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Abstract
In this work we perform multimodal detection and classification
of head movements from face to face video conversation data.
We have experimented with different models and feature sets
and provided some insight on the effect of independent features,
but also how their interaction can enhance a head movement
classifier. Used features include nose, neck and mid hip position
coordinates and their derivatives together with acoustic features,
namely, intensity and pitch of the speaker on focus. Results
show that when input features are sufficiently processed by in-
teracting with each other, a linear classifier can reach a similar
performance to a more complex non-linear neural model with
several hidden layers. Our best models achieve state-of-the-art
performance in the detection task, measured by macro-averaged
F1 score.
Index Terms: Head Movement Detection, Multimodal Cor-
pora, Visual and Speech Features

1. Introduction
Head movements are an essential part of face-to-face commu-
nication. They have many functions. For example, they allow
speakers to effectively give and receive feedback, and thus, they
contribute to rapport and mutual comprehension between them.
They also support turn exchange as well as speakers’ manage-
ment of their own communicative behaviour, e.g. for lexical
search. Therefore, correct detection and interpretation of head
movements is crucial for the development of multimodal inter-
faces that can communicate with users in as natural a way as
possible.

The aim of this paper is to experiment with multimodal de-
tection and classification of head movements in a corpus of con-
versations, and to investigate in particular the importance of dif-
ferent features for these tasks. We detect head movements from
raw video data by obtaining key points of relevant body posi-
tions as well as pitch and intensity of the relevant speaker. The
body positions included are nose, neck and mid hip. We further
process this information by calculating first, second and third
order derivatives of these positions and audio features, resulting
in velocity, acceleration and jerk values. We perform a feature
effect analysis and explore whether the combination of features
improves previous results. Since our results are obtained on a
specific dataset of Danish conversations, they cannot be com-
pared against publicly available benchmarks. Therefore, in ad-
dition to providing our own baseline, we also loosely compare
the results of our models against state-of-the-art for head move-
ment detection obtained on different data. Besides, we provide
some evidence for which features may be the most effective in
the task of head movement detection.

The article is structured as follows. We begin by reviewing
related work on head movement detection. After that we intro-

duce the corpus used in our experiments. Then, we introduce
the tasks and discuss the features, models and validation pro-
cedure that constitute our methodology. We continue by pre-
senting and discussing the results of the various models. We
conclude the paper with some final remarks and suggestions for
possible future directions.

2. Related work
Head movement detection can be performed with relatively high
accuracy from data tracked through sensors (Kapoor and Picard,
2001; Tan and Rong, 2003; Wei et al., 2013; Severin, 2021).
Doing the same from raw video data is a harder task (Wu and
Huang, 1999; Gavrila, 1999), and may require optimal light and
background conditions, e.g. when using optical motion flow
(Zhao et al., 2012).

Promising results were achieved in detecting head move-
ments in a Swedish corpus of read news (Ambrazaitis and
House, 2017; Frid et al., 2017) using velocity and acceleration.
The task was formulated in this study in terms of predicting for
each word whether or not it was accompanied by a movement of
the head. Velocity and acceleration were also used in Jongejan
(2012), and enriched with jerk in Jongejan et al. (2017) to de-
tect head gestures in video-recorded free conversations. The de-
tected movements correlated well with the manual annotations
at the onset, but generated a high number of false positives.

Work relying on acoustic speech features include Germesin
and Wilson (2009), where pitch and energy of voice were com-
bined with word, pause and head pose information to identify
agreement and disagreement signals in meeting data, as well
as Paggio et al. (2018) and Paggio et al. (2020), where move-
ment features were considered together with pitch, intensity
and the presence of silence to identify head movements in con-
versational data. Evidence for a multimodal approach to the
task comes from linguistic and psycho-linguistic research on
audio-visual prominence, which has described the close rela-
tionship there is between facial beats and acoustic prominence
(Granström and House, 2005; Swerts and Krahmer, 2008; Am-
brazaitis and House, 2017).

Several studies, in fact, have looked at ways to combine
visual and acoustic or language features to detect head move-
ments. For example, in Morency et al. (2005), features from
the dialogue context were used together with visual features to
predict feedback nods and shakes in human-robot interactions.
Speech cues such as the occurrence of specific words and pauses
were added in Morency (2009) to improve the detection of head
gestures in a vision-based Latent-Dynamic Conditional Ran-
dom Field (LDCRF) model. LDCRF was found to be the best
performing model for head movement recognition in a range of
different datasets (obtained from human-robot, human-widget
or human-agent interactions) with reported accuracy rates be-



tween 0.75 and 0.8 (Morency et al., 2007), probably due to its
ability to deal with the unsegmented nature of movement se-
quences.

Long Short-Term Memory Recurrent Neural Networks
(LSTM-RNN) have recently been used to predict head nods and
turn taking in the IEMOCAP human-human dyadic conversa-
tions (Türker et al., 2018) and to recognise human action from
videos (Ullah et al., 2018). In particular for head nod recogni-
tion, Türker et al. (2018) report an F1 score of 63.59 obtained
by an LSTM-RNN trained on multimodal vectors of non-verbal
and acoustic (spectral and prosodic) features. The dataset used
seems to contain head nods as the only annotated head move-
ment.

In conclusion, the task of head gesture recognition from raw
video data has been studied in specific communicative situa-
tions, for limited datasets and with a focus on specific move-
ments such as nods and shakes. More work is needed to vali-
date and further develop state-of-the-art methods on additional
datasets and settings in order to validate results obtained from
multimodal English data on data from speakers of different lan-
guages interacting in different situations.

In this paper, we present a study in which a range of differ-
ent models are applied to the tasks of detecting and classifying
head movement in conversational Danish data and determining
the type of movement. As in previous work, we train our mod-
els on a combination of visual and acoustic features. Given the
lack of benchmarks for the task, it is difficult to compare our re-
sults to the state of the art. However, compared to Paggio et al.
(2020), the best results we obtain on the same dataset are simi-
lar, but achieved by relying on a polynomial kernel rather than
a multilayer perceptron to manage complex feature combina-
tions. The results from the binary classification task (detecting
head movement) are similar to those reported in Türker et al.
(2018) for head nod detection using a different dataset and a
more complex classifier.

3. The corpus
The data used in this study come from the NOMCO corpus of
annotated first acquaintance conversations in Danish (Paggio
et al., 2010; Paggio and Navarretta, 2016). NOMCO consists
of twelve dyadic conversations that took place in a recording
studio and involved twelve different speakers (six females and
six males). Each speaker is audio-recorded while interacting
with a person of the same gender and one of the opposite one.
The speakers do not know each other, and the purpose of the
conversation is to get acquainted. The two speakers are stand-
ing in front of each other so that the entire body is visible. The
conversations were recorded using three cameras.

Figure 1: Screenshot from one of the NOMCO conversations:
split view

In this work, we use the recordings from two frontal cam-
eras, which were combined into one video as shown in Fig. 1.

Table 1: Different types of head movements in the dataset: total
number of frames and whole movements

Movement type No. movements No. frames

None NA 125,747
Nod 926 21,755
Shake 337 9,505
Other 1,854 41,053
Total movement 3,117 72,313

The duration of each conversation is about five minutes, which
results in about one hour of total interaction.

The annotation of the corpus includes, in addition to the
speech transcription and many other annotation types, a specifi-
cation of temporal segments corresponding to different types of
head movement that was obtained manually following the MU-
MIN annotation scheme (Allwood et al., 2007). Head move-
ments were segmented by defining the start and end of each
movement and assigning the resulting segment to the right type.
If the annotator found a sequence of different movements with-
out a pause in between, say a nod followed by a shake, the two
movements were annotated as separate, adjacent segments. If
the same movement was repeated without pauses, however, it
resulted in one segment, e.g. a repeated nod. The inter-coder
agreement reached on identification and classification of head
movements was a Cohen’s kappa score between 0.72 and 0.8
(Navarretta et al., 2011).

Table 1 shows the distribution of head movements both in
terms of uninterrupted sequences and single frames, as well as
the number of frames not containing any movement. As can be
seen, non-movement frames are about twice as many as those
that have been annotated as showing movement. The Other cat-
egory corresponds to six different types namely HeadBackward,
HeadForward, SideTurn, Tilt, Waggle and HeadOther. There is
of course a fair amount of speaker variation in both number and
types of movements produced. As for the duration of the head
movements, it is 934.78 ms on average (sd: 579.44). Although
most movements are shorter than 1500 ms, there is a long tail of
outliers with a maximum duration of up to 7,080 ms, in many
cases due to repeated movements.

4. Methodology
We experiment with two tasks: i. detecting presence or absence
of head movement (binary classification) and ii. determining
head movement type given the four classes None, Nod, Shake
and Other (multinomial classification). For both tasks, we seg-
ment videos into frames and consider the aligned audio signal.
Predictions are done for each frame.

Visual features are extracted using the OpenPose li-
brary(Cao et al., 2018). We extract positions for the nose, the
neck and the mid hip. For each of these positions we include
the Cartesian (x and y) coordinates and a weight feature cal-
culated by OpenPose. We then calculate velocity, acceleration
and jerk of these positions by computing the first, second and
third order derivatives, using the previous 9, 11 and 13 frames,
respectively. For each derivative, we use the x and y coordi-
nates as well as polar (radius r and angle clock) coordinates,
where the radius of the position is the same as its Euclidean
norm

√
x2 + y2. This gives 15 features per body part, for a

total of 45 visual features.
Acoustic features were obtained by extracting pitch and



intensity values using the Praat tool for phonetic analysis
(Boersma and Weenink, 2009). In both cases, the extraction was
done with a time step of 0.04s, which outputs 25 measurements
per second. For pitch extraction, the same range of 75-600 was
used for both genders. While using this range means allowing
for a considerable amount of noise, experiments done with dif-
ferent ranges resulted in too many missing values. In general,
it must be noted that the quality of the acoustic signal is far
from optimal since the recordings were obtained with external
microphones hanging from the ceiling. For practical reasons,
pitch and intensity were treated as if they were in the Cartesian
coordinate system, and therefore, the derivatives include both
Cartesian coordinates (x and y) but also polar coordinates (r
and clock). Similarly to what was done for the raw visual data,
acoustic measurements were used to compute three derivatives,
i.e. velocity acceleration and jerk, corresponding to four differ-
ent features for each derivative, which, added to the two primary
ones, leaves us with 14 acoustic features.

To test the way acoustic derivatives may be used to model
our data, a preliminary statistical analysis was conducted using
the R software (R Core Team, 2020). Data from all speakers
were pooled together, and generalised linear models were cre-
ated to predict the probability of a head movement in a video
frame given several movement and sound derivatives, first sep-
arately, and then in combination. The ‘glm’ function1 was used
to fit a number of binomial models to predict the probability
of head movement, which was expressed as a binary value (1
for movement and 0 for non-movement). The best performing
model found small but significant effects for velocity of pitch
and acceleration of intensity in combination with nose tip ac-
celeration coordinates, thus providing some support for the use
of the acoustic derivatives.

To model the co-occurrence between head movements and
verbalisation in the data, we also added a feature that encodes
for each frame whether the speaker in focus is actually speaking
or not.

In sum, we obtained a representation for each frame that
contains 45 visual features, 14 acoustic ones and one regard-
ing the presence or absence of verbalisation. The resulting data
were used to train our models.

As mentioned above, our corpus contains videos with 12
speakers. We trained 12 speaker-independent models and eval-
uated them using a leave-one-out cross-evaluation as follows:
For each speaker being tested, data from the two videos in
which the speaker is recorded are kept for testing and data from
the remaining eleven speakers are used for training. Test results
are given in terms of macro-averaged F1 values across the 12
runs.

The following classifier types were used to train models us-
ing various feature combinations: i. Logistic Regression (LR),
which is an example of a simple model, ii. Linear Support Vec-
tor Machine (LINEARSVC), which was used by several earlier
studies for head movement detection, iii. Multilayer Perceptron
(MLP) with four layers, as an example of a non-linear classifier,
iv. Conditional Random Field (CRF) and v. Latent-Dynamic
Conditional Random Field (LDCRF), for both of which we
reused code made available by the authors of Morency (2009)2.

In addition to reporting F1 values obtained by always
choosing the most frequent label (MF), we also consider a base-
line in which only velocity derivatives for the nose, neck and

1https://www.rdocumentation.org/packages/
stats/versions/3.6.2/topics/glm

2https://sourceforge.net/projects/hcrf/

mid hip are used by the classifiers. Then we conduct three ex-
periments using features in different ways.

In Exp 1 all the visual and sound features are used. Here we
expand on the array of visual features used in previous work,
e.g. Paggio et al. (2020), by adding some based on neck and
mid hip positions. We expect the new features to help in distin-
guishing between movements of different kind and in isolating
the head from the rest of the body.

An analysis of the effects provided by all the features as
used by the LR model showed that many of them seemed to con-
tribute very little to the analysis (Fig. 2). Therefore, in Exp 2 we
experiment with removing all the features with an effect lower
than 1. That leaves a total of 17 features, notably including
some position and derivative values from all three body parts,
as well as pitch velocity and jerk, but no intensity feature.

The feature analysis also shows that the radius of the nose
acceleration and jerk are the two most predictive features, with
an effect that is substantially higher than any of the others. To
model how these two features interact with the others, in Exp 3
we train the models using a polynomial kernel and we reduce
the feature space to the initial one by using Principal Com-
ponent Analysis (PCA). Only LR, LSVM and MLP classifiers
were tested with this configuration.

5. Experiment results and discussion
The results of the experiments are shown in Table 2 for binary
and Table 3 for multinomial classification. In general, all the
models do much better in the binary classification task. For
both tasks, the results of Exp 1 are better than those obtained
with the BS. We also see that the results of Exp 2 are relatively
low, which seems to indicate that even features that contribute
little individual gain can be used in interaction with the others.

In the first task, the best F1 score is obtained by the LR in
combination with the polynomial kernel. The MLP classifier
yields practically the same score using all the features. In the
second task, the best F1 scores are again obtained using the ker-
nel, this time by the LSVM classifier. The MLP trained with all
the features yields slightly lower results.

Surprisingly, the CRF and LFCRF models do not perform
well in either task, possibly because the dataset is too small for
them to work effectively.

If we compare the performance of our models with the state
of the art Türker et al. (2018), our models perform similarly
in the binary classification task. However, our task is not ex-
actly the same since Türker et al. (2018) detect head nods in a
dataset in which those are the only head movement type anno-
tated, whereas we are trying to detect different types of head
movement. Our task is, in other words, harder. This is reflected
in the much lower results obtained in the multinomial classifica-
tion experiments. A preliminary analysis showed, in particular,
that shakes are much harder to classify than nods. More re-
search is needed to understand why and to improve the results.

To position our work with respect to the best results ob-
tained on more constrained dialogue types, we also trained
CRF and LDCRF models from Morency et al. (2007) with our
own data. The results are significantly lower than reported in
the original paper. It might be that the model developed by
Morency et al. (2007) is better suited for lab settings in which
the conversations are rather constrained (human-robot, human-
widget or human-agent), but further analysis is required to cor-
roborate this.

When we look at the predicted movements as entire move-
ment sequences rather than independent single frames, we see

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://sourceforge.net/projects/hcrf/


Figure 2: Visualisation of the effect of each feature (absolute values) in predicting presence or absence of head movements.

Table 2: Macro F1-score values for binary classification

MF LR LSVM MLP CRF LDCRF
BS Nose, neck and mid hip velocity 0.3871 0.6033 0.5923 0.6595 0.4474 0.5500
Exp 1 All features 0.3871 0.6807 0.6725 0.6842 0.4252 0.3836
Exp 2 Features w/ effect>1 0.3871 0.6699 0.6580 0.6567 0.3441 0.3178
Exp 3 Polynomial kernel 0.3871 0.6848 0.6782 0.6450 - -

that 86% of them were predicted with various degrees of over-
lap, and that movement on-sets are more easily detected than
offsets. A high number of non-existing movements are also,
however, incorrectly predicted, probably due to the fact that
only movements that have a function in the conversations were
coded by the human annotators.

Now considering the features used to train the models, we
see that the full set of features, combined using either a poly-
nomial kernel or hidden layers of a MLP, enhances the perfor-
mance of both binary and multinomial classifiers.

With regards to the relative importance of features in pre-
dicting the presence or absence of movement, we can see in
Fig. 2 that when considering the key points from the nose, the
x and y values do not contribute much no matter which deriva-
tive is used. LR requires x and y to be combined, and that is
why the r (radius) feature, which encodes the Euclidean norm
of a vector (x, y), has a considerable importance if compared to
other features. It seems that the model needs to know how large
the vector is to assess whether there is a movement or not. In
relation to this, we can observe that the angle of the (x, y) vec-
tor does not contribute to a better performance (clock feature).
If we consider the features from neck positions, our analysis
shows that the Euclidean norm of the velocity is important. The
positions of the neck and mid hip can also be seen as modestly

important. We hypothesise that the Euclidean norm might be a
valuable feature because it makes the values of x and y positive
and combines them.

The second order polynomial kernel shows promising re-
sults in some classifiers and not so promising ones for some
others. On the one hand, both linear classifiers (LR and LSVM)
reach a similar performance to the MLP with all the features,
but on the other hand, the performance of the MLP decreases.
This suggests that if we process the data sufficiently, then a sim-
ple linear classifier can manage the task. This is interesting if
we consider that the LR takes less than 10 minutes to train in
all our experiments, even when features are combined with a
polynomial kernel. Its efficiency makes it a relevant competitor
to more complex classifiers, such as the MLP, which needs 45
minutes to train. The LSVM, in turn, takes around 15 minutes to
train in the binary task and around 45 minutes in the multiclass
task.

We also analysed feature importance for different types of
head movements. There is a general trend that in both general
feature effects and also in the effect for nod or jerk movements,
the y position is more important than the x position for both the
nose and the neck. If we consider head shakes, the x position
seems to be more relevant than y, with a relatively large mar-
gin. Considering that x and y positions are the ones that encode



Table 3: Macro F1-score values for multinomial classification

MF LR LSVM MLP CRF LDCRF
BS Nose, neck and mid hip velocity 0.1936 0.2726 0.2675 0.3301 0.2811 0.2870
Exp 1 All features 0.1936 0.3330 0.3174 0.3766 0.2341 0.2304
Exp 2 Features w/ effect>1 0.1936 0.3023 0.2924 0.3365 0.1549 0.1721
Exp 3 Polynomial kernel 0.1936 0.3881 0.3893 0.2899 - -

the horizontal and vertical axes, respectively, this makes sense,
especially because a head shake involves a slight rotation of the
head in the horizontal axis.

6. Conclusion and future research
In this work we experimented with a number of features and
combinations for the detection and classification of head move-
ments in conversations. The performance of the models is at
state-of-art level. It is achieved, however, on a relatively small
dataset annotated with many different head movement types.
We tested several features and models and observed that when
linear models are given sufficiently processed information, they
reach similar performance to more complex ones. We also con-
ducted a feature analysis that showed the importance of the
more complex features combining information from the more
primary ones, but also that the complete feature set yielded the
best results in combination with the simplest features. We made
our code available on Github.3

This work could be further developed in several ways. Re-
garding models, we have used rather simple Machine Learn-
ing models and in the future we would like to explore further.
Based on similar research, we expect that more complex neu-
ral networks, such as Long Short-Term Memory or Convolu-
tional Neural Network models, might improve the current per-
formance. For example, Slowfast CNNs (Zhang et al., 2021)
have shown good performance for isolated gesture recognition,
but also for head movement detection (Xie et al., 2021).

In our feature analysis acoustic features did not perform as
well as we were expecting. We experimented with speaker-level
normalisation of the acoustic measures to investigate whether
individual variation had a negative effect on the results, but nor-
malisation did not improve the results. Therefore, we suspect
that the poor quality of the acoustic signal might be the reason
why acoustic features do not seem to improve the classification
results.

It would be very interesting to incorporate data from other
similar devices or sensors, such as Human Activity Recogni-
tion data, and then, use a Transfer Learning approach to as-
sist our current models. This approach has been successfully
used in different works, for instance, (Gashi et al., 2021) where
publicly available Human Activity Recognition data was used
to enhance a head gesture recognition model. In recent work,
transfer learning was also used to combine information from
different parts of the body (Zhong et al., 2022), and we believe
that a similar approach could be used to combine the keypoints
from OpenPose that we currently use.

Last but not least, we are currently using the best of our
models to provide a rough head movement annotation in a
newly created corpus of online zoom meetings in English. The
annotation process will provide an excellent test-bed for an eval-
uation of how useful the models’ output is in a realistic cor-

3https://github.com/kuhumcst/head_movement_
detection

pus annotation scenario. The final annotated data will be made
available to the research community.
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