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PhenoScore quantifies phenotypic variation
forraregenetic diseases by combining facial
analysis with other clinical features using a
machine-learning framework
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Several molecular and phenotypic algorithms exist that establish genotype-
phenotype correlations, including facial recognition tools. However, no
unified framework thatinvestigates both facial data and other phenotypic
datadirectly fromindividuals exists. We developed PhenoScore: an
open-source, artificial intelligence-based phenomics framework, combining
facial recognition technology with Human Phenotype Ontology data
analysis to quantify phenotypic similarity. Here we show PhenoScore’s
ability to recognize distinct phenotypic entities by establishing recognizable
phenotypes for 37 of 40 investigated syndromes against clinical features
observedinindividuals with other neurodevelopmental disorders and

show itis animprovement on existing approaches. PhenoScore provides
predictions for individuals with variants of unknown significance and
enables sophisticated genotype—phenotype studies by testing hypotheses
on possible phenotypic (sub)groups. PhenoScore confirmed previously
known phenotypic subgroups caused by variants in the same gene for SATBI,
SETBPI and DEAFI1 and provides objective clinical evidence for two distinct
ADNP-related phenotypes, already established functionally.

A substantial portion of individuals with clinically and genetically relies on filtering and prioritization for rare genetic variants that
heterogeneous rare diseases, such as neurodevelopmental disorders  are subsequently interpreted in the context of the patient’s clinical
(NDDs), has been molecularly diagnosed in the last decade using  presentation®. Although this strategy is essential to identify the
whole-exome sequencing (WES)'. Clinical WES data interpretation  disease-causing variant(s), it is estimated that dozens of variants are
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Fig.1| Overview of PhenoScore. a, Here the global workflow of this study is
displayed, with the training and construction of PhenoScore. nindividuals and
nage-, sex- and ethnicity-matched controls are selected for each syndrome.
The facial features are extracted using a convolutional neural network,
VGGFace2, and in parallel, the phenotypic similarity of individuals and controls
is calculated. PhenoScoreis then trained on both the facial features and the
HPO similarity combined. PhenoScore outputs the classification metrics (the
Brier score, AUC and corresponding Pvalue) to report how well it is able to

distinguish the investigated phenotypic groups. Furthermore, facial heatmaps
and visualizations for the most important phenotypic features are generated
aswell. b, The trained PhenoScore model for a specific syndrome is used for a
new individual with a VUS. Again, the phenotypic similarity and facial distances
are calculated, and these are used as input for PhenoScore after training. The
outputis ascore and assesses whether the individual of interest has that specific
syndrome, thus the VUS being (likely) pathogenic.

prioritized as diagnostic noise°—and this number is expected to rise
with technological innovations (such as long-read whole-genome
sequencing, RNA sequencing and optical genome mapping, enabling
the discovery of noncoding variants and complex structural variation)
finding their way into the diagnostic arena” .

At the molecular level, several computational methods, such as
MutationTaster?, PolyPhen®, Sorting Intolerant from Tolerant (SIFT)*
and Combined Annotation-Dependent Depletion (CADD) score®,
have been designed to effectively prioritize causal variants. At the
phenotypic level, headway has been made by introducing Human
Phenotype Ontology (HPO), systematically capturing the presence of
features observed inindividuals withrare diseases'®. However, equiva-
lent to molecular tools, algorithms using these HPO data to quantify
phenotypic HPO similarity betweenindividuals with genetic disorders
would provide substantial benefits to diagnosing rare diseases. Such
a quantitative phenotypic score could, for instance, assist with the
interpretation of variants of unknown significance (VUS), which con-
stitute 10-30% of variants assessed*". Reducing the number of VUSs
is of the essence because studies have shown that families usually do
not comprehend its meaning'®”, potentially leading to frustration
due to the uncertainty involving a possible diagnosis and course of
the disease. Importantly, VUSs have also been shown to inflict inap-
propriate medical decisions?>".

Next to reclassifying VUSs, quantifying phenotypic HPO similarity
atthecohortlevel could also help to provide further steps toward per-
sonalized medicine by automatically recognizing distinct phenotypic
subtypes leading to more tailored clinical prognosis?* .

A branch of science that could assist in objectively quantifying
phenotypic data is artificial intelligence (Al). Al has dramatically
reformed the manner clinical dataare processed and analyzed inrecent
years, with the Al revolution in medicine starting in pathology and

radiology”%.Ingenetics, these new techniques have been used inthe
assisted interpretation of genomic variants*’ ' and combining molecu-
lar and phenotypic evaluations, mainly looking at methods to use
phenotypic data to automatically prioritize genetic variants* ., Fur-
thermore, advances in computer vision have led to the application of
facial recognition technology in clinical genetics®*~**, with the current
state-of-the-art application GestaltMatcher achieving a top-10 accu-
racy of 64%**. Facial recognition can assist in the recognition of (neuro)
developmental syndromes because the development of the brain
and facial shape are closely linked”**—and therefore, a substantial
part of genetic disorders have distinct facial features*’. However, not
all genetic syndromes have a clear, recognizable, facial gestalt, which
hinders methodssolely looking at facial features. Although tools have
previously looked at either combining molecular datawitheither HPO,
oralternatively, with facial features'*, an important area has been left
unexplored, which combines the facialand HPO datainto an Al frame-
work to predict phenotypic similarities without the need for genomic
data input. Therefore, we developed PhenoScore—a next-generation
open-source phenomics framework combining facial recognition
technology with clinical features, quantitatively collected in HPO from
deep phenotyping.

Results

The PhenoScore framework

PhenoScore is aframework that currently consists of the following
two modules: acomponent that extracts the facial features from a
2D-facial photograph and asecond module that calculates HPO-based
phenotypic similarity. The Al-based framework then provides the
following three outputs: a Brier score and corresponding P value,
defining how well PhenoScore is able to distinguish the investigated
syndrome; a facial heatmap, highlighting important facial features
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Fig.2|PhenoScore for KdVS. a, The HPO terms of all included individuals with
KdVS are shown here. HPO terms present in 20% or more of the individuals are
annotated with text, and larger nodes correspond to a higher prevalence of that
specific clinical feature. The graph structure corresponds to that of the HPO
terms. b, Four individuals diagnosed with KdVS are presented here (written
informed consent for the publication of these facial images was obtained).
These were randomly selected from the included dataset without any selection
criterion. ¢, For the four randomly selected individuals, the following three
predictions are shown: using the facial image, using the phenotypic dataand,
finally, the PhenoScore, which combines both. Furthermore, heatmaps are
generated using LIME to see which facial areas are most important according
toour model, where blue correlates with KdVS and red areas correlate with
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controls. The nose and eyes are clearly prioritized, corresponding to the known
dysmorphic featuresin KdVS. Furthermore, the mostimportant clinical features
are shown for each individual and the contribution (corresponding to the LIME
regression coefficient) of that feature to the prediction. d, Finally, asummarized
heatmap was generated to investigate the overall mostimportant facial and
phenotypic features. We averaged the heatmaps of the five individuals with KdVS
with the highest prediction. Next to that, to obtain the mostimportant clinical
features, too, we averaged the LIME regression coefficient for the different
symptoms of the five highest-scoring individuals based on HPO. Shown clinical
features are ordered based onimportance, and the size of the circle indicates the
relative importance of the feature. ID, intellectual disability.

and avisualization of the mostimportant other clinical features. Inthe
training phase of PhenoScore, first, an age-, sex-, ethnicity-matched
control for every individual with the genetic syndrome of interest is
sampled from our in-house database of 1,200 individuals with NDDs
(Fig.1a). Next, the facial features are automatically extracted fromthe
facial photographs and the phenotypic HPO similarity is calculated
(with several HPO terms removed from the dataset, as these are either
facial HPO terms to be processed by the facial recognition module, or
HPO terms that are deemed subjective and therefore at risk for inter-
observer variability). A support vector machine (SVM), a widely used
classification algorithm in machine learning, is trained on these fea-
tures, resultinginatrained classifier that can be used to generate ascore
for individuals, suspected to have the syndrome of interest (Fig. 1b).
Finally, to provide insight into what PhenoScore is doing and to learn
more about the investigated syndromes, explainable Al is incorpo-
rated into PhenoScore as well, enabling PhenoScore to generate facial
heatmaps and visualizations on the most important clinical features.

Proof-of-concept: PhenoScore for Koolen-de Vries syndrome
(KdVS)

First, we investigated whether using our combined PhenoScore was
animprovement on solely using either facial or phenotypic data. The
SVMwas trained onboth separate feature sets alone and subsequently

compared with the classification performance of PhenoScore. To meas-
ure classification performance, the Brier score®® was chosen as the
performance measure to focus on—it is defined as the mean squared
difference between the predicted outcome and the observed actual
outcome (lower is better). Next to that, we also report the area under
the receiving operator curve (AUC; higher is better).

To demonstrate the power of the PhenoScore framework, we
first performed a proof-of-concept study using 63 individuals with
KdVS (OMIM, 610443), caused by either pathogenic loss-of-function
variantsin KANSLI (n=11) orthe 17q21.31 microdeletion (n = 52). KdVS
most prominent features reported in literature include hypotonia,
intellectual disability and joint laxity” >, for which the interdepen-
dence in our modeling is preserved using the graph structure of the
HPO terms (Fig. 2a). Running PhenoScore on the 63 individuals with
KdVS, we confirmtheimprovement on overall predictive performance
when using both facial and clinical features compared to using either
one alone (Brier score 0.09/AUC 0.94 for PhenoScore, in contrast to
0.13/0.91 when using only facial data and 0.10/0.92 when using only
phenotypic data; Table1).

We next randomly excluded four individuals (Fig. 2b) from the
training dataset and retrained PhenoScore, evaluating the performance
when treating them asif diagnoses of KdVS were unknown. PhenoScore
thengenerated predictions for these four individuals when comparing
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Table 1| Demographics of individuals included in this study

Gene/genetic syndrome OMIM Numberof  Sex(male/ Age Brier facial Brier HPO Pheno- Pheno- PhenoScore Pvalue

number individuals female) (median dataonly dataonly Score Score (accuracy)

in years) (Brier) (AUC)

22011 deletion syndrome 188400 19 10/9 (53%/47%) 5.0 0.147 0138 0.108 0.92 0.85 1.35x10°°
ACTL6A NA 8 2/1(67%/33%) 6.0 0.250 0.709 0.575 0.24 0.33 0.90
ADAT3 (NEDBGF) 615286 6 3/3 (50%/50%) 75 0.256 0112 0.087 0.97 0.88 1.35x10°°
ADNP (Helsmoortel-van der Aa 615873 88] 15/18 (45%/55%) 5.0 0175 0118 0nM7 0.91 0.84 1.35x10°°
syndrome)
ANKRD11 (KBG syndrome) 148050 22 15/7 (68%/32%) 9.5 0.236 0.216 0.203 0.78 0.70 1.46x107°
ARID1A (Coffin-Siris syndrome 2) 614607 6 3/3 (50%/50%) 9.5 0.261 0.244 0.262 0.75 0.63 0.02
ARID1B (Coffin-Siris syndrome) 135900 36 16/20 (44%/56%) 5.5 0.162 0.096 0.075 0.95 0.91 1.35x10°°
ATN1(CHEDDA) 618494 7 2/5 (29%/71%) 5.0 0.233 0.090 0102 0.99 0.91 1.35x107®
CHDS (Snijders Blok-Campeau 618205 27 11/16 (41%/59%) 10.0 0.198 0122 0118 0.92 0.84 1.35x10°°
syndrome)
CHD8 (IDDAM) 615032 20 15/5 (75%/25%) 1.0 0.247 0.195 0183 0.80 0.72 7.52x10°®
CLTC (MRD56) 617854 8 4/4. (50%/50%) 14.5 0.240 0.278 0.275 0.56 0.56 013
DDX3X (MRXSSB) 300958 30 0/30 (0%/100%) 8.5 0.189 0.035 0.034 0.99 0.96 1.35x10°°
DEAF1 (NEDHELS) 617171 6 3/3(50%/50%) 8.0 0.256 0.224 0.239 0.79 0.67 0.01
DEAF1 (Vulto-van Silfhout-de Vries 615828 13 10/3 (77%/23%) 7.0 0.257 0.091 0.086 0.92 0.91 1.35x10°°
syndrome)
DYRK1A (MRD7) 614104 13 7/6 (54%/46%) 12.0 0.204 0.156 0133 0.89 0.81 2.40x10°°
EHMT1 (Kleefstra syndrome) 610253 29 12/17 (41%/59%) 6.0 0.206 07 0.109 0.93 0.84 1.35x10°°
FBXO11 (IDDFBA) 618089 18 14/4 (78%/22%) 70 0.261 0.238 0.220 0.74 0.70 8.25x107°
IQSEC2 (XLID1) 309530 10 4/6 (40%/60%) 10.5 0.254 0.084 0.086 0.97 0.91 1.35x10°°
KANSL1 (KdVS) 610443 63 28/35 (44%/56%) 6.0 0128 0.096 0.082 0.94 0.90 1.35x10°°
KDM3B (Diets-Jongmans syndrome) 618846 13 7/6 (54%/46%) 7.0 0.254 0178 0.176 0.81 0.77 1.84x107°
MECP2 duplication (MRXSL) 300260 5 5/0 (100%/0%) 8.0 0184 0.198 0195 0.83 0.76 6.97x10™
MED13L (MRFACD) 616789 22 13/9 (59%/41%) 6.0 0.196 0.091 0.075 0.98 0.90 1.35x107°
NAA10 (Ogden syndrome) 300855 64 14/50 (22%/78%) 7.0 0.181 0.07 0.066 0.95 0.92 1.35x10°°
NAA15 (MRD50) 617787 33 26/7 (79%/21%) 7.0 0.271 0136 0131 0.88 0.83 1.35x107°
PACS1 (Schuurs-Hoeijmakers 615009 15 10/5 (67%/33%) 4.0 0.226 0135 0.125 0.90 0.81 1.35x107®
syndrome)
PHIP (Chung-Jansen syndrome) 617991 16 9/7 (56%/44%) 12.0 0.224 0.275 0.231 0.72 0.64 417x107
PPM1D (Jansen-de Vries syndrome) 617450 n 5/6 (45%/55%) 7.0 0.254 0180 0142 0.94 075 1.05x107°
PURA (NEDRIHF) 616158 8] 18/15 (55%/45%) 9.0 0.21 0.090 0.076 0.96 0.89 1.35x10°°
SATB1(DEFDA) 619228 8 3/5 (38%/62%) 6.5 0.282 0.262 0.261 0.61 0.56 0.03
SATB1 (Kohlschutter-Tonz 619229 12 5/7 (42%/58%) 1.5 0.270 0123 0123 0.89 0.85 1.35x10°°
syndrome-like)
SETBP1(MRD29) 616078 4 1/3 (25%/75%) 135 0.250 0.287 0.385 0.53 0.55 0.21
SETBP1(Schinzel-Giedion syndrome) 269150 13 7/6 (54%/46%) 1.0 0.091 0.065 0.061 0.98 0.91 1.35x107°
SMARCC2 (Coffin-Siris syndrome 8) 618362 10 8/2 (80%/20%) 9.0 0.252 0.116 oam 0.96 0.89 4.3x10°°
SON (ZTTK syndrome) 617140 25 13/12 (52%/48%) 6.0 0.237 0140 0132 0.89 0.82 1.35x10°®
THOC2 (XLID12) 300957 7 7/0 (100%/0%) 6.0 0.256 0.201 0192 0.80 0.69 0.001
TRIO (MRD63) 618825 8 3/5 (38%/62%) 10.5 0.264 0144 0137 0.90 0.86 1.96x107°
TRRAP (DEDDFA) 618454 17 6/11(35%/65%) 1.0 0.244 0.198 0167 0.84 0.78 2.40x10°°
WAC (DeSanto-Shinawi syndrome) 616708 9 3/6 (33%/67%) 4.0 0.246 0.133 0.132 0.92 0.82 4.25x107°
YY1 (Gabriele-de Vries syndrome) 617557 10 5/5 (50%/50%) 8.0 0.255 0.166 0142 0.90 0.82 1.35x10°°
ZSWIM6 (NEDMAGA) 617865 7 3/4 (43%/57%) 7.0 0.265 0.146 0138 0.91 0.79 1.46x107°

The number of individuals per genetic syndrome included in our analysis is shown in this table. For every individual, a facial photograph, phenotypic data, and age-, sex- and ethnicity-matched
control with a neurodevelopmental disorder are available (otherwise, the individual was excluded). Per genetic syndrome, the sex distribution, the median age and the results of the SVM
classifier are displayed here. The Brier score, for which lower is better, per syndrome, is shown—with the numbers shown corresponding to the mean of the scores during the five iterations

in which matched controls were sampled. The AUC (higher is better) and accuracy (with 0.5 as the cut-off) are included as well. For almost all syndromes, the combination of facial and
phenotypic data is an improvement over using either dataset alone. Furthermore, the last column of this table displays the calculated P values for the investigated syndromes using the
random permutation test, calculated using a one-sided Fisher’s combined probability test (Supplementary Data). All but three are significant at the 0.05 level, as expected when inspecting the

classification results.
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Fig.3|Generalization of PhenoScore to 40 syndromes. The heatmaps and
most important clinical features of all 40 genetic syndromes included in this
study are displayed in this figure. The facial heatmaps and the phenotypic data
are the average LIME heatmaps of the five individuals per genetic syndrome with
the highest predictive score. For the phenotypic data, in this figure, only the top
three features positively correlated with the genetic syndrome of interest are
included, and alarger bubble indicates a higher importance of that HPO term
for that disorder. The standard face used as background is a nonexistent person

generated using StyleGAN”". In general, the facial heatmaps correspond well to
dysmorphic features knownin the literature of the investigated syndromes. In
specific regions, however, faces from cases are more similar to controls than to
other cases (inred), signifying that random facial variance also contributes to
the predictions whereas these would be expected to be neutral. The PhenoScore
inthis figure refers to the AUC of the model for that genetic syndrome. DD,
developmental delay; IUGR, intrauterine growth restriction.

them with 59 remaining individuals with KdVS in the training set. The
output was displayed usinglocalinterpretable model-agnostic expla-
nations (LIME), providing heatmaps of prioritized facial information
according to PhenoScore (Fig. 2¢). In addition, the most important
clinical features according to PhenoScore to be predictive for KdVS
were summarized. Accordingto PhenoScore, the nose and eyes are the
mostimportant facial parts when recognizing KdVS while the presence
of hypotonia, moderateintellectual disability, electroencephalography
abnormalities, strabismus, pes planus and motor delay are the clinical
features of interest (Fig. 2d). This is consistent with expert opinion
and the literature® > and shows that harnessing the power of both
facial and phenotypic data outperforms the separate predictions.

Expanding PhenoScore to 40 syndromes

After our proof-of-concept using KdVS, we assessed the performance
of PhenoScore for the classification of other genetic syndromes.
Hereto, we selected 39 further syndromes (Table 1 and Extended
Data Table 1) including both clinically well-recognizable syndromes
based on facial gestalt, such as Kleefstra syndrome (OMIM, 610253;
caused by pathogenic variants in EHMTI1, which encodes euchro-
matic histone-lysine N-methyltransferase 1), Helsmoortel-van der Aa
syndrome (OMIM, 615873; ADNP, encoding Activity Dependent
Neuroprotective Protein) and Coffin-Siris syndrome (OMIM, 135900;
ARID1B, which encodes AT-rich interactive domain-containing
protein 1B) but also more recently identified syndromes for which

facial gestalt is less prominent, including intellectual developmen-
tal disorder with autism and macrocephaly (IDDAM, OMIM, 615032;
CHDS8, which encodes chromodomain-helicase-DNA-binding protein 8)
and intellectual developmental disorder with dysmorphic facies and
behavioral abnormalities IDDFBA, OMIM, 618089; FBXO11, which
encodes F-box only protein11).

Analyzing all these syndromes, we demonstrate that PhenoScore is
astatistically significantimprovement on using either feature setalone,
and therefore, the whole is more than the sum of its parts (median
Brier score 0.24 for facial features on the whole dataset, 0.14 for HPO
data and 0.13 for PhenoScore, P < 0.001; median AUC 0.58 for facial
features, 0.89 for HPO dataand 0.91for PhenoScore, P < 0.001; Table1).
Furthermore, our post hoc checks show that there was no overfitting
using the internal control dataset (Extended Data Table 2 and
Supplementary Data). To compare the performance of PhenoScore to
other approaches, we generated predictions for all individuals with a
genetic syndrome in the dataset using Phenomizer>** and Llkelihood
Ratio Interpretation of Clinical AbnormalLities (LIRICAL)*®. Pheno-
mizer correctly included the correct diagnosis in its output in 29%
oftheindividuals and LIRICAL in 39%, while PhenoScore did so in 84%
of individuals (P < 0.001 for both; Extended Data Fig. 1 and Extended
Data Table 3).

For 37 (93%) of 40 syndromes, PhenoScore was able to identify
predictive features that characterized these syndromes and recognized
a distinct phenotypic entity (Table 1 and Extended Data Fig. 2). As
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Fig. 4 |Number of individuals needed for training. The performance of the
SVM using both facial and HPO features with different sizes of the training set is
shown here. Data are presented as median values with confidence intervals. Both
the median Brier score and the median AUC improve if the number of individuals

to trainonis larger—as would be expected. Interestingly, only five individuals are
needed for an already acceptable classification performance, with performance
increasing with a larger training set, as is expected.

expected and visualized in the LIME heatmaps (Fig. 3), these features
corresponded remarkably well with those described in the literature.

Moreover, for agenetic syndrome that lacks explicit facial features,
like IDDAM, apparent overgrowth symptoms, such as macrocephaly
and tall stature, were identified as significant predictors, while no
relevant facial features were extracted, as displayed in the heatmap
and summarized ranking scores. A similar case is made for the genetic
disorder associated with pathogenic variants in DYRKIA (the gene
encoding dual-specificity tyrosine-(Y)-phosphorylation-regulated
kinase 1A) —while the classifier based only on the facial features does
not provide any meaningful predictions, the addition of other pheno-
typic datain HPO did allow PhenoScore to distinguish this syndrome
asaphenotypicentity. These data suggest that PhenoScore objectively
extracts, distinguishes and visualizes the specific clinical features
of genetic syndromes and highlights that the addition of nonfacial
phenotypic datain HPO is essential.

Finally, we demonstrate that the performance of PhenoScore is
stable over different age and population of origin subgroups (Extended
Data Table 4), by evaluating the predictive performance using the
predictions of all individuals included in this study when divided into
subgroupsbasedontheirage and population of origin. While the perfor-
manceisslightly inferior for the included adults (aBrier score of 0.13),
there seemstobe no clear difference for the other groups (Brier scores
between 0.09 and 0.12, P=0.38). Although only 10% of individuals
included in this study are of non-Caucasian/non-Western descent, the
subgroups for the population of origin analysis do not seem to lead
toovert differences in predictive performance between ethnicities.

PhenoScore requires alow number of individuals for training
Most genetic disorders areindividually rare, with sometimes only three
tofiveindividuals reported worldwide. We therefore next investigated
how many individuals PhenoScoreisrequired for accurate classification
of a specific syndrome. We checked the performance of PhenoScore
while increasing the number of individualsin the complete dataset of
40 genetic syndromes with the combination of facial and HPO features,
starting with only two individuals. This analysis revealed that, with
fiveindividuals to train on, the median classification performance for
theinvestigated syndromesis already clinically acceptable (AUC, 0.80;
Fig.4). The classification performance can be furtherimproved when
the training sets increase in size (median AUC is 0.89 with ten indivi-
duals, while with 20 individuals, the median AUC is 0.92).

Use case 1: objective clinical quantification of VUS

To display the power of PhenoScore in the clinical interpretation of
variants at anindividual level, we reassessed reported VUSs (American
College of Medical Genetics and Genomics class 3) inthe Radboudumc
Department of Human Genetics. These individuals were notincluded
in the training of PhenoScore and can therefore be considered real
out-of-sample cases. In total, we identified 22 individuals in whom
a class 3 variant was reported in either of 16 of the 40 syndromes
(Extended Data Table 5). PhenoScores were calculated, and when using
thresholds of <0.30 (for ‘no phenotypic match’) and >0.70 (for ‘pheno-
typic match’), PhenoScore was able to classify 13/22 (59%) of the cases
aseither match (n=3) ornomatch (n=10). The other nine cases had an
inconclusive PhenoScoreresult (scores >0.30 but <0.70). Interestingly,
for 9/13 cases for which PhenoScore was conclusive, the clinicianmade
adecision for the VUS based on the phenotype PhenoScore, which was
essential for the other four cases.

For most VUSs, pathogenicity during clinical follow-up was not
clear atthe time of writing, but for six individuals, additional (genetic)
testing has led to a change in pathogenicity class. Two variants in
ARIDIBwerebothregarded as benign—one after methylation analysis
(negative), the other variant because theindividual was diagnosed with
fragile X syndrome at alater stage. PhenoScore agrees withboth assess-
mentswith alow prediction probability of phenotypic similarity (0.03
forboth). Next to that, a splice variantin CHD8 with a high PhenoScore
of 0.93 was deemed pathogenic after RNA analysis was performed.
Finally, a variantin EHMTI was deemed pathogenic after methylation
analysis. This is the only variant in which PhenoScore disagrees with
the outcome of a functional test, with a low score (0.04)—probably
duetothe phenotype not particularly matching. Furthermore, for two
variants in SMARCC2, PhenoScore is inconclusive, while methylation
analysis reclassified these variants as benign.

Use case 2: sophisticated genotype-phenotype correlations

Genotype-phenotype studies for rare diseases are often performed
to gain insight into the clinical spectrum, which allows clinicians to
provide more accurate counseling of individuals with rare diseases.
Molecularly, the toolkit to gainin-depthinsightinto aspects of patho-
genicity is generally applied in a research setting, and thus often not
readily available for diagnostic follow-up. Fromaclinical perspective,
analyses are often limited to cluster analysis without being able to
determine what aspects clinically distinguish subtypes. We tested
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Fig.5|Genotype-phenotype correlations and subgroup detection. a, The
facial heatmaps and most important clinical features for the three confirmatory
subgroup analyses. First, the top panel shows the analysis when comparing

the two phenotypic subgroups associated with pathogenic variants in SATBI;
the middle panel shows the PhenoScore results when analyzing the subgroups
for DEAF1 and, finally, the bottom panel displays the outcome for SETBPI. The
PhenoScoresin this figure correspond to the AUC when training the model.

b, Top: alollipop plot (generated using St. Jude’s ProteinPaint) of the genetic
variants currently collected using the ADNPHDG website®. Of the 58 included

individuals, 29 had avariantin the c.2000-2340 region, indicated by others

as having a different methylation signature than variants outside this region®’.
Using only the HPO module of our PhenoScore framework, we first matched the
groups on sex, ethnicity and age when possible to create two groups of the same
size (29 versus 29). We then trained a classifier on the two groups and found a
significant difference (Brier score of 0.24, AUC of 0.71, P= 0.01 with one-sided
Mann-Whitney Utest). Bottom: the mostimportant clinical features according
to our model (determined using LIME) and the corresponding prevalence in
both groups.

whether PhenoScore canimprove these hypothesis-driven approaches
to distinguish, or discover, clinical subtypes.

For four genes in our dataset, that is, ADNP, DEAFI (encodes
deformed epidermal autoregulatory factor-1homolog), SATBI (encodes
special AT-rich sequence binding protein 1) and SETBPI (encodes
SET binding protein 1),it has previously been determined that there
are (at least) two molecular subtypes. For SATBI for instance, it has
been acknowledged that individuals with missense variants and those
with loss-of-function variants are clinically and molecularly distinc-
tive (OMIM, 619228 and 619229). As a proof-of-concept, PhenoScore
convincingly distinguished two groups for SATBI (Brier score, 0.18;
AUC, 0.81; P=0.02), confirming the original results®. For DEAFI, it
has been demonstrated that there are two phenotypic entities based
on the mode of inheritance, with one being autosomal recessive
(OMIM, 615828) and the other autosomal dominant (OMIM, 617171)*,
Next to that, genetic variants in SETBPI can lead to either Schinzel-
Giedeon syndrome (OMIM, 269150; missense gain-of-function vari-
ants)” or MRD29 (OMIM, 616078; loss-of-function variants leading
to haploinsufficiency)®®. Analyzing both these subgroups shows that
PhenoScore distinguishes these groups (for SETBPI, Brier score of
0.02 and AUC of 1.0, P< 0.001; DEAFI leads to a Brier score of 0.13
and AUC of 0.94, P< 0.001; Fig. 5a), suggesting that PhenoScore can
readily identify clinical entities associated to the same gene.

For ADNP, it was recently shown that individuals with pathogenic
variantsin ADNPshow one of two distinct methylation signatures (type
2, when variant affects position between ¢.2000 (p.667) and ¢.2340
(p.780); or type 1, when the variant occurs outside of this interval),
suggesting the possibility of two syndromes associated with this gene®.
Clinically, however, these individuals could not be conclusively distin-
guished®. Before determining PhenoScores, we categorized the indi-
viduals as having either atype 1 or type 2 ADNPsignature. Initially, we
assessed the performance of PhenoScore using only individuals (n = 33)
forwhomboth facial photographs and clinical features were available
but failed to identify a statistically significant difference between the
groups (Brier score, 0.30; AUC, 0.52; P = 0.35). However, using the
ADNP Human Disease Genes website (https://humandiseasegenes.
info/ADNP), we could collect HPO-only data of more individuals. Using
this dataset, we obtained clinical features in the HPO of 58 individuals
(29ineach group), and on these data, PhenoScore did show evidence
for two phenotypically different entities (Brier score of 0.24, AUC of
0.71,P=0.01).Inspecting the generated PhenoScore explanations for
clinically relevant differences (Fig. 5b), it seems that recurrent infec-
tions and gastrointestinal problems (reflux, constipation and feeding
difficulties) are two to three times more commonintype2thanintypel.

Finally, to further explore the classification of VUSs in genetic
syndromes that are phenotypically alike (such as the previously named
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phenotypic subgroups), we generated predictions for each pheno-
typic subgroup as it were a VUS for the model created for the other
phenotypic subgroup of the same gene. Depending on the similarity
in phenotype between the two subgroups, there are no (for SETBPI)
phenotypic matches, to almost all individuals that are classified as
phenotypic matches (for ADNP), because these individuals are (much)
more phenotypically alike investigated syndrome than the control
population (Extended Data Table 6).

Discussion

PhenoScore provides a substantial step in the advancement of Al in
clinical genetics—amachine-learning phenomics framework unifying
facial and phenotypic features using high-quality data directly from
affected individuals instead of generic phenotypic descriptions of a
syndrome. Others haveintroduced Alin this domain of healthcare, with
for instance the application of using HPO terms to prioritize genetic
variants while comparing individuals to the known phenotype of
disordersin the literature®>****¢', The utilization of facial recognition
technology to assist clinicians in diagnosing individuals has been
successful too, with most, unfortunately, relying on proprietary
commercial algorithms®**~**, We now show the next step, with an
open-source framework that takes the complete phenotype into
account, including both facial and phenotypic features directly from
affected individuals, and uses Al to provide a score on how well the
patient’s phenotype (as a whole) matches individuals with a known
syndrome.

PhenoScore detected a recognizable phenotype in the large
majority of investigated genetic syndromes (37/40; 93%), which is a
substantial improvement over existing algorithms such as Pheno-
mizer and LIRICAL, and only needed as little as five individuals for
acceptable classification performance. In this manner, PhenoScore
assists clinicians and molecular biologists in quantifying phenotypic
similarity, at both anindividual level and group level for theoretically
allOMIM-listed disorders. One of the disorders for which PhenoScore
failed to identify a phenotype was for variants in ACTL6A. Interest-
ingly, thisisthe only of 40 syndromes that has not been recognized by
OMIM asageneticdisorder, due to lack of (phenotypic) evidence. For
the other two genetic syndromes that PhenoScore failed to identify
(MRD29 caused by pathogenic variants in SETBPI and MRDS56, CLTC),
some clinical features could be recognized—but apparently not enough
to establish a definitive phenotypic entity, probably due to the low
number of individuals with these syndromesincluded. PhenoScore did
distinguish MRD56 from Schinzel-Giedeon syndrome (both associated
with pathogenic variants in SETBPI) when compared directly. Appar-
ently, individuals with MRD56 are hard to distinguish from controls
with NDDs—but individuals with Schinzel-Giedeon syndrome are
phenotypically different from these controls (Fig. 3), and therefore
PhenoScore is able to differentiate the two phenotypic subgroups
in SETBPI. Further investigating these phenotypic subgroups and
generating predictions for each subgroup with amodel thatis trained
on the other subgroups and controls (Extended Data Table 6) show
that PhenoScoreindeed investigates phenotypic similarity. However,
this indicates as well that a clinician should be careful in interpreting
the results of the VUS prediction if it is possible that the investigated
individual has another, but phenotypically similar, disorder than the
suspected disorder because of the VUS—as the rate of false positive
results could be elevated in that scenario.

Assisting variant classification of VUSs is an obvious use case for
PhenoScore. Of course, several in vitro functional assays are available
to assess variant pathogenicity, but so far these are mostly used for
genesinvolvedinoncogenetic disorders®>®*. For NDDs, these assays are
scarce because they need tobe developed onagene-per-genebasis, and
for these rare disorders, this is usually not cost-effective and is solely
done forresearch purposes. Other methods to assess genetic variants
include proteinstructural analysis®*, which still relies on the availability

of relevant protein structures. Our approach theoretically works for
any (genetic) condition with arecognizable phenotype, provided there
are sufficientindividuals for training the algorithm and that HPO data
and 2D-facial photos are available. Indeed, PhenoScore is as good as
its input data. In the field of rare diseases, however, major efforts are
put into obtaining these high-quality quantitative phenotypic data,
asforinstance shown by collections of datasets by the Human Disease
Genes website series®, GeneReviews, DECIPHER and OMIM®* %, Here
the use of a selected number of HPO terms in combination with the
use of Resnik scores minimizes the interobserver variability between
clinicians. Although these measures should minimize any difference
in predictive performance when applying PhenoScore in other insti-
tutions, further prospective clinical validation studies, preferably
in a multicenter prospective design also including institutions from
non-Western countries, are needed to confirm this.

PhenoScorealso objectively obtained genotype-phenotype corre-
lations by training on suspected phenotypic subgroups combined with
permutation testing to quantify statistical significance. We replicated
earlier findingsin SATB1, DEAFI and SETBPI, quantitatively underscor-
ing that different molecular mechanisms or inheritance patternslead
toasubstantially different, but recognizable, phenotype. Although for
these genesthe associated different phenotypes were also subjectively
identifiable from expert opinion, the power of PhenoScore was shown
by demonstrating the existence of two distinct phenotypes associated
with pathogenic variantsin ADNP. Molecularly, two different methyla-
tion signatures have been published, which were discriminated by the
mutation locationin ADNP*%%° but for which clinically, no differences
were observed. PhenoScore was not only able to prove the existence
of clinically distinctive groups but also provided insight into which
clinical features separate the two clinical entities. For instance, neu-
rodevelopmental problems are more common in ADNP-type 1, while
gastrointestinal symptoms, recurrent infections and short stature
are two to three times more common in ADNP-type 2. These discrimi-
nating clinical features for the two ADNP-related disorders were not
represented inadifferent facial gestalt, emphasizing the importance of
adding HPO dataacross all organ systems. In addition, given that these
two phenotypic subgroups were not identified from more subjective
clinical analysis, using a predefined structured Al method of pheno-
typic dataanalysis provides insights. For ADNP, these clinical features
have a substantial impact on an individual’s quality of life; hence, by
identifying these subgroups, PhenoScore directly impacts clinical care,
prognosis and recommendations for these individuals and families.

Detailed genotype-phenotype analysis could, in theory, be per-
formed forevery (genetic) syndrome, suggesting that PhenoScore may
beavaluable tool to also foster molecular insights. Thatis, for many of
the 1,600 known genes associated with an NDD phenotype, multiple
types of genetic variants (for example, SNVs and CNVs) may cause the
disorder. Although the molecular mechanism for CNVs often relates
to dosage sensitivity, such as haploinsufficiency, the mechanisms
for SNVs leading to missense variants in those genes are often more
variable. PhenoScore may assess phenotypic differences between
individuals withthe same syndrome, but caused by either CNVs (group
1) or missense variants (group 2), and help to establish whether those
missense variants are also haploinsufficient. Similarly, PhenoScore
could be used to find phenotypic outliers, of which the molecular
mechanism leading to disease might be different. By quantifying the
complete phenotypic similarity and visualizing differences between
(sub)groups, PhenoScore empowers detailed genotype-phenotype
studies, leading to insights onboth the genetic and phenotypiclevels.

In conclusion, PhenoScore bridges a gap between the fields of Al
and clinical genetics by quantifying phenotypic similarity, assisting
notonlyingenetic variantinterpretationbut also facilitating objective
genotype-phenotype studies. We showcased its use for individuals
with NDD, whose phenotypes were captured using HPO. PhenoScore
can, however, also easily be used beyond the field of rare disease, as
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adjustments to use other (graph-based) ontologies, suchas forinstance
Systematized Nomenclature of Medicine (SNOMED)"°, can readily be
integrated. The PhenoScore framework is thus easily extended to other
domains of (clinical) genetics, or evento completely different branches
of medicine, due to its open-source modular design.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01469-w.
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Methods

Inclusion of individuals

The literature was searched for clinical studies that included facial
photographs of 40 randomly selected genetic syndromes associated
withNDD. The photographs were collected and clinical features, if avail-
able, were converted to HPO terms. Currently, PhenoScore is trained
using data of 711 nonfamilial individuals diagnosed with one of the 40
different genetic syndromes, collected from 105 different publications
(Table 1 includes the complete overview of the demographics per
genetic syndrome and Extended Data Table lincludes all publications
used as sources for the data used in this study). The phenotypic data
were uploaded to the specific gene website in the HDG website series®
to ensure their public availability.

Ethics declaration

Inthis study, datafrom the Biobank Intellectual Disability, which s part
oftheRadboud Biobank initiative (for moreinformation, see’ or https://
www.radboudumc.nl/en/research/radboud-technology-centers/
radboud-biobank), were used. Within this biobank, phenotypic and
molecular data have been systematically captured for individuals
with (non-)syndromic ID referred to the Radboud university medical
center. This research complies with all relevant ethical regulations, and
the use of this dataset was approved by the ethical committee of the
Radboud university medical center (2020-6151and 2020-7142). Written
informed consent was obtained for the publication of the facialimages
included in this study.

Data processing

To obtain a representative control group for our machine-learning
models, for each syndrome with n individuals, n age-, sex- and
ethnicity-matched controls witha NDD seen at our outpatient clinic at
the Radboud University Medical Center were selected from our internal
control database with over 1,200 individuals with both facialimage and
quantitative phenotypic dataavailable (for acomplete overview of the
workflow of this study, see Fig.1a). When no matched control was avail-
able, that particular individual was excluded from our analysis. Next to
that, when individuals were related to each other, one individual was
chosen (based on the quality of the picture) from that family.

For each syndrome, nested cross-validation was used to assess
the performance of the classifiers. The number of folds during the
outer loop of the nested cross-validation varied due to the consider-
able variation in dataset size—for every syndrome with at least five
individuals, fivefold cross-validation was used, otherwise, leave-one-
out cross-validation was chosen. The hyperparameters of the model
were then tuned during the inner loop of the nested cross-validation
procedure. All performance metrics reported in this study, whether it
be AUC, Brier score or accuracy, are calculated based on the predictions
during the outer loop.

Astheselection of the randomly selected controls might substan-
tially influence the performance, for each genetic syndrome, different
controls were sampled during five random restarts and the mean AUC
and Brier scores of these five iterations were noted. Furthermore, to
confirm the source of the data did not substantially influence our
results, we performed post hoc analyses by using not only the individu-
als from our internal control dataset. This included analyses with the
other syndromes as controls, but also included additional analyses
excluding the Koolen-de Vries individuals who were seen at our clinic
at the Radboudumc Nijmegen (Supplementary Data).

Extraction of facial features

The facial features were extracted using VGGFace2 (refs. 73,74), as
it was previously shown to be the best-performing open-source
solution for this task”. VGGFace2 is a state-of-the-art facial recognition
method that uses a deep neural network. To avoid overfitting, we did
not retrain VGGFace2 but used its pretrained weights instead on the

database of 3.1 million images. The facial images of the individuals in
our study were then processed by VGGFace2, and the representation
in the penultimate layer of the network was obtained. This represen-
tation was then used as the facial feature vector.

Phenotypic similarity

To create ahomogeneous dataset, the phenotype of every individual
in this study was manually converted into HPO terms'®. A selection of
HPO terms and all their child nodes were removed to eliminate any
subjectivity inassessing anindividual. These were as follows: behavioral
abnormality (HP:0000708), abnormality of the face (HP:0000271),
abnormal digit morphology (HP:0011297), abnormal ear morphology
(HP:0031703), abnormal eye morphology (HP:0012372), and every
node whichis a child node of either of these. We chose these terms as
theseare either facial features (to be assessed by our facial recognition
model) or are suspected to vary across clinicians doing the assessment
of anindividual. In this manner, 3,810 HPO terms were excluded with
12,259 terms remaining, after we investigated what the consequences of
including allHPO terms were and concluding that the inclusion of facial
data to HPO data improves the performance of models significantly
in each scenario (P < 0.001 using a two-sided Wilcoxon signed-rank
test). To further reduce possible interobserver variability, the pheno-
typic similarity between individuals was calculated using the Resnik
score’, because it takes the semantic similarity between symptoms
into account. The Resnik score uses the information content (IC) of a
symptom. In an ontology akinto the HPO, the IC of a specificterm can
be seen as a measure of the rarity of a term. Naturally, terms closer to
the root of the HPO tree have a lower IC. For instance, abnormality
of the nervous system (HP:0000707) has an IC of 0.60. In contrast,
focalimpaired awareness motor seizure with dystonia (HP:0032717),
substantially further down the HPO tree, has an IC of 8.97. This cor-
responds to our intuition—rare features provide more information
than common features, because the prior probability of an individual
reporting a rare symptom is, by definition, smaller. The Resnik score
uses this property by defining the similarity between two HPO terms
as the IC of their most informative (that is, with the highest IC) com-
mon ancestor in the HPO tree. Because terms lower in the tree have a
higherIC, the mostinformative common ancestor corresponds to the
last HPO term, which has both compared HPO terms as child nodes
when traversing the tree downwards. Asanexample, for the HPO terms
reflex seizure (HP:0020207) and focal motor seizure (HP:0011153),
the most informative common ancestor is seizure (HP:0001250),
which has an IC of 1.70. The Resnik similarity score for reflex seizure
(HP:0020207) and focal motor seizure (HP:0011153) is therefore 1.70.
Next, we used the best-match average (BMA) to calculate the similarity
between two individuals (who usually report multiple HPO terms), in
which the average is taken over all best-matched pairwise semantic
similarities, as previous studies determined it to be most effective”.
The idea is similar to that discussed above—if two individuals share a
rare symptom (focal impaired awareness motor seizure with dystonia
(HP:0032717), for instance), they are more similar than two individuals
who only share acommon symptom such as abnormality of the nerv-
ous system (HP:0000707). The Resnik similarity score was calculated
for every individual and control and then averaged for both groups.
In the end, this led to a n x 2 matrix for the HPO features—an average
similarity score for each individual versus affected individuals and a
score for each individual versus the control group. We calculated the
BMA Resnik score between the individuals using the phenopy library
in Python 3.9 (ref. 78).

Construction of machine-learning model

Finally, the data were used to train a binary classifier. We selected an
SVM as our classifier, known for its excellent overall performance in
classification tasks. The SVM was trained using the standard radial
basis function kernel and a hyperparameter grid search for C, with
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values investigated being 1x107°,1x1073,1,1x10%*and 1 x 10°. For
smaller datasets (less than five individuals), alogistic regression model
was chosen, because the SVM does not support probability scores
by default and needs an additional internal cross-validation proce-
dureto provide those (further reducing the dataset). All experiments
were run on a machine with two graphical processing units (both an
NVIDIA RTX2080). It is possible to train PhenoScore on a standard
laptop without a designated graphical processing unit; however, if
facial heatmaps are required, the process may take several hours per
syndrome.

After determining the predictive performance of the model, we
determined how much data the classifier needed for an acceptable
classification performance in clinical practice. Per syndrome, we
started with randomly selecting two individuals and two matched
controls, training the model on those and using the rest of the indi-
viduals (n -2, as one individual is used as training data) and matched
controls as a test set (two individuals that were not used in the first
iteration as the grid search in the SVM classifier needs at least two
training samples). We ran five random restarts, randomly selecting
another individual and matched control in each iteration. In each
restart, cross-validation was used as in the general training of Phe-
noScore. The Brier score and AUC were noted and averaged over the five
restarts. Next, the size of the training set wasincreased by one patient
and one matched control. By increasing the training set by one indi-
vidual and matched control each time and recording the performance,
the model’s performance with an increasing number of individuals is
assessed (Fig.4).

The Wilcoxonsigned-rank test was used to determine statistically
significant differencesin the performance of the classifiers because it
isanonparametric test and, therefore, suitable—as these data are not
normally distributed.

Explainability of predictions

To see which features contained importantinformation for our model,
we generated LIME”**°, The main idea of this method is to train a rela-
tively simple local surrogate model to approximate the predictions
of the model of interest. Next, the original input data are perturbed,
and the corresponding change in predictions is inspected to obtain
the relative importance of individual features. A key advantage of
LIME is that it is applicable to any model and can therefore be
used directly on top of our pipeline.

When using LIME for image data, it is common practice to divide
the image into several segments, called superpixels. Therefore, we
generated a raster of 25 x 25-pixel squares for each facial image, ran-
domly offset for each of the 100 runs. Each pixel’s relative importance
was averaged over these runs to obtain a higher-resolution visualization
of their significance. For the clinical data, the original HPO features
were perturbed to obtain the most substantial ones in predictions. In
this case, LIME uses input data in which some HPO features are added
and some are removed from the input data, to see what the effect on
the predictionis.

LIME were generated for the individuals with the investigated
genetic syndrome or phenotypic subgroup and the five highest pre-
diction scores in each iteration of sampling controls, so 25 times in
total, for both the facial heatmaps and the phenotypic explanations.
These explanations were then averaged to obtain an overall expla-
nation representative for that specific genetic syndrome. To ensure
only real important features were recovered, only HPO terms that
were identified in at least 15 individuals (out of 25 in total) were used
inthis analysis.

Hypothesis testing

To see whether we could extend the use of our classifier to other
applications than the reclassification of VUSs, we designed arandom
permutation test for the performance of our model. This enables the

testing of aspecific hypothesis for facial features, phenotypes, or both.
Anexample would be determining whether anewly discovered genetic
syndrome consists of several (phenotypic/facial) subtypes. Using
our framework, we trained a classifier on the labels of the suspected
subgroups. By performing a random permutation test, a P value is
calculated, so that the appearance of the subgroups can be quantified.
Foracomplete overview of the exact methodology of this permutation
test, see Supplementary Data.

Benchmarking PhenoScore

To determine whether our approach is an improvement over exist-
ing methods, we used the Phenomizer algorithm®>® and LIRICAL*®
(considered as state-of-the-art®?) to generate predictions for all indi-
viduals witha genetic syndromein our dataset (except for the genetic
syndrome associated with ACTL6A, as the absence of an OMIM number
prohibits Phenomizer and LIRICAL to generate predictions). Because
Phenomizer does not output a prediction score, but rather a P value,
we counted a prediction as positive if the specific genetic syndrome
was included in the list of possible diagnoses with an uncorrected P
value smaller than 0.05—otherwise, it was seen as anegative prediction.
Furthermore, because Phenomizer and LIRICAL do not process facial
images, we included the previously excluded HPO terms (behavioral
abnormality (HP:0000708), abnormality of the face (HP:0000271),
abnormal digit morphology (HP:0011297), abnormal ear morphology
(HP:0031703) and abnormal eye morphology (HP:0012372)) and all the
corresponding child nodes in the input for Phenomizer and LIRICAL.
The number of positive and negative predictions for Phenomizer (using
0.5asacut-offforits predictions), LIRICAL (with a pretest probability
of 0.5 to mimic a VUS prediction) and PhenoScore were counted, and
a possible statistically significant difference was assessed using a
chi-squared test. Other thresholds for the P value of Phenomizer and
the scores of LIRICAL and PhenoScore were investigated as well to see
theinfluence on the results (Extended Data Table 3).

Statistics and reproducibility

No statistical method was used to predetermine sample size—because
datawere collected from the literature, the number of cases available
withbothphenotypicdataandfacialphotographswasthelimitingfactor.
Data were only excluded if individuals were related to each other, to
avoid the introduction of bias, because family members are facially
similar. Therefore, including family members could unjustly over-
inflate the results of our analysis. The investigators were not blinded
toallocation during experiments and outcome assessment, although
cross-validation was used during all analyses, which is equivalent to
blinding for algorithms and models.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The used dataset in this study is not publicly available due toboth IRB
and General DataProtection Regulation (EU GDPR) restrictions because
the data might be (partially) traceable. However, access to the data may
be requested from the data availability committee by contacting the
corresponding authors via e-mail with a research proposal, who will
respond within14 d.

Code availability

The code of PhenoScore version 1.0.0 created during this study is
freely available at https://github.com/ldingemans/PhenoScore
ref. 83, to enable anyone to apply PhenoScore to their own dataset.
Included in PhenoScore are the following two examples: the data for
the SATBI subgroups (positive example) and random data (negative
example).
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Extended Data Fig.1| Benchmarking PhenoScore. The predictive accuracies
of LIRICAL, Phenomizer and PhenoScore [118-120] for every included genetic
syndrome are displayed here, except for ACTL6A, since the associated phenotype
has no OMIM number and therefore Phenomizer and LIRICAL do notincludeitin

its predictions. For PhenoScore and LIRICAL, to calculate the accuracy, a cut-off
value of 0.5 for the predictions was used, while for Phenomizer in this case, 0.05
was chosen. For almost every investigated syndrome, PhenoScore outperforms
Phenomizer and LIRICAL.
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Extended Data Fig. 2| AUC curves of PhenoScore per genetic syndrome. The receiver operating characteristic curve of all 40 genetic syndromes included in this

study.
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Extended Data Fig. 3| UMAP plots of facial feature vectors. The Uniform

outpatient clinic. For all plots (except the KANSLI internal/external plot), the

Manifold Approximation and Projection for Dimension Reduction (UMAP?) feature vectors of all sampled controls during five iterations and the feature
plot for the VGGFace2 vectors of allincluded genetic syndromes, and for the vectors of the included patients were provided as input to UMAP. The classes
extra systematic confounder analysis for which the individuals with Koolen-de arenot separable in this projected space, which provides evidence that the
Vries syndrome seen at other centers were compared to individuals seen at our classification is not based on a systematic confounder.
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Extended Data Table 1| List of publications for data collection

Genetic syndrome

PMID of used publications

22q11 deletion syndrome
ACTL6A
ADAT3
ADNP
ANKRD11
ARID1A
ARID1B
ATN1
CHD3
CHDS8
CLTC
DDX3X
DEAF1
DYRK1A
EHMT1
FBXO11
IQSEC2
KANSL1
KDM3B
MECP2 duplication
MED13L
NAA10
NAA15
PACS1
PHIP
PPM1D
PURA
SATB1
SETBP1
SMARCC2
SON
THOC2
TRIO
TRRAP
WAC

YY1
ZSWIM6

15831592,17041934,18636631,1956057,21200182,25317860,3816857,12548732 [1—1 1]
28649782 [17]

23620220,26842963 [13, 1]

24531329,25217958,27031564,29724491 [15-17,69)]
19920853,21527850,21654729,22307766,23494856,26269249 [18-23]
23815551,23929686,32888375,35579625 [21-27]

19034313,22405089,22426309,22585544,23906836,24569609,26395437,26754677,27112773,28323383,30055038,30349098,31981384,32339967 [25-11]

30827498 [17]
30397230,32483341 [43, 14]
23160955,24998929,31001818,31721432,36182950 [15-19]

31776469 [50]

26235985 [51]

30451703,30923367,31688097,31929336 5254, 50]
18405873,21294719,23099646,23160955,25707398,Not published [43,55-5%
22670141,Not published [59]

27479843,28343630 (60,6 1]

23674175,30666632 12, 6]
16906164,17601928,18628315,21094706,22544363,26306646,Not. published [51,53,64-67]
30929739 [65]

18854860,18985075 (69, 70]
23403903,24781760,25712080,28645799,29511999,29959045 [71-76)
27094817,31093388,31127942,32698785,34075687,34200686,35039925 [77-1]
26785492,29656860,28191889,31127942 (79, 85-57]

26842493 [35]

29209020 [39]

28343630 [61]

27148565,29097605,29150892 [00-92]

33513338 [59)]

18461363,20436468,28346496,21037274,33867525 [57, 58, 93-07]

30580808 [96]

24896178,27256762,27545680 [, 97-99)]

29851191,32116545 100, 101]

26721934,27418539 102, 103]

308274965 [101]

23033978,26264232,26757981 [2, 105, 100]

21076407,28575647 [1, 107]

29198722 [105]

A listis shown of the used publications per syndrome to create the dataset by extracting the phenotypic data and photographs of individuals in these papers. For several syndromes, not (yet)
published individuals were added to the dataset, as indicated by Not published.
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Extended Data Table 2 | Performance of PhenoScore with other syndromes as control

Genetic syndrome

Facial data only HPO data only PhenoScore (Brier)

2211 deletion syndrome

ACTL6A
ADAT3

ADNP
ANKRD11
ARIDI1A
ARID1B
ATN1

CHD3

CHDS8

CLTC

DDX3X
DEAF1 (AR)
DEAF1 (AD)
DYRKI1A
EHMT1
FBXO11
IQSEC2
KANSL1
KDM3B
MECP2 duplication
MED13L
NAA10
NAA15
PACS1

PHIP

PPM1D
PURA

SATBI1 (truncating)
SATBI1 (missense)
SETBP1 (SGS)
SETBP1
SMARCC2
SON

THOC2

TRIO

TRRAP

WAC

YY1

ZSWIM6

0.221
0.250
0.244
0.233
0.242
0.337
0.175
0.233
0.232
0.235
0.259
0.213
0.272
0.266
0.226
0.173
0.280
0.257
0.112
0.252
0.247
0.238
0.183
0.257
0.244
0.230
0.259
0.247
0.311
0.260
0.139
0.255
0.265
0.249
0.266
0.259
0.264
0.244
0.253
0.271

0.106
0.606
0.083
0.178
0.158
0.224
0.117
0.116
0.134
0.169
0.316
0.039
0.164
0.113
0.165
0.119
0.228
0.115
0.113
0.218
0.395
0.187
0.086
0.153
0.150
0.161
0.148
0.115
0.197
0.206
0.053
0.216
0.141
0.135
0.183
0.133
0.185
0.198
0.287
0.194

0.093
0.549
0.074
0.170
0.143
0.235
0.105
0.107
0.134
0.132
0.280
0.037
0.164
0.107
0.143
0.092
0.211
0.104
0.097
0.202
0.387
0.165
0.086
0.143
0.154
0.137
0.132
0.113
0.191
0.187
0.051
0.265
0.137
0.132
0.171
0.133
0.165
0.171
0.267
0.164

The Brier scores of the support vector machine (SVM) classifier are displayed here, now with the other individuals included in this study as the control dataset, instead of the controls from
the Radboud university medical center. A lower Brier score indicates a better result. The results are slightly worse than on the RUMC control dataset, as expected, since not for not every
individual, a control is available because the RUMC control dataset is significantly larger than the number of individuals included in this study. AD=autosomal dominant, AR=autosomal

recessive, SGS=Schinzel-Giedion-syndrome.
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Extended Data Table 3 | Benchmarking PhenoScore

Phenomizer Phenomizer Phenomizer Phenomizer LIRICAL LIRICAL LIRICAL LIRICAL
threshold 0.001 threshold 0.01 threshold 0.05 threshold 0.10 threshold 0.3 threshold 0.5 threshold 0.7 threshold 0.9

PhenoScore (HPO-only) threshold 0.3  6%/91%*** 16% /91%*** 29%/91%*** 35%/91%*** 41%/91%*** 39%/91%*** 37%/91%*** 33%/91%***
PhenoScore (HPO-only) threshold 0.5  6%/82%*+* 16%/82%%%%  20% /820K 35%/82%6%FE  A1%/82%%*F  30%/S2%FEE  3T%/82%%F  33% /820
PhenoScore (HPO-only) threshold 0.7  6%/70%*** 16%/70%*** 29% /T0%*** 35%/T0%*** 41%/70%*** 39%/70%*** 37%/T0%*** 33%/70%***
PhenoScore (HPO-only) threshold 0.9  6%/46%*** 16%/46%*** 29% /46 %*** 35% /46 %*** 41%/46% 39%/46% 37%/46% 33%/46%***
PhenoScore threshold 0.3 6%/92%*** 16%/92%*** 29% /92%*** 35%/92%*** 41%/92%*** 39%/92%*** 37%/92%*** 33%/92%***
PhenoScore threshold 0.5 6%/84%*** 16%/84%*** 29% /84%*** 35%/84%*** 41%/84%*** 39% /84%*** 37%/84%*** 33% /84%***
PhenoScore threshold 0.7 6%/ T2%*** 16%/72%*** 29% ) T2%*** 35%/T2%*** A1% ) T2%*** 39%/72%*** 37%/) T2%*** 33%/T2%***
PhenoScore threshold 0.9 6%/46%*** 16%/46%*** 29% /46 %*** 35% /46 %*** 41%/46% 39%/46% 37%/46% 33%/46%***

The predictive accuracy of LIRICAL, Phenomizer and PhenoScore [118-120] for all individuals (except ACLT6A) included in this study, with different cut-off values for each algorithm. The
Phenomizer or LIRICAL accuracy is shown first in every cell, and then the PhenoScore accuracy with those specific thresholds. Even with the least strict threshold for the p-values of
Phenomizer (0.1) or LIRICAL (0.3) and the most stringent for the output of PhenoScore (0.9), PhenoScore still outperforms both. ***significant at the 0.001 level using a two-sided chi-squared
test.
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Extended Data Table 4 | Subgroup analyses

Age group Brier score Accuracy n in group
<2 years 0.12 0.84 61
2 — 5 years 0.10 0.85 222
6 — 11 years 0.12 0.84 213
12 — 17 years 0.09 0.86 115
18 years and over 0.13 0.77 100
Population of origin Brier score Accuracy n in group
Caucasian/Western 0.11 0.84 643
Ottoman/Middle Eastern 0.07 0.91 45
Asian 0.16 0.88 17
African 0.08 1.00 6

The performance of PhenoScore when ignoring the specific genetic syndrome diagnoses, but focusing on different subgroups of the study population: based on age and population of origin.
Here, we calculated both the Brier score (for which lower is better) and accuracy (with 0.5 as cut-off, higher is better) using the predictions of all included individuals in this study when not in
the training set. The predictions were calculated for the subgroups, demonstrating that the predictive performance is relatively stable.
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Extended Data Table 5 | Classifying variants of uncertain significance

Gene Variant (genomic) Variant (RNA) Variant (protein) Classification at first diagnostic evaluation ~Current status/comments AUC this gene S icti ility) Score C
ANKRDI1  Chrl6(GRC3T):¢.89349673C>T NMLO01256182.1:¢.3277G> A p.(Gly1093Arg) class 3 VUS, clinician of opinion that phenotype fits 078 0.21 No phenotypic match
ANKRDI1  Chrl6(GRCh3T):2 89349812 893498 13delinsCA  NMLO13275.5:¢.3137-3138clins TG p.(Cys1046Len) class 3 VUs 078 0.52 Inconclusive

ANKRDI1  Chrl6(GRCh3T) 2 89347788G > A NMO13275.5:¢.5162 p.(Thr1721Met) class 3 VUS, clinician of opinion that phenotype fits 078 0.82 Phenotypic match
ARIDIB  Chi6(GRCh3T):g.157406024¢ NML020732.3:¢.2266C>G p.(Pro756Ala) class 3 VUS, clinician of opinion that phenotype fits 0.95 0.03 No phenotypic match
ARIDIB  Chi6(GRC37):g 1574883 14C>T NML001346813.1:¢.208 p.(Ser994Len) class 3 Other genetic diagnosis confirmed and only HPO data available 0.95 0.03 No phenotypic match
CHD8 Chirl4(GRCh37): 21870111C>G NMLO01170620.1:¢.40624+5G>C  p.(?) class 3 Pathogenic after RNA analysis 0.80 0.93 Phenotypic match

DDX3X ChrX(GRCh3T):.41203603C>T NMLO01356.4:¢.976C>T p.(Arg326Cy class 3 VUS, dlinician of opinion that phenotype fits 0.99 0.02 No phenotypic match

DDX3X  ChrX(GRCh37):g 41203825T>C 56.4:c.1565T>C p.(Tle class 3 VUs 0.99 0.02 No phenotypic match
DEAF1 Chrl1(GRCh37):g.634020A> NML021008 3:c.1535T>C p.(Met512Thr) class 3 vus 077 0.41 Inconclusive
EHMT1  Clu9(GRCh37):g. 1406741671 NMLO2ATST.4:¢.2273T>C p-(Len758Pro) class 3 Pathogenic after EpiSign analysis 0.93 0.04 No phenotypic match
IQSEC2  ChrX(GRCh37):g 53277979G>A NMLOO1111125.2:¢.23 D.(Arg705Tip) class 3 vus 0.97 Inconclusive
IQSEC2  ChrX(GROL3T)xg 9G>T NMLOOL111125 p.(ALa850Asp) class 3 clinician of opinion that phenotype fits 0.97 Inconclusive
KDM3B  Chr5(GRC3T):g. 137727707A>T NMLO16604.3: D.(Arg7O6Trp) class 3 081 0.43 Tnconcly

NAA10 ChrX(GRCh37):5.153106242G> A NML003491.3:¢.445C>T p.(Arg149Tip) class 3 S, clinician of opinion that phenotype fits 0.01 No phenotypic match
PHIP Chu6(GRCh37):.79707136T>C NMLOI7934.6:¢.2196A>G p.(Val7a2=) class 3 0.8 Phenotypic match
PPMID  Chrl7(GRCh37):g.58711260C> NMLO03620.3:¢.748C> T p.(Arg250%) class 3 0.91 0.61 Inconclusive

PURA Chir5(GRCH37):4.139494093CG>T NMLO05E50.4:c.3 p.(Glul09Asp) class 3 S 0.96 0.05 No phenotypic match
SMARCC2  Chrl2(GRCh37):¢.56577703C>A NMLOO3075.3:¢.574C>T p.(Arg102%) class 3 Benign after EpiSign analysis 0.96 0.48 Inconclusive
SMARCC2  Chrl2(GRCh3T):.56579937A>T NML003075.3:¢.317+2T>A p() class 3 Benign after EpiSign analysis 0.96 0.37 Inconclusive

TRIO Chrs(GRCh3T):g 14374354G > A NMLOOTIS 3:c.3233G> A D.(Argl078GIn) class 3 VUS, clinician of opinion that phenotype fits 084 0.27 No phenotypic match
TRRAP  ChiT(GRCh37):g98502220A>G NMLO01244580.1:c. 10016/ p.(GIn3339Are) class 3 vUs 0.84 0.19 No phenotypic match
WAC Chrl0(GRCh37):.28006631A>G NMLO16628.4:c. 17924 >G p-(Met598Val) class 3 vUS 081 0.31 Inconclusive

The 22 individuals with a VUS in one of the 40 included syndromes are displayed here, including the genetic information and the PhenoScore — both the score between 0 and 1in which
higher score indicates increased phenotypic similarity with the syndrome of interest and a PhenoScore classification using cut-offs of 0.3 and 0.7. Next to that, the area under the curve (AUC)
of that gene is displayed, in which a higher score indicates that PhenoScore is better to distinguish that genetic syndrome in general.
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Extended Data Table 6 | PhenoScore with phenotypically similar individuals

Gene/genetic syndrome Input as VUS Phenotypic Match No Match VUS Mean score of all

DEAF1 AD DEAF1 AR 33% 33% 33% 0.52
DEAF1 AR DEAF1 AD 7% 0% 23% 0.77
SATB1 PTV SATB1 missense 25% 0% 75% 0.52
SATBI1 missense SATB1 PTV 12% 25% 62% 0.49
SETBP1 SETBP1 SGS 0% 92% 8% 0.23
SETBP1 SGS SETBP1 0% 100% 0% 0.13
ADNP methylation 1 ADNP methylation group 2 97% 3% 0% 0.89
ADNP methylation 2 ADNP methylation group 1 41% 34% 24% 0.51

For these analyses, a model was trained on a specific subgroup for a gene and that model was then used to classify individuals diagnosed with the other subgroup of that gene. For instance,
a model was trained for individuals with the syndrome associated with the autosomal dominant form of DEAF1. Individuals with the recessive genetic syndrome associated with DEAF1 were
then classified using this model. These analyses show that clinicians and researchers should be careful when interpreting the results of PhenoScore when investigating phenotypically similar

syndromes, as the number of false-positives could be elevated in that case.
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Extended Data Table 7 | Systematic confounder analysis using Koolen-de Vries syndrome

Individual PhenoScore (prediction probability) Score HPO only Score facial data only PhenoScore classification
KANSL1 Nijmegen 1 0.13 0.06 0.86 No phenotypic match
KANSL1 Nijmegen 2 0.49 0.39 0.61 Inconclusive
KANSL1 Nijmegen 3 0.96 0.97 0.64 Phenotypic match
KANSL1 Nijmegen 4 0.97 0.98 0.72 Phenotypic match
KANSL1 Nijmegen 5 0.61 0.66 0.68 Inconclusive
KANSL1 Nijmegen 6 0.97 0.98 0.64 Phenotypic match
KANSL1 Nijmegen 7 0.98 0.97 0.93 Phenotypic match
KANSL1 Nijmegen 8 0.98 0.99 0.48 Phenotypic match
KANSL1 Nijmegen 9 0.91 0.94 0.35 Phenotypic match
KANSL1 Nijmegen 10 0.94 0.95 0.76 Phenotypic match
KANSL1 Nijmegen 11 0.99 0.98 0.93 Phenotypic match
KANSL1 Nijmegen 12 0.97 0.96 0.68 Phenotypic match
KANSL1 Nijmegen 13 0.95 0.97 0.39 Phenotypic match
KANSL1 Nijmegen 14 0.88 0.87 0.60 Phenotypic match
KANSL1 Nijmegen 15 0.97 0.97 0.82 Phenotypic match
KANSL1 Nijmegen 16 0.51 0.21 0.94 Inconclusive
KANSL1 Nijmegen 17 0.98 0.98 0.36 Phenotypic match
KANSL1 Nijmegen 18 0.54 0.67 0.52 Inconclusive

The classification of 18 individuals that were seen at our outpatient clinic in the Radboud university medical center, the same clinic as all control individuals. For this analysis, these 18
individuals were left out of the training data, so that only individuals with Koolen-de Vries syndrome seen outside our outpatient clinic were included when training PhenoScore. The scores
displayed here are then the predictions when using this model to generate predictions for the individuals seen at our institution. The median PhenoScore (here a posterior probability) is 0.95,
and 13 out of 18 are correctly identified as having KdVS, while only one is incorrectly labeled as negative (mainly because of the phenotype that is not matching: facial predictions are high in
this case). Furthermore, when calculating the Brier score using these predictions, it is 0.0917—strikingly close to the Brier score of the regular model. This is all indication of the absence of a
systematic confounder related to the origin of the data.
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Software and code

Policy information about availability of computer code

Data collection  No software was used to collect the data.

Data analysis Data was analysed using PhenoScore v1.0.0, see https://github.com/ldingemans/PhenoScore. Furthermore, VGGFace2 was used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The code of PhenoScore created during this study is freely available at https://github.com/Idingemans/PhenoScore, to enable anyone to apply PhenoScore to their
own dataset. Included in PhenoScore are two examples: the data for the SATB1 subgroups (positive example) and random data (negative example). The used
dataset in this study is not publicly available due to both IRB and General Data Protection Regulation (EU GDPR) restrictions since the data might be (partially)




traceable. However, access to the data may be requested from the data availability committee by contacting the corresponding author with a research proposal,
who will respond within 14 days.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex of included individuals is reported in table 1.

Population characteristics Age, sex, ethnicity, genetic information and diagnosis. Age and sex are reported in table 1.

Recruitment The literature was searched for clinical studies which included facial photographs for 40 randomly selected genetic
syndromes associated with NDD. For the control dataset, any individual seen in our clinic for a neurodevelopmental disorder
is eligble for inclusion in our biobank. These individuals have all consented to inclusion. Participants are not compensated for

inclusion in this study.

Ethics oversight The ethical committee of the Radboud university medical center (\#2020-6151 and \#2020-7142).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined by data availability in literature. PhenoScore was trained using data of 711 non-familial individuals diagnosed
with one of the 40 genetic syndromes included in this study, collected from 105 different publications.

Data exclusions  If data of family members was available, only data of 1 of those was included, to avoid the introduction of bias, since family members are
facially alike. These criteria were established before commencing the study.

Replication We have replicated the results of PhenoScore in 39 other genetic syndromes, after establishing the original results in Koolen-de Vries
syndrome.

Randomization  Allocation based on their (genetic) diagnosis.

Blinding We employed cross-validation in all of our analyses, which is equivalent to blinding to the algorithms.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
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