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1 Supplementary Text

1.1 Permutation test for hypothesis testing

To provide a p-value for our classification results and to enable the use of our framework for

the recognition of specific (sub)groups in genetic syndromes, we developed a permutation test —

inspired by the test described by Lopez-Paz & Oquab [1]. For every group of individuals of interest,

a group of age-, sex- and ethnicity-matched controls is sampled from our control database. We

extract the facial features using VGGFace2 and calculate the HPO similarity using the Resnik score,

after which a SVM is trained using cross-validation. A grid search for the optimal hyperparameters

is performed, and the Brier score is calculated for this combination of the group of individuals of

interest and the matched controls. This process is precisely the same as in our standard analysis.

Next, we randomly permute the labels (here, the labels correspond to whether an individual has the

syndrome or is a control) 100 times. We ensure that the number of positive and negative classes is

the same as in our original distribution of the labels. For each permutation, we repeat the process

of training a SVM to obtain a Brier score. We then perform a one-sided Mann-Whitney U test to

quantify the probability of the classification results being statistically significantly smaller (since

it is the Brier score we are comparing) than the randomly permuted scores.

To further strengthen our permutation test, we repeat the process five times in total, randomly

sampling matched controls from our database in each repetition. The five obtained p values were

then combined using Fisher’s method [2] to gather a definitive p-value for this classification task

and, therefore, for this specific group of individuals of interest.

For the subgroup analyses for SATB1, DEAF1, SETBP1 and ADNP, we do not need to sample

controls from our database. However, these datasets are usually imbalanced, sometimes leading to

problems for the classifier. We therefore undersample the majority class to the size of the minority

class by matching the individuals on sex, ethnicity and age (in that order if possible) and increase

the number of permutations of the labels to 1 000 (since we cannot repeatedly sample controls).

Finally, to have a negative control group for this test, we randomly sampled individuals from

our control database and calculated p-values for those. We did this for different cohort sizes (n =

3, 5, 10, 20 and 40) for in total 50 trials. Of those 50 trials, two resulted in a p-value smaller than

0.05 - exactly what would be expected by random chance in this number of trials. This shows that

our approach leads to the to-be-expected number of false alarms.

1.2 Excluding the presence of a systematic confounder effect

To investigate whether there is a systematic bias in our analysis because of the different origins of

the data, since all control individuals were seen at our outpatient clinic at the Radboud university
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medical center (RUMC), we performed several analyses.

First, we generated plots using Uniform Manifold Approximation and Projection for Dimension

Reduction (UMAP, [3]) of the VGGFace2 feature vectors for all included syndromes (Supplemen-

tary Fig. 3). There is no clear distinction between the patients and the controls which could be

indicative of a systematic confounder. However, these UMAP plots provide only limited informa-

tion: indeed, we hope to see some separation between the classes, and while these plots are useful

to exclude obvious (large) biases, they do not explain where the difference comes from (i.e. it could

be the distinction in syndromes we are looking for, or it could be a bias). Therefore, we performed

other analyses investigating this issue as well.

Second, we looked at the largest dataset in this study, the individuals with Koolen-de Vries

syndrome (KdVS, caused by pathogenic variants in or a deletion ofKANSL1 ). Of the 63 individuals

with KdVS, 18 were seen at our outpatient clinic — in the same rooms as the control individuals.

We excluded those 18 individuals for this confounder analysis and retrained PhenoScore on the

remaining 45, again sampling control individuals for five iterations and averaging the results during

cross-validation. The overall performance metrics of this model were comparable to the model when

using all KdVS individuals (Brier 0.0917, AUC 0.93, p <0.001).

Then, we classified the 18 individuals (seen at the same institution as the control individuals)

using this model and generated prediction probabilities when using HPO data, facial data and the

combination of both (a PhenoScore prediction probability), as if these were VUSs. If there was a

systematic confounder that would influence the results of PhenoScore not based on the underlying

genetic syndrome, but the origin of the data, these individuals should be classified as control

individuals. However, this is clearly not the case (Supplementary Table 7), with the median of the

PhenoScore prediction being 0.95 and 13 out of 18 individuals correctly classified as having KdVS.

One individual is missed and labeled as control, mainly because the phenotype is not matching,

while the facial prediction is high (0.86).

Finally, we matched the 18 individuals with KdVS seen at the RUMC with 18 individuals

with KdVS seen at other centers on age-, sex- and ethnicity. PhenoScore was then utilized to

investigate whether these are two recognizable subgroups, to see if we are able to predict the origin

of the data based on the phenotype, since all individuals have the same genetic disorder (KdVS) in

this analysis. PhenoScore was not able to detect a phenotypic difference (Brier 0.322, AUC 0.54,

p=0.452), supporting the conclusion that there is no systematic confounder in our analyses.
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