference with the envelope model for each model in the word list condition. Middle line indicates the median, the
white diamond indicates the mean. C, The interaction between condition and frequency on the reconstruction accuracies. Values on the y-axis are the difference with the envelope (as in A, B).
Error bars represent the 95% confidence interval. Entr.: entropy, surp: surprisal, freq: frequency.
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3.80, p = 0.051; surprisal, x 2(1) = 3.95, p , 0.05], but
removing the interaction between entropy and condition
did not [x 2(1) = 0.47, p = 0.49]. We continued with the
model accuracies ; condition * (frequency 1 surprisal) 1
entropy 1 (1/participant). The AIC comparison confirmed
that this model was the best descriptor of the data. The
results of this model are summarized in Table 3.

In theta, too, there was a main effect of condition (b = 2.09 *
10�3, SE = 6.90 * 10�4, t(1530) = 3.02, p , 0.01), with reconstruc-
tion accuracies being higher in the word list condition than in
the sentence condition; see Figure 8. In addition, there was a
main effect of frequency (b = 1.17 * 10�3, SE = 5.64 * 10�4,
t(1530) = 2.07, p , 0.05) indicating that generally the addition of
word frequency improved reconstruction accuracy. The interac-
tion between frequency and condition approached but did not
reach significance (b = 1.56 * 10�3, SE = 7.97 * 10�4, t(1530) =
1.95, p = 0.051), indicating a potential trend for the frequency
effect to be larger in the sentence condition than in the word list
condition (Fig. 7).

With respect to the other predictors, there was a positive
effect of entropy (b = 2.43 * 10�3, SE = 3.99 * 10�4, t(1530) = 1.95,

p , 0.01) and an interaction between condition and surprisal
(b = 1.55 * 10�3, SE = 7.92 * 10�4, t(1530) = 1.99, p, 0.05), indi-
cating that surprisal enhanced reconstruction accuracies more in
the sentence condition than in the word list condition.

Again, we performed post hoc t tests comparing the two larg-
est models (Entropy/Surprisal and Full) to gain more insight in
the effect of word frequency on the reconstruction accuracies.
These showed that the word frequency predictor enhanced
reconstruction accuracies in the sentence condition (t(101) = 5.67;
p , 0.01), but not in the word list condition (t(101) = 1.48; p =
0.57). There were no effects of condition for these two models
(all p values = 1).

Source reconstruction
Given that the permutation test in the sensor-based analysis did not
reveal any effects in the theta band, and we could not select time
bins a priori, we performed a cluster-based permutation test on the
full TRF. This revealed two clusters in the right hemisphere between
100 and 250ms. Both of these clusters reflect a larger amplitude
across right frontal and temporal areas for the TRF in the word list
condition than the sentence condition, as can be seen in the plots of
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Figure 6. Clusters from the cluster-based permutation test. Left column, Early time window (200–400 ms). Right column, Late time window (500–700 ms). A, Differences between the word list and
sentence responses to word frequency in the early time window. Blue indicates that the coefficients in the sentence condition are higher than in the word list condition; pink indicates the coefficients in
the word list condition are higher than in the sentence condition. B, Differences between the word list and sentence responses to word frequency in the late time window. Blue indicates that the coeffi-
cients in the sentence condition are higher than in the word list condition; pink indicates the coefficients in the word list condition are higher than in the sentence condition. C, Sentence condition. TRF
and spatial distribution of one-sample cluster in early time-window. Time-window is indicated in gray. D, Sentence condition. TRF and spatial distribution of one-sample cluster in late time window. Time
window is indicated in gray. E, Word list condition. TRF and spatial distribution of one-sample cluster in early time window. Time window is indicated in gray. F, Word list condition. TRF and spatial distri-
bution of one-sample cluster in late time window. Time window is indicated in gray. Shaded areas in blue and pink indicate SD.
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the time courses of the clusters in Figure 9. These effects, although
visible in Figure 7, A–C, did not reach significance in the sensor
analysis, potentially because of the stringent threshold (recom-
mended value multiplied by three) chosen there.

Control analysis I: data from ten Oever et al. (2022)
In the delta band, the cluster-based permutation test revealed no
significant differences between the word frequency response in
the word lists and sentences. To evaluate whether this was
because there were no detectable responses or no difference
between conditions, we performed one-sample cluster-based per-
mutation tests. Here we observed a response in the sentence condi-
tion over a large array of left-posterior sensors that was significant
from word onset to;400 ms. The peak appears;200 ms (Fig.
10A). Although Figure 10B suggests a potential response of
;400 ms in the word list condition, there were no significant
clusters. As in the main analysis, there were no significant dif-
ferences between conditions in the responses to word onset.

The absence of a difference between the conditions and the
lack of a detectable response in the word list condition alone

make the results from this analysis difficult to interpret in rela-
tion to the main analysis. The large difference between the sam-
ple sizes (N = 102 vs N = 16, respectively) may play a role in this
difference. We performed a power analysis on the difference
between the conditions in the control analysis using the average
t values from the time points and sensors taken from the signifi-
cant clusters from the same contrast in the main analysis. This
showed that power would increase on average by 30.7% when
taking a sample of 102 participants, with three clusters reaching
a power of above 96%. This suggests that the control analysis did
not have enough power to reject or confirm the hypothesis that
the delay in the response in the word list condition is caused by
the different temporal dynamics in the original analysis. We
therefore refrain from drawing conclusions on the basis of this
finding.

Nevertheless, the ANOVA on the reconstruction accuracies
revealed a main effect of model (F(1,15) = 38.01; p , 0.01), indi-
cating that the word frequency predictor enhanced reconstruc-
tion accuracy, and an interaction between condition and model
(F(1,15) = 6.79; p, 0.05), suggesting that this effect was larger for

Figure 7. A, The word frequency TRF in both conditions in the theta band. Shown here is the mean of the sensors that were included in clusters that were different between the two conditions. Black
bars indicate time points of those significant clusters. Shaded area indicates SD. B, Word frequency TRF in the sentence condition. Sensors in bold were significant in the one-sample cluster-based permutation
test. C, Word frequency TRF in the list condition. Sensors in bold were significant in the one-sample cluster-based permutation test. Vertical gray lines indicate the time points of the scalp maps.
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the sentence condition than for the word list condition (Fig.
10C). There was no main effect of condition (p = 0.16). In the
theta band, there were no significant effects on the TRF wave-
forms nor on the accuracy values (Fig. 11).

Control analysis II: simulations
To evaluate the effect of differences in interstimulus intervals
(i.e., pauses), we simulated raw MEG data consisting of a signal
(different impulse responses) and optional noise. Strikingly, the

interstimulus interval has no direct influ-
ence on the reconstruction score, although
the length of the segment on which we
estimate the score does (Fig. 12). In this
case, the difference in interstimulus inter-
val, which eventually leads to a difference
in data length, shows how the bias in the
score observed between conditions is
solely because of the difference in dura-
tion. The bias, however, is constant, and
should be controlled for when directly
comparing models within conditions.
Moreover, we actually observe the op-
posite effect in our MEG analysis; the
absolute scores for the longer segment
of data (the word lists) are higher than
the shorter segment of data (the senten-
ces). This means that our score differences
exist above and beyond any bias generated
from the stimulus difference.

Discussion
In this study, we asked whether low-fre-
quency neural readouts associated with
words systematically changed as a func-
tion of being in a sentence context and
whether neural readouts were modulated
by purely lexical properties over and above
sensory and contextual distributional varia-
bles. We contrasted responses to word fre-
quency for words in sentences with word
lists, the latter lacking any syntactic struc-

ture and combinatorial lexical meaning. We hypothesized that
the delta-band but not theta-band responses to word fre-
quency would be different in word lists and sentences as a
consequence of the (in)availability of sentence context.
Specifically, following findings from speech tracking, we
expected a stronger presence of the word frequency response in
the sentence condition.

CBA

Figure 8. Reconstruction accuracies in the theta band. A, Reconstruction accuracy difference with the envelope model for each model in the sentence condition. Middle line indicates the
median, the white diamond indicates the mean. B, Reconstruction accuracy difference with the envelope model for each model in the word list condition. Middle line indicates the median, the
white diamond indicates the mean. C, The interaction between condition and frequency on the reconstruction accuracies (p = 0.051, see above, Theta band). Values on the y-axis are the differ-
ence with the envelope (as in A, B). Error bars represent the 95% confidence interval. Entr.: entropy, surp: surprisal, freq: frequency.
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Figure 9. Clusters from the theta-band TRFs in source space. Blue indicates that coefficients sentence is greater than word
list; pink indicates word list is greater than sentence. A, Right-lateralized cluster where TRF sentence is greater than word list.
Shaded area indicates SD. B, Right-lateralized cluster where TRF word list is greater than sentence. Shaded area indicates SD.
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Our findings showed that the delta-band response to word
frequency differs between word lists and sentences in time and,
albeit minimally, in space. In both conditions, word internal in-
formation modulates a response across the left temporal lobe
and the frontal cortex. However, this response occurred
;300ms earlier in the presence of a coherent sentence context.
In addition, in a sentence context, word internal information
could be seen to modulate activity in the left inferior frontal
gyrus at ;600ms after word onset, a response that is absent
when a word is not embedded in a sentence. Furthermore,
the word frequency feature explains more variance over and
above the other features in the sentence condition than in
the word list condition. In the theta band, there were only
minimal differences between the conditions. We discuss
our results in more detail below.

In psycholinguistic theories of word recognition, word fre-
quency is often modeled as the baseline of activation or the prior
probability of a word, for example, the Logogen model (Morton,

1969), Cohort model (Marslen-Wilson, 1987), and Shortlist A
and B (Norris, 1994; Norris and McQueen, 2008). We assume
therefore that the neural readout associated with word frequency
represents neural activity during the process of word recognition.
Our results provide direct evidence that this process happens dif-
ferently depending on whether the structure building of sentence
comprehension is also occurring. We know that words are recog-
nized faster when they are embedded in a coherent sentence con-
text (Marslen-Wilson and Welsh, 1978; Tyler and Wessels,
1983); this is reflected in the delayed word list response to word
frequency (Lam et al., 2016).

Furthermore, the reconstruction accuracies in sensor space
suggest that the response to word frequency explains more var-
iance in the sentence condition than in the word list condition.
This may seem contradictory to findings from psycholinguistics.
Indeed, the behavioral effect of word frequency, when assessed
with reaction time measures, diminishes in the sentence context
(Schuberth and Eimas, 1977; Tyler and Wessels, 1983; Simpson

C
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Figure 10. Delta-band effects in the extra data. A, Word frequency TRF in the sentence condition. Sensors in bold were significant in the one-sample cluster-based permutation test. Black bars indi-
cate time points of the significant clusters. B, Word frequency TRF in the list condition. Sensors in bold were significant in the one-sample cluster-based permutation test. Sensors in bold were signifi-
cant in the one-sample cluster-based permutation test. Black bars indicate time points of the significant clusters (none). Vertical gray lines indicate the time points of the scalp maps. C, The interaction
between condition and frequency on the reconstruction accuracies. Values on the y-axis are the difference with the envelope (as in A, B). Error bars represent the 95% confidence interval.
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Figure 11. Theta-band effects in the extra data. A, Word frequency TRF in the sentence condition. Sensors in bold were significant in the one-sample cluster-based permutation test. Black bars
indicate time points of the significant clusters. B, Word frequency TRF in the list condition. Sensors in bold were significant in the one-sample cluster-based permutation test. Sensors in bold were
significant in the one-sample cluster-based permutation test. Black bars indicate time points of the significant clusters (none). Entr.: entropy, surp: surprisal, freq: frequency. C, The (lack of an) inter-
action between condition and frequency on the reconstruction accuracies. Values on the y-axis are the difference with the envelope (as in A, B). Error bars represent the 95% confidence interval.
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et al., 1989). Put differently, words with a low frequency are rec-
ognized more slowly than words with a high frequency. This
does not necessarily mean that lexical information explains less
variance in the neural signal. In fact, studies that consider metrics
like mutual information between the brain and the speech signal
find that the brain represents aspects of the speech signal more
reliably when more linguistic information is present (Kaufeld et
al., 2020; ten Oever et al., 2022), whereas the acoustic informa-
tion in speech matters less for word recognition when the word
is embedded in a sentence (Boothroyd and Nittrouer, 1988;
Mattys et al., 2012). In general terms, these findings suggest that
the brain represents lower-level features more reliably when
higher-level information can be inferred, whereas the lower-level
information itself becomes less important for the outcome of the
task. Indeed, that words are represented more robustly when
sentence context is provided is reflected in the accuracy scores
on the word monitoring task performed in this study; partici-
pants were more likely to correctly remember whether a word
was mentioned when they had been presented with a sentence
than when they heard a word list.

There are two causes for this finding. First, the perceptual
salience of the words in the word list condition leads to a large
response to the speech envelope; the response to lexical features
then are of relatively lower power and explain less of the variance
in the signal relative to the lower-level features. Second, as a con-
sequence of words being embedded in larger structures, phrases
and sentences, word frequency is likely present in a larger neural
network in the sentence condition than in the word list condition
(Martin, 2020). The signal is therefore reconstructed better in a
wider array of sensors, leading to an overall larger increase in
reconstruction accuracies. As discussed below, the presence of
the effect in the control analysis favors the latter interpretation.
The propagation of lexical information to a wider network is
additionally reflected in the differences between conditions in
the inferior frontal gyrus at;600ms. This interpretation is con-
sistent with findings that show that sentence structure influences
the dynamics and distribution of neural signals (Blank et al.,
2016; Schell et al., 2017; Matchin et al., 2019a,b; Grodzinsky et
al., 2021; Bai et al., 2022; Coopmans et al., 2022; ten Oever et al.,
2022).

Importantly, both the TRF and the reconstruction accuracy
effects of sentence context on the representation of word-internal

information are independent of (1) the contextual probability
predictors surprisal and entropy and (2) sensory information in
the speech envelope. Each of these predictors is undoubtedly
important for how the neural signal represents lexical infor-
mation (e.g., sensory, Doelling et al., 2014; and probability,
Weissbart et al., 2020). Given that these influences were
accounted for by the encoding model, the differences that
remain imply a role for abstract structure and meaning on the
transformation of low-frequency neural readouts associated
with words (or more minimally, associated with purely lexical
features). These conclusions are in line with findings on the
visual part of the dataset, not analyzed here (Huizeling et al.,
2022).

Also striking is the difference between the effects in the delta
and theta bands. In the theta band, the responses to word fre-
quency differed between conditions only slightly; the amplitude
of the response was larger in the word list condition than in the
sentences in the right frontal and temporal hemisphere ;100
ms, possibly indicating that word frequency in interaction with
contextual information tunes sensory sampling. The addition of
the word frequency predictor had a small effect on the recon-
struction accuracies, which was present only in the post hoc anal-
ysis. In general, theta-band activity appears to be more sensitive
to perceptual aspects of the stimulus than to linguistic aspects.
For example, tracking of sound by theta-band activity persists
even in the absence of linguistic information (Molinaro and
Lizarazu, 2018), whereas it is affected when acoustic edges in the
stimulus are experimentally manipulated (Doelling et al., 2014).
However, in line with the differences that we do see, Donhauser
and Baillet (2020) showed that the gain of early theta responses
varies according to the contextual uncertainty of speech. The
results from the present analysis are consistent with an account
in which the theta band is important for speech processing but
not as central for the representation of higher-level features such
as lexical-internal information. At the same time, the process
reflected by theta modulations during language comprehension
is likely to be influenced by linguistic context.

In addition to the linguistic differences, there was a variable
pause between the words in the word list condition only. To
examine the potential effect of this additional difference between
the conditions on our results, we ran several simulations. The
simulations showed that the ISI between events modeling word-

Figure 12. Influence of interstimulus interval (ISI), data length, and noise on the score (reconstruction accuracy; R2). Left, The (proportional) influence of broadband signal-to-noise ratio (SNR) on the
score. Right, For every interstimulus interval value, the same score is measured if the data length is kept constant, and the score deflated for longer signals as more noise is being evaluated in the scoring.
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like responses has no effect on model evaluation and TRF estima-
tion. However, there will be a constant bias in the model score
that is proportional to the broadband signal-to-noise ratio (where
the noise is the additive contribution beyond variance explained
by the linear model). This bias is not directly because of the differ-
ences in ISI but rather the fact that we are integrating a larger por-
tion of data in the list condition, thus more noise to contribute to
the score. As such, any model comparison contrasting scores
within condition will eliminate the constant bias. Furthermore,
this bias leans toward deflating the score of the model evaluated
on the longest segment of data (the word list condition). We
found that with the envelope alone, the scores in the list condition
were higher than the scores of the sentence condition; this is in
direct contrast with the expectations from the simulations. From
these simulations we conclude therefore that the delay in the
TRF waveform and the interaction effect in the reconstruction of
the neural signal are not just because of difference in signal
length between the word list and sentence condition.

The next question is, then, What are the potential cognitive
effects of silence between the words? There are three potential
effects, (1) higher perceptual saliency of each word, already men-
tioned above; (2) decreased word rate; and (3) absence of phono-
logical cues between words, such as prosody and coarticulation.
(A reviewer suggested we add a prosody predictor. We con-
structed a prosody predictor by extracting the prosody contour
using Parselmouth, a Praat wrapper for Python. Running the
analysis with this extra predictor did not qualitatively change the
results.) We consider phonological cues to be consequences of as
well as cues to the sentence context; they would be different
between word lists and sentences in naturalistic conditions as
well. The first two, however, need some consideration.

As mentioned above, the perceptual difference between two
consecutive words is much smaller than the difference between
silence and a word. This effect was visible in the speech–brain co-
herence for both conditions (Fig. 1; coherence was much higher
in the word list condition in the delta band) and caused overall
higher reconstruction accuracy in the word list condition.
Importantly, in the analysis on a second dataset in which this dif-
ference between conditions did not exist, the interaction effect
between word lists and sentences was replicated. The word fre-
quency feature explained more variance over and above the en-
velope and word onset predictors in the sentence condition
than in the word list condition. Furthermore, we stipulated that a
general delaying effect on word processing generated by the
decreased word rate in the word list condition would be visible
with other features as well. Nevertheless, the word onset feature,
the only feature in addition to word frequency that was numeri-
cally identical between conditions, did not show such a difference.
These findings indicated that it was only the response to word-in-
ternal information that was delayed and suggests that the brain
processes lexical information later in the absence of a coherent
sentence context. Taken together, this indicates that the effects
described in this work are unlikely to be driven by silence.

In summary, this study suggests that delta-band, and to a
lesser extent, theta-band responses to word-internal information
are affected by sentence context in time and in space. Given that
a difference in encoding of a strictly lexical feature persists when
context-driven lexical features like entropy and surprisal are
added, we conclude that low-frequency responses to word inter-
nal information are changed by sentential structure and meaning
and not by probabilistic differences alone. In the delta band, a
lexical response across the posterior and anterior left temporal
lobe and the bilateral parietal lobe is delayed in the absence of

sentence context. In addition, a word embedded in a sentence
context determines whether inferior frontal areas are responsive
to lexical information. In the theta band, a larger amplitude in
the word lists at ;100 ms across the right frontal and parietal
areas suggests that linguistic information can tune sensory sam-
pling. In addition, this study shows that the TRF can be used to
model acoustic differences between stimuli when measuring
higher-level linguistic effects (Bai et al., 2022). The results of this
study show how the neural representation of words is affected by
the linguistic structure of sentence context and as such provide
beginning insight into how the brain instantiates compositional-
ity in language processing.
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