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Abstract

Artificial neural networks (ANNs) inspired by biology are beginning 
to be widely used to model behavioural and neural data, an approach 
we c al l ‘ ne ur oc on ne ct ionism’. ANNs have been not only lauded as the 
current best models of information processing i n the b                          r           a     in b       u t a    l  s o 
c    r  i   t i   c  i zed for failing to account for basic cognitive functions. In this 
Perspective article, we propose that arguing about the successes and 
failures of a restricted set of current ANNs is the wrong approach to 
assess the promise of neuroconnectionism for brain science. Instead, 
we take inspiration from the philosophy of science, and in particular 
from Lakatos, who showed that the core of a scientific research 
programme is often not directly falsifiable but should be assessed by 
its capacity to generate novel insights. Following this view, we present 
neuroconnectionism as a general research programme centred around 
ANNs as a computational language for expressing falsifiable theories 
about brain computation. We describe the core of the programme, the 
underlying computational framework and its tools for testing specific 
neuroscientific hypotheses and deriving novel understanding. Taking 
a longitudinal view, we review past and present neuroconnectionist 
projects and their responses to challenges and argue that the research 
programme is highly progressive, generating new and otherwise 
unreachable insights into the workings of the brain.
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explanatory and computational levels and predict neural data and 
behaviour to answer the central questions of cognitive neuroscience: 
how can sensory input be linked to neural data across brain regions, not 
only at the level of individual cells but also at the population level? How 
can neural processes be linked to behaviour? How do neural representa-
tions change, not only through space but also through time (from fast 
synaptic adaptations and recurrent dynamics, through medium-term 
learning of a task, to much longer developmental trajectories)? How 
can past experience be encoded in the brain and which types of feature 
selectivity allow for task-general robust performance?

In short, for a complete picture of how cognition emerges, brain 
science needs interpretable computational models that go beyond the 
limits of human-interpretable labels for neural activity, that are applica-
ble in naturalistic settings by being grounded in sensory data and that 
tie together multiple levels of explanation. Several characteristics of 
artificial neural networks9 (ANNs) make them a model class well suited 
to tackle these challenges, with deep neural networks10,11 particularly 
applicable. First, ANNs are made of simple units that collectively imple-
ment complex computations that drive the behaviour of the network. 
That is, they offer a framework spanning the single unit, collective 
dynamics, behavioural and computational levels. Second, ANNs use 
millions (sometimes billions) of synaptic parameters to encode rich 
domain knowledge while learning by optimizing connectivity over 
time. Third, ANNs are grounded in sensory input, which means that 
they can be trained on raw ‘sensory’ data to fulfil ‘behavioural’ needs, 
without the need for human-engineered input features, offering a 
link among sensation, cognition and action. Finally, by allowing for 
the comparison of different biologically inspired learning rules and 
objectives and how they interact with architectural network features, 
ANNs can help uncover how learning and cognitive development are 
made possible. Importantly, the architectural flexibility of ANNs and 
the different ways in which they can be trained allow for explorations of 
which biological details are needed for a given cognitive phenomenon. 
That is, by comparing ANNs that implement different biological details, 
researchers can test hypotheses about the computational effects of 
these biological features, much like traditional experimentation.

These characteristics allow researchers to rigorously test ANNs 
against large-scale behavioural and neural experimental data sets col-
lected from a large array of brain regions12–16 and to adjust the level of 
biological detail where needed — an approach markedly different from 
machine-learning engineering geared towards high performance on 
a small number of benchmarks17. Furthermore, the more recent focus 
on multilevel understanding of brain function of this approach goes 
beyond classic connectionist models of the twentieth century18, which 
were limited to smaller networks to explain higher-level cognitive tasks 
without seeking explicit mappings from network units to the brain. 
Owing to the close integration into neuroscience, both in terms of 
network design and mapping of internal representations to brain func-
tion and neural data, we term this new approach ‘neuroconnectionism’ 
— a cohesive large-scale research programme centred around ANNs 
as a computational language for expressing falsifiable theories and 
hypotheses about multilevelled brain computation (Fig. 1).

Neuroconnectionism has already been successfully applied in 
a wide variety of neuroscientific settings, including vision19–25, audi-
tion26,27, semantics28–31, language32,33, reading34, decision-making35–38, 
attention39, memory40, game playing41, motor control42–45 and the 
formation and coding principles of brain areas46–51 (reviewed else-
where52–58, further demonstrating that the larger neuroconnectionism 
research community involves, among many other areas, sensory 

Introduction
Although the study of cognition is a millennia-old endeavour (for exam-
ple, already present in Aristotle’s De Anima), the past decade has seen 
remarkable advances in both experimental and computational analysis 
techniques, yielding more powerful ways to study and model compu-
tations in the brain1. Yet, the level of abstraction at which cognition 
should best be understood remains a hotly debated topic. Modelling 
biology by replicating every molecular detail might not guarantee a 
deeper understanding of the core principles of cognition, any more 
than the brain of one person can serve as an explanation for the brain 
of another. Instead, the task of cognitive computational neuroscience 
is to find the right level, with enough fidelity to biology to preserve 
the essential mechanisms, but abstract enough to discard details not 
required for cognitive function, which reproduces the trajectory from 
actively sensed input, through internal representations realized in 
neural processes, to complex goal-directed behaviours2.

Traditional experimental approaches often operate at the rather 
coarse-grained explanatory level of contrasting experimental condi-
tions. For instance, by running visual neuroscience experiments with 
highly controlled stimuli, neural firing rates have been interpreted in 
terms of category selectivity: neurons are deemed selective for ‘faces’, 
‘houses’ or ‘tools’3–6. This approach has merit. Its controlled settings 
allow for maximal interpretability and suggest a clear taxonomy of 
neural selectivity7. Yet, human-interpretable labels for neural activity 
are limited by the imagination of researchers, or simply by language. 
But natural mechanisms are not necessarily bounded within these 
constraints: neural selectivity can often rely on more complex features 
that only imperfectly map onto human-interpretable categories8. 
In these cases, interpretable models are needed to find these non-
interpretable complex features. In addition, showing selectivity for a 
high-level category, such as faces or houses, does not explain how the 
brain computes the representation from noisy sensory data, or what 
role category selectivity has in downstream function.

Together, these observations highlight the need for neuro-
computational models grounded in sensory data that can bridge 

ANN

Integration of
biological detail

Check for alignment to neural
and behavioural data

• Development
• Behaviour 
• Neural activity
• Anatomy

Architecture
Training data sets
Loss functions
Learning rules

Fig. 1 | The neuroconnectionist research cycle. The integration of biological 
detail from neural and behavioural data across multiple scales informs the creation 
of new artificial neural network (ANN) models with different components, which 
are then tested for alignment with neural and/or behavioural data (left), leading 
to further cycles of model creation and model testing. Model creation involves 
four central ingredients: objective functions, training data sets, learning rules 
and architectures. Model evaluation involves hypothesis testing via tools such as 
representational similarity analysis, encoding models, comparisons of diagnostic 
readouts to human responses and in silico experimentation.
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processing — in particular vision, our predominant research domain —  
language processing, memory, (meta) learning as well as movement 
and embodiment or robotics). Such developments across diverse 
research areas, the novel analytical tools that using large-scale ANNs 
provide, and the new possibilities that arise from this multidisciplinary 
modelling perspective are the reasons for substantial excitement in 
the scientific community.

At the same time, neuroconnectionism does not remain unchal-
lenged. It has been raised that ANNs differ strongly from biology and 
that they often behave in non-human ways and that the complexity 
of the models prohibits true insights into brain function59–62. These 
challenges can be interpreted as suggesting that ANNs are not useful 
models for learning about the brain.

The aforementioned differences in perspective, as well as the 
increasing popularity of ANNs in neuroscience and beyond, demon-
strate the crucial need for a clear conceptual understanding of the 
goals, tools, current empirical validity and future promises of neuro-
connectionism. Although few researchers believe that ANNs should 
be abandoned entirely, the literature on the merits and shortcomings 
of ANN models52,55,56,59–61,63–70, as well as discussions at conferences 
and on social media, commonly escalate into dichotomous debates. 
As a lack of clarity regarding the rationale and aims behind neurocon-
nectionism might be amplifying this binary discourse, a framing of 
the research programme in the philosophy of science will benefit the 
wider research community.

Hence, in this Perspective article, we provide such a presentation 
by introducing and evaluating neuroconnectionism as a Lakatosian 
research programme (Box 1). We comprehensively discuss the core 
rationale behind using ANNs in brain science and how to evaluate mod-
els against biological data. Next, we demonstrate how to derive new 
insights and understanding from ANNs and examine how to assess the 
promise of this approach. Through an explicit focus on clarifying  
the rationale and aims behind neuroconnectionism using the under-
lying philosophical framework, our Perspective article also extends 
beyond previous reviews of the merits and pitfalls of ANNs in brain 
science52,55,56,59–61,64–68. Our aim is to clarify the role of ANNs in neurosci-
ence and provide the needed conceptual tools to help resolve some of 
the less-productive debates surrounding this emerging field.

Neuroconnectionism as a Lakatosian research 
programme
In the philosophy of science, Lakatos71 proposed a general framework 
to evaluate scientific approaches. According to his view, science is 
typically carried out within research programmes. Such programmes 
share a hard ‘core’ of background assumptions that are not typically 
challenged from within the programme and contain a ‘belt’ of auxiliary 
hypotheses that are experimentally tested. Although the core cannot 
be altered without abandoning the research programme, the auxiliary 
hypotheses comprising the belt are (and should be) subject to change.

Given these two elements, core and belt, the value of a research 
programme is determined not just by its current experimental success 
relative to other research programmes but also based on whether it is 
progressive rather than degenerating — an explicitly longitudinal per-
spective (Fig. 2). The cores of progressive research programmes gener-
ate new theoretical insights and novel predictions in their belts, some 
of which are corroborated by empirical findings. This new knowledge 
advances the research programme by leading to further insights and 
testable hypotheses. Degenerating research programmes do not have 
these two characteristics: they often lack new theoretical developments 

and novel predictions to be tested, instead devolving into repeated 
corroboration of very similar ideas. In summary, in a progressive ‘suc-
cessful’ research programme, background assumptions in the core 
help researchers to generate new knowledge and testable hypotheses 
in the belt, whereas in a degenerative ‘failing’ research programme, 
background assumptions in the core lead to stagnation.

The present discussion does not depend on accepting the details of 
the philosophy of Lakatos. What matters most is that scientific theories 
always have core guiding principles that are relatively isolated from 
direct empirical testing — an uncontroversial view in the philosophy 
of science (Box 1). These core-guiding principles define directions of 
inquiry, including which experiments are conducted, and the type  
of empirical results needed to corroborate or weaken theories. Hence, all 
scientific theories are judged through a holistic assessment of their suc-
cesses and their fertility in guiding experimental pursuits. The Lakatosian 
perspective that we have adopted is merely one helpful way of expressing 
these general ideas so we can apply them to neuroconnectionism as a 
research programme mentioned subsequently (Fig. 2).

The neuroconnectionist core
To lay out the core of neuroconnectionism, the modelling aims laid 
out in the introduction can be summarized as a (non-exhaustive) list 
of desiderata. Thus, a good model of brain computations underlying 
cognition should:

 a. Specify which computations are carried out by the brain 
(computational level).

 b. Show how these computations lead to complex behavioural 
patterns that can be tested in experiments (behavioural level).

 c. Show how these computations lead to complex neural dynamics 
that can be tested in experiments (single unit level and collective 
dynamics level).

 d. Show how these computations can be carried out in complex 
naturalistic settings, beyond simplified highly controlled 
experiments (rich domain knowledge).

 e. Show how these computations can be grounded in sensory 
information, rather than high-level features provided by 
human-interpretable labels (sensory grounding).

 f. Show how these computations arise from adaptive processes 
that unfold at multiple timescales (from processing dynamics to 
developmental trajectories).

Simple models with a small number of directly interpretable 
parameters are not ideal candidates because they cannot achieve each 
desideratum. They are incapable of dealing with naturalistic settings 
because they lack sensory grounding (desideratum d) and rich domain 
knowledge (desideratum e), both of which require complex computa-
tions that can only be achieved in highly parameterized models. In 
addition, a multilevel (desiderata a–c) and dynamic (desideratum f) 
understanding of cognition that spans from neurons to behaviour most 
likely requires models with distributed and iterative computations, 
because that is how real neural networks operate. Hence, the complex, 
distributed and iterative computations underlying cognition in the 
brain probably can only be modelled using other complex, distributed 
and iterative processes, which are necessarily highly parameterized.

However, complex models are not completely ideal candidates 
either. First, models need to be computationally tractable (runnable 
at scale on current computers). Second, millions of parameters need 
to be adequately tuned to encode domain knowledge for complex 
and sensory grounded behaviour. As this is impossible to do by hand, 
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training algorithms are required to do this automatically. Although 
ANNs trained via deep learning optimizers can achieve this, the high 
number of parameters needed renders the interpretation of individual 
units more challenging, which then requires additional methods to 
establish the desired mapping among model, brain data and behav-
iour (see the next section ‘From core to belt: the neuroconnectionist 

toolbox’ for complete details). Taken together, which model class is 
powerful enough to accomplish the difficult task of brain modelling, 
while still being computationally tractable and interpretable enough 
to yield true insights for brain science, becomes a central question.

To the proponents of neuroconnectionism, ANNs achieve this 
intricate balance. They are sufficiently abstract to be tractable and 

Box 1

Theory selection and philosophy of science
Through much of the twentieth century, the Popperian299 view that 
theories are rejected when they are falsified in tests was dominant. 
A scientific theory generates predictions and tests are run to see 
whether the predictions are correct. If they are not, the theory is 
falsified and can be rejected (it may take more than one test to show 
that the failure was not experimental error, but once the result is 
accepted, the theory must be rejected).

The Popperian view assumes that the logic of disconfirmation 
follows the following schema:

If T, then O
Not O
Hence, not T
Where T is a theory and O is an observation.
It was noticed first by Pierre Duhem (the French theoretical 

physicist and historian of science) in 1906300,301, and later reinforced 
by Quine285 (one of the most influential analytic philosophers in the 
twentieth century) that science does not work like that in practice 
and could not work like that in principle. One typically (and perhaps 
always) needs to combine the hypothesis to test with auxiliary beliefs 
to extract empirical predictions. When it is made fully explicit, the 
logic looks as follows:

If T, and A1, and A2, and A3,…, and An, then O
Not O
Hence, not T, or not A1, or not A2, or not A3,…, or not An
Where (A1, and A2, and A3,…, and An) are auxiliary hypotheses 

needed to generate predictions.
For this reason, it is never a single hypothesis, but a whole 

collection of hypotheses that generates predictions, any one of which 
might be at fault if the prediction is not vindicated.

This fact about the logic of confirmation has been one of the 
centrepieces of twentieth-century philosophy of science302. Quine303 
popularized the idea that a theory forms a web of beliefs related by 
inferential connections. The web has a topology with beliefs that 
can be most directly subjected to empirical tests at the periphery, 
and others that are insulated from direct testing by long chains of 
intermediary hypotheses. Beliefs at the periphery describe localized 
observable facts; beliefs at the centre describe the kinds of general 
beliefs that guide the explanation of a whole body of phenomena. 
These general beliefs are highly connected in the web and separated 
from empirical predictions by mediating propositions. Thus, one 
could hold onto the general beliefs in the face of mounting evidence 
if one was willing to adjust other more peripheral parts of the web.

The distinction of Lakatos between core and belt acknowledges 
this holistic nature of confirmation, while offering testing pragmatics 

well suited to capture how science actually works. In the Popperian 
view, testing is a matter of checking whether a theory accords with 
fact. In the Lakatosian view, testing goes hand in hand with the 
development of theory as one adopts a set of core principles as a 
kind of working hypothesis, proceeding on the assumption that they 
are correct and using them to try to understand the phenomena. 
Testing is a process that involves striving to bring theory and fact into 
closer agreement by exploring ways in which the core principles can 
be preserved while accommodating the accumulating evidence. If 
the core principles are held fixed and leeway is granted to explore 
alternative auxiliary hypotheses, testing can be directed at the 
belt, giving the theory every chance of preserving the core while 
accommodating disconfirmatory evidence. In this process, the core 
is not rejected when disconfirmatory evidence is found — instead, 
new studies are conducted to find out whether the disconfirmatory 
evidence can be explained as a failure of auxiliary hypotheses (for 
example, some measurement error). A theory is rejected not as the 
result of a direct conflict with the evidence, but because the attempt 
to preserve the core principles becomes so cumbersome that they 
cease to form a productive working hypothesis for continued testing 
and the discovery of new insights.

For example, in the field of astronomy, deviations in planetary 
trajectories from the smooth ellipses predicted by Newtonian 
mechanics were observed. Instead of rejecting Newtonian laws 
owing to these challenging empirical data, scientists assumed the 
correctness of the laws and tested auxiliary hypotheses (such as 
the presence of an unseen planet) that might explain the orbital 
deviations. Hence, a belt claim was falsified (the number of planets 
in the solar system) but the core was not abandoned (Newtonian 
mechanics). The core is changed only when it becomes unproductive 
to hold onto it, because it no longer leads to new hypotheses or 
because its hypotheses are not corroborated. Changing cores in 
effect involves changing research programmes and is therefore 
similar to a Kuhnian scientific paradigm shift304, leading to a complete 
overhaul of theories and the language they use to describe the 
world. For example, in the twentieth century, evidence accumulated 
against Newtonian celestial mechanics that could not be solved 
assuming the correctness of the laws, which led to its rejection 
and the development of general relativity, a novel progressive 
core that changed the way the universe is thought about and led 
to great discoveries, such as curved space–time and black holes, 
and technological applications, such as more precise space-travel, 
astronomical and GPS tools.
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trainable, but also retain sufficient biological detail in their algorith-
mic structure to map them onto neural and behavioural data. In other  
words, ANNs live in the Goldilocks zone of biological abstraction 
(Fig. 3), striking the required balance between biological realism and 
algorithmic clarity. By contrast, models with too much biological detail, 
such as in silico copies of brain regions, are not computationally trac-
table at the large scale required for sensory-grounded, behaviourally 
complex cognitive tasks. Therefore, such models cannot provide a 
connection from low-level neurons to higher-level cognitive function 
and thus fall outside this Goldilocks zone. Furthermore, unnecessary 
detail complicates understanding — abstraction is central to revealing 
which details matter. At the other end of the spectrum, models that 
are too distant from biology, such as classic box-and-arrow cognitive 
models72, fall outside the Goldilocks zone because they are too abstract 
and cannot be linked to biology, nor grounded in sensory input. But 
ANNs strike the right balance by providing a level of abstraction much 
closer to biology but abstract enough to model behaviour: they can be 
trained to perform high-level cognitive tasks, while they simultane-
ously exhibit biological links in terms of their computational structure 
and in terms of predicting neural data across various levels — from 
firing rates of single cells, to population codes and on to behaviour.

In addition to being in this Goldilocks zone of computational 
abstraction, which makes ANNs tractable and mappable to biology, 
they allow for a productive research cycle of generating, implement-
ing and testing hypotheses about brain computations. Indeed, ANNs 
are defined by their architecture, data set statistics, objectives and 
learning rules, which can be mapped onto central questions of brain 
science (see ‘From core to belt: the neuroconnectionist toolbox’). This 
includes disentangling the interacting contributions of pre-specified 
structure (for ANNs: determined by the architecture) and experienced 
input (for ANNs: training data set), why neural selectivity in any given 

brain region is the way it is (for ANNs: which objectives are being 
optimized) and how the brain may adjust its internal representations 
(for ANNs: credit assignment or learning rules). All these questions can 
be studied across levels of explanation and temporal scales, incorporat-
ing rich domain knowledge grounded in sensory data, in line with desid-
erata (a–f). The resulting models can be tested with great precision, and 
advanced methods exist to derive understanding from models, making 
neuroconnectionism a useful computational language for thinking 
about and describing brain computations underlying cognition.

Thus, the Lakatosian core of the neuroconnectionism research 
programme consists of the following fixed background assumptions:

 1. Brain science requires complex, distributed and iterative 
models to address desiderata (a–f).

 2. ANNs offer a highly suitable computational language: suffi-
ciently abstract to be computationally tractable and reproduce 
cognitive functions, while still being close enough to biology to 
relate to, implement and test neuroscientific hypotheses.

This motivates the neuroconnectionist claim that brain computa-
tions, representations, learning mechanisms and inductive biases are 
best understood via modelling in ANNs, defined by their architectures, 
training data sets, objective functions and learning rules, which must 
be tested against neural and behavioural data (Fig. 1).

Distinctive features of neuroconnectionist models
The desiderata and fixed background assumptions mentioned earlier 
aim to capture the core tenets shared by the many projects that contrib-
ute to the neuroconnectionism research programme. Although a rigid 
definition of a large-scale and highly dynamic research programme is 
bound to fail to capture its diversity, just like how members of a family do  
not share all traits, the respective individual projects possess a family 

Empirical data
Used to test belt hypotheses. 
The body of empirical data 
changes as methods advance 
and more data are collected

Progressive–degenerative
Progressive programmes generate 
successful predictions and novel 
insights. Degenerative 
programmes do not generate 
novel predictions and consistently 
fail to account for empirical data

Belt
Auxiliary hypotheses that are 
experimentally tested and are 
subject to change when 
confronted with new evidence

Core
Fixed background 
assumptions that are 
typically (a) not challenged 
from within the programme 
and (b) not substantially 
altered without abandoning 
the research programme

Fig. 2 | Lakatosian research programmes.  
A conceptualization whereby research programmes are 
composed of a core of fixed background assumptions 
and a variable belt of auxiliary hypotheses. Empirical 
data are used to test and falsify belt hypotheses without 
changing the core. In the Lakatosian view, the entire 
research programme is not immediately falsified by 
conflicting empirical data. Instead, it is judged on its 
ability to successfully adapt its belt hypotheses to satisfy 
empirical constraints, which is indicated longitudinally 
by whether the research programme generates new 
insights and corroborates belt hypotheses (progressive) 
or not (degenerative).

http://www.nature.com/nrn


Nature Reviews Neuroscience | Volume 24 | July 2023 | 431–450 436

Perspective

resemblance73. Hence, the member projects of neuroconnectionism 
are best understood as constituting a diverse but cohesive family of 
approaches that share distinctive features.

Explicit mapping between ANNs and biology. Neuroconnection-
ist researchers seek explicit mappings between ANNs and the brain 
through hypothesis-driven research, which differs from engineer-
ing goals. Around the time of the first large-scale vision networks 
nearly a decade ago74,75, neuroconnectionist models were borrowed 
directly from engineering applications. For example, engineering 
models that performed the best on 2014 engineering benchmarks 
were also better at predicting brain activity25. This correspondence 
between engineering and neuroscientific goals may have led to a form 
of ‘computational opportunism’, in which researchers could directly 
test machine-learning models against neuroscientific data without 
having well-formed hypotheses. Generally, fitting an engineering 
model to brain data without testing a biological hypothesis is not 
part of neuroconnectionism. Moreover, computational opportunism 
is no longer a valid strategy because, while more recent engineering 
architectures have better task performance, they currently have worse 
alignment with neural data12. Indeed, when taking the hierarchical 
nature of the visual system into account, the past 5 years have seen more 
and more limitations for ANNs borrowed directly from engineering in 
pursuing neuroscientific goals76. Together, focusing on engineering 
goals based on task performance alone is not sufficient for obtaining 
a neuroscientific understanding, highlighting the need for neurocon-
nectionism to develop its own models and metrics. Models strongly 
driven by engineering goals, such as generative adversarial networks 
or transformers, can only contribute to neuroconnectionism if they 
can be explicitly mapped to biology and are used to test hypotheses 
about brain computations77–79.

Understanding via abstraction. Neuroconnectionist models are pri-
marily aimed at explaining brain computations at a level of abstraction 
that links neurons directly to their functional relevance for the behavi-
our of the system, not aimed at describing biology with the highest 
possible detail. Biological detail is added to models as part of hypoth-
esis testing, to see which details are necessary for explaining behavi-
oural and neural data. This makes neuroconnectionism different from 
approaches aiming to perfectly replicate a human brain in silico80 and 
from approaches using biophysical models81 aiming to model every 
aspect of a neuron or neural circuit, as neither of these approaches  
typically adapts its level of abstraction to best model cognitive 
processes.

Distributed representations and computations. In ANNs, the mod-
elled property emerges from the collective behaviour and dynamics of 
simple units, which, taken independently, do not exhibit the modelled 
property. This distributed nature of ANNs is central to neuroconnec-
tionism as it readily bridges between explanatory levels, from single 
units through collective dynamics and onto behaviour, and requires 
special interpretation frameworks to cope with the distributed nature 
of ANN computations (see the neuroconnectionist toolbox section). 
By contrast, traditional models such as classic box-and-arrow models 
in cognitive neuroscience, as well as models equating a given brain 
region with a given cognitive function, or simpler computational 
models in which each parameter has an interpretable functional role, 
such as drift-diffusion models, or models based on signal detection 
theory do not rely on distributed computations. Symbolic rule-based 
approaches, such as Good Old-Fashioned Artificial Intelligence, where 
each variable, and each rule applied to variables, is designed to have a 
human-interpretable meaning, are also similarly distinguished from 
neuroconnectionist models.
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Fig. 3 | Schematic of the Goldilocks zone of biological abstraction. An analogy 
to convey the balance between detail and abstraction. This analogy is borrowed 
from astronomy, in which the search for inhabitable exoplanets means looking 
for planets orbiting at the ‘right’ distance from their stars to have liquid water. 
If they are too close, temperatures are too high and water evaporates. If they 
are too far, temperatures are too low and water freezes. The temperature has 
to be just right, as in the Goldilocks fairytale. Analogously, models that are too 
close to the biological brain fall outside the Goldilocks zone because they have 
too much biological detail: these models cannot be run or trained at scale to 
perform complex cognitive tasks from sensory grounded evidence. Models that 
are too abstract also fall outside the Goldilocks zone: these models can neither 
be easily linked to biology, nor be grounded in sensory input. As unnecessary 
detail complicates understanding, models need to focus on incorporating the 
biological elements crucial for explaining brain computation at an appropriate 
level of abstraction. Neuroconnectionism offers a coherent and computationally 
tractable framework for brain science in which models can vary in how much 
they abstract away from biology. This enables researchers to determine which 
biological details are needed in the models they create to test their hypotheses 
regarding the brain computations underpinning cognition.
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Iterative training and inference. The behaviour and internal states 
of many distributed and iterative processes — even simple ones such 
as Conway’s Game of Life — often cannot be predicted by simple non-
iterative models but only by distributed and iterative models, as shown 
by mathematical proofs82,83. The only way to predict the evolution of 
these systems is to run the distributed and iterative process or run a 
similar distributed and iterative model system. Similarly, the complex 
and highly nonlinear computations of the brain likely cannot be sim-
plified into easily interpretable models or equations either. Complex 
distributed and iterative models, such as ANNs, are likely required. 
However, the resulting high dimensionality of such models makes it 
impossible to tune all parameters by hand, which is why ANNs require 
iterative training by successively applying millions of weight updates 
to optimize one or many objectives (see the next section). Next, at the 
inference stage, when the trained ANN is used to infer the behaviour 
and dynamics, they cannot be simplified into a simple interpretable 
equation: to know what result the model predicts, one needs to run the 
model. The iterative nature of the training and inference stages distin-
guishes neuroconnectionism from approaches that can be formulated 
in a small number of non-iterative equations, such as (hierarchical) 
Bayesian models.

Edge cases. Although the features discussed earlier characterize neuro-
connectionist models and distinguish them from approaches in contem-
poraneous research programmes to neuroconnectionism, edge cases 
exist. For example, although grounding in sensory input is a desidera-
tum of the neuroconnectionist approach, not all current neuroconnec-
tionist models are grounded in sensory input. For instance, in language 
or memory models, the input to the model often consists of high-
level concepts, such as words. Still, we consider these models neuro-
connectionist as the sensory nature of the inputs may not be relevant  
in these particular cases and could be added to later models if needed 
without a change in framework, for example by including a visual ANN 
as a front-end to deal with naturalistic visual stimuli. As another edge 
case example, some neuroconnectionist models might not explicitly 
use a ‘behavioural’ objective function, but rather attempt to operate 
under externally defined constraints, such as energy efficiency84. 
Moreover, models directly fitted to neural data, instead of being trained 
on a behavioural task, are considered neuroconnectionist because 
they provide ways of hypothesis testing needed to determine which 
architectures are generally capable of reproducing neural dynam-
ics23. In addition, most models do not aim for explaining cognition in 
general, but rather focus on explaining specific components. Thus, 
understanding which aspects of cognition can only be modelled jointly 
is part of the hypothesis-testing process. For example, sensory–motor 
interactions in embodied models may or may not be required to explain 
certain aspects of visual processing.

Summary of the neuroconnectionist core. Motivated by desiderata 
(a–f), the core of the neuroconnectionist research programme is to 
use ANNs as a language for expressing computational neuroscientific 
hypotheses. This is possible because ANNs reside in a Goldilocks zone of 
computational abstraction, which allows them to model complex cog-
nitive functions grounded in sensory data while still being mappable to 
biological features. Neuroconnectionist models form a loose but cohe-
sive family, centred around the goal of implementing different biologi-
cal details and testing which are needed to explain cognition. Although 
there are edge cases, an explicit mapping to biology, understanding 
via abstraction, distributed representations or computations as well 

as iterative training and inference are widely shared characteristics  
of neuroconnectionist models.

From core to belt: the neuroconnectionist toolbox
In the Lakatosian view, the core of a research programme is not directly 
falsifiable, but it is used to derive falsifiable belt hypotheses, which 
are tested against empirical data (Fig. 2). In the neuroconnectionist 
research programme, falsifiable belt hypotheses are evaluated by build-
ing, training and testing ANNs against neural and behavioural data 
(Fig. 1). To do so, we instantiate a neuroscientific hypothesis into the 
neuroconnectionist language using the neuroconnectionist toolbox 
described in this section. According to standard scientific practice, the 
resulting ANNs are contrasted with appropriate control models and 
evaluated on their ability to explain the neural and behavioural data 
related to the hypothesis in question. All of this requires an extensive 
toolbox for instantiating, testing and interpreting new models — steps 
which are discussed in turn next.

Model instantiation
ANNs are built and trained on the basis of four central ingredients: 
architectures, data sets, objectives and learning rules52. Each of these 
ingredients determines how and what the model learns, which in turn 
influences how well it matches biological data.

Architectures define a computational scaffold within which a given 
network can be expressed. Network architectural features include 
layers and computational unit types, which are abstracted from biol-
ogy to various extents. Layer types include, among many others, ran-
dom reservoirs85,86, convolutional layers20,87 and other more advanced 
designs. Common types of computational units range from very simple 
rectified linear units for summation, to more complex units modelling 
basic memory (for example, in long short-term memory networks88). 
Different architectures come with different inductive biases, which 
influence which functions can be learnt and thereby impact how well 
the resulting ANN compares with biological data. Therefore, research 
iterations on architectures are a central element of neuroconnection-
ism to determine which level of detail is needed to match biological 
data. For example, researchers have tested how integrating various 
architectural aspects inspired from biology, such as recurrent con-
nectivity23,89–95, richer rate-based neurons96–98, spiking neurons99–103 
and neurons with multiple compartments104,105, into network design 
impacts performance against neural and behavioural data.

Although architectural design has a role analogous to large-scale 
brain structure by determining the potentiality of the ANN, the indi-
vidual network parameters still need to be optimized to perform a given 
task. Networks need to be trained on data sets to learn these param-
eters. Many large-scale data sets containing natural images, auditory 
signals or text corpora are openly available. Typically, external data 
sets — such as a collection of ‘perceptual’ inputs, sometimes associ-
ated with labels that the network must predict — are used for training. 
In addition, networks can be trained to learn parameters directly from 
brain activity23,90,106–113, leveraging recent efforts to record large neural 
data sets14,114–118. As the training data set determines the input statistics 
from which network parameters are learnt, different data sets can lead 
to very different networks. Therefore, an important avenue of the 
research programme is to develop more naturalistic data sets (reviewed 
elsewhere119) and iterate over models trained on different data sets, 
testing what features of the data are required to match biological data.

One or several objectives — mathematically described by loss 
functions — determine what networks learn on the basis of the input 
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statistics determined by the data set. There are a large variety of objec-
tives used, including supervised (classification and scene captioning), 
unsupervised (contrastive learning120,121, predictive coding122,123, image 
generation50,124,125, temporal stability126–130 and energy efficiency84) and 
behavioural reward35,41,131. Different objectives impact what the network 
learns and thereby the ability of the network to model different brain 
areas132. Therefore, an important aspect of neuroconnectionism is to 
iterate over models trained with different loss functions to test different 
hypotheses about the objectives of the brain. Ultimately, several low-level 
objectives may be subsumed in higher-level objectives, such as ‘fitness’.

To minimize loss functions, the weights of the ANN must be 
updated, thus storing information about how to produce the desired 

output on the basis of sensory-grounded inputs into the connections 
of the network. To this end, a learning rule must change the weights of 
each individual unit in accordance with the contribution of the unit 
to the error of the whole network. How to attribute the contribution 
of each individual unit in the network to the overall network error is 
called the credit assignment problem11. Given that ANNs can have 
millions of network units — operating over extended time in the case 
of recurrent networks — creating learning rules is far from trivial. 
By far, the most common learning rule used is backpropagation133. 
However, backpropagation in its standard form is not biologically 
plausible, but multiple avenues of research seek to define backpropa-
gation in biologically more plausible ways105,134–138. Other learning rules 
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such as Hebbian learning139, predictive coding140 or self-organizing  
maps141 exist too and each algorithm of learning rules has its own 
characteristics, benefits and limitations. On the one hand, gradient 
descent tends to learn the input features with most variance first142 and 
produces efficient neural codes143. On the other hand, Hebbian learn-
ing is a simpler local rule that has been directly observed during 
learning in biological systems144. Typically, a single learning rule is 
used, but one could also combine several, for example, using back-
propagation in combination with Hebbian learning. It is worth noting 
that each learning rule comes with its own hyperparameters, such as 
a learning rate and how the learning rate changes over training. As 
with the other ingredients used to cast coarse-grained neuroscien-
tific hypotheses into mathematically precise neuroconnectionist 
belt hypotheses, iterating over learning rules is important to under-
stand how different learning rules impact the match of networks to  
biological data.

In summary, the architecture, training data set, objective and 
learning rule can be easily manipulated by the experimenter to iter-
ate complex task-performing ANNs, which can then be compared 
with biological data to test different neuroconnectionist belt hypoth-
eses. Because these degrees of freedom are human-interpretable and 
orders of magnitude smaller than the number of parameters in the 
ANN, this provides a powerful, yet flexible, language for hypothesis 
testing and for generating new insights and predictions for the research 
programme (Fig. 1).

Model testing
Hypothesis testing in neuroconnectionism relies on testing trained 
ANNs against empirical data on various levels, from neural data up to 
behavioural patterns. Because of the flexibility of learning in ANNs, 
models that are structurally very different from the brain can neverthe-
less enable successful predictions of behavioural patterns, or of the 
neural activity in certain brain areas (a form of multiple realizability; 
for example, reviewed elsewhere145,146). Hence, to ensure that an ANN 
implements a given cognitive function in a similar way to the brain, its 
activities and output need to map onto brain processing across levels, 
from neural data to behavioural, ideally while considering physical 
constraints the brain faces such as metabolic costs84,147–149 and wiring 
length51. Importantly, no single-model testing method is perfect and 
various complementary approaches are needed. Thus, developing 

good metrics to compare empirical data and ANNs across levels is a 
crucial part of neuroconnectionism.

Behavioural agreement. At the behavioural level, the outputs of ANNs 
can be compared in several settings, from detailed psychophysics to 
large-scale benchmarks (Fig. 4a). Coarse measures such as overall task 
performance on large benchmarks are useful but often fail to arbitrate 
between models, as multiple and different kinds of ANNs can reach 
human-level performance at tasks for which humans were until recently 
deemed the gold standard such as object recognition74,150,151, board 
games152 or video games153,154. To complement these coarse benchmark 
measures and help arbitrate between models, several more fine-grained 
methods exist. These include the use of diagnostic readouts to char-
acterize the information represented in a population of units from the 
ANN and to then translate this information into behaviourally relevant 
measures such as reaction times155, detailed analysis of error patterns153, 
testing on out-of-distribution examples156–158 and reproducing psy-
chophysical results that target particular aspects of processing89,159–165 
(reviewed elsewhere166–169 for specific discussion about how to compare 
human behaviour and ANN behavioural predictions). A unified model 
addressing years of psychophysical experimentation is an important 
target yet to be achieved by the research programme.

Neural data agreement. At the neural level, the activity patterns of 
ANNs can be compared with the brain in several ways including using 
representational similarity analysis (RSA)170,171. RSA characterizes the 
internal representations of a system by quantifying the dissimilarities 
between the population activity patterns during different experimental 
conditions (for example, the activity patterns to various stimuli), 
summarized in representational dissimilarity matrices (RDMs). Inter-
nal representations of ANNs and the brain are deemed similar if the 
corresponding response geometries agree (Fig. 4b). Thereby, RSA 
side-steps the problem of finding an explicit mapping from ANN units 
to individual neurons or voxels and focuses instead on population-level 
representational geometries. For ANNs, RDMs can be computed using 
population activity patterns from all units of a whole network, all units 
of a network layer, units in a feature map (which are selective for the 
same feature) or individual units. These ANN RDMs can then be directly 
compared with brain RDMs from neural populations or brain regions of 
interest, or an additional data fitting step can be integrated to optimize 

Fig. 4 | The current neuroconnectionist toolkit for model testing. The 
neuroconnectionist toolkit contains many techniques that enable researchers to 
thoroughly evaluate models against neural and behavioural data. a, Behavioural 
agreement. Outputs of artificial neural networks (ANNs) are compared with 
human responses in diverse settings, such as classification of errors and accuracy, 
reaction times, action patterns, and others. b, Agreement with neural data. 
Presenting identical stimuli (input) to the brain and computational model, the 
recorded brain activity patterns are directly compared with ANN activity patterns. 
The most common methods are representational similarity analysis (comparing 
representational geometries of population activities) and encoding models 
(predicting brain activity from ANN units via linear regression). c, In silico 
electrophysiology. ANNs are studied as in silico models of cognitive functions 
with standard neuroscientific methods, such as manipulations and lesions, 
information decoding, unit-based tuning functions and others. Effects of design 
choices such as recurrent connections or manipulations such as detailed lesioning 
patterns can be studied extensively in this setup. These manipulations go beyond 
what is possible in vivo. d, Developmental agreement. Comparing different 
stages of training in ANNs with different stages of learning in biological brains 

permits insights into cognitive development. Examples include behavioural 
patterns, map formation or changes in neural selectivity with visual experience. 
All of these approaches can also be applied to compare ANNs with neural and 
behavioural data from non-human species (such as primates, rats and mice). 
Multiple alterations to ANNs are possible for each component part: objective 
functions (classification, energy efficiency, contrastive learning, agreement 
with neural data, action and slowness); training data sets (visual, auditory, 
text, motor signals, somatosensory and neural data); learning rules (gradient 
descent, Hebbian learning and evolutionary algorithms) and architecture 
(feedforward, recurrent, rate code or spiking units, locally or fully connected and 
convolutional). Multiple sources of data exist at each neural and behavioural scale: 
anatomy (diffusion tensor images, T1-weighted structural imaging, connectome, 
cortical layer architecture, cell morphology and cell types); neural activity 
(including functional magnetic resonance imaging, magnetoencephalography, 
electroencephalography, electrocorticography, array recordings of local field 
potentials and single-cell recordings); behaviour (accuracy, reaction times and 
error patterns from classic or naturalistic paradigms) and development (learning 
trajectories, curriculum learning evolutionary priors).
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the agreement between the ANN and the brain. A direct comparison of 
representational geometries between brain data and/or ANNs119 has the 
benefit of not needing any free parameters to realize the ANN–brain 
mapping (thus avoiding the problem that parameter fitting might 
do most of the heavy lifting in matching brain data). A more flexible 
RSA approach combines multiple RDMs obtained from ANNs using 
linear reweighting to optimize the agreement with brain RDMs22,172,173. 
Although this allows for a better agreement between model and brain 
data, an important challenge for these reweighting approaches, or any 
analysis that gives parametric flexibility to the ANN–brain mapping, is 
that the flexibility can render invisible otherwise prominent differences 
among network candidates. Recent work has started addressing this 
issue by improving current RSA methods174 and clarifying which aspects 
of brain computation should be targeted using RSA175.

In addition to RSA, which is predominantly aimed at characterizing 
responses at the population activity level, encoding models can be 
used to predict the activity of single neurons or voxels across a range 
of conditions94,176,177. Here, the activity of each biological unit (neuron 
or voxel) is predicted as a linear combination of ANN unit activations. 
Hence, this is a mass univariate approach, in which each biological unit 
is predicted independently. To prevent overfitting, the underlying 
generalized linear models are typically regularized, with new methods 
for doing so in constant development110,112. One challenge is that units 
in encoding models are not constrained by which biological counter-
part they can explain. For example, in principle, this lack of constraint 
implies that higher-level brain regions can be explained by lower-level 
network features, or that the activity of thousands of brain cells can be 
explained by the response of a single network unit with broadly similar 
selectivity. Moving towards more structured tests of the alignment 
between brain representations and ANNs using encoding models, 
new developments are underway to include an ordered hierarchical 
mapping from ANNs to brain regions76,178.

The RSA and encoding model approaches are correlational. Build-
ing on encoding models, new techniques exist, which use ANNs to 
control a single target neuron or brain area179–181. For example, stimuli 
can be optimized to maximally drive neural activities in V4 by relying 
on ANNs to predict which activities will be evoked by different stimuli179. 
This provides a more casual approach to test the link between ANNs 
and brain processing.

In silico electrophysiology. In addition to estimating the level of 
agreement between ANNs and biological brains in terms of behaviour 
and neural recordings, ANNs themselves can be experimented on to 
better understand their inner workings. As all units, their activities and 
their connectivity are immediately accessible, almost any ‘in silico’ 
electrophysiology experiment is possible (Fig. 4c). In silico experi-
ments are orders of magnitude faster to conduct than experiments on 
biological brains and are, for now, free of ethical concerns that come 
with classic experimentation. These in silico experiments include 
reliance on network initialization182 and tests for the emergence of 
brain-like computations in individual network units84, selectivity pro-
files47,51,183 and cell types184. To achieve these ends, searchlight decoding, 
measures from signal detection theory, tuning curve analysis and many 
more standard neuroscientific methods can be applied. In addition, 
different parts of ANNs can be selectively lesioned to test their impact 
on the ability of the network to map onto brain function. For example, 
the effect of recurrent connections can be directly assessed by ablat-
ing them23,89,162. In silico lesion electrophysiology studies are not only 
limited to analyses of networks on their own but also can be used to 

evaluate changes in the agreement between ANN outputs and neural or 
behavioural data. Finally, the ability to replicate topographic elements 
of brain organization in ANNs allows for testing of such representa-
tional arrangements to better understand their origins and functional 
implications (reviewed elsewhere47–49,51,183,185 for work in this direction).

Developmental agreement. Methods for finding behavioural and 
neural data agreement and in silico electrophysiology can be applied 
at different points during network training, from untrained to fully 
trained models, and the learning trajectories obtained can be com-
pared with different stages in biological development for their level of 
agreement186 (Fig. 4d). Although it is currently unclear which aspects 
of learning in ANNs are better seen as corresponding to learning dur-
ing evolution and which are better seen as modelling learning during 
the lifetime of an organism67, both can be addressed experimentally. 
For example, the age at which children learn different words can be 
predicted by the performance of ANNs trained on visual classification 
and captioning tasks, over and above the expected effect that more 
frequent words are learnt earlier187.

In summary, neuroconnectionism has a large array of techniques 
for evaluating and contrasting the ability of different models to explain 
brain data, which are vital aspects of the research programme. Each 
model can be extensively tested for how well it maps onto brain process-
ing across levels from single neurons to behaviour, which, arguably, no 
approach besides neuroconnectionism can claim.

Model interpretation
A strength of ANNs is that a single model can be fit to biological data 
across various levels, from the selectivity of a single neuron, through 
representational dynamics of neuronal populations, and onto behav-
iour, allowing for the study of these different scales in a single unified 
framework (Fig. 4). Yet, fitting data is not enough for true understand-
ing, if the fitted model is an uninterpretable black box. Models also need 
to be ‘transparent under analysis’60 and enable researchers, via careful 
experimental manipulations and advanced analysis tools, to under-
stand which aspects of the model are crucial to successfully account 
for brain data using the testing methods outlined earlier better than 
contrasting models. Next, we review such model interpretation tools 
that are available to neuroconnectionism and how, as a result of working 
with ANNs, researchers now have a whole new vocabulary for thinking 
about and describing brain computations underlying cognition.

Hypothesis testing via model contrasting. In the central research 
cycle of neuroconnectionism (Fig. 1), falsifiable belt hypotheses are 
evaluated by building, training and testing ANNs against neural and 
behavioural data. In line with standard scientific practice, hypotheses 
need to be tested against alternative hypotheses. Therefore, reporting 
how much variance a single ANN explains is not insightful (for example, 
even random models can explain some variance in neural record-
ings188). Rather, models must be contrasted to understand the relative 
impact of different model design choices. The underlying experimental 
logic is similar to more classic approaches in cognitive neuroscience 
that contrast different experimental conditions to understand which 
aspects better explain neural data. In the case of neuroconnection-
ism, hypotheses can be formed about the architecture of the ANN, the 
input data driving the network, its objective function and its learning 
rules52,56. By contrasting these hypotheses — instantiated as trained 
models — insights into the types of brain computations that lead to 
cognition are obtained. For example, by contrasting feedforward and 
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recurrent ANNs trained on the same data set, objective and learning 
rule, it was shown that the recurrent ANNs better match human neural 
dynamics23 and behavioural reaction times155.

Normative modelling. Normative modelling enables researchers 
to ask which task or which objective a system (for example, from 
neural populations, brain regions, all the way up to organisms) may 
be fulfilling — it thereby helps answer why a system is exhibiting the 
features it does55,189,190. This is done by optimizing a model to fulfil one 
(or many) pre-defined objective(s)55, testing it against neural and behavi-
oural data and contrasting it with models that are optimized towards 
fulfilling other objectives. Normative modelling dates back to earlier 
work on visual representations that underlie sparse coding191, and has 
become used more widely with the rise of deep neural networks, for 
instance, by using task-trained neural networks to successfully predict 
ventral stream population responses21,22,25,192,193. As another example, it 
was shown that neurons in macaque face patches were better modelled 
by β-VAEs, a type of ANN that explicitly aims to disentangle sensory data 
into interpretable latent factors, compared with several other control 
ANNs without disentanglement as an objective to fulfil50. Thus, this 
normative modelling result suggests that face patches carry out com-
putations with disentanglement as a goal. Recently, optimizing models 
to fulfil cross-modal objectives has also been explored. For example, 
recurrent ANNs were trained to map from input images to sentence-
level linguistic embeddings of scene captions and better explained 
activity in large parts of visually driven brain areas when contrasted 
with more traditional category-trained networks31. Thus, such visuo-
semantic transformations might offer a better conceptualization of 
the human visual system than object categorization.

New concepts for brain science. Working with and understanding 
ANNs provides a set of quantitative concepts that allow for funda-
mentally new ways of thinking about and describing the brain and 
its computations. Indeed, the vocabulary of neuroconnectionism 
revolves around technical terms (activation functions, layers, data set 
statistics, loss functions, learning rules), which are different from the 
terms previously used in neural or cognitive science. A recent example 
of a study revealing a new way of thinking about neural organization 
used a category-trained ANN to define a visual object space46. On the 
basis of this ANN-derived object space, the authors were not only able 
to predict neural selectivity in a previously uncharacterized ‘no-man’s 
land’ of inferior temporal cortex but also to embed these novel find-
ings into a unified picture of functional organization in that cortical 
region. Another study derived a new and mathematically tractable 
theory of semantic learning on the basis of the learning dynamics of 
ANNs, which mirrored many empirical phenomena of human semantic 
development30. Further examples proposed to explain adolescent 
changes in working memory by pruning in ANNs194 and predicted 
the memorability of images in humans from response magnitude in  
ANN layers195.

Neural control. As described in the ‘Neural data agreement’ section, 
successful predictions of neuronal firing rates from ANNs (for exam-
ple, via using encoding models) open avenues for new experimental 
approaches, including precise control of neurons in biological brains. 
For example, by relying on the capacity of ANNs to predict neural activi-
ties for any given input image, researchers can vary stimuli to optimize 
their effect on firing rates of single neurons, groups of neurons or 
voxels179–181. The resulting images more strongly drive the neurons 

than any tested natural stimulus, aiding our understanding of their 
selectivity profiles beyond more classic experimental grounds.

Mechanistic understanding. Given the full access to all parts of ANNs, 
neuroconnectionist models can provide computational insights that 
are intractable without ANN simulations owing to the complexity of 
distributed neural codes and the difficulty of in vivo experiments. 
One example is ‘model reduction’, in which complex trained ANNs are 
reduced to simpler, more interpretable models. For instance, a study 
used an ANN (trained to mimic retinal ganglion cell outputs) to derive a 
simpler interpretable model of the retina, which was nevertheless able 
to explain several retinal phenomena196. Importantly, this approach 
combined the virtues of large-scale ANNs capable of dealing with 
natural stimuli — a crucial requirement for understanding the brain in 
naturalistic settings — with directly interpretable results. Mechanistic 
understanding can also be derived from in-depth experiments on mod-
els. For instance, a study that used an ANN to implement the feature 
similarity gain model of attention, in which attentional modulation is 
applied according to neural stimulus tuning, was able to provide an 
important test of this theory in naturalistic images39. The ANN model 
matched several experimentally observed neural and behavioural 
results and led to the novel mechanistic prediction that attention in 
the early visual cortex can be applied to optimize activities in the late 
visual system, rather than strictly according to tuning of early visual 
cortex neurons.

Formal theories of computation. As ANNs are heavily overparameter-
ized and learn non-convex loss functions, precise mathematical tools 
are required to better understand the underlying computations and 
learning dynamics. Such tools are being developed in an emerging field 
known as ‘deep mathematics’197. Insights from deep mathematics are of 
great importance for understanding complex neural processes, as the 
brain, too, is highly overparameterized198. The study of double descent 
in deep learning — the observation that increasing model complexity 
beyond the number of datapoints can nevertheless yield solutions that 
generalize well — is one such theoretical insight199. Another example 
is the study of neural tangent kernels, which indicated that training 
converges to a global optimum as networks get wider with more units 
per layer200. This finding helped answer the challenge that ANNs might 
converge to suboptimal local minima instead of a global optimum. 
Further theoretical work on ANNs has provided exact solutions to deep 
linear ANNs learning dynamics, explaining nonlinear phenomena dur-
ing training such as plateaux and sudden dips in loss and proving that 
learning speed can occur independent of layer depth under certain 
conditions142. In addition, the geometry and symmetries of ANN loss 
landscapes — which represent the loss values in the weight space of the 
network — have been investigated in detail, revealing how permuta-
tion symmetries generate symmetry-induced critical points that help 
characterize the global minimum201. Advancing these lines of research 
by clarifying how they change under different architectures, data sets, 
objectives and learning rules will be an essential step towards under-
standing how ANNs compute, understanding why different ANNs map 
onto different aspects of brain processing and providing new formal 
tools to understand distributed computations in biological systems.

Explainable artificial intelligence in brain science. Substantial 
work in deep learning is devoted to network interpretability, aim-
ing for better understanding of existing networks and for creating 
more interpretable ones (reviewed elsewhere202). Many of these deep 
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learning approaches can also be used in brain science203. Feature visu-
alization methods investigate what ANNs detect by quantifying which 
parts of the input most strongly impact unit activities and network 
behaviour204–206. Feature attribution techniques dissect how ANNs 
process different inputs, by determining the contribution of differ-
ent parts of the network (for example, different units, channels or 
layers)207,208. As another example, textual justification is an approach  
in which a model is trained to provide textual explanations of how 
it reached its decision, for example, by providing a text description 
of which visual features were most salient to the network209. This 
fast expanding set of interpretative tools for ANNs can help under-
stand how they compute, helping to better shed light on the brain 
computations which they model.

Links to higher-level cognitive neuroscience and psychology theo-
ries. ANNs can be related to existing psychological and psychophysical 
ideas and might be crucial for unifying often disparate theories in these 
fields. As described earlier, ANNs can be tested on traditional psycho-
physical effects and the neuroconnectionist toolbox can be used to 
understand which model aspects are crucial to explain these effects. For 
example, convolutional neural networks (CNNs) failed to account  
for important global effects in visual crowding, a strong psychophysical 
phenomenon159,210, indicating that an important computational feature 
is missing from CNNs. In psychology, these global crowding effects 
are often explained by ‘perceptual grouping’, an imprecise and highly 
abstract concept211,212 that can be difficult to test experimentally, given 
that it cannot be implemented in a mechanistic model. By contrast, 
ANNs can be used to formulate precise explanations and mechanical 
models, which can be tested across many experiments. For instance, 
Capsule networks213, a class of image-computable neuroconnectionist 
models that combine CNN feature extraction with a recurrent group-
ing and segmentation process in an ANN, solved the problems of tra-
ditional CNNs across varied psychophysical stimuli related to visual 
crowding89,214,215. Beyond the specific case of visual crowding, there are 
different psychological models for different paradigms (for example, 
a traditional psychological model tailored for visual search cannot be 

directly applied to a memory setting). A goal of neuroconnectionism  
is to find ANNs that unify these models, which is only possible because 
ANNs can process any image (or other modality) as input, thus going 
beyond models specific to a given psychological effect or a set of 
theoretical constructs in psychology.

The neuroconnectionist belt
We have now defined the core of the research programme and the 
neuroconnectionist tools that are used to design, train and evaluate 
ANN models across various levels of explanation to derive new under-
standing of the brain computations underlying cognition. Next, we 
discuss the current belt of the research programme, a set of auxiliary 
hypotheses which are tested and which evolve as new empirical data are 
integrated. Individual elements of the belt are important, but a more 
central aim, when taking a Lakatosian perspective, is an evaluation of 
longitudinal developments (both theoretical and empirical), which 
determine whether a research programme is progressive or degenera-
tive (Fig. 2). New hypotheses can be derived and existing hypotheses 
can be corroborated, altered and rejected so that the belt of a research 
programme is subject to change. An individual belt hypothesis that is 
rejected does not refute the core assumptions upon which a research 
programme is built, but rather provides an important datapoint for 
future developments. According to this Lakatosian view, the overarch-
ing question becomes: How does the neuroconnectionism research 
programme fare in terms of productivity? Subsequently, we discuss 
whether neuroconnectionism generates new insights, and how well it 
addresses existing challenges. We then examine whether challenges 
that the research programme has not overcome are roadblocks render-
ing it degenerative or are signposts towards open questions improving 
the research programme that render it progressive.

The progressive evolution of the neuroconnectionist belt
The neuroconnectionist belt has considerably evolved in the past dec-
ade. By rapidly testing and expanding the number of belt hypotheses, 
the research programme now commonly uses ANNs with different 
architectures, training data sets, objectives and learning rules to test 

Fig. 5 | The historical progression of the neuroconnectionism belt in visual 
computational neuroscience is highly progressive. Empirical and analytical 
findings corroborating belt hypotheses are integrated into and strengthen the 
belt (increase or addition of filled areas), whereas disconfirmatory evidence 
(white bands that reduce the area of the belt hypothesis) poses challenges that 
need to be addressed. a, The neocognitron20 was derived from seminal findings 
about simple and complex visual system cells by Hubel and Wiesel296. It learned 
and recognized increasingly abstract visual patterns through mechanisms that 
were similar to convolutions. b, HMAX297, a more powerful model based on similar 
computations as in the earlier neocognitron, was investigated closely for its 
similarity to human behaviour and primate neural activity. HMAX was shown to 
match well to human psychophysical data on animacy detection well, thereby 
corroborating and strengthening this item in the belt but did not align well with 
broad activity patterns observed in IT, providing disconfirmatory evidence 
and weakening the belt item. c, Convolutional neural networks (CNNs) were 
successfully trained on large collections of naturalistic images. A series of studies 
showed that their layer activities match neural activity patterns along the primate 
ventral visual stream21,22,25. This was the first time that a single image-computable 
and functional object recognition network was able to match activity patterns 
across the ventral visual system. These findings resolved the objection to HMAX 
and strengthened the neuroconnectionist belt, which spawned a series of new 
neuroconnectionist studies. d, With their susceptibility to adversarial attacks249–251 

and the amounts of labelled training data they required, CNNs were shown to 
exhibit several important differences with biological vision. e, CNNs showed 
similar layer activities to the dorsal visual stream, adding further experimental 
evidence strengthening the belt229,298. f, Removing support from the belt, it 
was shown that the error behaviour during image alterations clearly diverges 
between humans and CNNs156,252. Furthermore, feedforward CNNs embodied too 
simple mechanisms to cover neural dynamic observations beyond coarse rate 
coding. g, The neural dynamics objection was resolved by the demonstration that 
dynamic transformations during visual processing can be captured if recurrence 
is added to artificial neural networks (ANNs)23,90,218. This resolved one of the 
challenges facing CNNs and thereby strengthened the neuroconnectionist belt. 
h, It was shown that activity across the dorsal visual stream during game playing 
matches activity in deep reinforcement learning networks41, which implement 
a sensory–motor loop for the same game playing tasks. i, Newer developments 
demonstrated that unsupervised learning can rival supervised learning in 
representational agreement with brain data121,225,227. This finding solved the 
challenge that too many labelled examples were needed for training, further 
strengthening the belt. j, Future directions. Attention mechanisms, semantic 
objectives and end-to-end learning in which networks trained directly to match 
neural activity are recent developments in ANNs. Future experiments will reveal 
which brain processes are better modelled by incorporating these  
elements.
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the resulting models across various experimental settings for their 
alignment with brain and behavioural data.

One of the clearest examples of progressive evolution of neurocon-
nectionism has been the change in how vision is modelled with ANNs 
in recent years (Fig. 5). In the early 2010s, researchers focused a great 
deal of effort on comparing neural and behavioural data to what were, 
at that time, the state of the art in ANNs for vision, namely, deep CNNs 
trained on image classification tasks19–22,24,25. Over time, as research-
ers explored the successes and the failures of these models, the field 
has seen almost every component of these initial deep CNN models 
updated, leading to new models that better account for neurophysi-
ological and psychological data. The earliest such update resulted from 
the recognition that the feedforward nature of standard CNNs was 
both obviously incongruent with real neural anatomy and function-
ally limiting216. Adding recurrence to networks improved matching 
both behavioural data and neural activity patterns that occurred with 
longer delays23,38,89–93,95,165,217–220. In addition, researchers explored ways 
to improve the training data sets beyond computer vision benchmarks, 
including a more ecologically relevant selection of object catego-
ries119, video data221, embodiment222,223 and goal-directed eye move-
ments224. Similarly, the use of supervised category training, which 
was always problematic from a neuroscience perspective as humans 
do not need millions of labelled examples to learn, was shown to be 
unnecessary: self-supervised techniques for training ANNs, for exam-
ple, objectives that do not require training labels but rather bootstrap 
information from the data set itself lead to as good or better matches 
to neural representation and animal behaviour121,225,226. Moreover, 
self-supervised training on video data can account for the functional 
distinction between the dorsal and ventral pathways in the brain227, and 
self-supervised training on lower-resolution inputs provides a better 
fit to electrophysiological data of mouse visual cortex228. Other loss 
functions have also been explored, and researchers have found that 
voxel or neuronal activity in the visual dorsal stream can be modelled 
by ANN units trained both by control-based optimization41 and by 
self-motion-related loss functions229.

A similar evolution has occurred in models of the hippocampal 
formation and related networks, in which initial architectures and loss 
functions have been replaced as the belt of the research programme 
evolved. Early ANN-based hippocampal models were often attractor 
networks230,231, which captured many interesting aspects of the under-
lying circuitry supporting such networks. But, with time, these early 
models have evolved to incorporate additional architectural features 
and loss functions related to prediction and spatial integration, lead-
ing to improved matches with a host of experimental results232–234. 
Moreover, new ANN architectures such as transformers have been 
created with more sophisticated attention mechanisms, and research 
has demonstrated that transformers trained in a self-supervised man-
ner can effectively capture the representations observed in language 
areas of the brain32,33, and other brain circuits, such as the mnemonic 
circuits of the medial temporal lobes235. The success of transformers 
at explaining brain data in these areas leaves open the possibility for 
numerous other updates and explorations to existing models of vision 
and other senses, including the use of self-attention and the use of 
multimodal networks that combine linguistic inputs with vision or 
other sensory modalities236,237.

Many developments in the belt are accompanied by methodol-
ogical developments in the ways in which we train and test models. 
These include developments in quantifying the alignment of ANN and 
brain data172,178,238,239 and training networks end-to-end directly to match  

neural data23,90,106–113. Further examples include work highlighting the 
important individual variability across network instances182, explicitly 
pitting networks against each other using ‘controversial stimuli’240 
and integrating hierarchical76 and temporal89,165 aspects of informa-
tion processing into model comparisons. In addition, performing 
detailed psychophysical experiments159,241,242, using metamers to com-
pare humans and models243, and developing interpretable low-rank 
recurrent networks244 allow for greater interpretability.

Altogether, these rapid developments within neuroconnectionism 
demonstrate that the underlying research programme is highly pro-
gressive. Researchers have repeatedly updated their models, altering 
the architectures, objective functions and training data sets to arrive 
at a progressively better account of neural information processing, 
including novel ANN-driven insights and predictions. Although final 
answers remain distant and there are still important methodological 
issues173,245–247, this progression illustrates how neuroconnectionist 
experiments, theory and methodology form a virtuous circle in which 
new empirical and theoretical results stimulate improved methodol-
ogy. In turn, this allows for newly generated hypotheses to be tested, 
enabling the research programme to keep progressing.

Shortcomings as signposts, not roadblocks
Despite the advances in neuroconnectionism, skepticism of ANNs as 
models of brain function continues because differences with neural and 
behavioural data remain. In the following, we consider prominent exam-
ples of such differences, asking whether the underlying controversies 
are roadblocks that preclude progress (indicating neuroconnection-
ism is a degenerating research programme) or are better perceived as 
signposts that point towards promising directions for improvement 
(suggesting neuroconnectionism is a progressive research programme).

One of the main controversies surrounding ANNs in both cognitive 
science and artificial intelligence concerns differences in the behaviour 
of ANNs versus biological brains in various settings59,62,248. Although 
capable of impressive behaviours, current ANNs do not model all 
aspects of biological behaviour equally well: they sometimes gener-
alize poorly157, can be easily fooled249–251 and behave differently from 
humans in many psychophysical settings59,156,159,252,253. Perhaps, the most 
famous of these differences is given by adversarial examples249,250,254: 
small perturbations to an image, invisible to the human eye, completely 
change an ANN classification of that image. This provokes fascinat-
ing new questions. First, how can ANNs be made more robust? One 
straightforward, yet technical, approach is to add adversarial images to 
the training data set255. This approach successfully increases the ANNs 
robustness, but it is a questionable strategy for models of human cogni-
tion. Second, can biological features of the visual system, such as V1-like 
receptive fields256,257, be leveraged to increase robustness? Biologically 
inspired features have had some success increasing robustness, but 
work remains to fully understand their impact (reviewed elsewhere258). 
Third, where do adversarial examples come from? Perhaps, the most 
influential view is that they are features, not bugs259: they occur when 
ANNs latch onto real patterns in the data set that are highly predictive, 
but non-robust (because they are not present in other data sets) and 
undetectable by humans. Under this view, networks take a shortcut in 
learning260 by harnessing specifics of a given data set to solve the task at 
hand, and the shortcut used is distinct from human cognitive process-
ing. It is an open empirical question whether ANNs will become more 
human-like with richer, multimodal, more naturalistic data sets, other 
task settings and currently underexplored features such as embodi-
ment. In summary, adversarial examples remain a fascinating tool for 
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understanding differences and similarities between visual information 
processing in brains and ANNs models69,261–263.

Another important behavioural difference between humans and 
current ANNs is shape versus texture biases during object classification. 
Extensive psychological studies have shown that humans rely on global 
shape to classify objects, whereas, by contrast, current ANNs have a 
bias towards texture156,252. This difference during object classification 
clearly poses a challenge to current ANN models of human vision. As 
with adversarial examples, there are various approaches to address this 
shortcoming, including training ANNs on images with randomized tex-
tures156 (but see159 for an example in which texture randomization had 
negligible effects on the global processing abilities of CNNs), improving 
data augmentation264, using a more biologically inspired first network 
layer265 or training ANNs on substantially larger data sets266. This shape 
versus texture distinction was studied in the brain too, revealing that 
inferior temporal cortex might rely on a textural encoding267, a hypoth-
esis that strongly contrasts with the classic object-based view of the 
inferior temporal cortex function. Together, addressing this challenge 
illustrates how working with ANNs has shaped research questions about 
the brain and has likewise influenced experimental designs.

A further controversy around the computations of ANNs is focused 
on symbolic manipulations in ANNs versus biological brains. It has 
been argued that current ANNs, unlike humans, do not compute with 
symbols because they do not have systematicity, dynamic variable 
binding, role-filler independence or appropriately structured represen-
tations268–271. In addition, owing to the human capacity to understand 
and create novel combinations of concepts272,273, ANNs are thought to 
run into tractability or scalability issues268,270. Yet, even ardent defend-
ers of symbolism agree that ANNs should, in principle, be able to imple-
ment the desired symbolic systems268,270,274, as such a capacity is an 
immediate result of the universal approximation theorems that hold 
for multilayer and recurrent neural networks83,275. Still, the issue of sym-
bolism points to potentially fundamental computational differences 
between current ANNs and humans that neuroconnectionism needs to 
address. Indeed, the field of neurosymbolic computations tackles this 
open problem. One approach is centred around the idea that symbolic 
computations could arise from training in complex social and cultural 
environments276,277. If true, the question becomes: how are data sets 
that favour the emergence of symbols developed? Improving objec-
tive functions is also an active area of this field. By training ANNs on 
new objectives, for instance, those that are as demanding as the goals 
humans are able to attain, the models might be incentivized to develop 
symbolic reasoning. For example, recent large-language models use 
complex semantic objective functions, including interactive conver-
sations with humans278, which have helped bring models ever closer 
to human reasoning (with limitations such as fact hallucination and 
reasoning errors279,280). There are also architectural approaches that 
try to endow ANNs with inductive biases for symbolic representations. 
For instance, some approaches develop architectures that allow for 
less distributed, more disentangled representations, in which different 
features of the same object are represented by different population 
activities213,281–284. The idea here is that less distributed, disentangled 
representations can be combined more easily, which could cause the 
network to develop the type of compositionality that is required for 
generalized symbolic reasoning. Other architectural approaches go 
a step further and try to build ANNs with mechanisms that should 
directly enable these architectures to perform symbolic computa-
tions (for example, tensor products, pointers or explicit read–write 
addressable memory)285–291.

In sum, these example challenges presented by adversarial exam-
ples, shape versus texture distinctions and symbolic computations are 
leading to new avenues of neuroconnectionism research, indicating 
that they are better viewed as signposts fostering progress within the 
research programme rather than roadblocks implying its degeneration.

Conclusions
In less than a decade, ANN modelling has gone from being fringe to 
being a more central research tool in many parts of cognitive neurosci-
ence, including vision, audition, motor control, language and higher-
level cognitive tasks. The underlying neuroconnectionism research 
programme has met striking successes with many researchers sharing 
the excitement about this new framework. However, the use of ANNs 
for brain science also faces challenges, and discussions thereof often 
escalate into binary debates on the usefulness of ANNs. We argued 
that this binary view is unhelpful and that, instead, a more longitudinal 
view in line with Lakatosian research programmes is more adequate, 
comprehensively describing neuroconnectionism, its philosophical 
underpinnings, scientific rationale, experimental tools and methods 
for understanding.

Traditional modelling approaches based on simple human-
interpretable concepts cannot bridge levels of explanation from single 
neurons to behaviour while performing complex cognitive tasks that 
require rich domain knowledge and sensory grounding. Hence, more 
complex models are needed to complement simpler approaches. 
However, complex models come with their own challenges, includ-
ing computational tractability and interpretability. Until recently, 
these challenges could not be met, but ANNs now offer a promising 
framework to overcome them. Indeed, ANNs are high-dimensional 
enough to carry out cognitive tasks, encode domain knowledge and 
be grounded in sensory input while still being interpretable enough to 
yield insights into brain computations. Hence, we argued that ANNs 
reside in a Goldilocks zone of biological abstraction: abstract enough 
to be computationally tractable and applied to complex cognitive 
tasks, whereas still being close enough to biology to incrementally 
test which biological detail is needed in a hypothesis-driven manner. 
This is possible owing to an extensive toolbox that has been developed 
allowing to create, train, test and understand ANNs.

The framework of progressive versus degenerating Lakatosian 
research programmes is well suited to evaluate the promise of this 
intricate research programme. Of central importance is the view that 
neuroconnectionism is not a single theory or hypothesis. Instead, 
it is a research programme composed of many different auxiliary 
hypotheses and research directions in the belt, each sharing the same 
core of desiderata, fixed background assumptions and distinctive 
features. On the basis of this view, we showed that current challenges 
represent important signposts that aid further progress, rather than 
roadblocks. Indeed, many such challenges have already sparked 
vibrant new research directions. Together with the growing body of 
studies demonstrating good agreement between ANNs and brain data, 
these observations illustrated that the neuroconnectionism research 
programme is highly progressive.

Although we have here focused on the progressive nature of the 
research programme, we do not mean to imply that the field is any-
where near to successfully explaining cognition or its underlying brain 
computations. Neuroconnectionism is in its infancy, and hence know-
ing where it fails is equally important as knowing where it works. In 
addition to addressing the challenges discussed here, future work will 
need to incorporate many currently missing aspects of lower and higher 
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cognition. These future directions include (i) multitask networks that 
can explain the human ability to perform multiple, sometimes highly 
abstract tasks based on sensory evidence292, (ii) a focus on embodi-
ment rather than treating networks as artificial brains in vats222,228,229,293, 
(iii) data-efficient and continuous learning using biologically realistic 
learning rules and inductive biases, (iv) an answer to how symbolic 
reasoning is implemented in neuroconnectionist models, (v) better 
methods for unsupervised, multimodal learning, (vi) better modelling 
of cognitive development, (vii) the integration of multiple memory 
systems, (viii) models that learn in social contexts, (ix) methods tak-
ing into account that ANNs learn tabula rasa, whereas humans come 
to experiments with strong priors (acquired both through evolution 
and through life experiences)294 and (x) creating models with more 
robust inference. The fact that all these aspects are currently missing 
but can in principle be implemented in ANNs perfectly illustrates both 
the current limitations and strong potential of the neuroconnection-
ist programme. Rather than feeling threatened by the possibility of a 
new connectionist winter, the neuroconnectionist community should 
therefore continue to welcome criticism and limitations as they point 
the way towards new insights. Critics of neuroconnectionism, on the 
contrary, should not regard every shortcoming of the current set of 
networks as a failure of the entire research programme. In line with 
Lakatosian philosophy295, time will tell whether neuroconnectionism 
can deliver on its promises to explain the emergence of cognitive 
phenomena, behaviour and neural data from bio-inspired, yet simple 
distributed coding principles. For now, it remains a highly progressive 
and therefore exciting research programme that welcomes critical 
signposts to guide the way.

Published online: 30 May 2023
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