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Abstract 

Statistical learning – the ability to extract distributional regularities from input – is suggested to be key to 

language acquisition. Yet, evidence for the human capacity for statistical learning comes mainly from studies 

conducted in carefully controlled settings without auditory distraction. While such conditions permit careful 

examination of learning, they do not reflect the naturalistic language learning experience, which is replete with 

auditory distraction – including competing talkers. Here, we examine how statistical language learning proceeds 

in a virtual cocktail party environment, where the to-be-learned input is presented alongside a competing speech 

stream with its own distributional regularities. During exposure, participants in the Dual Talker group 

concurrently heard two novel languages, one produced by a female talker and one by a male talker, with each 

talker virtually positioned at opposite sides of the listener (left/right) using binaural acoustic manipulations. 

Selective attention was manipulated by instructing participants to attend to only one of the two talkers. At test, 

participants were asked to distinguish words from part-words for both the attended and the unattended languages. 

Results indicated that participants’ accuracy was significantly higher for trials from the attended vs. unattended 

language. Further, the performance of this Dual Talker group was no different compared to a control group who 

heard only one language from a single talker (Single Talker group). We thus conclude that statistical learning is 

modulated by selective attention, being relatively robust against the additional cognitive load provided by 

competing speech, emphasizing its efficiency in naturalistic language learning situations.  

 

Keywords: auditory statistical learning, cocktail party listening, speech perception, selective attention, transitional 

probabilities 

 

 

 

 

 



3 
 

1. Introduction  

To achieve linguistic proficiency, learners must develop the ability to parse incoming speech into individual 

words. While there are no perfectly reliable cues for word boundaries in spoken language (Aslin et al., 1996; 

Liberman & Studdert-Kennedy, 1978), there are myriad sources of information that learners draw upon to 

segment speech (e.g., Stärk et al., 2021) - including distributional information. Transitional probabilities (TPs) 

between syllables inform listeners about what may constitute a word: TPs between syllables within words are 

typically higher than TPs for syllables spanning word-boundaries, providing a helpful indication of where 

words may begin and end (e.g., Saffran, Newport, et al., 1996; Turk-Browne et al., 2008).  

The ability to draw upon TPs (statistical learning) has been found to aid word segmentation in learners 

of all ages (Aslin et al., 1998; Saffran, Aslin, et al., 1996; Saffran et al., 1997), giving rise to the suggestion 

that statistical learning (SL) may play a key role in language acquisition (see e.g., Conway et al., 2010; Frost 

et al., 2020; Kidd & Arciuli, 2016). Although most research providing evidence for human’s SL ability used 

artificial languages as stimuli, this finding has been replicated using natural language too (Pelucchi et al., 

2009). SL research with more ‘naturalistic’ artificial language input (i.e., reflecting the distributional 

properties of TPs in natural language) has documented profound learning advantages when the to-be-learned 

material aligns with participants’ prior knowledge of TPs (Elazar et al., 2022; Stärk et al. 2022). Yet, critically, 

most evidence for SL predominantly stems from studies examining learning in a ‘vacuum’, under strict 

laboratory conditions, and without distraction. However, language acquisition typically proceeds amid a 

plethora of speech-intrinsic (e.g., between-talker pronunciation variation; Estes & Lew-Williams, 2015) and 

speech-extrinsic noise, such as background sounds and competing speech signals. Such variability can prove 

challenging and may critically impact learning (e.g., Benitez et al., 2019; Samuel, 2016; Zeamer & Fox Tree, 

2013). Here, we examine how SL proceeds in the presence of auditory distractions, comparing speech 

segmentation and word recognition of a to-be-attended input source presented concurrently with a competing 

speech stream with its own distributional regularities. Demonstrating that SL can proceed in the presence of 

competing linguistic input is critical for shaping our understanding of the role of SL in natural language 

acquisition. 
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Learners must cope with ‘noise’ in many communicative situations. Humans are highly adept at 

segregating multiple auditory signals in multi-talker environments (i.e., ‘cocktail party’ settings) (Bosker et 

al., 2020a; Bronkhorst, 2000; McDermott, 2009). This is accomplished by selectively attending to the speech 

source of interest while filtering out others. However, this is indisputably challenging, depleting resources as 

a result of cognitive load, typically reducing performance on attended speech in multi-talker listening 

conditions compared to in quiet (Mattys et al., 2012). Furthermore, selective attention is not perfect: some 

acoustic and linguistic properties of to-be-ignored speech persistently influence the processing of attended 

speech (e.g., speech rate, Bosker et al., 2017, 2020b; linguistic informational masking, Dai et al., 2017). This 

raises the question how SL of distributional regularities in attended speech operates in multi-talker contexts. 

Specifically, does cognitive load reduce SL of attended speech in ‘cocktail party’ contexts compared to in 

quiet? Also, how successful are listeners in ignoring the distributional regularities in to-be-ignored speech? 

Some studies using dual-tasking paradigms suggest that auditory SL is reduced as cognitive demands 

on attentional resources increase (Palmer & Mattys, 2016; Toro et al., 2005, 2011). However, others claim 

that auditory SL remains unaffected (Batterink & Paller, 2019; Daikoku & Yumoto, 2017, 2019), or is only 

partially affected, by an increase in cognitive demands (Fernandes et al., 2010). The inconsistency in results 

could be due to variation in the modality and nature of the distractor stimuli (e.g., visual vs. auditory; speech 

vs. non-speech) and their similarity to target stimuli (Conway & Christiansen, 2006). Similar mixed findings 

regarding cognitive load and selective attention are present in SL in the visual modality (e.g., Campbell et al., 

2012; Musz et al., 2015; Turk-Browne et al., 2005). To date, no study has assessed auditory SL in concurrent 

multi-talker contexts (i.e., with simultaneously speaking talkers; for sequential multi-talker settings, see, e.g., 

Benitez et al., 2020), which could prove particularly challenging since the target and distractor are similar in 

nature. 

Literature on how SL operates on unattended input is scarce. SL does not require active processing; 

humans learn TPs even when passively listening (Saffran et al., 1997). However, to our knowledge, only two 

studies tested to what extent unattended TPs are learned when instructed to deliberately attend another input 

stream in the same (auditory) modality. Daikoku and Yumoto (2017, 2019) presented listeners with two 

concurrent tone streams and found evidence that participants performed above chance on both the attended 
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and unattended streams. However, the possible effect of increased cognitive load due to concurrent exposure 

to multiple tone sequences relative to a single stream was not tested. Crucially, it remains unclear whether 

similar findings would be observed when listening to (acoustically more complex) speech stimuli in multi-

talker contexts. 

The present study mimicked a ‘cocktail party’ setting using a dichotic listening paradigm, where 

participants concurrently heard two novel language streams produced by two different talkers (Dual Talker 

group), perceived as coming from opposite sides. Each language was made up of unique syllables and hence 

involved unique TPs (e.g., Language A: zutami pejuxo nisuda...; Language B: pomasi vukoza fanujo...). During 

exposure, participants were instructed to attend to only one talker while ignoring the other. Participants were 

subsequently tested on (i) ‘segmentation trials’ assessing their ability to identify words vs. part-words from 

the attended (nisuda vs. xo#nisu) and unattended language (fanujo vs. za#fanu) and (ii) ‘recognition trials’ 

assessing their discrimination of words from the attended language vs. words from the unattended language 

(nisuda vs. fanujo). In addition, a control group (Single Talker group) was presented with only one talker, 

allowing comparison of SL of a given language in competing speech vs. quiet. If SL is modulated by the 

cognitive load of having to selectively attend one talker while ignoring another, participants in the Dual Talker 

group should show lower accuracy on segmentation trials of the attended language compared to the Single 

Talker group (i.e., distinguishing words from part-words) as well as worse performance on recognition trials 

(discriminating a word from the attended vs. unattended language). Moreover, if SL is modulated by selective 

attention, participants in the Dual Talker group should demonstrate higher accuracy on segmentation trials 

from the attended vs. unattended language. 

2. Method  

2.1 Participants 

Participants were 96 adult native speakers of Dutch (age: M = 27 years, range = 18-40 years; 38 females and 42 

males), all of whom were recruited through the Prolific database (https://www.prolific.co), receiving monetary 

compensation for their time. The age limit of 40 years old was set for two reasons: (1) as an analogy to 

corresponding work employing university samples, and (2) with the aim to avoid the recruitment of participants 

https://www.prolific.co/


6 
 

with possible reduced hearing acuity. Data from one participant were excluded due to technical issues, leaving 

data from 95 participants for analysis. None of the participants reported any auditory, speech, language, or 

attention deficit (e.g., ADHD). Prior to their participation in the online experiment, all subjects provided consent 

after being thoroughly informed about the study at hand, following the guidelines approved by the Ethics 

Committee of the Social Sciences department of Radboud University (project code: ECSW-2019-019). 

2.2 Design 

The experiment adopted a typical SL paradigm including a familiarization phase and a subsequent test phase. We 

used a between-participants design involving two groups (Single Talker and Dual Talker; randomly assigned), 

who received different familiarization phases but identical test phases. The Single Talker group heard one talker 

producing a single ‘Language’, mirroring the vast majority of SL studies. The Dual Talker group was presented 

with two simultaneously speaking talkers, each producing a different language, while being instructed to attend 

to only one of them. 

2.3 Materials 

2.3.1 Stimuli  

Two artificial languages were created (Language A and Language B), each containing six unique three-syllable 

novel words (see Table 1). Both languages consisted of the same 18 consonants (p, b, t, d, k, f, v, s, z, ʃ, x, h, m, 

n, ʋ, l, j, r) and five vowels (a, e, i, o, u). The consonants and vowels were then pseudorandomly combined into 

18 CV syllables per language, with each consonant occurring only once in each language, and each vowel 

occurring between three and four times. All CV combinations formed phonotactically legal syllables in Dutch. 

The syllables were unique both within and between the two languages (e.g., /xo/ in Language A, but /xi/ in 

Language B). We then pseudorandomly combined the syllables into six trisyllabic words per language, such that 

(1) consonant manner of articulation (e.g., stops) and vowels (e.g., /e/) occurred equally in all three syllable 

positions, (2) they did not contain any existing Dutch multisyllabic words, and (3) no two words comprised the 

same vowels or consonants in the same order. 
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Table 1. Experimental words and part-words for each language. # indicates a word boundary. 

Language A Language B 

words part-words words part-words 

/nisuda/ /xo # nisu/ /fanujo/ /za # fanu/ 

/pejuxo/ /mi # peju/ /vukoza/ /ʃa # vuko/ 

/zutami/ /lu # zuta/ /heriʃa/ /tu # heri/ 

/bavolu/ /volu # ho/ /pomasi/ /masi # he/ 

/hoʃife/ /ʃife # ni/ /biʋetu/ /ʋetu # xi/ 

/kireʋa/ /reʋa # ni/ /xidule/ /dule # po/ 

 

The stimuli were created from isolated syllable recordings of a female and male native speaker of Dutch 

who were instructed to speak in a monotone voice. The syllables were then processed using PSOLA in Praat 

(Boersma & Weenink, 2021) to have a fixed fundamental frequency (F0) of 190 Hz for the female talker and 130 

Hz for the male talker (i.e., monotone speech at each talker’s average F0). The duration of each syllable was 

scaled to 300 ms, and the intensity was normalized to 70 dB. Our speakers happened to produce relatively long 

fricatives that disrupted the perceived isochrony of the concatenated syllable streams. Therefore, the fricatives 

were first slightly reduced in duration before scaling the entire syllable to 300 ms. Finally, each trisyllabic word 

was created by concatenating the three relevant syllables, such that each word was 900 ms long.  

To create the input streams for the familiarization phase, we used Python (Kluyver et al., 2016) to 

randomly combine the six words of each Language into an orthographic sequence, avoiding immediate repetitions 

of individual words. These orthographic sequences then in turn served as the input to a Praat script that 

concatenated the auditory words into a stream. For each stream, within-word transitional probabilities were 

always 1.0, while the between-word transitional probabilities were on average 0.2 (range = 0.13-0.27). We created 
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speech streams for each talker (male and female) for each of the two languages (A and B), resulting in 4 speech 

sequences (2 languages x 2 talkers).  

All auditory streams were 10 minutes long and were continuous, with no pauses within or between words. 

Streams had a 5 second linear fade in and fade out to avoid cuing particular word onsets. To ensure participants’ 

attention throughout the duration of the familiarization stream, they were required to perform a simple beep 

detection task while listening to the language. Twelve beeps (each 100 ms; frequency = 440 Hz; intensity = 95 

dB) were added to the streams at pseudorandom temporal positions, such that (1) they were counterbalanced 

across syllable positions (i.e., 4 beeps per syllable position within words), (2) they always occurred 100 ms after 

syllable onset to avoid energetic masking of an entire consonant or vowel of the syllable, (3) one beep occurred 

every 50 s, with the minimal temporal distance between beeps being greater than 15 s. Beeps were always played 

diotically in both ears.  

2.4 Procedure  

Each experimental session consisted of the following procedure (same order across participants): first, 

participants provided informed consent after having been informed about the nature of the study. Following this, 

they performed two headphone screening tests which determined their eligibility to participate in the experiment 

proper. Then, they completed the familiarization and testing phases. Finally, participants filled out a post-

experimental questionnaire.  

2.4.1 Headphone screening tests 

Psytoolkit (Stoet, 2010, 2017) was used to program and host the experiment online. Participants were instructed 

to use headphones and to complete the experiment in a quiet environment without any distractions. Participants 

first performed two headphone screening tests: The first aimed to ensure that participants were indeed using 

headphones, and was based on Huggins’ pitch (an illusory pitch phenomenon that can only be observed with 

dichotic stimulus presentation; Milne et al., 2020). The second test aimed to ensure proper binaural sound 

localization. This was achieved by manipulating three binaurally presented white noise sounds in both interaural 

time difference (ITD) and interaural intensity difference (IID). These manipulations were identical to those 
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applied to the dichotic familiarization streams; see below for details. With these manipulations, two of the three 

noise sounds were perceived as left-lateralized and one as right-lateralized. On six trials, participants were asked 

to indicate which noise sound was perceived as coming from the right (noise 1, 2, or 3). Participants were only 

able to continue the experiment if they passed five out of six trials in each screening test. If participants failed, 

they were given one more chance to redo that screening test. If they failed once more, they were excluded from 

the experiment. Only participants who passed these tests are reported in this paper. 

2.4.2 Familiarization 

Participants were presented with a 10-minute familiarization stream. For the Single Talker group, familiarization 

included diotic exposure (i.e., heard equally in both ears) to one of the four 10-minute long speech sequences 

(male Language A, male Language B, female Language A, female Language B), which were counterbalanced 

across participants. For the Dual Talker group, familiarization included concurrent exposure to two speech 

sequences (Language A and Language B), where one was produced by a female talker and the other by a male 

talker. Both talkers were presented to both ears, but we used binaural ITD and IID manipulations to allow for 

spatial segregation of the two talkers, such that one talker was perceived as talking from the right and the other 

as talking from the left (i.e., dichotic stimulus presentation inducing a ‘virtual auditory reality’). This was 

implemented by applying an interaural time difference (ITD) of 600 μs and an interaural intensity difference (IID) 

of 6 dB for each talker. In this way, we simulated fully lateralized sound sources (Hartmann, 1999) at an overall 

signal-to-noise ratio (SNR) of 0 dB (aggregating over the two channels). This technical setup was motivated by 

our aim to present relatively naturalistic spatial segregation cues, resembling the way in which people receive 

input from competing speech signals in a ‘cocktail party’ environment. 

Note that online studies of spoken language processing are best run using headphones (i.e., not speakers) 

to attenuate environmental noise. A simple way to present two lateralized speech signals over headphones would 

be to play one talker in the left ear and the other talker in the right ear. However, this kind of dichotic signal 

presentation over headphones underestimates the difficulty listeners face in everyday life, where the speech from 

any given talker typically reaches both ears, not just one. It also removes any energetic masking from one talker 

to the next because each talker is presented to one ear only. Moreover, such a simplistic design would allow 
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participants in the Dual Talker group, who were tasked to only attend one talker and ignore the other, to take off 

one side of the headphones/earbuds (i.e., ‘cheating’). In real conversations, listeners rely on the binaural ITD/IID 

cues to successfully segregate two speech signals from spatially opposing talkers in order to overcome energetic 

masking. Therefore, in this experiment, we applied naturalistic ITD/IID cues at a ‘doable’ SNR of 0 dB (i.e., 

relatively good intelligibility for both streams) to closely resemble spatially segregated speech signals in a face-

to-face conversation. Also, this removed the possibility of cheating (i.e., taking one side of the headphones off), 

because the speech from both talkers was always present in either ear (see Figure 1). To get an impression of the 

virtual auditory reality, you can listen to one of the dual-talker streams here: https://osf.io/qn8a3 (using 

headphones).  

The input streams from the two talkers were always presented in-phase: the syllable onset of one language 

always coincided with the syllable onset of the other. Exposure to each language + talker + side combination 

(e.g., Language A, produced by the male talker, perceived as coming from the left) was counterbalanced between 

participants, using four familiarization stimuli that were equally distributed across participants assigned to the 

Dual Talker group. An illustration of Single and Dual Talker stream presentation is displayed in Figure 1. All 

stimuli are available in the Open Science Framework (OSF) repository (see Data availability). 

Participants in the Single Talker group were instructed to pay close attention to the sequence they heard, 

and participants in the Dual Talker group were asked to attend to only one of the two speech sequences they were 

exposed to (counterbalanced across participants). Both groups were informed that they would later be tested on 

what they heard without explicitly describing the nature of the test. For the Dual Talker group, a reminder to 

focus on the stream they were assigned to was displayed on the screen with a message (e.g., Listen carefully to 

the talker in your left ear) and an arrow (e.g., pointing to the left) throughout familiarization. Participants in the 

Single Talker group were presented with a fixation point during familiarization. Participants in both groups 

completed the beep detection task during the familiarization phase, pressing the spacebar key on their computer 

keyboard as soon as possible when they heard a beep. An example of the beeping sound they were expected to 

identify was provided to the participants prior to familiarization. This beep detection task was included to 

motivate the participants to maintain auditory attention (i.e., not put down their headphones). 

https://osf.io/qn8a3
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Figure 1: Example of Single Talker (A) and Dual Talker (B) stream presentation. The colored lines indicate the 

different speech streams produced by a male (blue) and female (orange) talker. Interaural differences of the two 

streams in (B) are displayed with line thickness, where a thicker line indicates a 600 μs lead and 6 dB greater 

intensity, leading to perceived spatial localization of the thicker line to the corresponding ear). Participants in 

the Single Talker group heard one talker equally in both ears (diotic presentation), whereas participants in the 

Dual Talker group heard two talkers such that one talker’s voice was perceived as coming from the right (orange 

head figure), and the other talker’s voice was perceived as coming from the left (blue head figure). Participants 

were instructed to pay close attention to one of the two talkers (here: the talker predominantly heard from the 

right). Listen to one of the dual talker streams here: https://osf.io/qn8a3; and use headphones.  

 

https://osf.io/qn8a3
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2.4.3 Testing 

Participants completed a two-alternative forced-choice (2AFC) task consisting of 108 trials: 72 segmentation 

trials, half of which tested the attended language and half the unattended language, and 36 recognition trials. 

During either testing phase, participants were instructed to listen carefully to each test pair and select which item 

best matched the language they had just heard (for the Single Talker group) or paid close attention to (for the 

Dual Talker group), by pressing “A” for the first or “B” for the second sound stimulus on the computer keyboard. 

Participants had three seconds to respond after the second stimulus offset, after which there was a timeout and 

the next trial began. 

Segmentation trials consisted of word versus part-word comparisons, where part-words were made up of 

three syllables that straddled a word boundary, comprising the last two syllables of one target word and the first 

syllable of another (type I, e.g., word: kireʋa; part-word: reʋa#ni) or the last syllable of a word and the first two 

syllables of a target word (type II, e.g., word: nisuda, part-word: xo#nisu; see Table 1). For each language 

(attended and unattended), the part-words were six in total, three of type I and three of type II. Each word was 

combined with each of the six part-words, resulting in 36 word + part-word combinations for each language. 

Note that this design, whereby words and part-words occur equally often during the test phase, was 

motivated by an anonymous reviewer comment on an earlier experiment (referred to as Experiment S1). That 

earlier Experiment S1 mirrored the present study except for the critical difference that Experiment S1 presented 

each word twice during the test phase, each time paired with a different unique part-word. Thus, words occurred 

twice as often during the test phase compared to part-words, providing an opportunity for participants to ‘learn’ 

the words of a given language over the course of the test phase. The results of Experiment S1 were qualitatively 

similar to the ones reported here lending additional support to our present findings; for full description, see 

https://osf.io/zc543/. However, they also showed evidence of within-test learning which could be argued to dilute 

the clarity of the outcomes. Therefore, we ran a new experiment with a new participant sample, this time 

presenting each unique word and part-word equally often during test, thus removing any opportunity for within-

test learning (i.e., reported here). Further distinctions between Experiment S1 and the present experiment are: (1) 

Experiment S1 had two versions of each Language (A and B) to control for item-specific biases, but results did 

https://osf.io/zc543/
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not demonstrate any differences between versions and therefore this design aspect was dropped for the present 

experiment; (2) the recognition test phase in Experiment S1 had only 12 trials, while in the present design 36 

recognition trials were presented (see below, in comparison to https://osf.io/zc543/). 

On each segmentation trial, words and part-words were presented auditorily (diotically) with ISI = 1000 

ms. The order in which each word and part-word occurred as well as the talker producing both items (i.e., male 

and female) was counterbalanced across the segmentation trials. Note that, while words were heard in only one 

talker’s voice during familiarization (either male or female), they were produced by both talkers at test (half of 

the time by the ‘congruent’ talker (i.e., same talker as in familiarization); half of the time by the ‘incongruent’ 

talker. Thus, we aimed to avoid influences of episodic memory (e.g., word + talker combinations) on test 

performance. 

After all 72 segmentation trials, participants were presented with 36 recognition trials. These consisted of 

test pairs made up of a word from Language A + a word from Language B (e.g., nisuda vs. fanujo). Each word 

from Language A was paired with every word from Language B, resulting in 36 trials in total. These recognition 

trials were included as they would illustrate the degree of familiarity with one language over another. Critically, 

they also served as a useful sanity check in case we did not observe any evidence for statistical learning in the 

segmentation phase in the Dual Talker group. In such a scenario, the Dual Talker group could in principle still 

perform accurately on recognition trials, demonstrating learning of the phonology and phonotactics of the 

attended language (i.e., unique syllable inventories in each language), even in the absence of statistical learning 

of the transitional probabilities in the attended language. As with the segmentation trials, words were presented 

auditorily with ISI = 1000 ms. The order of each item and the talker producing them both was alternated such 

that all words were heard once by each talker and were presented once in each position within test pairs.  

Participants were first tested on all segmentation trials, and then on the recognition trials. The trials within 

each of these tasks were fully randomized. The fixed presentation order of tasks (i.e., segmentation followed by 

recognition) aimed to ensure (1) that segmentation performance in both the attended and unattended language 

was unaffected by hearing the words in isolation in recognition trials, and (2) that all participants received equal 

https://osf.io/zc543/
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exposure to the items of both the attended and unattended language in segmentation trials before being tested on 

which of them occurred in the language they attended to in recognition trials. 

It is important to note that both the Dual Talker and the Single Talker groups received the same 

segmentation and recognition trials. Consequently, the Single Talker group was also tested on segmentation trials 

from the unattended language, which involved words and part-words they had never been exposed to during 

familiarization. Further, as both the segmentation and recognition test included trials produced by either a female 

or a male talker, participants in the Single Talker group were familiar with only one of them at test, as the speech 

stream they were exposed to at familiarization was produced by either a female or a male talker. Moreover, 

participants in the Dual Talker group were familiar with both speaker voices, but were asked to pay attention only 

to either the male or the female speaker. Given that half of the test pairs were produced by the same speaker that 

produced the attended (or heard) language stream, while the other half were produced by the speaker that 

produced the unattended language stream, we included Speaker Match as a covariate in the statistical analysis in 

order to control for effects of speaker familiarity on participants performance.  

2.4.4 Post experimental debriefing 

After the completion of the experiment, participants were asked questions with respect to the content and aim of 

the experiment as well as their impression of their selective attention performance in the familiarization phase, 

and their 2AFC accuracy in the testing phase. A listing of the post-experimental questions and a summary of 

participants’ responses to them appears in the Supplementary Information, section 1.1 and 1.2 respectively.  

 

3. Results  

3.1 Beep Detection Task 

Participants demonstrated ceiling performance in the beep detection task (M = 11.96 beeps, SD = 0.2, mean RT 

= 839 ms, SD = 686 ms), indicating attentiveness during the familiarization phase. 

3.2 Segmentation task 
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Segmentation trials (word vs. part-word) with missing responses due to timeout (n = 12; 0.17%) were excluded 

from the analyses. Figure 2 shows the mean and individual-participant performance for the Single and Dual 

Talker group.  

3.2.1 Within-group Segmentation Performance 

We ran Generalised Linear Mixed Effects Models (Quené & van den Bergh, 2008) using the ‘lme4’ package 

(version 1.1-26; Bates et al., 2015) in R (R Core Team, 2021) to compare segmentation performance between the 

attended and unattended language streams, separately for the Single and Dual Talker group. Trial accuracy was 

the dependent variable (correct = 1; incorrect = 0). In both analyses, the models included Test Pair as random 

intercepts, while the model in the Single talker group also included a by-participant random intercept and random 

slope for Attention. More complex random effect structures were not included due to convergence issues or model 

overfitting (Barr et al., 2013). 

We then added Attention (Attended and Unattended language; dummy coded with Attended language at the 

reference level) as the predictor in the model (recall that the ‘unattended language’ was actually never presented 

in the familiarization phase of the Single talker group). We also added the covariate Speaker Match (deviation 

coded: Match = -0.5, Mismatch = +0.5) and its interaction with Attention in the analyses of both groups. Finally, 

we added the covariate Lateralization of Attended language (deviation coded: Left = -0.5, Right = +0.5) and its 

interaction with Attention in the Dual Talker group analysis. Full R syntax and model output is given in Tables 2 

and 3. 

3.2.1.1 Single talker group 

Performance on the attended language stream was relatively low but significantly above chance (M = 0.54, SE = 

0.5; CohensD = 0.39; left green violin in Figure 2), as shown by the intercept of the model. Importantly, we also 

found a significant main effect of Attention, with worse segmentation performance for the never-presented 

‘unattended language’ (relative to attended; M = 0.48, SE = 0.5; CohensD = 0.19; left orange violin). Note, 

however, the large by-participant variation, illustrated by the diamonds in Figure 2. There was no statistically 
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significant effect of Speaker Match, nor an interaction with Attention, suggesting participants’ performance on 

the segmentation task was not affected by speaker discrepancies between the test and the training phase. 

 

Table 2. Summary of the Generalized Linear Mixed-Effects Model of (Log Odds) Accuracy Scores on the 

Segmentation Test for the Single talker Group. Values for significant effects (p < 0.05) are printed in bold. 

Model structure 
glmer(accuracy ~ 1 + Attention * Speaker Match + (1 | participant) + (1 + 

Attention | testpairs)) 

Fixed Effects Log-Odds SE Conf. Int (95%) Statistic p 

Intercept (Attended) 0.17 0.07 0.04 – 0.31 2.54 0.011 

Attention (Unattended) -0.24 0.08 -0.39 – -0.09 -3.14 0.002 

Speaker Match -0.01 0.10 -0.20 – 0.19 -0.08 0.939 

Attention:Speaker Match 0.02 0.14 -0.26 – 0.29 0.12 0.904 

Random Effects Variance SD    

testpairs (Intercept)              0.087  0.295           

Attention (Unattended) 0.074   0.273       

Participant (Intercept)              0.047        0.218      

N participants 48     

N testpairs 72     

Observations 3450     

Marginal R2 / Conditional 

R2 

0.004 / 

0.059 

    

 

3.2.1.2 Dual Talker group 

Performance on the attended language stream was again relatively low but significantly above chance (M = 0.53, 

SE = 0.5; CohensD = 0.26; right green violin in Figure 2), as shown by the intercept of the model. There was a 

significant main effect of Attention, with participants performing worse for the unattended language (M = 0.49, 

SE = 0.5; CohensD = 0.16; right orange violin) compared to the attended one. Note however the large by-

participant variation, illustrated by the diamonds in Figure 2. Again, the predictor Speaker Match and its 
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interaction with Attention were not significant. Finally, there was a significant main effect of Lateralization, 

suggesting that performance was higher for participants who predominantly heard the attended language from 

their right side compared to those who heard it from their left. No interaction between Lateralization and Attention 

was found, suggesting that the effect of Lateralization held for both Attended and Unattended languages. 

 

Table 3. Summary of the Generalized Linear Mixed-Effects Model of (Log Odds) Accuracy Scores on the 

Segmentation Test for the Dual Talker group. Values for significant effects (p < 0.05) are printed in bold. 

 Model structure glmer(accuracy ~ 1 + Attention * (Speaker Match + 

Lateralization) + (1 | testpairs)) 

Fixed Effects Log-Odds SE Conf. Int (95%) Statistic p 

Intercept (Attended) 0.11 0.06 0.00 – 0.22 1.96 0.049 

Attention (Unattended) -0.15 0.07 -0.29 – -0.02 -2.22 0.027 

Speaker Match -0.12 0.10 -0.32 – 0.07 -1.26 0.208 

Lateralization 0.23 0.10 0.04 – 0.43 2.38 0.017 

Attention:Speaker Match 0.09 0.14 -0.19 – 0.36 0.62 0.534 

Attention:Lateralization -0.15 0.14 -0.42 – 0.12 -1.07 0.284 

Random Effects Variance SD       

testpairs (Intercept) 0.05 0.22       

N testpairs 72         

Observations 3378         

Marginal R2 / Conditional 

R2 

0.005 / 0.019         
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Figure 2. Mean accuracy for segmentation trials (word vs. part-word) from the attended and unattended 

language in the Single Talker (left) and Dual Talker group (right). Participants from both groups performed 

significantly above chance on trials from the attended language (green violins). Performance on the unattended 

language (never presented for the Single Talker group) was significantly worse (yellow violins) compared to the 

attended language. Diamonds indicate individual participants. The gray band around the mean shows SE. 

3.2.2 Between-group comparison of segmentation performance 
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An omnibus model compared performance on segmentation trials between the two groups. The omnibus included 

by-test pair and by-participant random intercepts, with by-test pair random slopes for Attention and Group. The 

by-participant random slopes for Attention and Group were removed from the random effect structure due to 

convergence issues (Barr et al., 2013). Fixed effects were Attention (dummy coded: Attended language at the 

reference level) and Group (dummy coded: Single Talker at the reference level). Speaker match was not included 

as a covariate, given the null results in the within-group analyses.  

See Table 4 for model syntax and output. We found a significant intercept, demonstrating above-chance 

performance on the attended language in the Single Talker group. We also found a simple effect of Attention, 

with significantly worse performance in segmentation trials for the unattended language. Moreover, the predictor 

Group and its interaction with Attention were not statistically significant, indicating a lack of evidence for 

different performance between the two groups. This lack of an interaction was further assessed by performing 

posthoc pairwise comparisons to directly compare Single vs. Dual Talker accuracy on the attended language, and 

also Single vs. Dual Talker group accuracy on the unattended language, using the R package ‘emmeans’ (p-values 

Bonferroni adjusted). These comparisons revealed no difference between Single vs. Dual Talker group 

performance on the attended language (estimate = 0.06, SE = 0.08, z = 0.749, p = 0.454), nor on the unattended 

language (estimate = -0.02, SE = 0.08, z = -0.285, p = 0.776). 

  

Table 4. Summary of the Generalized Linear Mixed-Effects Model of (Log Odds) Accuracy Scores on the 

Segmentation Test for both Single and Dual Talker group. Values for significant effects (p < 0.05) are printed in 

bold. 

 Model structure glmer(accuracy ~ 1 + Attention * Group + (1 | participant) + 

(1 + Attention + Group | testpairs)) 

Fixed Effects Log-Odds SE Conf. Int (95%) Statistic p 

Intercept (Single-

Attended) 

0.17 0.07 0.04 – 0.30 2.63 0.008 

Attention (Unattended) -0.24 0.08 -0.39 – -0.09 -3.21 0.001 
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Group (Dual) -0.06 0.08 -0.22 – 0.10 -0.75 0.454 

Attention:Group 0.08 0.10 -0.11– 0.28 0.85 0.397 

Random Effects Variance SD       

Testpairs (Intercept) 0.10 0.31       

Participant (Intercept) 0.02 0.16    

    Attention (Unattended) 0.05 0.23    

    Group (Dual) 0.05 0.21    

N participants 95     

N testpairs 72         

Observations 6828         

Marginal R2 / Conditional 

R2 

0.003 / 0.039         

 

3.3. Recognition task 

Recognition trials (i.e., a word from attended language vs. a word from unattended language) with missing 

responses due to timeout (n = 12; 0.34%) were excluded from the analyses. Figure 3 shows the mean and 

individual-participant performance per group. 

To compare between-group performance, we incrementally built a GLMM (see Table 5) including a by-

participant random intercept. Random effects for test pairs and more complex random effects for participants 

were not included due to model overfitting (Barr et al., 2013). Subsequently, we added Group (dummy coded: 

Single mapped onto the intercept) as a fixed effect. We also added Speaker Match (coded as before), and its 

interaction with Group, in order to control for effects of speaker familiarity. 
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The Single Talker group performed significantly above chance on the recognition task (M = 0.59, SE = 0.49; 

CohensD = 0.74), as shown by the intercept. No significant effect of Group was observed, suggesting that the 

recognition performance of the Dual Talker group (M = 0.57, SE = 0.49; CohensD = 0.58) was comparable to 

that of the Single Talker group. Finally, we found no significant main effect of Speaker Match, nor any significant 

interaction with Group. 

 

Table 5. Summary of the GLMER for accuracy scores in the recognition test. Values for significant effects (p < 

0.05) are printed in bold. 

 Model structure glmer(accuracy ~ 1 + Group * Speaker Match + (1 | 

participant)) 

Fixed Effects Log-Odds SE Conf. Int (95%) Statistic p 

Intercept (Single) 0.40 0.08 0.25 – 0.55 5.19 <0.001 

Group (Dual) -0.09 0.11 -0.30 – 0.12 -0.85 0.393 

Speaker Match -0.05 0.10 -0.25 – 0.14 -0.55 0.584 

Group:Speaker Match 0.06 0.14 -0.22 – 0.34 0.42 0.671 

Random Effects Variance SD       

Participant (Intercept) 0.16 0.4       

N participants 95         

Observations 3408         

Marginal R2 / Conditional 

R2 

0.001 / 0.047         
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Figure 3. Mean accuracy on recognition trials (word from attended language vs. word from unattended 

language) for the Single (yellow) and Dual (green) Talker group. Performance was significantly above chance 

for both groups. Diamonds indicate individual participants. The gray band around the mean indicates SE. 

 

4. Discussion 

Overall, the Dual Talker group demonstrated performance that was qualitatively comparable to that of the Single 

Talker group. This finding was also observed in an independent participant sample (N = 96)  in an earlier 

Experiment S1 (see section 2.4.3; complete description: https://osf.io/zc543/). Specifically, both groups 

performed significantly above chance on segmentation trials for the attended language, providing evidence for 

https://osf.io/zc543/
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statistical learning. However, accuracy was slightly lower (M=0.54) than in some previous SL studies (e.g., 0.58 

in Saffran et al., 1997), with considerable between-participant variation (cf. diamonds in Figure 2). The large 

variability and modest effect size could be due to several reasons including the online format, with little control 

over participants’ attention, audio playback, hardware, and listening conditions; and/or multiple talkers being 

presented at test. The additional beep detection task, used to maintain and assess auditory attention throughout 

familiarization, may have also had a detrimental effect on performance (see e.g., Franco et al., 2015). 

Furthermore, performance may also have been negatively affected by the inclusion of trials for the 

unheard/unattended language. This may have impacted participants’ perception of the task demands, or reduced 

their confidence for test pairs relating to the ‘attended’ language. Given these performance constraints, it is 

particularly remarkable that the Dual Talker group managed to achieve qualitatively comparable performance on 

the attended language trials as the Single Talker group, despite the addition of a competing talker. 

Interestingly, we found that SL was robust against speaker match/mismatches at test vs. familiarization, 

supporting earlier observations of generalization of SL across different voices (Estes & Lew-Williams, 2015), 

corroborating SL as an important mechanism in more naturalistic learning conditions. However, variability in 

surface form may still have had an overall reducing effect on performance, partially explaining the present modest 

effect size of SL. Future work should look at which of these factors critically impact the effect size of SL, and 

individual differences therein, especially now online testing is increasingly becoming commonplace. 

Performance on segmentation trials from the unattended language was significantly worse compared to 

the attended language in both groups. This demonstrates an important modulating role of selective attention in 

SL. This is in line with the view that selective attention operates very early in perception (Bosker et al., 2020a), 

modulating the earliest cortical encoding of speech sounds (Mesgarani & Chang, 2012). Specifically, despite 

equal exposure to the two talkers, the Dual Talker group performed at chance on unattended language trials. Still, 

it is premature to conclude that selective attention fully modulates (i.e., preempts) SL based on this result alone 

because performance was modest overall, leaving little opportunity for detecting reduced yet above-chance 

performance. Perhaps future designs with more opportunity for learning might reveal such findings. Note 

however that the earlier Experiment S1 did induce greater overall segmentation performance in the Single Talker 
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group yet no Group effects were observed. Still, for now, we conclude that selective attention modulates SL in 

multi-talker contexts, corroborating studies using non-speech streams (Daikoku & Yumoto, 2017, 2019). 

We unexpectedly observed an effect of Lateralization in the segmentation data from the Dual Talker 

group. That is, participants who perceived the attended language as coming from their right demonstrated overall 

higher accuracy compared to participants who perceived the attended language as coming from their left. This 

observation cannot be accounted for in terms of a right ear advantage because the two languages were presented 

to both ears, with only ITDs and IIDs inducing a spatial segregation of the two languages. Also, this Lateralization 

effect did not interact with Attention, suggesting a beneficial effect of ‘paying attention to the right side’ on 

performance in attended and unattended language segmentation trials. Hence, at present, we lack an explanation 

for this surprising finding. Still, it does raise interesting follow-up questions such as whether SL of speech streams 

might be modulated by ear of presentation in dichotic listening (i.e., right ear advantage due to left hemisphere 

specialization for language) while SL of auditory non-speech streams would not. 

Our segmentation results also show that the cognitive load experienced by hearing a language in a multi-

talker context does not impact SL for the attended stream. Despite being exposed to a language in the presence 

of another distracting language with its own statistical regularities, the Dual Talker group was able to learn the 

attended language as efficiently as the Single Talker group who heard the language in a distractor-free 

environment (though we highlight the inter-individual variation in this regard). Thus, outcomes suggest that 

humans’ SL ability is relatively robust against cognitively demanding settings (Daikoku & Yumoto, 2017, 2019). 

This contrasts with studies suggesting that SL depreciates as cognitive load increases (e.g., Palmer & Mattys, 

2016; Toro et al., 2005, 2011). This discrepancy may be due to modality differences between concurrently 

presented stimuli and/or to the amount of cognitive load experienced, which is hard to quantify and compare 

between tasks/modalities.  

Altogether, our findings suggest that SL is largely maintained in ‘noisy’, and thus more naturalistic, 

communicative contexts. This work builds on prior demonstrations of more naturalistic SL for language, showing 

for example that learners can draw on the distributional properties of natural language input (Elazar et al., 2021; 

Pelucchi et al., 2009; Stärk et al., 2022) and that this learning generalizes across talker voices (Estes & Lew-
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Williams, 2015). We extend this research showing that SL can proceed in the presence of a concurrent speech 

stream. These findings emphasize the critical role of SL in language acquisition, and lend credence to the notion 

of ‘real-world’ SL more broadly - showing that the human ability to detect and draw on distributional information 

persists in the face of distraction, outside the confines of the conventional SL vacuum. 

This observation is further supported by the recognition trial data in which participants discriminated a 

word from the attended language from a word from the unattended language. Both groups showed above-chance 

performance on the recognition trials, suggesting preferential processing and learning of the attended vs. 

unattended language in the Dual Talker group. Note that performance in the recognition trials was numerically 

higher than performance in the segmentation trials. This is likely due to the fact that performance in segmentation 

trials is only supported by SL of the TPs; however, performance in recognition trials is further supported by 

learning the languages’ phonotactics. Recall that the two languages had unique syllable inventories (/xo/ in 

Language A, but /xi/ in Language B). Therefore, even if someone would completely ignore the syllable TPs, they 

could still perform above chance on recognition trials by recognizing the unique syllable inventory. These 

phonotactics, together with the learned TPs, presumably contributed to the relatively higher performance on 

recognition trials compared to segmentation trials. 

As our design used two languages with different phonotactics, listeners in the Dual Talker group were 

exposed to two clearly distinct ‘languages’, maximizing the phonological distance between input streams. This 

design was necessitated by our research question which required us to be able to separate learning from two 

different languages (i.e., allowing us to determine the source of learning). Still, this approach arguably reflects 

listening to two talkers speaking different languages. Future studies could target SL with two talkers producing 

the same language in order to examine whether this type of multi-talker setting perhaps enhances SL due to 

greater exposure to the distributional regularities. Moreover, building on the present findings about SL of adjacent 

TPs, future experiments could target more complex dependencies within the to-be-learned language (e.g., non-

adjacent dependencies), which may be more susceptible to cognitive load than SL of adjacent dependencies 

(Pacton & Perruchet, 2008). 
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In sum, this study suggests that, when selectively listening in a multi-talker context, humans’ SL ability 

is relatively robust against increased cognitive load. SL is modulated by selective attention, which allows for 

robust segmentation performance for an attended language in a ‘cocktail party’ setting. These findings bear 

implications for our understanding of how language learning proceeds in more naturalistic settings, supporting 

the view that selective attention, a key feature of speech perception, contributes to speech segmentation and 

language learning.  
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