Sequence-dependent catalysis and assembly to form peptide/Au nanoenzyme for glucose and plasma GSH detecting in cancer patients

Shengtao Wang a,b,c,1, Anhe Wang a,b,1, Jingtao Li d, Qingquan Han a,b, Yafeng Jing a,b, Jieling Li a,b, Shiyu Du d, Peter H. Seeberger e,f, Jian Yin g,h, Shuo Bai d,e

a State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
b Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China
c Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
d Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, PR China
e Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
f Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
g Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
h State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China

ARTICLE INFO

Keywords:
Peptide
Metal ions
Self-assembly
Spontaneously
Biocatalysis
Glucose detecting

ABSTRACT

Metal ions play a pivotal role in regulating and determining the functions of proteins and peptides in nature. This study aims to investigate the regulatory role of metal ions in peptide assembly and explore the influence of sequence variations and metal ions on the structure and function of resulting peptide nanoarchitectures. Dipeptide sequences with distinct charged properties (positive and negative) and functional groups (-COOH, -NH2, and phenolic hydroxyl) were meticulously selected and co-assembled with various metal ions (Au3+, Ag+, and Pt4+). The findings highlight the crucial functional role of the phenolic hydroxyl group of tyrosine in metal ion reduction, while positively charged groups promote metal ion accumulation through electrostatic forces, facilitating co-assembly. The formation of ordered structures in Au@Fmoc-YK and Au@Fmoc-YR nanoarchitectures further validates the significant interaction among metal ions, tyrosine-OH, and positively charged NH2. Notably, these nanoarchitectures possess the unique attribute of being prepared under physiological conditions, specifically at 37 °C, without the need for organic solvents or chemical modifications of peptides. This approach offers a straightforward means of constructing diverse functional nanoarchitectures based on peptides and metal ions. Moreover, Au@Fmoc-YR exhibits good performance as a nanoenzyme for detecting glucose in complex bodily fluids and plasma GSH in tumor patients, showcasing its promising potential for medical applications.

Introduction

In many biological processes, metal ions are essential and play vital roles, and are indispensable for the functionality of natural biomolecules, where metal ions can form stable structures with various functional groups in the biomolecules chain through coordination interactions. This interaction is important in various biological phenomena, including the facilitation of enzyme-catalyzed reactions, maintenance of protein structure and stability, and assistance in DNA replication, RNA transcription, and protein translation [1–4]. Additionally, metal ions have been identified as significant contributors to signaling pathways and immune responses [3,5–10]. Overall, metal ions are integral components of numerous biological systems, and comprehending their interactions with biomolecules constitutes a crucial area of research [11–13]. Short peptides, as amino acid sequence-encoded building blocks, are a prominent class of biomolecules capable of facilitating supramolecular assembly [14]. Through non-covalent forces such as electrostatic interactions, hydrogen bonding, π-π stacking, and hydrophobic interactions, these peptides can achieve precisely controlled shapes and functions. This assembly process is governed by both thermodynamic and dynamic mechanisms. Consequently, short peptides hold immense potential for a wide range of applications in biomedicine, bio-nanotechnology, and bio-catalysis [15–19]. The assembly behavior of short peptides is influenced by various factors, including pH, temperature, solvent, matrix interface, and guest molecules, especially metal ions [20]. Peptides,
characterized by diverse functional groups such as sulphydryl, indole, amino, and phenolic hydroxyl, have been extensively studied for their interactions with different types of metal ions [21,22] (e.g., Au3+ and Ag+). These interactions have been utilized in the preparation of organic-inorganic hybrid nanomaterials endowed with special functionalities. For example, Rosi’s group [23–26] has designed and prepared a range of 1D and 2D superstructures including gold nanoparticle double helices, single-helical gold nanoparticle superstructures and hollow spherical gold nanoparticle superstructures. These structures are created through the redox reaction between tyrosine (Y) of dodecapeptide (AYSSGAPPMPPF) and HAuCl\textsubscript{4} in the HEPES solution. Similarly, Metrangolo’s group [27] has prepared spherical and chiroptical helical superstructures decorated with Au nanoparticles, relying on the redox reaction between NH\textsubscript{2} of pentapeptide (DFNKF or KLVFF) and HAuCl\textsubscript{4} with the help of halogen (I− or Cl−) in water at 60 °C. Moreover, Yang’s group [28] has demonstrated that NH\textsubscript{2} groups of dipeptides (PF) can interact and reduce Au3+ to form dipeptide-gold nanoparticle hybrid spheres in an aqueous solution at 60 °C. In close recent, tyrosine (Y) has been used to prepare high-aspect-ratio gold microwires (>500) in 2 M NaCl aqueous solution at 80 °C [29]. Although many novel and unique superstructures based on peptides and metal ions have been reported, the preparation process for forming hybrid peptides and metal ion nanoarchitectures still requires harsh conditions, including high temperatures, excess reducing agents, and complex procedures. Furthermore, there is still a lack of understanding about the regulation of peptide assembly by metal ions, as well as the effect of peptide sequence and metal ions on the structure and function of formed peptide nano-architectures. These challenges underscore the need for further research in this field to develop new synthesis methods for hybrid peptide and metal ion nanoarchitectures with improved properties while minimizing complexity.

Herein, a series of dipeptides with different positive and negative charges and functional groups including Fmoc-YA, Fmoc-YD, Fmoc-YK, Fmoc-YL, Fmoc-YR, and Fmoc-YW were designed to investigate the specific role of different peptide functional groups in their interaction with various metal ions (Au3+, Ag+ and Pt4+) to form hybrid nano-architectures under a mild condition (neither elevated temperatures nor reducing agents or chemical modification of peptides are required). This research aims to provide a comprehensive understanding of the molecular mechanisms involved in the formation of hybrid materials and may have important implications for the development of new strategies for designing nanomaterials with unique properties for various applications. As a proof of concept, the formed hybrid Au@Fmoc-YK and Au@Fmoc-YR NPs were found to have good conductivity and catalysis performance, which were further employed in the detection of glucose using a straightforward electrochemical method [30] (Scheme 1). In addition, Au@Fmoc-YR assemblies were used to detect plasma GSH content in tumor sites of patients with gastric carcinoma, which was much higher than that of healthy adults (3.39 ± 1.04 μM) [31], showing good potential application as early, metastatic, and recurrent cancers screening tool.

Experimental section

Materials

Chlorauric acid (HAuCl\textsubscript{4}•4H\textsubscript{2}O) (99.9%) was purchased from Sinopharm Chemical Reagent Co., Ltd (China). Nafion (5 wt%) and 1-Glutathione reduced were purchased from Sigma-Aldrich. Sodium borohydride was purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd (China). Glucose oxidase, Fmoc-Y-OMe (98%), Fmoc-K (98%) and Fmoc-K-OMe (98%) were purchased from GL Biochem (Shanghai) Ltd (China). Metrangolo’s group [23] has demonstrated that NH\textsubscript{2} of pentapeptide (DFNKF or KLVFF) and HAuCl\textsubscript{4} with the help of halogen (I− or Cl−) in water at 60 °C. Moreover, Yang’s group [28] has demonstrated that NH\textsubscript{2} groups of dipeptides (PF) can interact and reduce Au3+ to form dipeptide-gold nanoparticle hybrid spheres in an aqueous solution at 60 °C. In close recent, tyrosine (Y) has been used to prepare high-aspect-ratio gold microwires (>500) in 2 M NaCl aqueous solution at 80 °C [29]. Although many novel and unique superstructures based on peptides and metal ions have been reported, the preparation process for forming hybrid peptides and metal ion nanoarchitectures still requires harsh conditions, including high temperatures, excess reducing agents, and complex procedures. Furthermore, there is still a lack of understanding about the regulation of peptide assembly by metal ions, as well as the effect of peptide sequence and metal ions on the structure and function of formed peptide nano-architectures. These challenges underscore the need for further research in this field to develop new synthesis methods for hybrid peptide and metal ion nanoarchitectures with improved properties while minimizing complexity.

Herein, a series of dipeptides with different positive and negative charges and functional groups including Fmoc-YA, Fmoc-YD, Fmoc-YK, Fmoc-YL, Fmoc-YR, and Fmoc-YW were designed to investigate the specific role of different peptide functional groups in their interaction with various metal ions (Au3+, Ag+ and Pt4+) to form hybrid nano-architectures under a mild condition (neither elevated temperatures nor reducing agents or chemical modification of peptides are required). This research aims to provide a comprehensive understanding of the molecular mechanisms involved in the formation of hybrid materials and may have important implications for the development of new strategies for designing nanomaterials with unique properties for various applications. As a proof of concept, the formed hybrid Au@Fmoc-YK and Au@Fmoc-YR NPs were found to have good conductivity and catalysis performance, which were further employed in the detection of glucose using a straightforward electrochemical method [30] (Scheme 1). In addition, Au@Fmoc-YR assemblies were used to detect plasma GSH content in tumor sites of patients with gastric carcinoma, which was much higher than that of healthy adults (3.39 ± 1.04 μM) [31], showing good potential application as early, metastatic, and recurrent cancers screening tool.

Preparation of spherical assemblies of Au@Fmoc-YK and Au@Fmoc-YR

100 μL 10 mM HAuCl\textsubscript{4} aqueous solution was mixed with 900 μL different concentrations of Fmoc-YK or Fmoc-YR aqueous solution, and

Scheme 1. Schematic illustration of the morphology transformation of assemblies based on dipeptides mediated by metal ions in an aqueous solution at room temperature and its application for glucose and GSH detection.
then the mixing solution was gently shaken for 1 min and then placed for 12 h at room temperature. The monodisperse spherical assemblies of Au@Fmoc-YK or Au@Fmoc-YR were obtained by centrifuging at 10,000 rpm for 5 min and then stored at 4 °C.

Exploration and analysis of factors that affect the formation of spherical assemblies of Au@Fmoc-YK

In common, temperature and concentration had an important influence on the formation of the assembly. In this paper, the temperature was set to 4 °C, 25 °C, 37 °C, 50 °C and 60 °C. The concentration of Fmoc-YK was set to 0.05 mM, 0.1 mM, 0.25 mM, 0.4 mM, 0.5 mM, and 1 mM. All the experiments were performed according to the process described above. The optimal condition: the temperature was set to R.T., the concentration of Fmoc-YK was set to 0.5 mM, and the concentration of HAuCl₄ was set to 10 mM.

The characterization of functional spherical assemblies of Au@Fmoc-YK

The open circuit potential of Fmoc-YK solution, HAuCl₄ solution, and the mixture solution of Fmoc-YK and HAuCl₄ were measured by using a CHI760 electrochemical work station employed with a modified glassy carbon electrode (GCE) as working electrode, a saturated Ag/AgCl electrode as reference electrode and the electrolytic solution was 0.5 M LiClO₄ in acetonitrile. 10 μL of the above solution was dropped on the surface of the glassy carbon electrode and dried in the air at room temperature. Then 10 μL of 5 wt% Nafion solution was dropped on the surface of the glassy carbon electrode and dried in the air at room temperature. The open circuit potential of the above solution was obtained from open circuit potential versus the time curve.

Detection of glucose

The electrochemical method was often used to detect the concentration of glucose in different samples. The glucose oxidase electrode was prepared according to literature reports [32] and the details were shown in supporting information. The charge transfer coefficient (α) and electron transfer rate constant (ks) were obtained from the linear relationship of peak current (Iₚ) vs scan rate (υ) and peak current potential (Eₚ) vs natural logarithm of scan rate (ln(υ)) according to previous researches [33–37]. The surface coverage concentration ([θ]θ) of glucose oxidase on GCE/PB/GOx/Au and active surface area of GCE/PB/GOx/Au (Ageo) were calculated by using CVs in 5 mM K₃[Fe(CN)₆] solution of 0.1 M KCl from −0.2 to 0.6 V (versus Ag/AgCl) with the scan rate of 50 mV s⁻¹ according to previous researches [34–36]. The amperometric response experiments were performed in 0.05 M PBS (pH 7.0) with the addition of a different volume of glucose solution or interference solution at an operating potential of −0.05 V.

Statistical analysis

Statistical analysis of data was performed using Origin software (2021, Electronic Arts Inc, USA). We assumed a normal distribution of data. A student t-test was applied to detect significant differences between the two experimental groups (with p < 0.05: *, p < 0.01: ** and p < 0.001: ***). The data for ΔΔ (652 nm) with different concentrations of GSH were presented as mean ± standard deviation of three independent experiments.

Results and discussion

Interaction of dipeptides with metal ions in an aqueous solution

Some peptides and proteins with certain functional groups can reduce mental ions to form ordered nanocomposite architectures [27–29,38–41]. Herein, a series of dipeptides (Fmoc-YA, Fmoc-YD, Fmoc-YK, Fmoc-YL, Fmoc-YR, and Fmoc-YW) were synthesized to identify the role of sequences and functional groups of peptides in metal ions reduction (Fig. 1). As described in the experimental section, the color of the mixed aqueous solution changed from light yellow to purple, indicating that Au NPs were formed due to a redox reaction between peptide and Au³⁺. These peptides (Fig. 1) show different zeta potentials in aqueous solution, for example, Fmoc-YA (−27.6 ± 2.1 mV), Fmoc-YL (−58.9 ± 4.1 mV), Fmoc-YD (−24.7 ± 1.2 mV) and Fmoc-YW (−27.6 ± 2.1 mV) give a negative value due to being rich in carboxyl and phenolic hydroxyl groups in contrast to those of Fmoc-YK (50.7 ± 3.6 mV) and Fmoc-YR (33.6 ± 5.8 mV) with abundant amino groups. The resulting Fmoc-YK and Fmoc-YR dipeptides self-assembled into uniform nanoparticles after mixing with HAuCl₄ (Fig. 2, Fig. 3a-d and Fig. S1), while Fmoc-YA, Fmoc-YD, Fmoc-YL, and Fmoc-YW formed amorphous structures (Fig. 2). However, we previously demonstrated that Fmoc-YA, Fmoc-YD, Fmoc-YL, and Fmoc-YR could self-assemble into nanofibers through noncovalent interactions in aqueous solution (Fig. 3a,c) [42–44].

To determine, which of the amino, phenolic hydroxyl, and sulfhydryl groups plays the main role in the formation of nanoparticles based on dipeptides and HAuCl₄, Fmoc-YK and its derivatives (Fmoc-K and Fmoc-K-OMe) were selected to study the effect of different groups. No products were observed in LC-MS when Fmoc-K or Fmoc-K-OMe were mixed with HAuCl₄ (Fig. 3e-j), demonstrating that amino and carboxyl groups are unable to reduce HAuCl₄ under mild conditions. Di-Fmoc-YK was found after mixing Fmoc-YK with HAuCl₄ (Fig. 3i, j and Fig. S2). Moreover, the formation of di-Fmoc-YK was supported by the relatively broad region and peak shift of the aromatic protons in the ¹H NMR spectrum compared with the Fmoc-YK monomer [41,45] (Fig. S3). Therefore, the phenolic hydroxyl group of tyrosine is likely responsible for the electron transfer redox reaction between Fmoc-YK and HAuCl₄ to form metal NPs and a phenolic hydroxyl dimer [29] (Fig. S3b).

Fmoc groups have been reported to endow dipeptides with hydrophobic interactions and the ability of self-assembly to form ordered nanoarchitectures [27,28], while amide groups enrich mental ions under the electrostatic attraction [28]. To explore differences of various dipeptides in assembly behavior and study the role of amide and fluorene methoxy carbonyl (Fmoc) groups in the formation of peptide nanospheres, different concentrations of Fmoc-YK, YK, and Fmoc-Y were mixed with HAuCl₄ under the same conditions. The SEM images of products (Fig. S4) indicated that YK and Fmoc-Y could not self-assemble into peptide nanospheres, unlike Fmoc-YK. Based on the aforementioned results, it was supposed that the phenolic hydroxyl served as reductant, and the amide or guanidine groups in Fmoc-YK or Fmoc-YR interacted with AuCl₄⁻ via electrostatic interactions reducing the electrostatic repulsion between oxidized peptides, thus benefitting peptide self-assembly into nanospheres stabilized Au NPs. We supposed that dipeptide sequences that met the following demands might be able to interact with HAuCl₄ to form monodisperse spherical assemblies. First,
the dipeptide could self-assemble to form an ordered structure. Second, the dipeptide had a reducing functional group. Third, the dipeptide could form Au NPs with a lattice distance of about 0.2 nm ascribed to {111} planes. The formation of Au NPs was strongly suggested by the high-resolution TEM image showed a lattice structure of about 16.1 nm (25 ± 3.0 nm) and well-dispersed nanospheres containing Au NPs. Gold NPs with a size of about 245.5 ± 27.2 nm (420), respectively, were observed within nanospheres. The new peak at 258 cm⁻¹ in the Raman spectrum might be assigned to the Au-O bond between Au and phenolic hydroxyl of tyrosine which facilitated the formation of nanospheres. The open circuit potential of Fmoc-YK and HAuCl₄ was given with a difference of about 0.2 V, explaining why a higher temperature or addition of reducing agents was not necessary to form uniform and dispersible Au@Fmoc-YK nanospheres. FTIR spectra of Fmoc-YK nanospheres exhibited characteristic absorption peaks of carboxyl groups (COOH) at 2951 cm⁻¹, which could be ascribed to interaction with Au ions. The corresponding peaks of carboxyl groups (COOH) at 2951 cm⁻¹ and 3065 cm⁻¹ did change, further demonstrating carboxyl groups didn’t participate in redox reaction and interaction with mental ions. In addition, peaks located at 1651 cm⁻¹ and 1612 cm⁻¹ could be ascribed to α-helix and β-sheet of Fmoc-YK fibers, respectively. However, the signal of those two secondary structures disappeared in the spectrum of Au@Fmoc-YK, strongly suggesting that morphology changes of assemblies from fibers to nanospheres.

Preparation and characterization of Au@Fmoc-YK and Au@Fmoc-YR

Positively charged peptides (Fmoc-YK and Fmoc-YR) form a uniform and well-dispersed nanospheres containing Au NPs. Gold NPs with a size of about 16.1 ± 3.0 nm (n = 20) were observed within nanospheres (Fig. S7a). The high-resolution TEM image showed a lattice structure of Au NPs with a lattice distance of about 0.2 nm ascribed to (111) planes of Au NPs [46] (Fig. S7b). Moreover, the absorption peak at 540 nm in the UV–Vis spectrum (Fig. S8) and EDS element mapping indicated the formation of Au NPs [45] (Fig. S7c-f). SEM images displayed good dispersibility and uniformity of Au@Fmoc-YK (Fig. S9) with a size of about 245.5 ± 27.2 nm (25 °C). To further investigate the effect of reaction parameters on the formation of nanocomposites, reaction temperatures were altered. Au@Fmoc-YK of various sizes were obtained at different temperatures, such as 82.6 ± 21.6 nm (4 °C), 245.5 ± 27.2 (25 °C), 89.2 ± 15.3 (37 °C) and 62.5 ± 11.2 nm (60 °C) (Fig. S9). At a HAuCl₄ concentration, the Au@Fmoc-YK tended to form bigger nanospheres that finally self-assembled into fibers (2 mM) because of excessive amounts of unoxidized Fmoc-YK molecules (Fig. S10).

The open circuit potential of Fmoc-YK and HAuCl₄ was given with a difference of about 0.2 V, explaining why a higher temperature or addition of reducing agents was not necessary to form uniform and dispersible Au@Fmoc-YK nanospheres (Fig. S5a). FTIR spectra of Fmoc-YK (long nanofibers) and Au@Fmoc-YK (nanospheres) were also observed (Fig. S5b, c). It was found that the stretching vibration of amines (NH) shifted from 3303 cm⁻¹ (Fmoc-YK) to 3396 cm⁻¹ (Au@Fmoc-YK), which could be ascribed to interaction with Au ions. The corresponding peaks of carboxyl groups (COOH) at 2951 cm⁻¹ and 3065 cm⁻¹ did change, further demonstrating carboxyl groups didn’t participate in redox reaction and interaction with mental ions. In addition, peaks located at 1651 cm⁻¹ and 1612 cm⁻¹ could be ascribed to α-helix and β-sheet of Fmoc-YK fibers, respectively. However, the signal of those two secondary structures disappeared in the spectrum of Au@Fmoc-YK, strongly suggesting that morphology changes of assemblies from fibers to nanospheres.

The formation of Au NPs was confirmed by XPS and XRD (Fig. 5). The open circuit potential of Fmoc-YK and HAuCl₄ was given with a difference of about 0.2 V, explaining why a higher temperature or addition of reducing agents was not necessary to form uniform and dispersible Au@Fmoc-YK nanospheres (Fig. S5a). FTIR spectra of Fmoc-YK (long nanofibers) and Au@Fmoc-YK (nanospheres) were also observed (Fig. S5b, c). It was found that the stretching vibration of amines (NH) shifted from 3303 cm⁻¹ (Fmoc-YK) to 3396 cm⁻¹ (Au@Fmoc-YK), which could be ascribed to interaction with Au ions. The corresponding peaks of carboxyl groups (COOH) at 2951 cm⁻¹ and 3065 cm⁻¹ did change, further demonstrating carboxyl groups didn’t participate in redox reaction and interaction with mental ions. In addition, peaks located at 1651 cm⁻¹ and 1612 cm⁻¹ could be ascribed to α-helix and β-sheet of Fmoc-YK fibers, respectively. However, the signal of those two secondary structures disappeared in the spectrum of Au@Fmoc-YK, strongly suggesting that morphology changes of assemblies from fibers to nanospheres. Eight well-resolved diffraction peaks were observed for Au@Fmoc-YK and 20 was 38.16, 44.36, 64.64, 77.62, 81.68, 98.34, 111.04 and 115.22°, which corresponded to the typical face-centered cubic (fcc) Au crystal planes of (111), (200), (220), (311), (222), (400), (331) and (420), respectively [49] (Fig. 5e). The new peak at 258 cm⁻¹ in the Raman spectrum might be assigned to the Au-O bond between Au and phenolic hydroxyl of tyrosine which facilitated the formation of nanosphere assemblies [50] (Fig. 5f).

Peptide nanospheres derived from Fmoc-YR were also characterized in detail. Fmoc-YR was self-assembled into fibers in an aqueous solution, similar to Fmoc-YK (Fig. 3a, c). Then, monodisperse nanospheres (denoted as Au@Fmoc-YR) were observed after mixing Fmoc-YR with...
HAuCl₄ (Fig. 2 and Fig. 3a-d). In the FTIR spectrum of Au@Fmoc-YR, the peak of β-sheet (1625 cm⁻¹) and α-helix (1654 cm⁻¹) disappeared, indicating the morphology changed from nanofibers to nanospheres. Moreover, the stretching vibration peak of amines (NH) and hydroxyl of a carboxyl group (COOH) showed similar behavior to that of Au@Fmoc-YK [47, 48] (Fig. S11a, b). XRD and XPS spectra confirmed the formation of Au NPs, which was consistent with the results of Au@Fmoc-YK [46, 49] (Fig. S11c, d). Meanwhile, the ¹H NMR of Au@Fmoc-YR had a similar change to that of Au@Fmoc-YK [41, 45] (Fig. S12). The evolution of Au@Fmoc-YR after the addition of HAuCl₄ during 48 h aging (Fig. S13), showed that the nanospheres gradually grow and form uniform and dispersible particles with a size of about 200 nm. In particular, Au@Fmoc-YR could be fabricated on a large scale of 15 and 50 mL (Fig. S14). Herein, we demonstrated a facile method to prepare order short peptide nanoarchitectures in an aqueous solution at mild conditions. No external reducing agents, high temperature, or a trace amount of organic solvent agent was required compared with other methods [27–29, 38–41].

Electrochemical characterization of modified glassy carbon electrode (GCE)

Notably, no reduction peak was observed for the GCE within the range of −0.1 to +0.1 V (Fig. 6a). In contrast, both the GCE/PB and GCE/PB/GOx/Au systems exhibited two pairs of redox peaks spanning from −0.4 V to +1.2 V, indicating the successful deposition of the PB film onto the surface of the GCE. The reduction peak at approximately +0.1 V could be ascribed to the reduction peak of H₂O₂, consistent with earlier results [40].

Cyclic voltammograms (CVs) (Fig. 6b) were employed to monitor the electrochemical behavior of GCE and modified GCE. The GCE exhibited no significant current signal (Fig. 6b), whereas the GCE modified with Prussian Blue (GCE/PB) displayed a pair of redox current peaks at approximately +0.2 V. The molecular structures of the compounds of PW and PB had been reported previously (Fig. S15). Upon immobilizing glucose oxidase (GOx) and Au@Fmoc-YR on the surface of GCE/PB, both the cathodic and anodic peak currents decreased compared with
that of GCE/PB. This decrease suggests that the presence of the PB film, along with GOx and Au@Fmoc-YR, on the surface of GCE/PB hinders electron transfer [40] (Fig. 6b).

The electrochemical impedance spectroscopy (EIS) was further used to value the impedance change of the electrode surface after the modification (Fig. 6c). For bare GCE, a typical EIS spectrum consisted of a small semicircle (Ret = 150 Ω) was observed. As the surface of GCE was modified with a PB film and Au@Fmoc-YK alongwith GOx in turn, the Ret value of GCE/PB and GCE/PB/GOx/Au increased to about 300 Ω and 400 Ω, indicating Au@Fmoc-YK and GOx had been successfully immobilized on the surface of GCE/PB.

Quantitative detection of glucose as a biosensor

To assess the performance of GCE/PB/GOx/Au for glucose detection, cyclic voltammograms (CVs) were conducted on GCE/PB with different modifications. Upon the modification of Au@Fmoc-YR on the surface of GCE/PB (GCE/PB/Au), an oxidation peak current of 50 μA was observed, which can be attributed to the excellent conductivity of Au NPs. This finding was consistent with previous studies [40] (Fig. 6d). Conversely, when GCE/PB was modified with GOx (GCE/PB/GOx), the electrode exhibited a higher oxidation peak current compared to GCE/PB/Au, reaching 90 μA. Moreover, when both Au@Fmoc-YR and GOx were deposited on the surface of GCE/PB, a significantly higher oxidation peak current of 135 μA was observed due to the excellent conductivity of the biocompatible Au@Fmoc-YR.

The influence of scan rates on the voltammetric response of glucose was also investigated [32,35]. The CV data of GCE/PB/GOx/Au at various scan rates ranging from 0.01 to 0.3 V s⁻¹ (Fig. 6e), revealed that the redox peak currents and peak-to-peak separation increased with increasing scan rate. The linear relationships were established with two linear regression equations as \(I_{pa} (\mu A) = 243.85 \nu (V \cdot s^{-1}) + 4.44 \) (\(R^2 = 0.988 \)) and \(I_{pc} (\mu A) = -161.84 \nu (V \cdot s^{-1}) - 1.79 \) (\(R^2 = 0.997 \)) (Fig. 6f). The anodic and cathodic peak potentials were linearly related to the logarithm of scan rates (ν) in the range from 0.18 to 0.3 V s⁻¹ with the slope of 2.3RT/(1-α) nF and -2.3RT/αnF according to Laviron theory [35] (Fig. 6g). The charge transfer coefficient (α) was calculated to about 0.599, thus, the electron transfer rate constant (ks) derived from
Fig. 4. The results of molecular dynamics simulations. a) The radial distribution function of the group of Fmoc, O-Au, and N–Cl. b) The molecular stacking mode between Fmoc-YK and HAuCl₄ in the peptide nanospheres. There is a strong coupling between positive N⁺ and negative Cl⁻. Red O, blue N, green Cl, pink Au.

Fig. 5. The spectral properties of Fmoc-YK and Au@Fmoc-YK. a) The open circuit potential of Fmoc-YK, HAuCl₄, and the mixture of Fmoc-YK, HAuCl₄. b-c) The FTIR spectrum of Fmoc-YK and Au@Fmoc-YK. d) The XPS spectrum of Au@Fmoc-YK. e) The XRD spectrum of Au@Fmoc-YK. f) The Raman spectrum of Au@Fmoc-YK.
Performance comparison of various electrodes modified with GOx for the detection of glucose.

- Glucose in pH 6.8 PBS with different scan rates at GCE/PB/Gox/Au NPs.
- and GCE modified with PB and GOx in 0.10 M KCl solution buffered with 0.05 M PBS (pH 7.0), scan rate: 50 mV s⁻¹ was supported by the higher oxidation peak current in CVs (Fig. 6)

The surface coverage concentration (Γ*) of electroactive GOx at the modified electrode was calculated to be approximately 15.23 × 10⁻⁹ mol cm⁻² using the equation [34,36]. The real active surface area (A) of GCE/PB/GOx/Au was obtained by cyclic voltammetry at 5 mM K₃[Fe(CN)₆] (1:1) for the monolayer of GOx on a bare electrode surface [61] and other glucose sensors such as GCNT/Gox/GAD composite film on GCE [33] (3.88 × 10⁻⁹ mol cm⁻²) and GOx-FF-rGO/GCE (2.33 × 10⁻⁹ mol cm⁻²), indicating the high surface-to-volume ratio and good dispersibility of Au@Fmoc-YR nanospheres facilitated the immobilization of the Lavidorn equation.

As the scan rate was 0.3 V s⁻¹, ks was calculated to be 2.08 s⁻¹, While the corresponding value was only about 0.69 s⁻¹ for GCE/PB/GOx, indicating Au@Fmoc-YR modification can accelerate the electron transfer rate and improve the detection sensitivity for glucose, which was supported by the higher oxidation peak current in CVs (Fig. 6d).

The chronoamperometric responses of the glucose sensors (GCE/PB/GOx/Au) to h) different concentration glucose solutions and i) glucose and different interference in PBS, the inserted graph was the linear relationship between glucose concentration and the change of peak current.

Table 1
Performance comparison of various electrodes modified with GOx for the detection of glucose.

<table>
<thead>
<tr>
<th>GOx modified electrodes</th>
<th>Eₒpd(V)</th>
<th>Γ* (mol cm⁻²)</th>
<th>ks (s⁻¹)</th>
<th>Liner range</th>
<th>Sensitivity</th>
<th>Detection limit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCE/CNT/Au/PDDA-GOx</td>
<td>-0.3</td>
<td>4.91 × 10⁻¹⁰</td>
<td>1.01</td>
<td>0.5-5 mM</td>
<td>3.96 mA M⁻¹ cm⁻²</td>
<td>–</td>
<td>[51]</td>
</tr>
<tr>
<td>GNP/MWCNTs/GOx</td>
<td>-0.2</td>
<td>–</td>
<td>–</td>
<td>up to 9 mM</td>
<td>7.3 μA mm⁻¹ cm⁻²</td>
<td>0.128</td>
<td>[52]</td>
</tr>
<tr>
<td>GCE/CNT/PtBGOx</td>
<td>-0.1</td>
<td>–</td>
<td>–</td>
<td>1.7 mM</td>
<td>14.5 μA mm⁻¹ cm⁻²</td>
<td>–</td>
<td>[53]</td>
</tr>
<tr>
<td>GOx/NiPdO, NPs/CHIT</td>
<td>+0.4</td>
<td>2.95 × 10⁻¹⁰</td>
<td>5.0</td>
<td>0.15-10 mM</td>
<td>1.92 μA mm⁻¹ cm⁻²</td>
<td>0.08</td>
<td>[54]</td>
</tr>
<tr>
<td>GCNT/GOx/GAD</td>
<td>+0.44</td>
<td>3.88 × 10⁻⁹</td>
<td>1.08</td>
<td>6.30-30 mM</td>
<td>2.47 μA mm⁻¹ cm⁻²</td>
<td>–</td>
<td>[33]</td>
</tr>
<tr>
<td>ECGr-GOx/GCE</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.0-18.0 mM</td>
<td>7 μA mm⁻¹ cm⁻²</td>
<td>0.02</td>
<td>[55]</td>
</tr>
<tr>
<td>ERGO-SDS-GOx/GCE</td>
<td>–</td>
<td>2.62 × 10⁻⁹</td>
<td>4.1</td>
<td>1.0-8.0 mM</td>
<td>1.13 μA mm⁻¹ cm⁻²</td>
<td>0.041</td>
<td>[56]</td>
</tr>
<tr>
<td>PPy-rGO-GOx/GCE</td>
<td>+0.9</td>
<td>–</td>
<td>–</td>
<td>0.5-30.0 mM</td>
<td>333 nA mm⁻¹ cm⁻²</td>
<td>–</td>
<td>[57]</td>
</tr>
<tr>
<td>ECGr-GOx/GCE</td>
<td>+0.44</td>
<td>1.22 × 10⁻¹⁰</td>
<td>4.8</td>
<td>0.1-27 mM</td>
<td>1.83 μA mm⁻¹ cm⁻²</td>
<td>–</td>
<td>[58]</td>
</tr>
<tr>
<td>GOx-GOx/ERCGr</td>
<td>–</td>
<td>1.94 × 10⁻⁹</td>
<td>1.56</td>
<td>0.05-0.3 mM</td>
<td>111.6 μA mm⁻¹ cm⁻²</td>
<td>0.01</td>
<td>[59]</td>
</tr>
<tr>
<td>GOx-GOx/GCE</td>
<td>-0.42</td>
<td>1.8 × 10⁻⁹</td>
<td>1.12</td>
<td>0.005-1.27 mM</td>
<td>85 nA mm⁻¹ cm⁻²</td>
<td>0.0017</td>
<td>[60]</td>
</tr>
<tr>
<td>GCE/PB/GOx/Au</td>
<td>-0.05</td>
<td>15.23 × 10⁻⁹</td>
<td>2.08</td>
<td>0.08-1.2 mM</td>
<td>1.01 μA mm⁻¹ cm⁻²</td>
<td>0.038</td>
<td>This work</td>
</tr>
</tbody>
</table>
of GOx on electrode surfaces. For comparison, various glucose sensors with different electrochemical parameters are listed in Table 1.

To determine the detection limit of glucose, the amperometric i-t curve at GCE/PB/GOx/Au electrode in 0.5 M PBS (pH 6.8) with the successive addition of glucose was recorded (Fig. 6h). With the addition of glucose, peak currents gradually increased (Fig. 6h) with a linear relationship with the glucose concentrations in the range from 0 to 1.2 mM. The detection limit was calculated to be about 105 nA mM$^{-1}$ from the slope of the standard curve (I_{pa} (nA) = 0.1 + 0.105c (10$^{-6}$ M), R2 = 0.9971). The active surface area of the electrode was considered to be 0.1075 cm2, and the detection sensitivity was about 1011 nA⋅mM$^{-1}$⋅cm$^{-2}$ (Fig. 6h, insert image). For GCE/PB/GOx, the detection sensitivity was calculated to be 32 nA mM$^{-1}$ from the slope of the standard curve (I_{pa} (nA) = 1.31 + 0.0319c (10$^{-6}$ M), R2 = 0.9971) and the detection sensitivity was 387 nA⋅mM$^{-1}$⋅cm$^{-2}$ when the active surface area of the electrode (0.0833 cm2) was considered (Fig. S16). The detection limitation (DL) of glucose for the GCE/PB/GOx/Au electrode was calculated to be 38 μM from the expression of DL = 3SD/sensitivity (where SD was the estimated standard deviation for the points used to establish a standard curve and the sensitivity was the slope of the standard curve).

The selectivity of the GCE/PB/GOx/Au electrode for detection glucose was assessed by employing an amperometric i-t curve in 0.05 M PBS (pH 6.8). Interfering substances commonly found in biological fluids, namely ascorbic acid (AA), pyruvic acid (PA), and uric acid (UA), were chosen for evaluation. It was observed that both AA and UA did not impact the detection of glucose, while PA exhibited a slight interference, potentially due to the relatively low applied potential (−0.05 V) of PA (Fig. 6i). This finding strongly suggests that the GCE/PB/GOx/Au electrode exhibits excellent selectivity for glucose detection in biological fluids. Hence, the GCE/PB/GOx/Au glucose sensor holds significant potential for practical applications.

Detection of glutathione (GSH) in cancer patients’ blood samples

Organic-inorganic hybrid nanomaterials can achieve similar activity as enzymes [62,63]. Herein, Au@Fmoc-YR was taken to mimic the activity of an oxide enzyme that can oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to obtain TMB$^\text{ox}$ with the color change from colorless to blue (652 nm). Meanwhile, TMB$^\text{ox}$ can be reduced further in the presence of GSH and converted to colorless TMB again [63] (Fig. 7a and Fig. S17a). Based on these redox reactions and the color changes, a simple

![Fig. 7. The detection of GSH. a) TMB-based redox reaction for the detection of GSH. b) UV–Vis absorption spectra of TMB in the absence and presence of GSH. c) UV–vis absorption spectra of the proposed method in the absence and presence of different concentrations of GSH. d) Plots of ΔA (652 nm) with different concentrations of GSH. e) Selectivity of the proposed method for GSH against other amino acids or glucose.](image-url)
the colorimetric method of detecting GSH was proposed [64,65]. The absorbance at 652 nm gradually decreased after the addition of GSH, and the change of absorbance at 652 nm (ΔA) was proportional to the GSH concentrations (ΔA0.0018 = 0.00816 c (μM), R2 = 0.9938, Fig. 7c) with the increase of GSH addition. The linear range of detecting GSH was determined to be 0.15–31 μM and the LOD (limit of detection) was about 0.005 μM (Fig. 7d), which was determined by using the 3σ method and the number of measurements of the blank was 20 times. The selectivity and specificity of the method detection are as important as the detection sensitivity. So different kinds of amino acids including G, S, and H were used in interference experiments (Fig. 7e). Interference factors except Cys-caused only slight absorbance changes at 652 nm. More dipeptides and tripeptides were also used as interference factors for the comparison of GSH (Fig. S17b). Only a slight change of absorbance at 652 nm could be observed, indicating good selectivity and specificity of detecting GSH of our method even with the presence of interference factors whether it was amino acids or dipeptides or tripeptides (Fig. 7e and Fig. S17b).

To determine the practicability of the method, blood samples of gastric cancer patients were investigated. The blood samples were pre-treated with trichloroacetic acid to remove serum proteins and diluted with HAC-NaAc buffer solution [63]. The concentration of GSH in three patients in the blood was 293 ± 39 μM, 300 ± 13 μM, and 622 ± 33 μM, and therefore higher than in the blood sample of healthy individuals [62,63,66]. The abnormal GSH content in blood might be associated with diseases such as tumors, and GSH content might be used as a potential test indicator for early disease screening. It should be noted that few samples were used in this experiment, and more samples need to be tested to obtain meaningful conclusions. A standard addition experiment was performed to reflect the accuracy of test results as different concentrations of GSH were added into the blood samples. Standard recovery rates between 92.6% and 106% in the experiments including three blood samples (Table S1) showed good detection accuracy for real samples. The colorimetric method described here helps to determine whether the GSH content in blood was in the normal range through simple color changes, which was meaningful for the rapid screening of samples, and relies on relatively simple testing conditions. The performance of various analytical methods for GSH determination was compared (Table S2). The wide detection range and sensitive detection limit compare favorably to the reported previous methods (Table S2).

Conclusions

This study presents a method for preparing functional hybrid nanoarchitectures using sequence-dependent dipeptides (Fmoc-YK and Fmoc-YR) and metal ions (Au3+, Ag+, and Pt4+) under mild and aqueous conditions, without the need for reducing agents or additional chemical modification of peptides. The role of different functional groups of dipeptides and the interaction between the dipeptides and metal ions are described and demonstrated through experimental and molecular dynamics simulation results. These findings indicate that the phenolic hydroxyl of tyrosine is the primary group responsible for reducing metal ions under mild conditions, while positively charged amino or guanidine groups promote the enrichment of Au3+ around peptides and facilitate the formation of Au NPs/short peptide nanospheres by electrostatic force. Intriguingly, Ag+ and Pt4+ also exhibit similar behavior to Au3+ and can form excellent conductive hybrid peptide nanoarchitectures with good catalytic performance. As proof, Au@Fmoc-YR nanoarchitectures with high surface-to-volume ratio and good dispersibility exhibit enhanced electron transfer on the surface of electrodes, resulting in a significant increase in the rate constant (ks increased from 0.69 to 2.08 s⁻¹). This result demonstrates the potential of these hybrid peptide nanoarchitectures for detecting glucose in different body physiological fluids. Au@Fmoc-YR also shows good catalytic oxidation ability and is used for detecting plasma GSH content in tumor sites of patients with gastric carcinoma, showing good potential application as an early, metastatic, and recurrent cancer screening tool.

Supporting Information

Supporting Information is available and including: additional experimental details on the catalytic reduction of p-nitrophenol into p-aminophenol, Fig.s S1–S21, and Tables S1–S3.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation (91729301 and 81630103) and the non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2020-JKCS-004). Fundamental Research Funds for the Central Universities (JUSRRS1712B). The Beijing Municipal Natural Science Foundation (grant number. 7212206). The Max Planck Society International Partner Group Program. P. H. S. thanks the Max-Planck Society for their generous support.

Supplementary materials

References

