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Repetition appears to be part of error correction and action preparation in all domains that involve producing
an action sequence. The present work contends that the ubiquity of repetition is due to its role in resolving a
problem inherent to planning and retrieval of action sequences: the Problem of Retrieval. Repetitions occur
when the production to perform next is not activated enough to be executed. Repetitions are helpful in this
situation because the repeated action sequence activates the likely continuation. We model a corpus of
natural speech using a recurrent network, with words as units of production. We show that repeated material
makes upcoming words more predictable, especially when more than one word is repeated. Speakers are
argued to produce multiword repetitions by using backward associations to reactivate recently produced
words. The existence of multiword repetitions means that speakers must decide where to reinitiate execution
from. We show that production restarts from words that have seldom occurred in a predictive preceding-
word context and have often occurred utterance-initially. These results are explained by competition
between preceding-context and top-down cues over the course of language learning. The proposed theory
improves on structural accounts of repetition disfluencies, and integrates repetition disfluencies in language
production with repetitions observed in other domains of skilled action.
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When we type repeating yourself is into Google, the likely
continuations indicate that repetition is thought to be a sign of
disorder and disease, anything from dementia and Alzheimer’s to
obsessive-compulsive disorder and even alcoholism. Nonetheless,
everyday action involves extensive repetition. For example, when
experiencing a speech error, one invariably repeats the entire word
containing the error, and often more than that; for example, I like to
listen to the newsp− : : : the radio in the morning. Even if the error is
localized to the end of the word, as in hypothethith, the speaker
always restarts the word from the beginning to correct it. Repetition

of pre-error material is also part of error correction outside of
language production. For example, a competitive dancer who makes
a mistake in their routine is likely to restart the routine from the
beginning rather than from the location of the error. Repetition
occurs in the absence of error as well, as the agent is trying to plan or
retrieve the next action. Consider an athlete trying to complete an
action that requires significant planning and retrieval time, such as a
basketball free throw, a golf putt, or a tennis serve. In all such cases,
some repetitive behavior—a pre-performance routine—is usually
performed prior to each attempt (see Dömötör et al., 2016, for a
summary). Pre-performance routines are especially likely, and
particularly prolonged, when the attempted action is difficult.
Similarly, in speech, repetitions are common before difficult-to-
access words (Harmon & Kapatsinski, 2015). These types of
repetitions are usually called repetition disfluencies, illustrated in
(1)–(3). In these examples, the brackets isolate the repetition and the
plus sign marks the interruption point. The words preceding the
interruption point are indexed with negative numbers indicating
distance from the interruption point, while the word following the
interruption point is indexed with 1.

1. But it’s really−3 a−2 [big−1, + big,] decision1 as to, you
know, when to do it.

2. It was just a−3 [change−2 of−1, + change of] location1.

3. I’m doing basically system design work and, uh, implemen-
tation work [for−3 the−2 speech−1, + for the speech] group1.

The present article proposes that repetition of this kind is func-
tional: rather than being mere perseveration error, it helps solve what
we term the Problem of Retrieval. That is, repetition helps access
upcoming action(s) by reactivating one or more preceding words.
The proposed theory answers several questions about repetition
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disfluencies: why do they occur, why they sometimes involve repeat-
ing more than one word, as in (2)–(3), and finally, what determines
how many words are repeated: why does the speaker in (1) reinitiate
production from wordw−1 while the one in (3) reinitiates it from word
w−3?We suggest that a multiword repetition is even more helpful than
a single-word repetition for retrieving the upcoming word. However, a
multiword repetition requires reactivation of recently produced words
to execute. We implement these retrieval and reactivation processes in
a computational model that captures the effects of linguistic experience
on a word’s accessibility in context.
The remainder of this article is organized as follows. We first

present an overview of the modeling approach. We then present the
three hypotheses that constitute our theory. The Facilitation
Hypothesismaintains that repetitions facilitate accessing the upcom-
ing item. This hypothesis relies on the assumption that words are
activated by predictive preceding contexts. The Reactivation
Hypothesis specifies the process by which words preceding the
interruption point are reactivated and repeated. It claims that previ-
ously produced words must be reactivated to be re-produced, and
that this reactivation process uses the words that follow as cues. The
Initiation Hypothesis addresses the mechanism responsible for the
speaker’s choice of word from which to restart speech. It claims
that, after an interruption, speech is restarted from words that
have occurred relatively unexpectedly in the speaker’s prior experi-
ence. The Initiation Hypothesis attributes this effect to Cue Com-
petition between preceding context and top-down cues: initiation
from words that tend to occur in predictive preceding-word contexts
is relatively unlikely because such words have a weaker association
with top-down cues. We then show how the three hypotheses work
together to account for repetition behavior above and beyond
previously proposed explanations. We conclude by discussing
how the proposed theory can explain crosslinguistic variability in
repetition behavior and outlining a number of novel predictions that
could be tested in other domains of skilled action.

Modeling Approach

We trained a recurrent neural network (van Schijndel & Linzen,
2018) on Switchboard (Godfrey et al., 1992), a 1.7-million-word
corpus of American English conversations that is the source of our
disfluency data. Here, we use the long short-term memory (LSTM)
variant of the recurrent network architecture (Hochreiter &
Schmidhuber, 1997) with continuous updating of weights, as im-
plemented in pytorch (van Schijndel & Linzen, 2018).
Recurrent neural networks embody the hypothesis that words are

activated by preceding contexts that predict their occurrence. For this
reason, recurrent networks have been widely used as models of
language processing (Chang et al., 2006; Dell et al., 1993; Elman,
1990) and action sequencing (Botvinick & Plaut, 2004, 2006; Cooper
et al., 2014). They produce state-of-the-art results in capturing
between-word dependencies in sentence processing (e.g., Gulordava
et al., 2018; Linzen et al., 2016; van Schijndel & Linzen, 2018) and
the magnitude of associative priming between co-occurring words
(Moss et al., 1994). In work on disfluencies, Dammalapati et al.
(2019) have recently shown that recurrent networks appear to capture
the severity of the Problem of Retrieval a word poses in context, by
predicting how likely a disfluency is to occur before a word.
We take these results to suggest that recurrent networks can capture

the strength with which a word is activated by a particular context. In

such a network, a word is activated by a context to the extent that the
context predicts the word’s occurrence. This assumption is central to
the proposed theory of repetition and retrieval. The Facilitation
Hypothesis assumes that words are activated by predictive preceding
contexts. The Reactivation Hypothesis proposes that words are re-
activated using following contexts. The InitiationHypothesis proposes
that speakers tend not to restart production from words that occur in
predictive preceding-word contexts. Therefore, testing the three
hypotheses that constitute the proposed theory relies on quantifying
the degree to which words are activated by a particular context.

The Facilitation Hypothesis: Repetitions Help Solve
the Problem of Retrieval

At least since Lounsbury (1954) and Goldman-Eisler (1957, 1958,
1968), disfluencies have been argued to buy the speaker planning
time. That is, disfluencies occur when the speaker is having trouble
deciding what to say next. The most common source of difficulty
appears to be lexical retrieval (Hieke, 1981). Thus, disfluencies tend
to occur before the kinds of words that are especially difficult to
retrieve: Words that are infrequent or low-probability in the current
context (Beattie & Butterworth, 1979; Dammalapati et al., 2019;
Goldman-Eisler, 1957, 1958, 1968), and words that have many
semantic competitors (Harmon & Kapatsinski, 2015; Hartsuiker
& Notebaert, 2010; Schachter et al., 1991; Schnadt, 2009). This
pattern is so robust in adult speech that listeners learn to use it to
guide comprehension, starting as early as age 2 (Kidd et al., 2011).

Branigan et al. (1999) suggest that repetitions are particularly likely
to be triggered by the need to buy time while remaining committed to
the current speech plan, whereas other disfluencies aremore likely to be
triggered by the need to alter the current plan. Thus, repetition appears
to occur when the speaker is having trouble retrieving the next word
from their mental lexicon but believes that the word they are trying to
retrieve is appropriate to the current context. In other words, the speaker
is facing something resembling a tip-of-the-tongue state (as defined by
Brown, 1991): The correct word is partially activated by the production
plan but not strongly enough to be selected for execution. This is the
Problem of Retrieval. In this article, we argue that repetitions solve the
Problem of Retrieval, resolving the tip-of-the-tongue state. We call this
proposal the Facilitation Hypothesis.

According to the Facilitation Hypothesis, repetition helps the in-
tended continuationwin the race by cueingwords that tend to follow the
one(s) that the speaker has just said. This hypothesis relies on three
assumptions regarding lexical processing: (a) co-occurring words are
associated with each other, (b) repeating a word provides it with
additional activation, and (c) activating a word results in activation
of its associates (e.g., Moss et al., 1994). These assumptions appear
relatively uncontroversial. We know that repetition boosts activation of
the repeated word because speakers show both identity and homophone
priming in production. In particular, producing a form makes it more
likely that it would be produced again in the future (Barry et al., 2001;
Burke et al., 2004; Ferreira & Griffin, 2003), and wordforms are
articulated more quickly when they have been recently produced
(Shields & Balota, 1991; Turnbull, 2019). We know that predictive
preceding contexts activate the associated words because predictable
words are easier to access, resulting in greater fluency (Goldman-Eisler,
1957, 1958) and shorter articulation duration (Turnbull, 2019).

Given these three assumptions, repetition of a word should provide
associated words with additional activation, making them easier to

REPETITION AND RETRIEVAL IN SKILLED ACTION 1113

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



access. Since speakers do not usually produce sequences of unrelated,
unassociated words (or else they would become associated), repetition
should then be generally helpful for solving the Problem of Retrieval.
However, because repetitions tend to precede words of low predictabil-
ity given the preceding context (Dammalapati et al., 2019; Goldman-
Eisler, 1957, 1958), onemayworry that repeating the preceding context
would be unhelpful specifically where it tends to occur. That is, the
repeated preceding context might cue highly predictable continuations,
exactly those which are unlikely to be intended by the speaker while
facing a retrieval problem. If so, repeating this context would make the
intended upcoming words less accessible, contradicting the Facilitation
Hypothesis. In this section, we test this possibility by investigating
whether the repeated context for an upcoming word, w1, helps the
network predict its occurrence.
The Facilitation Hypothesis makes three predictions about behav-

ior of the LSTM network. First, the network should predictw1 better
if it has access to the identity of the preceding word, w−1. If this is
true, then repeating even one word would be helpful to retrieve the
partially activated w1 relative to other words. Second a longer
context should help the network predict w1. If this is true, then
repeating more words would generally be more helpful for solving
the Problem of Retrieval. We expect this to be the case even for the
relatively unpredictable words that follow disfluencies. This greater
predictiveness of longer contexts is one motivation for the existence
of multiword repetitions, providing an explanation for why the
speaker would go to the trouble of re-producing the past. Third, we
test whether there is some degree of alignment between how many
words are repeated and how many words would be most helpful to
repeat. The existence of such an alignment would suggest that
whatever mechanisms lead the speaker to repeat a certain number
of words result—at least in English—in repetitions that are particu-
larly helpful for solving the Problem of Retrieval. We return to the
question of whether this alignment plays a causal role in determining
the number of words repeated later in the article, where we pit it
against other influences on the process in a regression model.

Method

Our simulations used the specific LSTM architecture and parameter
settings previously used by van Schijndel and Linzen (2018) to model
sentence processing in reading. The model produces an output activa-
tion for every word in the corpus given the preceding context. Output
activations were transformed into choice probabilities of words given
contexts using the softmax function. Probabilities were then trans-
formed into surprisal values (Information content, denoted by I), where
I(w|context) = −log(p(w|context)). Surprisal is the amount of infor-
mation (in bits) about the identity of a word gained by observing the
word in context (Chater, 1996; Levy, 2008), that is, how unexpected
the word’s occurrence is to the network after the particular preceding
context. We predict that adding words to the preceding context
available to predict w1 would reduce the network’s surprisal at w1.
We refer to the difference in surprisal at w1 given a shorter context
minus a longer context as relative surprisal or gain in predictability from
retrieving the word that distinguishes the two contexts. For example,
relative surprisal of w−2w−1 vs. w−1 is defined as I(w1|w−1) − I(w1|
w−2w−1). Greater relative surprisal means that the longer context is
much more predictive than the corresponding shorter context.
As in van Schijndel and Linzen (2018), we used two LSTM layers

with 200 hidden units in each, a learning rate multiplier for the

gradient equal to 20, a cross-entropy loss function, 40 as the
maximum number of training epochs with training stopping if
loss remains constant for three consecutive epochs, 20% dropout
during training, and 35 words as the context length to backpropagate
error. We ran 10 models initialized with different random seeds and
different order of corpus sentences in training. Correlations between
the surprisal weights of these models given a context were high
(mean r = .94; range: .88–.95), showing that the results are robust to
these sources of random variance. We selected the model with the
default random seed and the original order of corpus sentences,
which had an average mean correlation to the others (mean r = .94).

The corpus was fed to the model word by word, with utterance
boundaries marked by a special start symbol. The model generated a
surprisal value for each word it encountered. The repetition disfluency
contexts were extracted from Switchboard and were used to test the
model’s ability to predict the words that follow repetition disfluencies.
In testing the model, wemanipulated the length of the context available
to the model to predict each word, that is, whether the model was
presentedwith no precedingwords, one precedingword, two preceding
words, or three preceding words. If repeated units are predictive of
upcoming words, we expect surprisal for words following a disfluency
to decrease with increasing context length. Also, of interest is whether
the predictiveness of a two-word or three-word context relative to a
shorter context correlates with how many words the speaker actually
repeats. This allowed us to observe the correlation between the number
of words repeated by the speaker and how much a repetition of that
length would reduce surprisal compared to a shorter repetition.

We considered two measures of surprisal: Simple surprisal of the
word that follows a disfluency (w1) given the preceding context, and
the difference in surprisal between w1 and its nearest semantic
competitor given context. We defined nearest competitor using Latent
Semantic Analysis (LSA; Landauer & Dumais, 1997; as implemented
in the lsa package in R; Wild, 2015), with “documents” defined as
conversations from the corpus. LSA performs a principal components
analysis of the word-by-document matrix, and then uses the resulting
principal components as dimensions of a similarity space. Words are
similar if they tend to occur in the same documents or if they tend to
co-occur with the same words. The crucial property of LSA for the
present study is that it is a bag-of-wordsmodel that does not take into
account word order or distance between words in a document. It
therefore forms a valid baseline to investigate the importance of adding
associative contextual cues. More recent models add information
about the local context to semantic representations, making it difficult
to identify an independent contribution of contextual information
(e.g., Aina et al., 2019; Boleda, 2020). We also coded whether the
nearest semantic competitor matched w1 in syntactic category.1

Database

One-, two-, and three-word repetitions were retrieved from the
Switchboard Corpus using Python regular expressions. The same

1 LSA semantic similarities often don’t match human intuitions. For this
reason, we performed supplementary analyses in which we coded whether
the nearest semantic competitor assigned by the LSA appeared to be strongly
related to w1 in meaning, and removed cases where this was not the case. The
coding was blind to how many words were repeated, and was performed
prior to analyzing the data. As reported in the next footnote, the results were
virtually identical to the results reported in the text for semantic competitors
matching w1’s syntactic category.
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database of disfluencies was used for all analyses in the present article.
Therefore, disfluencies needed to meet a relatively stringent set of
criteria to be included. We excluded one-word repetitions that started
within two words of the preceding clause boundary and two-word
repetitions that started within one word of the preceding clause bound-
ary. Repetition disfluencies do not span clause boundaries, so this
exclusion ensured that the speaker always had the option to produce a
longer repetition than the one they actually produced, and thatmore than
one word was available to predict the upcoming word. Complex
disfluencies, that is, cases in which other restarts and repetitions
immediately preceded or followed the repetition disfluency, as well
as abandonments, were also excluded. Finally, we removed instances
where the preceding context contained two-word sequences tagged in
the corpus as discourse markers such as I think, I guess, and you know
because these may function as single words. Speech was never restarted
from inside such a unit, just as there are no restarts from word-internal
locations. An additional reason to exclude discourse markers is that they
may themselves function to buy time for planning upcoming speech,
whichmakes the resulting utterance a complex disfluency. Note that our
results would be stronger if theywere included in the dataset. Thus, their
exclusion is a conservative choice given our hypotheses. We also
removed utterances for which we did not have duration information.
The final sample included we arrived at 2,988 one-word repetitions,
1,160 two-word repetitions, and 294 three-word repetitions.

Statistical Analysis

We evaluate whether, on a typical occasion of struggling to
retrieve an upcoming word, a repetition is likely to be helpful.
The results in this section were analyzed using simple t-tests rather
than a mixed-effects regression model, that is, they do not include a
random effect of word. While observations coming from the same
word are not independent statistically, we believe that the speaker
treats them as independent in learning whether repetitions are
helpful. That is, even if all of the speaker’s experience involved
a single w1, but repetitions were helpful to access it, the speaker
would still learn to employ repetitions to help access their one word.

Results

In the first set of analyses, we examined whether surprisal ofw1 in
context differed based on the length of the context available to the
model to predict the word. Table 1 reports the surprisal values forw1

depending on whether the speaker repeats one, two, or three words.
The results provide support for the Facilitation Hypothesis. First,
there is a large (36 bit) decrease in surprisal (i.e., an increase in

predictability) from having even the single preceding word available
to predict w1 (zero available vs. one available; t(4441) = 813.31,
p < .0001). Second, the model can predict upcoming words better
given a longer context, indicating that longer repetitions tend to be
more helpful than shorter ones (one vs. two: t(4441) = 59.68,
p < .0001; two vs. three: t(4441) = 27.93, p < .0001), although
adding words to the context yields diminishing returns: w−2 is worth
2.2 bits of information, while w−3 is only worth 0.6 bits.

There is some degree of alignment between how many words are
repeated and howmanywords would be helpful to repeat. Even though
repeating more words is generally helpful for retrieving the future, a
context of a certain length is more predictive when it is repeated than
when it is not (within each column in Table 1, the bold values are
on average 0.88 bits lower than plain text ones; t(17168) = 10.12,
p < .0001). Figure 1 illustrates this point: repeated words tend to
decrease surprisal about the future more than words in the same
position that are not repeated.

In the preceding analysis, the activation of the intended continuation
was measured relative to all possible continuations. One may therefore
argue that the preceding context helps predict w1 in that analysis only
because it is ruling out continuations that are unlikely to compete with
the actual continuation for selection, i.e., words that would be
completely inappropriate in the context. To rule out this possibility,
we investigated whether the preceding context improves predictability
of aword relative to its closest semantic competitor, as defined by LSA.

The difference in surprisal of the word and its nearest semantic
competitor was 4 bits out of context (in favor of the observed continua-
tion). Adding one word of preceding context (w−1) increased this
difference by 2.3 bits (±0.1), while adding w−2 increased it by 1.9
bits (±0.1), and w−3 increased it by an additional 0.64 bits (±0.06), all
differences significant at p < .0001 [t(4087) = 40.76, 44.88, and 21.77
respectively].2 These results on the difference in surprisal between w1

and its closest semantic competitor, largely align with the results on

Table 1
Mean(SD) Surprisal Values From the LSTM as a Function of the Number of Words Available to Predict w1 and the Number of Words
Repeated

Number of Words Repeated Zero available One available Two available Three available

One repeated 47.37(4.85) 10.95(4.90) 9.17(4.39) 8.59(4.20)
Two repeated 47.54(4.90) 11.81(4.83) 8.73(4.27) 8.22(4.11)
Three repeated 47.38(4.89) 11.62(4.72) 8.95(4.31) 7.61(4.14)

Overall 47.42(4.87) 11.22(4.88) 9.04(4.35) 8.43(4.18)

Note. The columns indicate how many words were available to the model to predict w1. The rows indicate how many words the speaker repeated. Bolded
values are surprisal values obtained when the number of words available to the model to predict w1 matches with the number of words repeated by the speaker.
LSTM = long short-term memory. w1 = the word that follows the disfluency.

2 The results were very similar when the competitor was required to match
the syntactic category of the target word, indicating that the preceding-word
context contributes to word choice beyond identifying its syntactic category.
Adding one word of context (w−1) increased the difference in surprisal
between target and competitor from 1.5 to 3 bits (by 1.5 bits), adding w−2
increased it by an additional 1.5 bits, while w−3 increased it by 0.61 bits; all
differences significant at p < .0001 [t(1104) = 14.42, 18.03, and 10.82
respectively]. Even when comparisons are restricted to words that both
match in syntactic category and are intuitively highly related semantically,
the results remain qualitatively unchanged: w−1 increases the advantage of
the target over the competitor by 1.19 bits (from 1.29), w−2 adds 1.36 bits,
and w−3 adds 0.51 bits. All differences are significant at p < .0001
[t(828) = 10.21, 14.53, 8.21 respectively].
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simple surprisal ofw1 reported above (bottom rowof Table 1). Knowing
the preceding word helps predict the upcoming word, and knowing a
longer context helps evenmore.3 There are also diminishing returns from
knowing w−3 compared to knowing w−2 or w−1. However, the decrease
in surprisal fromknowingw−1 ismoremodestwhenmeasured relative to
the nearest competitor than when measured relative to all words. This
shows that much of the reduction in absolute surprisal of w1 resulting
from knowingw−1 is shared withw1’s likely semantic competitors. As a
result, in discriminating close semantic competitors, augmenting the
context with w−2 improves predictability almost as much as augmenting
it with w−1. Therefore, a multiword repetition can be substantially more
helpful than a one-word repetition for accessing the future. The results
discussed above indicate that longer contexts are generally more predic-
tive of the identity of w1 than shorter contexts. At the same time, the
length of the context does not strongly influence which w1 tokens are
more predictable: surprisal scores given a one-word context strongly
correlate with surprisal scores given a two-word context or a three-
word context (Table 2; N = 4,442). All surprisal scores from the
LSTM also strongly correlate with surprisal in a simple bigram
model in which each word predicts the word that immediately
follows—that is, the inverse of log transitional probability. These

correlations are almost as high as intercorrelations between LSTM
models initialized with different random seeds or presented with the
corpus sentences in a different order (.89 < r < .94), indicating that
LSTM surprisal largely reduces to transitional probability (the
probability of a word given the preceding word), which captures
more than 90% of the variance shared between the LSTM models.
Thus, predictiveness of a context, to a very large extent, tracks
predictiveness of its final word. This means that the effects of
contextual predictability on number of words repeated, presented
below, are largely robust to assumptions about how context is
represented, and how much of the context is used to predict the
future. To keep LSTM surprisal distinct from surprisal in the bigram
model, we will refer to the latter as log transitional probability.

Discussion

These results indicate that repeated words are predictive of the
words that the speaker is trying to access, and suggest that repetition
is functional in helping access upcoming words. Repetition is
something that the speaker would benefit from learning to do
when facing a problem of retrieval, rather than a perseveration
error that she should try to suppress. As mentioned earlier, this
conclusion is contingent on three relatively uncontroversial assump-
tions: that words activate likely continuations, that repetition pro-
vides repeated words with additional activation, and that this
activation spreads to the likely continuations.

Speakers appear to repeat the number of words that would be
particularly helpful for accessing the future (Figure 1). Thus, the
mechanisms that determine how many words are repeated result in
repetitions that are particularly helpful. The functionality of repetitions
helps explain why repetitions exist, and the fact that longer repetitions
tend to be more helpful for accessing the future helps explain why
speakers would invest the effort in reactivating the past when trying to
move forward. Because repetition behavior is functional, the con-
sequences of performing it are positive—a tip-of-the-tongue state is
resolved and the speaker can continue to talk, keeping the floor and
moving closer to their conversational goals. It therefore pays off to
repeat, and repeating more than one word results in a higher payoff.
Therefore, repetition should be reinforced by its positive consequences
and grow more prevalent with experience (Skinner, 1981).

While data on this point are limited, it suggests that there is a
positive correlation between repetition behavior and experience in a
domain. This positive correlation distinguishes repetition from
perseveration error, which is particularly rare in expert performance
(Dell et al., 1997). In particular, professional actors produce many
more sentence-initial repetitions than novices when trying to recall a
text they have memorized (Intons-Peterson & Smyth, 1987). In
second language acquisition, a higher proportion of disfluencies in
proficient speakers is composed of repetitions (Derwing et al., 2004;
Olynyk et al., 1990; Witton-Davies, 2010). In athletic performance,
professionals are more likely to produce repetitive pre-performance
routines than amateurs (Dömötör et al., 2016; MacPherson et al.,
2009). Thus, in any domain that requires fast and accurate retrieval
of practiced action sequences, expertise seems to come with an
increasing reliance on repetition in attempting to plan or retrieve an

Table 2
Correlations (Pearson r) Between Surprisal Values

Context Length One word Two words Three words

One word — — —

Two words .87 — —

Three words .81 .94 —

I(w1|w−1) .85 .87 .85

Note. The top three rows show correlations between LSTM surprisal values
depending on the length of context available to the model to predict w1 (one,
two or three words). The bottom row shows correlations of LSTM surprisal
with surprisal in a simple bigram model. LSTM = long short-term memory.

Figure 1
The Distribution of Relative Surprisal or Gain in Predictability of
w1 From Adding an Additional Word to the Cueing Context as a
Function of how many Words are Repeated (Length): Repeated
(Dashed Lines) vs. Not Repeated (Solid Lines)
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Note. Higher levels of relative surprisal / gain in predictability mean that
the addition of a word to the context strongly increases predictability
(decreases surprisal) of the future (w1). Left panel: gain in predictability
from adding w−2: I(w1|w−1) − I(w1|w−2w−1). Right panel: gain from adding
w−3: I(w1|w−2w−1) − I(w1|w−3w−2w−1). An additional word of context helps
predict the future more when it is repeated than when it is not.

3 The distribution of surprisal difference as a function of number of words
repeated is also almost identical to Figure 1. We compare the two predictors
below through model comparison.
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inaccessible future. This positive correlation between repetition and
experience is consistent with repetition being functional, a behavior
that solves a real problem, and is thereby reinforced by its
consequences.
LSTM is just one possible implementation of the principle that

words are predicted by preceding contexts. The strong correlations
in Table 2 indicate that little hinges on the particular implementation
of this principle: differences in predictiveness between contexts
largely reduce to differences in predictiveness between their final
words. Consequently, most of the variance in LSTM association
weights between contexts and words could be captured by a simple
bigram model in which a word is used to predict the next word. In
previous work, we have shown that simple transitional probabilities
from such a bigram model can be used to predict number of words
repeated (Harmon & Kapatsinski, 2015, 2016, 2020; Kapatsinski,
2005). A recurrent network has an advantage over a simple n-gram
implementation that learns transitional probabilities in that it allows
contexts to be arbitrarily long without running into the data sparsity
issues that come from increasing the n in an n-gram model.
However, either approach implements the core principle that words
become associated with predictive preceding contexts.
The simulations reported above indicate that there is a benefit to

having access to the preceding context to retrieve the word that
follows a disfluency (w1). Even though words that follow disfluen-
cies are relatively unpredictable to the network (Dammalapati et al.,
2019), knowing the preceding word (w−1) brings a considerable
advantage, as does adding an additional preceding word (w−2). The
large reduction in surprisal from knowing w−1 should be interpreted
with caution for two reasons. First, there is widespread consensus
that words are deactivated after they are produced (Dell et al., 1997).
If so, then w−1 is available to the speaker to predict w1 even without
repeating it, whereas preceding words (w−2 and w−3) are not. Thus,
some of the gain from having access to w−1 to predict w1 may not
require repeating w−1, whereas all of the gain from having access to
w−2 and w−3 requires reactivating them, which leads to the produc-
tion of a multiword repetition. Second, much of the gain from
knowing w−1 is shared by w1 with the words competing with it for
selection, that is, its semantic competitors. Relative to semantic
competitors, w−2 appears to provide an advantage comparable to
that provided by w−1. However, it is clear that w−3 is relatively
uninformative, which aligns with the small number of three-word
repetitions.
We have seen that repetitions are functional, and that the number

of words repeated aligns with how many words would be most
helpful to repeat (Figure 1). However, whether there is any causal
relationship between how many words would be most helpful to
repeat and how many words are repeated is not yet clear. The
speaker is not necessarily crafting repeated chunks to maximize their
effectiveness as retrieval cues for a particular word that follows.
Instead, it may be that whatever mechanism produces repetitions
happens to produce ones that are particularly helpful for facilitating
access to the word that follows. This way of speaking is then
selected over the alternatives by its consequences, growing more
prevalent with experience speaking the language. Whether accessi-
bility of the future plays an active, online role in determining how
many words are repeated can only be ascertained if it can make an
independent contribution to predicting repetition length.We address
this question using model comparison below (Predicting Repetition

Length section). Before that, a number of additional influences on
repetition length need to be introduced.

The Reactivation Hypothesis: Multiword Repetitions
Require Reactivation of the Past

It is widely believed that deactivation of recently completed
action units is necessary to avoid perseveration errors, i.e., uninten-
tional repetition (Dell et al., 1997; Estes, 1972; Houghton, 1990;
James, 1890; MacKay, 1982; Rumelhart & Norman, 1982). This
implies that words one has already produced will need to be
reactivated or re-retrieved to be re-produced, which we call the
Reactivation Hypothesis.

We propose that the same tip-of-the-tongue state that triggers
disfluency selection also triggers the speaker to attempt to reactivate
the past. We hypothesize that reactivation is a process in which the
past is cued, in part, by the present, that is,w−1 cuesw−2. The present
is always available to cue the past because it is the most accessible
word when the speaker runs into difficulty retrieving the future: it is
the word that has just been selected for execution. In contrast, w−2

needs to be reactivated to cue w−3.
The following context is not the only cue used to reactivate the

past: as we discuss below, top-down and start cues are also involved.
However, whereas these cues have the same strength of association
with a particular word across utterances, the strength of the
following-context cue varies. Therefore, activation from the follow-
ing context should account for between-utterance differences in how
easily the past can be reactivated when controlling for word identity.
If reactivation of the past is needed to re-produce the past, then the
strength of the association from the present to the past should predict
whether a speaker produces a multiword repetition.4

There is evidence that listeners use this type of retrodiction to fill
in words they have missed in comprehension (Gwilliams et al.,
2018; Lieberman, 1963) and that they acquire backward transitional
probabilities from perceptual exposure to an artificial language
(Onnis & Thiessen, 2013; Pelucchi et al., 2009; Perruchet &
Desaulty, 2008). The following context may also be used in
planning to select modifiers and determiners that depend on the
following noun context for selection. For example, the gender of a
determiner depends on the following noun in German or Spanish. In
English, we speak of strong tea but powerful computers, severe
thunderstorms but strong hurricanes. In such cases, it appears that
the modifier is selected largely based on the following context rather
than the semantic differences between the alternative choices
(Sinclair, 1991). We contend that backward retrieval of recently
produced words is also used to reactivate the past when the future is
planned but not activated enough to execute.

4 The present is only one cue used to access the past because recently
produced words are more accessible than semantically similar words that the
speaker has not recently produced (Oppenheim et al., 2010), and because the
words one has produced are usually repeated exactly, without semantic
substitution. This high accuracy likely requires top-down cues to recently
produced items that distinguish them from their semantic competitors.
However, these cues are presumably either of constant strength across
utterances (such as working memory slots), or are of constant strength
across contexts in which an item occurs (top-down cues to the item).
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Method

To model differences in how strongly a particular following-word
context activates the precedingword, we trained the LSTMbackward,
reversing the word order in each sentence in training. As discussed
above, this training represents the learning experience that comes
from guessing a word one has failed to recognize, using the following
context. During test, the trainedmodel predicted eachw−2 andw−3 in
the sample of disfluencies from the word that follows it.

Results

Just as LSTM surprisal from the model trained forward reflects
forward transitional probability, LSTM surprisal in the backward-
trained model reflects backward transitional probability. This is
demonstrated in Figure 2. Interestingly, the correlations for the
backward-trained model are stronger than for the forward-trained
model: LSTM surprisal correlates with surprisal conditional on the
immediately following word at r = 0.91 for w−2 and r = 0.88 for
w−3. These correlations are once again almost as strong as correla-
tions between LSTM surprisal scores from LSTMmodels initialized
with different random seeds (mean r = .93). That is, the probability
of the backward-trained LSTM retrieving a recently produces word
depends largely on the word’s probability given the word that
follows, backward transitional probability.
Note that backward and forward transitional probabilities do not

correlate (r = −0.16 for w−1w1 bigram, r = 0.02 for w−2w−1 bi-
gram, and r = −0.14 forw−3w−2 bigram). This means that effects of
backward surprisal cannot be attributed to forward surprisal and vice
versa. If number of words repeated is predictable from p(w−2|w−1), it
is not predictable from p(w−1|w−2). An effect of backward surprisal
is therefore diagnostic of the backward direction of processing, with
w−1 given and w−2 being predicted.
If re-production of the past requires its retrieval using the present

as a cue, we should expect that the past would be repeated only when
it is probable given the present. That is, we expect a strong positive
correlation between backward transitional probability and repetition
length. To provide a preliminary assessment of this prediction,
Figure 3 shows the density plot of backward surprisal of w−2
and w−3 for each repetition length. In both panels, backward
surprisal is aligned with repetition length: When a word is repeated,
it is more predictable (less surprising) given the following context
than when it is not repeated.
There is little correlation between backward surprisal of the past

given the present and either forward surprisal of the future given the
present (r = −.05) or the decrease in surprisal of the future that is
obtained by retrieving the past (r = −.09). Consequently, retriev-
ability of the future and retrievability of the past are independent
influences on the length of a repetition disfluency.

Discussion

The Reactivation Hypothesis is the contention that speakers need
to re-retrieve the past to intentionally repeat it, and that they use the
present as a cue in this retrieval process. It is supported by the
finding that it is the backward-trained LSTM’s weights that align
with the number of words repeated (Figure 3). The backward
weights are conditioned on the following context, corresponding
to predicting the past from the present.

A limitation of this analysis is that log backward surprisal is
collinear with context-independent surprisal of a word, that is,
negative log word frequency, with which it shares 62% of variance.
Word frequency does not account for much additional variance in
backward surprisal beyond what backward transitional probability
accounts for (only 2% of additional variance in LSTM backward
surprisal beyond backward transitional probability). Thus, LSTM
surprisal largely reduces to local transitional probability. However,
word frequency can provide an alternative explanation for why
retrodictable words are repeated more often than words with a lower
backward probability. Speakers might repeat retrodictable words
because they are frequent and therefore have a higher level of resting
activation across contexts (Dell, 1986; Morton, 1969), as seen from
the fact that they are easier to access than rare words in picture naming
(Oldfield & Wingfield, 1965). To evaluate this possibility, we will
evaluate whether backward transitional probability/backward

Figure 2
The Correlation Between Backward-Trained LSTM Surprisal and
Log Backward Transitional Probability
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Note. The trendline shows a non-parametric smoother. The sizes of circles
indicate the number of observations of a particular bigram. LSTM = long
short-term memory.

Figure 3
The Distributions of Backward-Trained LSTM Surprisal Scores for
w−2 (Left) and w−3 (Right) when the Word is Repeated (Dashed
Lines), or Not Repeated (Solid Lines)
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lower surprisal given the words that follow them. LSTM = long short-term
memory.
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surprisal outperforms word frequency as a predictor of how many
words are repeated below (Predicting Repetition Length section).

The Initiation Hypothesis: Multiword Repetitions Help
Reinitiate Execution

The Initiation Hypothesis proposes that certain meaningful units
are better initiators than others. It is motivated by the observation
that there are many morpheme boundaries in the speech stream from
which production is never reinitiated. In particular, production in our
corpus always restarts from a word boundary: there are no examples
of reinitiating production from a word-internal morpheme or sylla-
ble boundary, as in *The cat is eating, -ing a marsupial. This means
that there are some morphemes, suffixes, that do not serve as speech
initiators. This extends even to contexts where speakers make an
error, because speech errors do not involve an exchange between a
suffix and a prefix or stem. Restarts from suffixes are absent despite
the fact that suffixes are associated with top-down semantic cues,
and can serve as production units (e.g., being erroneously selected
over semantically similar suffixes; Fay & Cutler, 1977; Fromkin,
1971). We propose that speakers learn not to initiate production
from such units because of cue competition.
We borrow the idea of cue competition from discriminative

learning theory (Rescorla &Wagner, 1972). Discriminative learning
claims that co-occurring cues predicting the same outcome compete
with each other for cue weight over the timecourse of learning
(Arnon & Ramscar, 2012; Ramscar et al., 2010, 2013). We there-
fore expect cue competition between preceding-item and top-down
cues: The more strongly an item is cued by the preceding item(s) in
the sequence, the less strongly it will be cued by the relevant top-
down cues (see also Cooper et al., 2014; Dezfouli & Balleine, 2012;
Ellis, 2006; Wood & Neal, 2007).
Mechanistically, good initiators are the units that are strongly

activated by whatever cues activate words in the utterance-initial
position. These cues must include top-down cues—that is, semantic
cues that discriminate that particular unit from other units (Figure 4;
Arnon & Ramscar, 2012; Chang et al., 2006). Top-down cues are
necessary to take the path less traveled, producing an item that is not
the most likely item given the preceding context. That is, top-down
cues exist for the purpose of overriding the influence of the
preceding context when the most likely continuation is a form
that does not match the speaker’s intended message. In addition,
we incorporated a start cue, present at the beginning of every
utterance (Fischer-Baum & McCloskey, 2015; Henson, 1998;
MacKay, 1987). In our recurrent network, this start cue simply
serves as a preceding context for utterance-initial words. To the
extent that words occur in that context, they can become associated
with the start cue, in the same way that words become associated
with preceding items they regularly follow. An utterance-boundary
cue is not necessary for our model to function. However, it is useful
for learning about how utterances tend to begin. For example, it
allows the model to learn to initiate production with words like well
and so that frequently occur in the utterance-initial position.
Competition between top-down cues and preceding context

helps balance flexibility and predictability. A continuation needs
to be acceptable, which means that its association with the preced-
ing context should not be too low. That is, a word should not violate
the listener’s expectations. This means that activation of an upcom-
ing item must track its predictability given the context and not be

overly influenced by top-down cues. For example, the speaker
should select of rather than from after die but from rather than of
after suffer. Before they learn the item-to-item dependencies of
English, children and non-native speakers are likely to make
collocation errors by selecting the wrong continuation based on
top-down, semantic input. At the same time, for the speaker to
successfully produce novel utterances, top-down cues cannot be too
weak. Specifically, the top-down cues to a word must be strong
enough to reliably select it when the speaker decides to produce it.
If a certain word is the most likely word in a particular preceding
context, then its selection requires no help from top-down cues: the
preceding context is sufficient to activate the word above its
competitors. For example, the word know is highly predictable
after you, occurring more than 30% of the time, and a large
proportion of tokens of know are preceded by you. We therefore
expect that know can be reliably produced despite having relatively
weak top-down cues.

Contrast know with a word that is always encountered in a novel
context and therefore always occurs unexpectedly. Such a word
needs to have strong top-down cues because every time it is
encountered the context will favor some other word, and the top-
down cues will need to overcome that influence. For this reason,
words that occur in a wide variety of preceding contexts should be
better initiators by virtue of having stronger top-down cues. In word
recognition, this idea was previously proposed by Adelman et al.
(2006), who have shown that words occurring in a large number of
distinct contexts are easier to recognize out of context, and intro-
duces the term contextual diversity to refer to the number of distinct
preceding contexts a word occurs in. Similarly, in morphological
processing, morphemes that occur in a large number of distinct word
contexts (i.e., morphemes of high type frequency) are easier to
produce in new word contexts (Bybee, 1985). An influence of
contextual diversity for maintaining top-down cue strength is
also suggested by Ouellette and Wood’s (1998, p.67) finding that
participants who always performed some particular behavior before

Figure 4
The Interaction of Top-Down and Preceding-Context Cues

...

. . .

...

Itemi,1

Itemi,n

Top−downnTop−down1

Item j,1

Item j,n

Preceding item
layer

Current item
layer

Note. An itemj is cued by the preceding context and top-down cues. The
strength of the preceding context reduces, largely, to the strength of the
preceding itemi,whichcouldbe theprecedingwordor the start of theutterance.
Top-down cues identify items, discriminating the n items in the lexicon. They
are needed to overcome the influence of the preceding context when itemj

activated by the top-down input is not themost probable itemj given itemi, that
is, when the speaker intends to say something other than the most likely
continuation of the utterance.
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watching TV continued to watch TV after performing that preceding
action regardless of stated goals, whereas those who performed TV
viewing in a greater diversity of preceding contexts were strongly
affected by their stated goals. As shown below, in LSTM, words
tend to have weaker associations with preceding contexts if they
occur in a wide variety of contexts. Cue competition ensures that
such high-contextual-diversity words would have stronger top-
down cues.
In conclusion, the stronger the preceding-context cues to a word,

the less need for top-down input to select the word for production.
Competition between top-down and preceding-context cues pre-
dicts that the strength of top-down cues to the word should be
predictable from how unexpectedly it has occurred in the speaker’s
experience.

Method

We predict that words will become better initiators whenever
they occur in the initial position or in a new preceding context, and
that they will be poorer initiators when they repeatedly occur
medially in a familiar context, to the extent that they are predictable
given the context. We implemented this hypothesis using two
LSTM predictors. The first predictor is Initial Surprisal, the average
surprisal of a word in the utterance-initial position in the forward-
trained model, I(w|start cue). The second predictor is Medial
Surprisal, the average surprisal of a word across non-initial posi-
tions:

P
n
i=1 Iðwijpreceding contextiÞ=n, where n is the number of

medial tokens of w. For example, if the word book occurs 50 times
in the corpus in the non-initial position, its Medial Surprisal would
be:

P
50
i=1 Iðbookijpreceding contextiÞ=50.

Words with high Initial Surprisal are unexpected in the initial
position. We expect these words to be poor initiators. In contrast,
words with high Medial Surprisal are relatively unexpected when
they occur in medial contexts. We expect these words to be good
initiators. Using correlational analyses, we examined the relation-
ship between these predictors, corpus statistics, and repetition
length.

Results

As evident from Figure 5, Initial Surprisal of a word reduces to
the word’s utterance-initial frequency (r = −0.98). That is, Initial
Surprisal captures the hypothesis that words become better initiators
with repeated occurrence at the beginning of the utterance.
Medial Surprisal is a more complex variable (see Table 3 and

Figure 6), which increases with contextual diversity (r = 0.75),
and decreases with token frequency in medial positions (r =
−0.86), and mean forward transitional probability of the word
(r = −0.85). When combined in a linear regression model, these
three predictors account for 87% of the variance in Medial
Surprisal, and excluding any one of them significantly reduces
the fit, to 74%–76%. Thus, Medial Surprisal captures the hypoth-
esis that medial occurrences in predictive contexts make a word a
poorer initiator because a word occurring in predictive contexts
can rely on these contexts for activation, making strong top-down
cues to the word less necessary.
Somewhat surprisingly, Initial Surprisal and Medial Surprisal are

not strongly collinear, sharing only 20% of the variance, which
means they can both be entered in a regression model to predict how

many words are repeated. Adding Initial Surprisal to the regression
model predicting Medial Surprisal also does not improve model fit
beyond the three predictors discussed above. Initial and Medial
Surprisal are correlated positively: words with high Initial Surprisal
also tend to have high Medial Surprisal. The shared variance is
mostly explained by word frequency (r = .91): frequent words are
less surprising in both positions.

We define a word’s Initiation Potential as the difference between
Medial Surprisal and Initial Surprisal. Initial Surprisal drives Initia-
tion Potential down, as words that are surprising in initial positions
are bad initiators, whereas Medial Surprisal drives Initiation Poten-
tial up: words that are surprising in medial positions are better
initiators because their retrieval cannot rely on activation from
preceding words. Figure 7 shows that a word’s Initiation Potential
can predict whether a speaker re-initiates production from the word.
Note that the sample of disfluencies was filtered to remove all
instances in which speakers actually restarted production from a
clause-initial or utterance-initial word. Thus, words that tend to
occur utterance-initially are better initiators even when they are
clause- and utterance-medial.

Backward surprisal is negatively correlated with Initiation
Potential (r = −.36). Though this is not a strong relationship, it
means that words that are easy to reactivate also tend to be good
initiators. Therefore, this correlation indicates that re-activating the
past is especially likely to succeed when the past is helpful for
reinitiating speech production.5

Figure 5
The Correlation Between Initial Surprisal and Log Frequency in the
Utterance-Initial Position
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Note. The trendline shows a non-parametric smoother. The sizes of circles
indicate the number of observations of a particular word.

5 Initiation Potential and its components are unrelated to accessibility of
the future or how much it would improve from accessing the word (all
|r| ≤ .1). Thus, these are independent influences on repetition length. How-
ever, the correlation of Backward Surprisal with Initiation Potential is much
weaker than its correlations with Initial Surprisal (r = .61) and Medial
Surprisal (r = .66), which motivates including only the difference between
the two in a regressionmodel of repetition length. Nonetheless, we decided to
include the components as predictors because we would ideally like to know
whether both Initial andMedial Surprisal matter. An effect of Initial Surprisal
suggests that words become better initiators when they occur in the initial
position, while an effect of Medial Surprisal suggests that top-down cues
weaken in proportion to the strength of preceding-context cues.
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Discussion

The Initiation Hypothesis contends that some words are poor
initiators because they co-occur with strong preceding-word cues.
This prediction follows from competition between preceding-word
cues and the top-down cues that are necessary to activate a word
without help from a predictive preceding context, e.g., at the
beginning of an utterance. These cues are top-down cues from
the word’s lexical/semantic representation and the start cue repre-
senting the utterance-initial context. Therefore, occurrence at the
beginning of the utterance as well as in novel or unfavorable
contexts should increase Initiation Potential, while occurrence in
predictive contexts should decrease it. As shown in Figures 5–6,
Initiation Potential corresponds to the difference between Medial
Surprisal and Initial Surprisal in the LSTM model. As shown in
Figure 7, a word’s Initiation Potential covaries with the likelihood
of reinitiating production from the word; at least for words that the
speaker had already produced (panels b–d).
It is worth discussing the small or absent effect of Initiation

Potential of w−1, the word that the speaker always has access to, and
uses to cue the past and the future (Figure 7a). A likely explanation is
that this word is always activated enough to execute: it must be
activated enough to produce because the speaker is in fact producing
it at the time production stalls. Therefore, it does not need additional
activation from the start cue. However, an alternative explanation is
suggested by the fact that, as evident from Figure 7, the sample of
words in the w−1 position includes relatively few poor initiators. For
example, there are only 64 tokens of w−1 below Initiation Potential
of−10, compared to 282 and 295 forw−2 andw−3 respectively. This
suggests that speakers may not attempt producing a repetition at all

when the word they have access to is a poor initiator: When w−1 is a
bad initiator, the utterance tends not to appear in the sample of
repetitions. These explanations differ in whether the effect of
Initiation Potential for w−1 is non-significant because of small effect
size or high uncertainty about effect size. We will disentangle these
possibilities below using Bayesian parameter estimation.

An alternative view of Initiation Potential is to conceive of it as
resulting from an error during the reactivation process. On this view,
as the speaker is attempting to reactivate recently produced words by
using the following words as cues, she can instead erroneously
retrieve the start cue indicating the beginning of the utterance, and
then restart production. This is an error in the examples we analyzed
because we excluded cases in which speech was restarted from an
actual utterance boundary. During reactivation, words that regularly
occur utterance-initially should be better cues to the start cue.
Specifically, this hypothesis proposes that the likelihood of initiating
production from a word is a function of the backward surprisal of the
start cue given the word. Backward surprisal of a cue is the inverse
of its log backward transitional probability. Thus, backward sur-
prisal of the start cue given a word, I(start cue|w), is equivalent to the
difference between a word’s log frequency in initial position and its
overall frequency—that is, the logarithm of the proportion of its
occurrences that are utterance-initial. This measure has a strong
correlation with Initiation Potential as defined above (r = −.84),
and constitutes an alternative implementation of Initiation Potential.
We will compare these two implementations below through model
comparison in regression models predicting Repetition Length.

Control Predictors: Syntax and Prosody

In this section, we introduce control predictors, which represent
the current alternative explanations for why speech is restarted from
certain positions and not others (Clark & Wasow, 1998; Levelt,
1983). These predictors are different in kind from the ones we
considered above because they are grounded in a structuralist rather
than usage-based approach to language. The usage-based frame-
work seeks explanations for “why languages are the way they are” in
the statistics of experience, picked up by domain-general learning
mechanisms, as well as in the functions linguistic behaviors perform
and to which they are adapted through cultural transmission (Bybee,
2001a, 2002, 2006, 2010; Christiansen & Chater, 2016; Kirby,

Figure 6
Medial Surprisal as a Function of Log Contextual Diversity Controlled for Frequency (Left), Log Medial Frequency (Middle) and Log
Average Forward Transitional Probability (FTP), That is, Average Probability Conditional on the Preceding Word (Right)
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Table 3
Medial Surprisal as a Function of Log Contextual Diversity, Log
Medial Frequency, and Log Mean Forward Transitional
Probability

Predictor b SE t p

(Intercept) 7.14 0.12 57.34 <.0001
Contextual diversity 0.69 0.02 32.10 <.0001
Medial frequency −1.03 0.02 −63.22 <.0001
Mean forward transitional probability −1.02 0.02 −66.79 <.0001
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1999; Kirby et al., 2008). In keeping with this tradition, we explain
repetitions with reference to the function they perform (facilitating
retrieval) and the phenomenon of cue competition, which charac-
terizes discriminative learning across domains (Ramscar et al.,
2010). As discussed by Bybee and McClelland (2005), there is a
natural fit between the usage-based approach to linguistic theory and
connectionist models like recurrent networks, as both take a domain-
general emergentist perspective on structure.
In contrast, the structuralist/generative tradition explains language

behavior as a consequence of the structure of language. In particular,
the predictors in this section explain repetition behavior with refer-
ence to boundaries of linguistic and prosodic constituents, without
explaining where these boundaries come from. That explanation is
outsourced to a universal set of boundary types defined over a
universal set of lexical categories (e.g., Newmeyer, 2003). Because
the boundary types are universal, explanatory of behavior and not
emergent from linguistic experience with a particular language,
boundaries of a certain universal type have the same strength (see
Bybee, 2006, 2010 for a discussion). For example, every language is
hypothesized to have verbs, and verb phrases (VPs), which include
objects but not subjects, as in The cat [ate a mouse]VP or We[’re
writing a paper]VP. From a structuralist perspective, a verb phrase
boundary is a verb phrase boundary, and behavior should treat all
verb phrase boundaries alike, even though individual verbs differ in
how strongly they co-occur with the preceding subject. This hypoth-
esis is contradicted by effects of statistics of co-occurrence in
experience. For example, Bybee (2002) argued that units used
together fuse together, because frequent verbs fuse with the subjects
they co-occur with (as in are fusing with we above), while less
frequent subject-verb sequences like cat ate do not.
Maclay and Osgood (1959) proposed that speakers repeat func-

tion words because they try to restart production from a syntactic
constituent boundary. However, this proposal has lost its explana-
tory power, as syntactic theory later posited a phrase boundary
before every word (Levelt, 1983). Indeed, many syntacticians now
posit a constituent boundary at every morpheme boundary (e.g.,
Halle & Marantz, 1993). Clark and Wasow (1998) therefore revised
Maclay and Osgood’s proposal to state that speech tends to be
restarted from major constituent boundaries. They showed that
single-word repetitions were most likely to occur at the beginnings
of certain major constituents. Kapatsinski (2005) suggested that

speech is restarted from the nearestmajor constituent boundary and
showed that this hypothesis can predict how many words are
repeated. However, syntactic structure does not capture all of the
variance in repetition behavior. For example, speech is restarted
from the beginning of a major constituent (adjunct) in Example (3)
at the beginning of this article but not in (1) or (2). Furthermore,
somemajor syntactic constituent boundaries appear to be exceptions
to the hypothesis. Specifically, Fox and Jasperson (1995) showed
that speech is rarely restarted from verb phrase boundaries, even
though that boundary is considered to be the major break in the
sentence on syntactic grounds. Our theory provides an explanation
for this observation because verbs tend not to be good initiators, as
they seldom occur utterance-initially. It also goes beyond this
observation by predicting that some verbs (like know) should be
especially unlikely to be used to reinitiate speech, and especially so
when they follow an easily retrodictable word like you.

An alternative explanation for why verb phrases don’t appear to
behave like strong constituent boundaries in speech—even though
on syntactic grounds they are expected to do so—makes reference to
prosodic constituency. Prosodic constituency is thought to follow a
hierarchy that is distinct from the hierarchy of syntactic constitu-
ency, hence syntactic and prosodic boundaries do not always align
(Selkirk, 1984). Levelt et al. (1999) proposed that speech is restarted
from the beginning of a prosodic constituent called the phonological
word. This proposal accounts for why speech does not restart from
verbs that are phonologically fused with the preceding subject, like
're in We're writing a paper.

The notion of a phonological word has been criticized by usage-
based linguists, who consider it to be a label for sequences of words
that are accessed together as a result of co-occurrence. As pointed
out by Bybee (2001a, 2001b), the linguistic evidence for phonolog-
ical words consists of the fact that some assimilatory phonological
processes apply across some word boundaries but not others.
However, the likelihood of assimilation across a word boundary
is probabilistic and appears to be best explained by probabilistic
measures of word co-occurrence, including forward transitional
probability (Bush, 2001; Bybee, 2001b; Côté, 2013; Krug,
1998). Forward transitional probability can be interpreted as influ-
encing how likely the second word is to be accessed before the first
word is complete. That such access is required to produce cross-
boundary assimilation is supported by the finding that patients who

Figure 7
The Distribution of Initiation Potential (Medial Surprisal − Initial Surprisal) as a Function of the Word’s Position and the Number of Words
Repeated (Length)
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Note. Panels (a) and (b) showInitiationPotential forw−1 andw−2 respectively forone- versus two-word repetitions.Panels (c) and (d) showInitiationPotential for
w−2 and w−3 respectively for two- versus three-word repetitions. The dashed lines represent longer repetitions while solid lines represent shorter repetitions.
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make few anticipatory speech errors often fail to apply cross-
boundary phonology (Lange et al., 2017). We therefore believe
that phonological word boundaries are better considered epiphe-
nomenal signs of co-occurrence and the resulting anticipation, rather
than a distinct explanatory variable. However, because they are
proposed to explain the location from which speech is initiated
(Levelt et al., 1999), one could argue they should be included in an
analysis as a control variable.
Unfortunately, there are no clear coding criteria forwhat constitutes a

phonological word that can be applied independently of syntactic
structure and co-occurrence (Bybee, 2001b). Thus, we use duration
as a proxy for prosodic constituency because the words that adjoin to
following words to form a phonological word are short function words
and are thought to be further shortened by being fused into a phono-
logical word (Selkirk, 1996). Thus, a word will be shorter when it is
incorporated into a phonological word, and will be especially long if it
is followed by the boundary of a prosodic constituent (Beckman &
Edwards, 1990). Accordingly, if prosody accounts for the effects of
experience, or at least mediates the relationship between co-occurrence
and repetition behavior (Turk, 2010), the effects of experience dis-
cussed in the previous sections should disappear when competing
against duration in a regression model.

Method

Syntactic Constituency

We follow the coding in Kapatsinski (2005), where syntactic
constituency was argued to predict how many words are repeated.
Namely, we coded the location of the nearest major constituent
boundary, where major boundaries are those of clauses, subjects,
verb/tense phrases, objects, and obliques, as illustrated in (4). We
included the boundaries of adverbial phrases that are outside of the
verb complex in the set of major boundaries (has just eaten does not
have a boundary but growling | loudly does), and have assumed that
coordinating conjunctions (and, but, or) do not belong to either of
the conjuncts. The resulting constituent boundaries are consistent
with the Simpler Syntax framework in syntactic theory, which was
developed in part to bring syntactic theory back into agreement with
traditional syntactic constituency tests (Culicover & Jackendoff,
2006). Utterances were coded blindly: information about the repeat
was removed from each sentence, so that only the preceding
sequence of words remained. This was done to ensure that syntactic
coding was not biased by the observed location of the re-initiation
point.

4. |The cat | that | bit | the man | has just eaten | some kind of
mouse | in the shadows | and | was growling | loudly.

While there is no theory-independent way to code syntactic
boundary strength, we believe that the present coding is close to
optimal for predicting re-initiation points on the basis of syntax
alone, without knowledge of word co-occurrence statistics. For
example, one controversial coding choice is to consider boundaries
of clauses within noun phrases to be major constituent boundaries.
Thus, our syntactic coding predicts that utterances interrupted inside
that bit the manwould primarily be restarted fromwithin that clause,
rather than from the beginning of the utterance. This choice im-
proves the accuracy of syntactic predictions, because repetitions are
usually short, and because utterance-initial restarts were excluded

from the data. The other controversial choice is to consider con-
junctions to be outside of the conjuncts, placing a boundary between
and and growling. This choice also helps syntax predict repetition
lengths because the rate of conjunction repetitions is relatively low.

An alternative structural account of repetition can be derived from
Levelt’s (1983, 1989) theory of self-repair. Levelt examined
replacement repairs, based on elicited adjective phrases (The blue
triangle, I mean, the red square : : : ), and argued that the repair (the
red square) and the reparandum (the blue triangle) need to be
conjoinable with or. Levelt also argued that repetitions are a subtype
of repair in which the replaced word is never pronounced. For the
sentence in (4), Levelt’s criterion would predict the boundaries in
(5). These boundaries largely agree with those in (4). However,
Levelt’s criterion posits boundaries before lexical elements, for
example, The | man, because conjunctions like The man or woman
: : : are acceptable. Yet, these boundaries are weak based on
syntactic constituency tests and are not considered major boundaries
in any syntactic theory (e.g., Culicover & Jackendoff, 2006). In
accordance with syntactic constituency, speech is not re-initiated
from these locations in producing repetitions, just as it is not initiated
from them in producing grammatical sentences (cf. The woman is
eating an apple. vs. *Woman is eating an apple.) Second, Levelt’s
criterion groups complementizers together with the preceding ele-
ment, preventing repeats like The cat that, uh, that : : : , which are
quite common in the data (cf. *The cat that bit or that scratched the
man : : : vs. The cat that bit or scratched the man : : : or The cat that
bit the man or the dog that attacked the woman : : : ). We therefore
consider the “major syntactic boundary” criterion above to provide
syntax with the best opportunity to predict the re-initiation point.

5. The | cat that | bit | the | man | was | eating | some kind of |
mouse | in the | shadows | and | growling.

Duration

We used the hand-corrected forced-aligned version of Switch-
board Corpus for extracting durations (see Deshmukh et al., 1998).
This version is not coded for disfluencies, so we automatically
matched the extracted hand-coded disfluencies to the forced-aligned
disfluencies to obtain the duration of each word. We extracted
durations of all the words preceding the interruption in our data.

The predictors of theoretical interest for us are held responsible
for accounting for variance in the location from which speech is
reinitiated above and beyond these control predictors and while
allowing for the existence of uncontrolled random differences
between words represented by random intercepts.

Results

Figures 8 and 9 show that the control predictors are operating as
expected. There is an alignment between how many words are
repeated and the location of the nearest major syntactic constituent
boundary (Figure 8): Utterances in which the nearest major constit-
uent boundary is one word away constitute a larger proportion of
one-word repetitions than of two- or three-word repetitions. Simi-
larly, utterances in which the nearest major constituent boundary is
two words away constitute a larger proportion of two-word repeti-
tions than of one-word or three-word repetitions. Repeated words
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also tend to be shorter than words that are not repeated, controlling
for distance from the interruption point (Figure 9).

Discussion

We have shown that the control predictors are not a strawman
hypothesis: Structural factors can explain some variance in repeti-
tion length. Thus, the principles proposed by our theory will need to
justify their existence by helping predict repetition length above and
beyond the effects of syntax and duration.
Syntax not only predicts repetitions but also provides a reason for

why repetitions tend to involve only one word: Most words preceding
an interruption in speech flow are at the beginning of a major
constituent. At the same time, there are many instances in which
the speaker repeats more than one word even though this involves
crossing the nearest major constituent boundary. Indeed, all multiword
repetitions cross some phrase boundary. This shows the limitations of
syntactic constituency as a predictor of repetition length.

Duration is intended to serve as a measurable indication of
prosodic structure in the regression model below. It is, of course,
an imperfect measure of prosodic structure. However, it is likely a
better predictor of repetition length than a perfect measure of
prosodic structure would be, because we expect the non-prosodic
influences that result in shorter words to also favor repeating these
words. In particular, words that are predictable from the following
context are shorter than unpredictable words (Moers et al., 2017;
Seyfarth, 2014), and should be more likely to be repeated due to ease
of retrieval. Durations in Figure 9 are also not controlled for word
identity: frequent words are shorter than rare words, as are words
that happen to have more segments or syllables. More generally,
words that are more difficult to produce for articulatory reasons are
longer. They are also less likely to be selected for production
(Martin, 2007; Schwartz & Leonard, 1982), and therefore may
also be less likely to be re-produced.

Predicting Repetition Length

While the analyses above are suggestive, they are limited because
they consider one predictor at a time. Our theory, however, predicts
that all of the predictors identified so far should contribute to
determining how many words are repeated. Reactivation of the
past should be more likely if the future is relatively inaccessible and
should be easier if it is predictable from the present. Restarting from
a word should also be influenced by how easy that word is to activate
from its top-down semantic representation and from the utterance
boundary context (start cue). This multitude of influences is typical
of production choices (e.g., Bresnan et al., 2007; MacDonald, 2013;
Shih, 2017), and calls for an approach that can determine whether
they do all influence production choices in the predicted directions.
We therefore use multiple regression to test the influence of our
predictors on the length of repetitions.

Method

All analyses reported below were conducted in R version 4.0.2 (R
Core Team, 2020) using hierarchical logistic regression as imple-
mented in the brms (Bürkner, 2017, 2018) and lme4 (Bates et al.,
2015) packages. Because we used default (minimally informative)
priors in brms, the maximum likelihood parameter estimates are
identical between the frequentist approach implemented in lme4 and
the Bayesian approach in brms. We extracted R2 values using the
performance package (Lüdecke et al., 2020).

The Dependent Variable

Our dependent variable is the number of words repeated.We follow
the approach defended by Begg and Gray (1984) in fitting two
binomial models that share the reference level (two-word repetition
in our case or the choice of restarting fromw−2).While brms allows for
a trinomial dependent variable, the two-regression approach allows us
to include different predictors and random effects for the two binary
comparisons rather than including all predictors in both. This flexibil-
ity is useful because, in theory, some of the predictors (those referring
to w−1 and w−3) are only relevant to one of the comparisons.

We conducted a sensitivity analysis to ensure that the results are
robust to the choice of reference level, and choices about the
inclusion of random effects and covariates. In one test, we fit a

Figure 9
The Distribution of Word Duration (Prior to Repetition) as a
Function of Word Position (Left: w−2; Right: w−3), and Whether
the Word Is Repeated
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Note. The dashed lines represent longer repetitions while solid lines
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Figure 8
The Relationship Between Number of Words Repeated and Distance
to the Nearest Major Constituent Boundary
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single multinomial regression with two-word repetition as the baseline
level, and all of the covariates and random effects for both contrasts.
Second, we tried using a different reference level (w−1 or w−3) for the
two regressions. Finally, we replaced modeling the choice between
one-word and two-word repetition disfluencies withmodeling a choice
between one-word and multiword repetition disfluencies. In all cases,
the results hold. Specifically, the corresponding coefficients are always
on the same side of zero, and the highest posterior density (HPD)
intervals that exclude zero still exclude zero.

Independent Variables and Model Comparison

Model comparison is necessary to decide amongst alternative
predictors that are strongly collinear if placed in the same model,
and cannot be considered to jointly influence behavior.We usedmodel
comparison to decide among alternative plausible implementations of
the hypotheses we proposed, and to compare them to control models.
We began with models that included only random effects and the

control factors—duration of the word the speaker may or may not
repeat (w−2 for one- vs. two-word repetitions and w−3 for two- vs.
three-word repetitions), and distance to the nearest major constituent
boundary. The random effects were random intercepts for w−2, w−1,
and w1 in the case of the choice to restart from w−2 or w−1, and the
intercepts for w−3 and w−2 for the choice of whether to restart from
w−3 orw−2.We excludedw1 from the latter model because including
it in the model resulted in a singular lme4 fit.
The models were then augmented with predictors of interest,

which had to “earn their keep” by being significant, having a
coefficient in the expected direction, and improving the fit of the
model based on themost conservative information criterion (BIC, the
Bayesian Information Criterion). The BIC provides an approxima-
tion to the Bayes Factor, which quantifies the difference in the
probabilities of the models given the data assuming that the com-
pared models have equal a priori probability (Wagenmakers, 2007).
We required predictors to reduce BIC by at least seven, which is the
heuristic cutoff for providing strong evidence in favor of the more
complexmodel according to Raftery (1995). Because there are rather
few three-word repetitions, we compared models on accounting for
the choice of repeating one word versus two words and use the final
model to explain why speakers sometimes repeat three words.
Facilitating Access to the Future. We first added predictors

referring to accessibility of the future, which implement the
hypothesis that speakers repeat more words when this would be
helpful to access the upcoming word. Accessibility of the future
was expected to be the weakest influence on repetition length
because the speaker does not have full access to the future when
deciding howmany words to repeat. It was added first because it did
not show strong correlations with other predictors of theoretical
interest.
We comparedmodels incorporating four different implementations

of the influence of accessibility of the future on repetition length
(Table 4). These implementations differ in whether the speaker is
assumed to have some idea of what they have said (top vs. bottom
row) and what they are about to say (left vs. right column) when
estimating accessibility of the future. Predictors in the right column
are surprisal values, which assume that the speaker knows what they
want to say next. These implement the hypothesis that the continua-
tion is planned but not accessible enough to be executed. Predictors
on the left are entropy values, which average surprisal over all

possible continuations: HðXÞ = −
P

n
i=1 Pðxijpreceding contextÞ

logPðxijpreceding contextÞ, where xi denotes a particular continua-
tion and the index i iterates over all possible distinct continuations,
that is, word w1 types. The entropy measures assume that the future
has not been planned and is unknown to the speaker.

The predictors in the top row implement the hypothesis that
speakers retrace their steps when the current context is not a good
cue to the future. It is the surprisal or entropy of the future given the
context that would be repeated without restarting farther back (w−1
for the choice of one- vs. two-word repetitions; w−2w−1 for two- vs.
three-word repetitions). The predictors in the bottom row implement
the hypothesis that the speaker repeats an extra word precisely
when this would benefit activating the intended future. It is either
the difference in surprisal, that is, relative surprisal, or the difference
in entropy, that is, information gain, given a longer versus shorter
context (w−1 vs. w−2w−1 for the choice of one- vs. two-word
repetitions; w−3w−2w−1 vs. w−2w−1 for the choice of two- vs.
three-word repetitions). We also calculated surprisal differences
between w1 and its nearest semantic competitor, as defined by LSA.
We considered two versions of this predictor: one with an unknown
past and one with a remembered past.

Reactivation of the Past. We retained the best implementation
of accessibility of the future in the model and added predictors
referring to how accessible the past is given the present. These
included either (a) backward surprisal of w−2, I(w−2|w−1), (b)
forward surprisal of w−2, I(w−2|w−3), or (c) context-independent
surprisal of w−2, I(w−2). We expected backward surprisal to be
superior to forward or context-independent surprisal, which do not
implement accessibility of the past given the present.

Initiation Potential. Retaining the best predictor of past acces-
sibility, we added predictors implementing Initiation Potential. These
predictors implement the Initiation Hypothesis, the claim that words
become good initiators if they tend to occur without a predictive
preceding word, which includes utterance-initial contexts, and
become poor initiators if they tend to occur in predictive preceding
contexts. We created two models of Initiation Potential, which differ
in how experience with a word changes the association between a
word and the start cue encoding an utterance-initial context. The first
model, henceforth start-to-wordmodel, proposes that the connection
from the start cue to a word varies as a function of how often the word
follows the start cue, p(w|start cue). To reflect this, start-to-word
included Initial and Medial Surprisal from forward-trained LSTM.
The second model, henceforth word-to-start, instead assumes that
the start cue will always activate a word when retrieved, but the
ability of a word to retrieve the start cue varies as a function of its co-
occurrence with the start cue; specifically, p(start cue|w). To reflect
this, word-to-start included average surprisal across all contexts in

Table 4
Predictors of Future Accessibility for One- vs. Two-Word Repetition

Knowledge
State Future unknown Future planned

Past unknown Hðx1jw−1Þ Iðw1jw−1Þ
Past
remembered

Hðx1jw−1Þ − Hðx1jw−2w−1Þ Iðw1jw−1Þ − Iðw1jw−2w−1Þ

Note. These predictors are a function of the knowledge state of the speaker
when deciding whether to repeat w−2w−1, producing a two-word repetition, or
only w−1. I = surprisal of w1; H = entropy (average surprisal in position 1).
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which a word occurrred from forward-trained LSTM, and backward
surprisal of the start cue from backward-trained LSTM.6

To test whether the start cue is necessary to account for the data,
we created a version of the forward-trained LSTM trained on the
corpus without the start cue. Forward Surprisal in this model
correlated almost perfectly (r > .99) with Medial Surprisal in the
model with a start cue, and did not capture Initial Surprisal.
Therefore, an effect of Initial Surprisal on repetition length would
suggest that utterance-initial words are preceded by a start cue.
Recall that Medial Surprisal correlates with a number of collinear

corpus statistics, rather than reducing to a particular one (Figure 6).
We used BIC model comparison to test whether the LSTM measures
effectively capture the relevant statistics. If the LSTM model fully
accounts for the effects of the speaker’s experience with the language,
it should fit the repetition data as well as or better than a model that
predicts repetition behavior from the corresponding corpus statistics.

Testing Predictions With the Most Probable Model

Once the most probable model was identified, we examined how
the predictors comprising the model jointly influence repetition
behavior by fitting the BIC-best model using a fully Bayesian
approach in the brms package (Bürkner, 2018). We used two Monte
Carlo Markov chains with 30,000 iterations, 10,000 of which were
warmup iterations. The convergence diagnostics indicate that the
chains have converged by the end of warmup. The lowest effective
sample size for a parameter of interest was 10,445 independent
observations. The hypotheses we evaluate are confirmed if the
predictors that implement them have coefficients of the expected
sign in the most probable model, and their HPD intervals exclude
zero (Kruschke, 2014).

Model Fit

In addition to comparing models with BIC, we report marginal
pseudo-R2 values of the final model and subset models that either
exclude one of the hypothesized sources of influence on repetition
length, or include only one such source of influence and the control
predictors. These are intended to show the relative importance of the
influences on repetition length (accessibility of the future, reactiva-
tion of the past, Initiation Potential, and the structural control
predictors syntax and prosody). We expected that the principles
we propose capture substantial variance that structural predictors do
not capture. They also provide an estimate of how much variance in
the behavior remains to be captured. We calculated the R2 values
using the r2_bayes function in the performance package (Lüdecke
et al., 2020), which is the ratio of the variance in the values predicted
by the fixed-effects predictors divided by the variance in predicted
values plus the expected variance of the errors (Gelman et al., 2019).
We report marginal R2 values (rather than the higher R2 values
conditional on the random effects), which measure how well the
model captures the variance in the data using fixed effects alone,
marginalizing over the random effects of words.7 The R2 values and
their corresponding HPD intervals quantify the proportion of vari-
ance explained by a particular model, but should not be used for
model comparison purposes. The fact that R2 does not adjust for
model flexibility means that models with more predictors will
always show a better fit.8

Results

In this section, we first report the results of model comparisons
based on BIC, beginning with the control model, which included
only structural predictors, and then adding predictors of theoretical
interest. Predictors referring to the Facilitation Hypothesis are added
first, followed by predictors describing Reactivation of the past,
followed by those implementing Initiation Potential. We then
proceed to report on the effects of the predictors in the best model,
and conclude by reporting how much variance in behavior is
captured by each of the hypothesized influences on repetition
behavior.

Model Comparison

We begin by describing the control model, which does not
include any predictors of theoretical interest. As summarized in
Table 5, the control predictors influenced repetition behavior as
expected from prior research. The presence of a major syntactic
constituent boundary at w−1 favored starting from w−1 relative to
utterances with farther-away boundaries. A boundary at w−3
favored starting from w−3 compared to utterances in which the
nearest boundary was at w−2. As reported in prior work
(Kapatsinski, 2005), a boundary before w−1 does not significantly
influence the choice between whether to repeat w−3. Duration of the
word that the speaker considered repeating (w−2 for one- vs. two-
word repetitions; w−3 for two- vs. three-word repetitions) influ-
enced the likelihood of repeating it, with shorter words being more
likely to be repeated. These results suggest that the control pre-
dictors capture the structural influences on repetition behavior
identified in prior work.

Facilitating Access to the Future. We proceeded to identify
the best model of one- vs. two-word repetitions by adding measures
of future activation to the control model, which accounted for 7% of
the variance in repetition length. The best measure of future
activation was surprisal of w1 given a shorter context relative to
its surprisal given a longer context, Relative Surprisal or I(w1|
w−1) − I(w1|w−2w−1), which performed better than simple forward
surprisal, I(w1|w−1); [b(SE) = 0.44(0.06), z = 7.46, p < .0001; vs.
b(SE) = 0.17(0.06), z = 2.75, p = .006; ΔBIC = 48; see Table

6 Because mean forward Initial Surprisal in the start cue model is negative
log utterance-initial frequency of the word, and backward surprisal of the
start cue is the difference between log utterance-initial frequency and log
utterance-medial frequency, it is not possible to combine the influences in
start-to-word and word-to-start models in a superset model, as it becomes
unindentifiable. Thus, we can test whether it is better to allow experience to
vary the weight of the connection from the start cue to a word, or the weight
of the connection from the word to the start cue, but not both.

7 Random effects capture uncontrolled variance due to word identity, and
are included to account for lack of independence between observations of the
same word. Marginal R2 is preferable to overall model fit, as captured by
conditional R2 and other measures like accuracy or the concordance score
because Monte Carlo simulations show that overall model fit of a mixed-
effect model is often the same whether or not a real predictor is included
(Barth & Kapatsinski, 2018).

8 The HPD intervals around the R2 values also do not take into account the
strong correlations between R2 estimates of two models across locations in
the sampling space. As the chains sampling parameter values explore the
posterior, R2 of the models containing those parameters varies, and the R2

values of the models that share many parameters vary together. As a result,
overlap in HPD intervals of R2 between models underestimates the reliability
of the differences in fit between models (Kruschke, 2014).
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A1]. The difference in relative surprisal between w1 and its nearest
LSA semantic competitor, [I(sem.comp1|w −1) − I(sem.comp1|
w−2w−1)] − [I(w1|w−1) − I(w1|w−2w−1)], was closest to the best
measure but did not perform as well (ΔBIC = 35). Only measures
of relative surprisal were significant and decreased BIC compared to
the control model (ΔBIC > 48; Table A1 and A2). Entropy mea-
sures did not make a significant contribution to the model (p > .8;
Table A3), and reduced model fit compared to the control model
(ΔBIC = 8.3; Table A3). These results suggest that the speaker
repeats two words specifically when it would facilitate access to the
upcoming word.
Reactivation of the Past. We retained relative suprisal in the

model. We then examined the predictors referring to the predict-
ability of the past. Of these predictors, predictability of w−2 given
w−1 (Backward Surprisal) was highly significant for predicting
whether the w−2 was repeated [b(SE) = 1.49(0.14), z = 10.98,
p < .0001; Table A4) and improved model fit more than either
context-independent or forward surprisal of w−2 (all ΔBIC > 55;
Table A4). These results support the Reactivation Hypothesis,
suggesting that the speaker reactivates recently produced words
by cueing them, in part, by the words that follow.
Initiation Potential. We retained Backward Surprisal in the

model and investigated what makes a word a good utterance
initiator. Recall that we compared two models. Start-to-word model
included mean Initial and Medial Surprisal from forward-trained
LSTM. Word-to-start model included mean surprisal from forward-
trained LSTM, and backward surprisal of the start cue in backward-
trained LSTM.
Start-to-word model provided a better fit to the data than word-to-

start model, with ΔBIC = 11 (Table A5), suggesting that a good
initiator is a word strongly activated by the start cue, rather than a
word from which the start cue is likely to be inadvertently retrieved.
However, both models had significant similarities. First, mean
Forward Surprisal was significant in both models, in the expected
direction—production was initiated from words with high mean
Forward Surprisal—and improved model fit (ΔBIC > 16; Table
A5). Second, in both models, the strength of a word’s association
with the start cue mattered for w−2, a word that the speaker needs to
reactivate to a level sufficient for re-production, but not forw−1. That
is, the amount of activation received from the start cue matters for

already produced words, which are not activated enough to re-
produce. In contrast, activation received from the start cue by the
word that the speaker has full access to, that is, w−1, does not appear
to affect repetition length.

Fit Relative to Corpus Statistics. We compared the LSTM
model predictors to the corresponding corpus statistics, to deter-
mine whether the LSTM model accounts for the variance that
comes from experience with words in context. Backward, For-
ward, and Initial Surprisal in LSTM performed about as well as the
corresponding log transitional probabilities in the corpus (ΔBIC =
1–3; Tables A6–A8). This is unsurprising because these LSTM
measures closely track the corresponding conditional probabili-
ties. In addition, models incorporating LSTM Medial Surprisal
outperform the model with the corresponding corpus statistics (log
contextual diversity, log medial frequency and mean log forward
surprisal), with ΔBIC = 31 for word-to-start (Table A9) and
ΔBIC = 40 for start-to-word (Table A10). The reason for these
differences is that the LSTMmodels achieve a similar fit to models
using corpus statistics, but with fewer predictors.

Coefficient Estimates in the Final Model

The left panel of Figure 10 shows the coefficient estimates from
the best (lowest-BIC) model of the choice between one-word and
two-word repetitions. This was the start-to-word model. We re-
implemented this model using brms, so that Bayesian HPD intervals
for all coefficients could be derived. Intervals that span zero, marked
by a vertical dashed line, indicate that zero is a believable value for
the coefficient. The right panel of Figure 10 shows the results of
applying the same model, with re-estimated coefficients, to the
choice between repeating two versus three words. We expect the
predictors of theoretical interest to have signs in the expected
direction, and to have HPD intervals that do not span zero.

Overall, the results are similar for the two datasets, as shown by
overlap between the corresponding HPD intervals in the right and
left panels (see Table A11 for details of each model). Shorter
repetitions are favored over longer ones. Repetitions are longer
when repeating more would strongly boost the predictability of the
future (reducing Forward Surprisal). Words are repeated when they
are predictable given the word that follows (low Backward Sur-
prisal). The speaker restarts production from words that tend to be
unexpected when they occur medially (high Medial Surprisal), and
expected when they occur initially (low Initial Surprisal). The
significant effect of Medial Surprisal suggests the existence of
competition between top-down and preceding-word cues: top-
down cues to words that occur in favorable contexts are weaker
than top-down cues to words that occur unpredictably. The signifi-
cant effect of Initial Surprisal suggests that words that regularly
occur in the initial position become associated with the utterance-
initial context.

There is only one reliable difference between the two panels, as
indicated by lack of overlap between 95% HPD intervals for the
corresponding coefficients: Initial Surprisal does not affect the likeli-
hood of restarting production from w−1, the word that the speaker
tends to be producingwhile initiating the repetition. The narrowHPD
interval around the Initial Surprisal coefficient for w−1 means that
there is a reliable difference in the effect of Initial Surprisal for w−1
versus other words. That is, the lack of effect of Initial Surprisal in

Table 5
Repetition Length as a Function of Control Predictors, Syntax and
Duration

Predictor b SE(b) z p

Model 1: one- versus two-word repetition
Intercept −4.07 0.34 −12.09 <.0001
Boundary at w−2 2.21 0.22 9.92 <.0001
Boundary at w−3 1.15 0.27 4.26 <.0001
Duration w−2 −0.82 0.09 −9.25 <.0001

Model 2: two- versus three-word repetition
Intercept −3.71 0.70 −5.32 <.0001
Boundary at w−1 −0.24 0.42 −0.58 .55
Boundary at w−3 1.38 0.65 2.14 .03
Duration w−3 −1.02 0.18 −5.60 <.0001

Note. Duration was log transformed and standardized. Therefore, the
intercept is for a word of average duration for the boundary location that
favors a shorter disfluency.
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Figure 7a appears to be real, rather thanbeingdue to lowvariability in
Initial Surprisal among w−1’s.
Linguistic experience influences repetition behavior beyond the

structural effects of syntax and duration, which are in the expected
direction. Words are more likely to be repeated when they are short
(Duration). The speaker also does tend to restart production from the
nearest major constituent boundary: when the boundary falls before
w−1, the speaker tends not to repeat a unit that spans that boundary
(left panel), and when it falls beforew−2 speakers are likely to restart
speech from it. However, syntactic constituency is no longer a
significant predictor of the choice between a two-word and a three-
word repetition once the effects of experience are included in
the model.
Figure 11 shows the proportion of variance accounted for by the

full model (38%), the control model (7%), and models that exclude
one or more of the hypothesized sources of influence on repetition
behavior. The most important influence on the number of words
repeated appears to be Initiation Potential. Of the contributors to
Initiation Potential, strength of association with the start cue (Initial
Surprisal) is a stronger predictor than cue competition (Medial
Surprisal). The effect of Initial Surprisal means that words become
better initiators when they occur utterance-initially, strengthening
their association with the start cue. The effect of Medial Surprisal
means that words become poorer initiators when they are frequently
cued by predictive preceding contexts. The second-most-important
predictor is the influence of backward associations on how easy the
past is to reactivate (Backward Surprisal). Finally, the smallest
influence is variability in how much repeating more words would
help activating the planned future over other words (Future). Thus,
the word that the speaker restarts from, and as a result the number of
words repeated, is determined mostly by how strongly the candidate
initiators are activated by top-down input, the start cue, and the
following context.

Discussion

In this section, we used the proposed theory to predict how many
words will be repeated on each individual occasion. We have shown
that predictors implementing each of the hypotheses that comprise
the theory accounts for variance in repetition length beyond random

or uncontrolled variation between words and the control predictors
of syntax and prosody. As predicted by the Facilitation Hypothesis,
words are repeated if this would help activate the future. As
predicted by the Reactivation Hypothesis, words are repeated if
they are strongly cued by the words that follow, as well as by the
utterance-initial start cue. Finally, as predicted by the Initiation
Hypothesis, speech is reinitiated from words that tend to occur in
utterance-initial contexts, and tends not to be reinitiated from words
that have a history of occurring in favorable preceding-word contexts
(Figure 10). Together, the predictors implementing these hypotheses
account for ∼35% of variance in repetition length, with control
predictors improving fit by an additional 3% (Figure 11).

The proposed model appears to successfully capture variance in
repetition length that is due to linguistic experience (i.e., word co-
occurrence): it achieves the same fit to the data as a model that
includes all of the corresponding corpus statistics, that is, frequency
in utterance-initial and medial positions, forward and backward
transitional probability, contextual diversity, and mean transitional
probability. The BIC favors the LSTMmodel over the corpus model
because it is able to capture the same variance in behavior using a
smaller number of free parameters.9 The model therefore appears to
capture how linguistic experience influences the production of
repetitions: it is sensitive to the statistics of linguistic experience
in the same way speakers are.

Facilitation

The results for predictors of future accessibility shed some light
on the information to which the speaker has access when deciding
how many words to repeat. We found that the difference in surprisal
given w−1 versus w−2w−1 (relative surprisal) is the best measure of
future accessibility to include in the model of repetition length. The
finding that surprisal of the specific word that follows the disfluency
outperforms entropy (average surprisal) suggests that the speaker
has some inkling of what they need to say next when deciding to
produce a multiword repetition. This result fits well with the

Figure 10
The Final Model of Repetition Length

Duration of w−2

Boundary before w−3

Boundary before w−2

Initial Surprisal of w−2

Initial Surprisal of w−1

Medial Surprisal of w−2

Medial Surprisal of w−1

Backward Surprisal of w−2

Forward Surprisal of w1

Intercept

−5.0 −2.5 0.0 2.5 5.0

Coefficient Estimate (β̂)

Duration of w−3

Boundary before w−3

Boundary before w−1

Initial Surprisal of w−3

Initial Surprisal of w−2

Medial Surprisal of w−3

Medial Surprisal of w−2

Backward Surprisal of w−3

Forward Surprisal of w1

Intercept

−5.0 −2.5 0.0 2.5 5.0

Coefficient Estimate (β̂)

Note. Left panel: the choice of whether to repeat one or two words (restarting from w−1 or w−2 respectively). Right panel: the
choice of whether to repeat two or three words (restarting from w−2 or w−3). Positive coefficients favor longer disfluencies. 95%
highest posterior density (HPD) intervals shown.

9 Of course, the LSTM also has additional free parameters not seen by the
BIC, such as the number of training epochs. However, these parameters were
not fit to the data in the present study.

1128 HARMON AND KAPATSINSKI

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



hypothesis that repetition disfluencies tend to be produced when the
speaker is in a tip-of-the-tongue state. That is, she has planned what
to say next at the semantic level, and remains committed to this plan
(Branigan et al., 1999). The intended continuation is activated more
than alternatives, but is not activated enough to be selected. The
repetition is then used to push the right word over the threshold. The
finding that surprisal relative to the nearest LSA competitor does not
perform as well indicates that the closest LSA competitor is far from
the only word competing with w1 for selection. The finding that
relative surprisal outperforms simple forward surprisal of w1 given
w−1 means that surprisal of w1 given w−2w−1 matters for predicting
repetition length. This suggests that an additional word is repeated
specifically when it would improve access to the upcoming word.

Reactivation

Backward Surprisal improves model fit more than context-
independent surprisal or forward surprisal of preceding words.
This result provides support for the Reactivation Hypothesis, sug-
gesting that words are reactivated by retrodictive following contexts.

Initiation

While Backward Surprisal appeared to be the strongest influence
on repetition length in univariate analyses, a multiple regression
approach allows us to estimate the relative contributions of the
proposed influences on repetition length more precisely. The results
above indicate that the strongest influence on restart location is
Initiation Potential—how strongly the words preceding the inter-
ruption could be activated by cues available at the beginning of
an utterance. However, the components of Initiation Potential—
Initial and Medial Surprisal—do not make equal contributions.
The relatively low importance of Medial Surprisal compared to
Initial Surprisal contrasts with the fact that Initial Surprisal does not
significantly affect w−1, whereas Medial Surprisal significantly
affects words in all three positions. We suggest that the strength
of top-down input matters for words in all positions because all
words receive activation from top-down input before they are
reproduced. However, its effect is relatively weak because top-

down cues need to be strong enough to reliably activate words
across contexts, and they need to weaken enough after words are
executed to prevent perseveration. These considerations place con-
straints on the degree to which the strength of a top-down cue to a
word can be influenced by competition with preceding cues: The
present always needs to be activated enough to be executed, and the
past needs to be weaker than required for execution. The strength of
top-down input also cannot be measured directly. All we can
measure is how much it is affected by competition from context
cues. As discussed below, this competition is not the only influence
on the activation received from top-down cues. In particular, top-
down activation must also be affected by competition for selection
among the forms of semantically related words (e.g., Harmon &
Kapatsinski, 2015, 2017; Harmon, 2019). As a result, the effect of
cue competition on repetition length cannot be particularly strong.

The effect of Initial Surprisal is weaker for w−1 than for other
words (cf., the coefficient estimates for the sixth predictor in the two
panels of Figure 10). We suggest that this weakness of the effect of
Initial Surprisal for w−1 arises because w−1 receives more activation
from top-down cues. We hypothesized that execution restarts from
the word activated most highly by the cues present at the beginning
of an utterance—the start cue and the top-down cues. In a neural
network, the input activation of an outcome, a, is equal to the sum of
cue activations multiplied by the weights of the associations con-
necting the cues to the word. Thus, aword = V top−down × atop−down +
V start × astart where V denotes the weight of a cue, and a denotes how
strongly a cue is activated.

According to this equation, the activation of a word is the sum of
the two predictors we investigated, Vtop-down and Vstart, weighted by
the a terms. We assume that the start cue is always activated equally
at the beginning of an utterance, as suggested by the superior fit of
start-to-word model compared to word-to-start model. This means
that astart is constant for all words. We also assume that the top-down
cues to a word are deactivated after the word is executed. That is,
atop-down is lower for w−2 and w−3 than for w−1. As a result,
activation of a word that has already been executed would be
affected mostly by the second term of the summation, which is
proportional to the strength of the word’s association with the start
cue (Vstart). On the other hand, activation of a word that the speaker

Figure 11
Variance Explained by the Final Model Followed by Subset Models Excluding, in Order, Control Variables (No
Control Predictors), Then One of the Hypothesized Sources of Influence: Accessibility of the Future (No Future) and
the Past (No Backward Surprisal) from the Present, Followed by Medial and Initial Surprisal, the Components of
Initiation Potential; Followed by Models Including Only One of These Hypothesized Sources of influence Combined
With the Control Predictors of Syntax and Duration; Followed by a Model With Only Control Predictors

Control Predictors Only
Future + Control

Backward Surprisal + Control
Initial Surprisal + Control

Medial Surprisal + Control
Initiation Potential + Control

No Initiation Potential
No Initial Surprisal

No Medial Surprisal
No Backward Surprisal

No Future
No Control Predictors

Full Model

R2

Control Predictors Only
Future + Control

Backward Surprisal + Control
Initial Surprisal + Control

Medial Surprisal + Control
Initiation Potential + Control

No Initiation Potential
No Initial Surprisal

No Medial Surprisal
No Backward Surprisal

No Future
No Control Predictors

Full Model

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
R2
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is currently producing will be based mostly on the first term in the
summation, and therefore on the strength of its association with the
top-down cues (Vtop-down). The finding that the effect of Vstart is not
reliably different from zero for w−1 suggests that the contribution of
top-down cues to the activation of a word selected for execution is
much greater than the contribution of the start cue. The finding that
the weight of the start cue is the strongest influence on the activation
of w−2 and w−3 in turn suggests that the top-down cues to a word are
deactivated after the word is executed.

Control Predictors

The control predictors capture influences on repetition that are
beyond the scope of our model. In particular, the effect of duration
may be a side effect of differences in articulatory difficulty. There is
evidence that speakers avoid attempting to produce words that are
articulatorily difficult (Martin, 2007; Schwartz & Leonard, 1982). To
capture this effect properly would require either feedback activation
from articulatory representations to lexical selection (Martin, 2007) or
a reinforcement learning model in which production difficulty result-
ing from selecting a word leads speakers to avoid this choice in the
future. At present, we can only attempt to capture this effect by adding
its acoustic correlate of duration to the regression.
The significant effect of syntactic structure on the choice between

one-word and two-word repetitions may be captured in several
possible ways. First, it is possible that the semantic representation of
a word is also involved in reactivating the preceding word. Because
words with overlapping semantics activate each other’s forms
(e.g., Harmon & Kapatsinski, 2015, 2017; Harmon, 2019), a
word that is semantically related to the preceding word would
partially activate its form. Words on different sides of a syntactic
constituent boundary are relatively unrelated semantically. Thus, the
semantic representations of such words have relatively little overlap,
and recently produced words followed by a major boundary would
be difficult to retrieve. Second, it is possible that words receive some
activation from activated syntactic constituents, and that syntactic
constituents become deactivated once they are executed, just as
words are deactivated. In that case, words belonging to previously
produced syntactic constituents would be less active than those that
belong to the current one. This type of explanation requires im-
plementing recurrent networks at multiple sequencing levels.
Though this is in principle possible (Chang et al., 2006; Jordan,
1986), it is also well beyond the scope of the present work.

General Discussion

In this article, we developed a theory of non-perseveratory
repetition in language production. The proposed theory consists
of three interrelated hypotheses. In this section, we revisit the
evidence for each of these hypotheses, showing how they work
together to motivate the existence and structure of repetitions. We
further discuss how the theory explains cross-linguistic differences
in reliance on repetition disfluencies, and outline directions for
future work.

The Problem of Retrieval and the Facilitation Hypothesis

The Facilitation Hypothesis motivates the occurrence of repeti-
tions by positing that they solve the Problem of Retrieval. That is,

repetitions occur when the speaker has trouble retrieving the
upcoming word, and they help resolve this lexical access problem.
Repeating a word increases its activation, which in turn increases the
activation of the words that are predicted to occur next. We have
shown that, in English, a repetition reinstates predictive cues to the
words that follow and would help a recurrent neural network retrieve
these words.

The model comparison results allow us to specify the Problem of
Retrieval that the speaker tends to face when deploying a repetition
in greater detail. We found that the speaker has some information
about the upcoming word when planning a repetition: The number
of words repeated depends on how well the repeated string cues the
specific upcoming word (surprisal), rather than on its overall
effectiveness in cueing upcoming words (entropy). This result
suggests that repetitions occur when the speaker knows what to
say next but has not yet settled on how to say it. Speakers plan
farther ahead at the level of meaning than at the level of word form
(Meyer, 1996). Repetition then appears to be deployed when
execution has run ahead of lexical access at the form level, but
not ahead of planning at the level of meaning (see also Blackmer &
Mitton, 1991). This proposal is consistent with Branigan et al.
(1999) suggestion that repetitions occur when the speaker remains
committed to the current speech plan rather than trying to revise it,
and contrasts with the Postma and Kolk (1993) proposal that
repetitions are covert repairs.

Multiword Repetitions and the Reactivation Hypothesis

To produce multiword repetitions, previously produced words
must be reactivated. Activation-based theories of production assume
that the unit selected for execution is the unit with the highest
activation when that decision is made. For this reason, such theories
tend to assume that production units must be deactivated after they
are executed in order to avoid perseveration, that is, unintentional
repetition (Dell et al., 1997; Estes, 1972; Houghton, 1990; James,
1890; MacKay, 1982; Rumelhart & Norman, 1982). Words are
likely to be the relevant production units for repetition production
because a repetition always restarts production from a word bound-
ary. If words are production units, and production units are deac-
tivated after execution, then speakers must reactivate recently
produced words in order to repeat them. Without sufficient activa-
tion, the past is not repeated, even if it is accessible enough to cue the
future.

We found some evidence that recently produced words remain
partially accessible: the speaker is more likely to re-produce a word
if this would facilitate accessing the future. As illustrated by this
finding, it is functional for the speaker to retain some memory of
what they have just said, in order to knowwhether repeating it would
be useful. It is also useful to retain a memory of the past to be able to
reliably re-produce it. When future is inaccessible and retrieving the
past is easier than retrieving the future, retrieving the past could help
access the future. Despite this, reactivation of the past is necessary to
produce a multiword repetition because activation levels of recently
produced units must be below the level necessary for execution in
order to avoid perseveration.

We also found support for the use of backward associations in
planning. We assume that the final word that the speaker is
executing before the interruption point tends to be the speaker’s
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present, that is, the word that has not yet been deactivated. The
speaker then uses this available cue, alongside other cues, to
reactivate the past. We have shown that the likelihood of repeating
a recently produced word is predicted by its retrievability using the
following-word context, and not by its context-independent acces-
sibility, or by its retrievability given the preceding context. This
suggests that speakers learn backward associations rather than only
forward ones (cf. Ramscar et al., 2010), and use these associations
to reactivate the past when the future is inaccessible.
Because reactivation is fallible, multiword repetitions are uncom-

mon relative to single-word repetitions. We hypothesized that
retrieving the past involves rewinding the chain, so that words
are retrieved one-by-one, going farther and farther into the past
(Harmon &Kapatsinski, 2016; Kapatsinski, 2005; Snyder & Logan,
2014). At each point, the previously reactivated words remain
available to cue the past and the future, and an additional word
is added to the cueing context. Because the retrieval process moves
backward word by word, words will not be skipped in producing the
repetition: retrieving a word generally requires retrieving the word
that follows it. The likelihood of retrieving a previously produced
word is then dependent primarily on (a) its distance from the present,
and (b) its backward transitional probability. Backward transitional
probability matters because it is the primary determinant of howwell
a word is cued by the following context. Distance from the present
matters because repeating the last word one has produced (w−1) does
not require retrieving anything but retrieving the second-to-last
word (w−2) requires retrieving the last word, and retrieving the
third-to-last word (w−3) requires retrieving the last word and the
second-to-last word.
All of the factors described above predict repetition length

beyond structural factors like syntax and prosody. Even though
predictability from following context correlates with syntactic
structure in a preposing language like English, backward transitional
probability is not a good predictor of all disfluencies. In particular,
Schneider (2014, 2016) shows that backward transitional probabil-
ity is the worst probabilistic predictor of hesitation placement, with
forward transitional probability and mutual information performing
better. The proposal that repeating more than one word requires
retrieval of the past using the present as a cue (the Reactivation
Hypothesis), provides an explanation both for why backward
transitional probability is important in accounting for the occurrence
of multiword repetitions, and why it is not as important for other
disfluencies, whose production does not require reactivating
the past.

The Problem of Initiation and Cue Competition

In deploying a repetition to solve the Problem of Retrieval, the
speaker faces another problem, the Problem of Initiation. Repetition
requires the speaker to decide from where to reinitiate execution of
the speech plan. The Problem of Initiation would be trivial if
speakers always produced one-word repetitions, but they do not:
About 30% of repetitions in our sample involve repetition of more
than one word. We proposed that the existence of multiword
repetitions is motivated by the fact that a multiword context is
usually more predictive of the upcoming word than a single-word
context. That is, activating a longer context is more helpful for
solving the Problem of Retrieval. However, having the option to
produce a multiword repetition means that the speaker must find

some way to decide on the location from which to reinitiate
execution. We have shown that this decision is made on the basis
of how strongly the words preceding the disfluency are activated by
the available cues: Top-down cues representing the remembered
plan, the utterance-initial context, and the words that have already
been accessed.

The existence of two levels of planning (form and meaning) means
that the retrieval of a word is cued by top-down input from the plan, in
addition to any other cues that may be available, such as those
provided by a predictive preceding context. Top-down activation is
necessary to faithfully execute plans that do not correspond to the
chain of most likely transitions. For example, to say she was walking
her cute little dinosaur one would have to cue dinosaur by the
intended meaning, as it is an unlikely continuation in the cute little
context. In contrast, top-down control is superfluous when the word to
say next is the most likely word given the preceding context: unlike
dinosaur, dogwould be retrievable from the cute little context without
help from the plan. Models of production often use both top-down and
preceding-context cues to choose what to do or say next (e.g., Chang
et al., 2006; Cooper et al., 2014; Dell et al., 1993; Logan, 2018).

Cue competition proposes that co-occurring cues compete to
predict outcomes. In the present case, top-down and preceding-
context cues co-occur in cueing upcoming words, which means
they can overshadow each other (Arnon&Ramscar, 2012). Based on
this hypothesis, words that occur in contexts that effectively cue them
should be expected to have weaker top-down cues. Cue competition
is inherent to predictive models, including recurrent networks in
which both top-down cues and preceding context serve to cue
upcoming choices (Cooper et al., 2014; Dell et al., 1993). This is
because the sum of the weights of co-occurring cues to an outcome is
constant. Thus, the stronger the preceding-context cues to a word are,
on average, the weaker the co-occurring top-down cues to the word.

The present results provide support for cue competition as a way of
resolving the Problem of Initiation because speakers tend not to restart
production from words that have occurred in predictive preceding
contexts. Initiating production from a word requires activating it to a
level sufficient for execution in an utterance-initial context. We
suggest that this involves cueing the word with a start cue
(Henson, 1998; MacKay, 1987), which occurs at the beginning of
each utterance, as well as top-down cues. The top-down cues are
weakened when the word occurs in a predictive preceding context. In
contrast, the start cue is simply another preceding-context cue,
growing stronger when the word occurs in the initial position. The
strengthening of the start cue makes it easier to initiate production
from words that are probable in the initial position (i.e., words that
have low Initial Surprisal). Because the effect of Initial Surprisal is not
captured by a model trained on a corpus in which there is no cue
preceding an initial word, it provides support for the existence of a
start cue. At the same time, the word’s association with the start cue
does not capture the effect of predictability in medial contexts, which
suggests that some cue that can activate a word in the initial position
weakens when the word occurs in a predictive preceding context. We
suggest that this is the top-down cue to the word because top-down
cues co-occur with preceding-context cues—consequently being in
danger of overshadowing—and are necessary to account for how
speakers navigate unlikely transitions between words.

The deactivation of recently produced words, which prevents
their erroneous re-production, is naturally modeled as the with-
drawal of top-down support. That is, just before a word is selected for
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execution, top-down activation raises its activation to a level suffi-
cient for the word to be executed. Once the word is executed, top-
down activation flow is reduced and overall activation falls below the
level necessary for execution so support from other cues is needed for
the word to be re-produced. In accordance with this idea, for words
that have been already produced and therefore deactivated, the
activation the word receives from the start cue is the strongest
influence on whether speakers will restart production from it.
However, for words that have not been deactivated, the effect of
activation received from the start cue is very close to zero: Speakers
can start production from fully activated words even if the start cue
provides no additional support.

Why only some Languages Have Repetition Disfluencies

The Facilitation Hypothesis states that repetitions help the speaker
to solve the Problem of Retrieval, cueing the future with the present.
The Problem of Retrieval exists in all languages, and in other action
domains: the speaker/agent constantly faces the choice of what to
say/do next. It may therefore be surprising that repetitions do not
exist in all languages. Specifically, Fox et al. (1996, 2009) have
shown that they are not found in postposing languages like Japanese.
Both English and Japanese have easy-to-access function words

and hard-to-access content words. Thus, if repetitions buy time for
lexical access, one might expect that in both languages speakers
could use repetition of a function word to buy time to access the
upcoming content word. Why then do repetitions not occur in
Japanese? The answer to this question shows how the hypotheses
we proposed above fit together in explaining the emergence and
maintenance of repetition behavior in a language.
Note that postposed function words are akin to suffixes. Indeed,

there is no clear boundary between suffixes and postpositions
because, in language change, suffixes evolve out of postpositions,
fusing with the preceding items they frequently follow (Bybee,
2002; Bybee et al., 1990). One might therefore just as well ask why
English speakers do not repeat suffixes when trying to access an
upcoming content word. Above, we have argued that suffixes are not
repeated because they are bad initiators. A suffix never occurs
utterance-initially and, being a frequent unit that is required by
the preceding unit in certain contexts, tends to be predictable when it
occurs. For example, givenHe walk, the next morpheme in Standard
English must be -s, or -ed. This is also true of postpositions:
frequent, and obligatory in certain contexts, they are highly predict-
able from the preceding context whenever they occur (Onnis &
Thiessen, 2013).
Japanese speakers could restart from a better initiator by produc-

ing a multiword repetition. However, because function words and
modifiers in Japanese tend to be postposed, this would usually
require reactivating a content word, a relatively difficult feat,
compared to retrieving a function word or a frequent modifier
like good or really that can initiate an utterance in English. That
is, whereas good initiators tend to be easier to reactivate than poor
initiators in English, the opposite should hold in Japanese.
Postpositions would also not facilitate access to the future as well

as prepositions do: because they are semantically related to the
preceding word and not the following one, they do not predict
following words as well as prepositions do. Thus, repetitions in
Japanese do not exist both because they would be less helpful than
English repetitions for solving the Problem of Retrieval, and

because they would be difficult to produce, posing significant
reactivation and initiation challenges.

Limitations and Future Directions

An important claim of the present theory is that words are cued by
both context cues and top-down input from the production plan. We
show that top-down input appears to be weaker for words that occur
in predictable contexts. The main limitation of the present imple-
mentation is that it does not implement the top-down input cues.
Variability in the strength of top-down input does not reduce to how
much competition top-down cues face from contextual cues. Clearly
then we are not capturing all of the variance in top-down input to a
word. For example, concrete words are more accessible than abstract
words (Hanley et al., 2013), likely because they are better cued by
top-down input. Similarly, morphemes that express more of the
intended meaning tend to be selected over more general morphemes
for production (Kapatsinski, 2018a; MacWhinney, 1978). Words
that have more semantic competitors are more difficult to access
(Harmon & Kapatsinski, 2015; Schnadt, 2009), an effect that
interacts with word frequency, as frequent words can outcompete
semantically similar words for selection even when they are less
semantically accurate (Harmon & Kapatsinski, 2017). An important
future direction for this work is to implement top-down control of
execution by distributed semantic representations.

The Initiation Hypothesis suggests that cue competition can result
in top-down cues being overshadowed by context cues (Arnon &
Ramscar, 2012). While generally helpful, strong context cues can
lead one astray when top-down input tells one to follow a path less
trodden—and can lead to an error if the top-down input is not strong
enough. Wickelgren (1966) called this kind of error an associative
intrusion. It is also known as a capture error (Norman, 1981) and a
strong habit intrusion (Reason, 1979, 1990). A prediction of cue
competition is that speech/language production errors arising in
execution will often involve associative intrusions. A particularly
good example of an associative intrusion is Benjamin Netanyahu’s
slip of calling the British Prime Minister Boris Yeltsin instead of
Boris Johnson. because it involves the production of a rare form that
is strongly cued by the preceding context. Boris is an exceptionally
good cue to Yeltsin because it was almost always followed by Yeltsin
before Johnson’s career took off. According to the associative
account of such errors, Yeltsin is produced because it is activated
by Boris, the predictive preceding item. Associative intrusions can
also be exemplified in the morals and values of my generation for
the most, for most people are totally different (the Switchboard
Corpus), the speaker first produces the rather than most after for, a
glitch that may be explained by the high predictability of the given a
preceding for and the low predictability of most (16% vs. .03%;
Corpus of Contemporary American English; Davies, 2008-2019). In
We tried it making, making it with gravy (Levelt, 1989), tried it is
over 20 times more common than tried making. Tried therefore cues
itmore strongly than it cuesmaking. Levelt (1989, p. 372) notes that
this is typical on shift errors, which tend to involve anticipation of a
predictable function word. Shift errors can then also be considered to
result from associative intrusion, eventually corrected with top-
down input.

While sometimes denied in the literature on serial recall (Goldberg
& Rapp, 2008; Henson, 1998), associative intrusion errors have
received empirical support across domains. In music performance,
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Chaffin and Imreh (2002) reported that expert musicians rehearsing a
piece would slow down or interrupt their performance at switchpoints.
Switchpoints are places where the musician needs to transition out of a
recuerrent musical theme so that the preceding context can cue the
wrong path to take. Expert musicians appear to be well aware of this
difficulty of continuing down the right path and allocate additional
practice time to switchpoints in rehearsing a piece. In routine action,
associative intrusions have been estimated to form ∼40% of all errors
(Reason, 1992; Wood & Neal, 2007, p. 852; see also Norman, 1981;
Reason, 1990). Speech errors have not generally been classified with
associative intrusions in mind (though see Bannard et al., 2019). It is
therefore unknown what proportion of errors in language production
can result from priming of the error by a predictive preceding context.
In the LSTM, the average predictability of a word in context is

Medial Surprisal. Medial Surprisal is necessarily correlated with
contextual diversity, medial frequency, and mean surprisal condi-
tional on the preceding word. Within a language, these are neces-
sarily collinear, which makes it difficult to determine whether all of
these influences independently affect the accessibility of a word in a
new context. Controlling for word frequency, words that occur in a
wide variety of contexts are less predictable in any one context.
Words that occur in the same number of contexts but differ in
frequency also differ in the average probability given a context.
Words that have the same average probability across contexts but
differ in frequency must differ in contextual diversity. However, it is
possible to decouple these factors in an artificial language study by
exposing speakers to production experience with systematically
different mini-languages (e.g., Botvinick & Bylsma, 2005; Dell
et al., 2000). Teasing apart the influences of context frequency,
word frequency and contextual diversity on top-down weights is an
important direction for future experimental work. For example, we
could test the prediction that a word that always occurs in the same
context is expected to be less accessible in a novel context than a
word that occurs in a variety of contexts.
The assumption that the word before the interruption is the

speaker’s present, presupposes that the speaker decides to produce
a repetition just before the interruption in the flow of speech. We
suspect that sometimes disfluencies are preplanned because a diffi-
culty is anticipated in advance, or the speaker wants to perform
uncertainty for the listener (Smith & Clark, 1993). Though the
empirical evidence for pre-planning in disfluency production is
limited to the choice between uh and um, preplanning of repetitions
may be revealed by prosodic cues, for example, how far in advance
word durations begin lengthening compared to their average dura-
tions in similar environments. When a repetition is preplanned in
advance, the apparent past need not be reactivated, thus wewould not
expect effects of Backward Surprisal or a difference in how words in
different positions are affected by Medial and Initial Surprisal.
Communicative repetition, such as repetition for emphasis, is

motivated by something other than a problem with lexical retrieval
and instead triggered by top-down semantic input. It, therefore, falls
outside the scope of the proposed theory. However, it is possible for
a repetition pattern that was originally motivated by solving the
problem of retrieval to become conventionalized as indicating that
the speaker needs some time to think. For example, sentences like
It just : : : it just doesn’t matter anymore exhibit a conventionalized
repetition, as it occurs with a surprisingly high frequency. Such
repetition patterns likely have their origins in repetition disfluency—
occurring when the speaker is having trouble saying what comes

next—but become associated with that state of mind and can then be
used communicatively to signal that what is coming up is hard to say
(see also Clark & Fox Tree, 2002, for filled pauses). A repetition
disfluency need not be motivated by a problem with lexical retrieval
on every occasion: things can be difficult to say for other reasons.
We don’t necessarily expect the number of words repeated in such
cases to be predictable from the predictability of the upcomingword,
but the other principles we have articulated still apply. Thus,
speakers are still expected to produce a multiword repetition only
if the past can be reactivated and is easy to reinitiate execution from.

Speakers find it difficult to initiate word production from seg-
ments that do not occur word-initially. For example, English speak-
ers face great difficulty pronouncing foreign words that begin with
/ŋ/, like the Vietnamese name Nguyen, because /ŋ/ never occurs
word-initially in English. Dell et al. (2000) have shown that seg-
ments can become restricted to the word-initial or postvocalic
context after a short production experience in which they always
occur in that position. Thus, after 20 min of producing one-syllable
words that never begin with /s/, but often end in it, English speakers
avoid/s/-initial productions even when making a speech error. The
proposed theory suggests that production experience may also have
this effect on lexical speech errors. Conversely, if competition
between top-down and preceding-context cues also operates in
retrieving segments constituting a word, the proposed theory also
makes additional predictions for when a segment should be espe-
cially difficult to produce in an initial position. Namely, segments
that tend to occur predictably should be poorer word initiators than
segments that tend to occur unexpectedly.

The existence of backward associations raises the question of how
speech production usually moves forward. One possibility is that
backward associations are gated, and that the gates are opened only
when the future is unavailable or, conversely, closed when the future
is available (e.g., Sumida & Dyer, 1992). Another possibility is that
backward associations are simply weaker than forward associations
because there are fewer opportunities to update them. In a predictive,
error-driven system, we update an association’s weight only if we
make a prediction error and then confirm or disconfirm it. There are
fewer opportunities to retrodict the past from a present cue than to
predict the future and then to confirm or disconfirm this prediction:
The past is typically available before the present. While retrodiction
is helpful to fill-in missed words, words are perceived more often
than they are missed.

The proposed theory makes a number of predictions for individ-
ual differences in repetition behavior. In particular, if retrodiction is
crucial for training backward associations, and backward associa-
tions in turn are essential for re-producing the past, then multiword
repetition disfluencies may be especially likely—compared to single
word repetitions—in speakers who must frequently use context to
fill in the words they have missed, such as speakers with incipient
hearing loss. This prediction highlights that the production of a
multiword repetition is hypothesized to rely on additional processes
that are not necessary for the production of a single-word repetition,
which means that the ratio of single-word to multiword repetitions
should be informative regarding the speaker’s ability to remember
and reactivate what they have just said. Repetitions are expected to
increase with age because the growing lexicon makes the problem of
retrieval more difficult (Ramscar et al., 2014), particularly so before
words that are known to both older and younger speakers. More
research is needed on how backward predictability changes with

REPETITION AND RETRIEVAL IN SKILLED ACTION 1133

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



experience: while upcoming words become less predictable given
the upcoming context as the lexicon grows, this may not be true of
the retrodiction required to produce a multiword repetition because
the highly retrodictable words tend to be frequent words that are
learned early. If so, then multiword repetitions may also grow more
common with age and experience.
We proposed that repetition disfluencies are intentional, and are

therefore categorically distinct from perseveration errors. This con-
trasts with the classic perspective that repetitions are something we
cannot help but do whenever we have no future plans, unless we have
the inhibitory control to avoid it (James, 1890). In accordance with our
proposal, repetitions occur only when the speaker is trying to continue
the utterance beyond the repeated words and therefore, do not occur at
the ends of utterances. In addition, unlike perseveratory speech errors,
which occur in all languages, repetition disfluencies are not universal,
and occur only in languages where they would be particularly helpful
for accessing the future. The rate of repetition disfluencies does not
appear to correlate with inhibitory control measures (Korko &
Williams, 2017) and, unlike the rate of self-corrections, is unaffected
by Attention Deficit Hyperactivity Disorder (ADHD) (Engelhardt
et al., 2010). Repetition disfluencies, therefore, do not appear to be
something the speaker tries to suppress. However, more work is
needed on the relationship between repetition and cognitive control.
In particular, cognitive control may play a role in the involvement of
top-down input from the production plan in the reactivation and restart
process of some repetitions. For example, if more than one candidate
initiation point is accessed, cognitive control processes may help
decide on the location of restart.
The proposed theory rules out intentional word-final and utterance-

final repetitions. However, repetitions in these positions have been
reported in some individuals with autism and learning disabilities
(Healey et al., 2015; Stansfield, 1995). These repetitions may be
considered perseverations and thus outside the scope of the theory.
However, little is known about the circumstances under which they
occur, and more work is needed to determine whether they do involve
a failure to deactivate a recently produced unit or are due to a more
fundamental difference in how the production system is organized.
The Problem of Retrieval and the Problem of Initiation exist in all

domains of action. Studying the effect of experience on how these
problems are solved in the domain of language is simpler than in
other domains because large corpora of the relevant behavior are
available, which can provide an approximation to the speaker’s
experience. In other domains, this is much more difficult. Corpora of
the relevant behavior are often not available. Furthermore, in some
domains repetition may be covert. For example, in typing, the typist
may cue upcoming words by reading the context they have typed,
without retyping it, or repeating it in inner or overt speech. Repeti-
tion without re-production is possible in typing because what one
has typed remain perceptually accessible to activate upcoming
words without being re-produced. Covert repetition may also be
useful when actual repetition cannot be performed, either because it
is too motorically costly or because it would change the external
physical world in an undesirable way or elicit a negative reaction
from an observer. However, there is evidence that production and
learning mechanisms are shared across these domains. For example,
Botvinick and Plaut (2006) showed that a simple recurrent network
can account for the production of action sequences, and Cooper
et al. (2014) have shown that augmenting the network with top-
down cues results in a better ability to stay on task. Chaffin and

Imreh (2002) showed that the preceding context cues upcoming
actions in piano performance and can lead the pianist astray without
practiced top-down control. Allard and Starkes (1991) reported
results consistent with the Initiation Hypothesis as well as the
Reactivation Hypothesis in the domain of dance. They argued
that modern dance differs from classical dance in that the elements
of modern dance do not occur in predictive and predictable contexts,
and observed that classical dancers restart production from the
beginning of a routine, whereas modern dancers do not. An impor-
tant direction for future work is to investigate whether the proposed
hypotheses can also help explain repetition behavior in other
domains of action.

Finally, one may be tempted to explain the lack of word-internal
restarts by the speaker wishing to provide cues for the listener, or
another observer (e.g., Hieke, 1981). Yet, we have argued that the
primary function of repetition is to provide retrieval cues for the
speaker. Not every motor behavior is a spectator sport, and yet the
tendency to start well-practiced action sequences from the beginning,
and the tendency to repeat easy actions while planning the hard actions
that frequently follow them are found in every domain of skilled
action. Nonetheless, it would be informative to determine whether
repetitions are more likely when one is talking to an interlocutor, or is
performing an action sequence for others to observe.

Conclusion

Why do we repeat ourselves? The Facilitation Hypothesis claims
that repetitions help the speaker solve the Problem of Retrieval,
which arises when the upcoming word is not activated enough to be
executed in time. Repetitions help resolve the resulting tip-of-the-
tongue state by bombarding the likely continuation with anticipatory
activation. This explains why the speaker would go to the trouble of
repeating something they already said. In support of the Facilitation
Hypothesis, we have shown that the repeated words are predictive
cues to the words that follow.

Why then do multi-word repetitions occur far less often than
single-word repetitions? It is often worthwhile to repeat more than
one word because multiword repetitions are even better cues to the
future than single-word repetitions. Our Reactivation Hypothesis
proposes that recently produced words need to be reactivated to be
re-produced, by using the present to retrodict the past. This process
relies on backward associations whose direction is opposite to the
flow of time.

When the problem of retrieval forces an interruption in the flow of
speech, the speaker faces a Problem of Initiation. That is, the speaker
must decide fromwhere to restart execution. Speakers always restart
from some word boundary, suggesting that words serve as units of
execution. However, some words turn out to be better utterance
initiators than others. We have argued that a word’s Initiation
Potential depends on how strongly it can be activated at the
beginning of an utterance. This involves engaging top-down seman-
tic cues to the word, which discriminate the word from others, as
well as the utterance-initial context. We argued that top-down cues
compete with co-occurring preceding-context cues. Top-down cues
to a word need to be just strong enough to override the influence of a
preceding context that favors continuing down a familiar but unin-
tended path. Therefore, top-down cues are free to weaken when the
word is predictable from the context, but must strengthen when it
occurs unexpectedly. As expected from cue competition, speakers
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are less likely to restart production from words that have occurred in
favorable contexts. The Initiation Hypothesis implies that a produc-
tion unit that occurs only in favorable contexts will grow increasingly
restricted to such contexts and unavailable for production elsewhere,
an implication that explains why speakers do not repeat suffixes or
postpositions. Thus, cue competition helps account for why repeti-
tion disfluencies do not occur in some languages.
In sum, the proposed theory explains why the speaker would go to

the trouble of repeating themselves while searching for the right
word to say next, why some languages have repetitions and others
do not, and accounts for substantial variance in how the speaker
settles on the number of words to repeat on any one occasion. It
improves on structural accounts of repetition, by explaining repeti-
tion behavior with reference to the speaker’s linguistic experience.
We hope that the proposed principles will also be tested in domains
beyond language production. We suspect that production units are
always cued by preceding contexts and top-down input from the
plan, that these sources of information about upcoming production
units compete, that agents need to reactivate the past to reproduce it,
and that reactivating the past can help plan the future. Of course,
only more empirical work will tell.
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Appendix

This appendix provides the details of model comparisons reported
in themain text. Each table reports themodel summaries and Bayesian
Information Criterion (BIC) values for a set of models fit to the same
dataset, which allows us to compare their BIC values. Datasets differ
across tables because some of the predictors are not defined for some

observations in the complete dataset. For example, initial surprisal is
not defined for words that have never occurred utterance-initially. As a
result, BIC values are not comparable across tables. By using different
datasets in different tables, we maximize the size of the dataset for
each model comparison.

Table A1
Repetition Length as a Function of Accessibility of w1: Simple Versus Relative Surprisal

Predictor b SE(b) z p BIC

Model 1: Control 3119.1
(Intercept) −3.84 0.30 −12.92 <.0001
Boundary at w−2 2.13 0.21 9.93 <.0001
Boundary at w−3 1.08 0.26 4.12 <.0001
Duration w−2 −0.85 0.09 −9.77 <.0001

Model 2: Forward surprisal 3119.7
(Intercept) −3.82 0.30 −12.86 <.0001
Boundary at w−2 2.11 0.21 9.85 <.0001
Boundary at w−3 1.04 0.26 3.96 <.0001
Duration w−2 −0.86 0.09 −9.83 <.0001
Forward Surprisal: I(w1|w−1) 0.17 0.06 2.75 .006

Model 3: Relative surprisal 3067.5
(Intercept) −3.73 0.28 −13.23 <.0001
Boundary at w−2 2.05 0.21 9.56 <.0001
Boundary at w−3 1.01 0.26 3.84 .0001
Duration w−2 −0.84 0.09 −9.64 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.44 0.06 7.46 <.0001

Note. BIC = Bayesian Information Criterion.

Table A2
Repetition Length as a Function of Measures of Future Accessibility: w1 Relative to Its Closest Semantic Competitor

Predictor b SE z p BIC

Model 1: Control 3090.7
(Intercept) −3.85 0.30 −12.74 <.0001
Boundary at w−2 2.11 0.22 9.77 <.0001
Boundary at w−3 1.03 0.26 3.90 <.0001
Duration w−2 −0.86 0.09 −9.75 <.0001

Model 2: Relative surprisal 3039.1
(Intercept) −3.74 0.29 −13.07 <.0001
Boundary at w−2 2.04 0.22 9.41 <.0001
Boundary at w−3 0.96 0.27 3.64 .0003
Duration w−2 −0.84 0.09 −9.60 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.44 0.06 7.45 <.0001

Model 3: Surprisal differences 3093.8
(Intercept) −3.86 0.30 −12.66 <.0001
Boundary at w−2 2.10 0.22 9.70 <.0001
Boundary at w−3 1.01 0.27 3.82 .0001
Duration w−2 −0.86 0.09 −9.73 <.0001
I(sem.comp1|w−1) − I(w1|w−1) −0.15 0.07 −2.24 .03

Model 4: Difference in relative surprisal 3058.5
(Intercept) −3.80 0.29 −13.11 <.0001
Boundary at w−2 2.07 0.22 9.58 <.0001
Boundary at w−3 1.01 0.26 3.81 .0001
Duration w−2 −0.85 0.09 −9.71 <.0001
Difference in relative surprisal −0.35 0.06 −6.23 <.0001

Note. Difference in Relative Surprisal: [I(sem.comp1|w −1) − I(sem.comp1|w−2w−1)] − [I(w1|w−1) − I(w1|w−2w−1)]. BIC = Bayesian Information Criterion.

(Appendix continues)

REPETITION AND RETRIEVAL IN SKILLED ACTION 1139

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/h0023884
https://doi.org/10.1037/h0023884
https://CRAN.R-project.org/package=Please%20provide%20publisher%20name%20for%20the%20reference%20%201cWild%20(2015)%201d.%20lsa
https://CRAN.R-project.org/package=Please%20provide%20publisher%20name%20for%20the%20reference%20%201cWild%20(2015)%201d.%20lsa
https://CRAN.R-project.org/package=Please%20provide%20publisher%20name%20for%20the%20reference%20%201cWild%20(2015)%201d.%20lsa


Table A3
Repetition Length as a Function of Measures of Future Accessibility: Entropy of the Future w1 Relative to Its Closest Semantic Competitor

Predictor b SE z p BIC

Model 1: Control 3114.1
(Intercept) −3.80 0.29 −12.88 <.0001
Boundary at w−2 2.11 0.21 9.84 <.0001
Boundary at w−3 1.06 0.26 4.03 <.0001
Duration w−2 −0.85 0.09 −9.76 <.0001

Model 2: Relative surprisal 3061.6
(Intercept) −3.69 0.28 −13.19 <.0001
Boundary at w−2 2.03 0.21 9.47 <.0001
Boundary at w−3 0.99 0.26 3.74 .0002
Duration w−2 −0.84 0.09 −9.62 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.44 0.06 7.51 <.0001

Model 3: Entropy 3122.4
(Intercept) −3.79 0.30 −12.72 <.0001
Boundary at w−2 2.11 0.21 9.84 <.0001
Boundary at w−3 1.06 0.26 4.03 <.0001
Duration w−2 −0.85 0.09 −9.76 <.0001
Entropy (Average surprisal): H(w1|w−1) 0.02 0.10 0.17 .86

Model 4: Information gain 3122.4
(Intercept) −3.79 0.30 −12.84 <.0001
Boundary at w−2 2.11 0.21 9.84 <.0001
Boundary at w−3 1.06 0.26 4.03 <.0001
Duration w−2 −0.85 0.09 −9.76 <.0001
Information gain: H(w1|w−1) − H(w1|w−2w−1) 0.02 0.07 0.23 .82

Note. BIC = Bayesian Information Criterion.

Table A4
Model Comparison Testing Importance of Reactivation of the Past

Predictor b SE z p BIC

Model 1: Baseline (Relative surprisal) 3067.5
(Intercept) −3.73 0.28 −13.23 <.0001
Boundary at w−2 2.05 0.21 9.56 <.0001
Boundary at w−3 1.01 0.26 3.84 .0001
Duration w−2 −0.84 0.09 −9.64 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.44 0.06 7.46 <.0001

Model 2: Backward surprisal 2912.5
(Intercept) −3.20 0.25 −12.90 <.0001
Boundary at w−2 1.51 0.22 7.00 <.0001
Boundary at w−3 0.49 0.27 1.81 .07
Duration w−2 −0.52 0.09 −5.83 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.47 0.06 7.94 <.0001
Backward surprisal: I(w−2|w−1) −1.49 0.14 −10.98 <.0001

Model 3: Context-independent surprisal 3048.2
(Intercept) −3.43 0.26 −13.17 <.0001
Boundary at w−2 2.04 0.22 9.45 <.0001
Boundary at w−3 1.10 0.27 4.13 <.0001
Duration w−2 −0.70 0.09 −7.79 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.44 0.06 7.57 <.0001
Context-independent surprisal: I(w−2) −0.78 0.16 −4.85 <.0001

Model 4: Forward surprisal 3074.6
(Intercept) −3.83 0.31 −12.36 <.0001
Boundary at w−2 2.06 0.22 9.51 <.0001
Boundary at w−3 1.03 0.27 3.89 .0001
Duration w−2 −0.86 0.09 −9.55 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.44 0.06 7.43 <.0001
Forward surprisal: I(w−2|w−3) 0.11 0.10 1.11 .269

Note. BIC = Bayesian Information Criterion.

(Appendix continues)
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Table A5
Model Comparison Testing the Implementation of Cue Competition

Predictor b SE z p BIC

Model 1: Baseline (Backward surprisal) 2701.2
(Intercept) −2.67 0.24 −10.97 <.0001
Boundary at w−2 1.43 0.22 6.38 <.0001
Boundary at w−3 0.49 0.29 1.69 .092
Duration w−2 −0.46 0.09 −5.27 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.48 0.06 7.62 <.0001
Backward surprisal: I(w−2|w−1) −1.36 0.13 −10.68 <.0001

Model 2: Start-to-word 2656.8
(Intercept) −2.21 0.22 −9.88 <.0001
Boundary at w−2 1.29 0.21 6.05 <.0001
Boundary at w−3 0.50 0.28 1.77 .077
Duration w−2 −0.47 0.09 −5.42 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.47 0.06 7.74 <.0001
Backward surprisal: I(w−2|w−1) −1.29 0.14 −9.47 <.0001
Medial surprisal w−1 −0.44 0.12 −3.76 .0002
Medial surprisal w−2 0.95 0.15 6.19 <.0001
Initial surprisal w−1: I(w−1|start cue) −0.11 0.11 −0.99 .321
Initial surprisal w−2: I(w−2|start cue) −1.08 0.19 −5.59 <.0001

Model 3: Word-to-start 2667.4
(Intercept) −2.32 0.23 −10.11 <.0001
Boundary at w−2 1.25 0.21 5.89 <.0001
Boundary at w−3 0.41 0.28 1.46 .145
Duration w−2 −0.50 0.09 −5.75 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.48 0.06 7.77 <.0001
Backward surprisal: I(w−2|w−1) −1.35 0.13 −10.02 <.0001
Mean forward surprisal w−1 −0.52 0.10 −5.04 <.0001
Mean forward surprisal w−2 0.36 0.15 2.42 .016
Backward surprisal of start cue I(start cue|w−1) −0.05 0.11 −0.43 .668
Backward surprisal of start cue I(start cue|w−2) −0.70 0.16 −4.47 <.0001

Model 4: Initial surprisal 2692.9
(Intercept) −2.21 0.24 −9.23 <.0001
Boundary at w−2 1.53 0.23 6.76 <.0001
Boundary at w−3 0.68 0.29 2.30 .021
Duration w−2 −0.40 0.09 −4.53 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.48 0.06 7.65 <.0001
Backward surprisal: I(w−2|w−1) −1.27 0.14 −9.35 <.0001
Initial surprisal w−1: I(w−1|start cue) −0.36 0.10 −3.74 .0002
Initial surprisal w−2: I(w−2|start cue) −0.63 0.20 −3.20 .0014

Model 5: Backward surprisal of start cue 2683.2
(Intercept) −2.62 0.23 −11.48 <.0001
Boundary at w−2 1.35 0.22 6.25 <.0001
Boundary at w−3 0.48 0.29 1.68 .093
Duration w−2 −0.44 0.09 −5.20 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.47 0.06 7.63 <.0001
Backward surprisal: I(w−2|w−1) −1.26 0.13 −9.94 <.0001
Backward surprisal of start cue I(start cue|w−1) 0.14 0.11 1.25 .21
Backward surprisal of start cue I(start cue|w−2) −0.83 0.15 −5.56 <.0001

Note. Mean Forward Surprisal of a particular word type is its Forward Surprisal averaged over all the tokens of the word:
P

n
i=1 Iðw−1jw−2Þ=n , andP

n
i=1 Iðw−2jw−3Þ=n, where n is the number of tokens of w−1 and w−2 respectively. BIC = Bayesian Information Criterion.

(Appendix continues)

REPETITION AND RETRIEVAL IN SKILLED ACTION 1141

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



Table A6
Statistical Versus LSTM Measures of Future Predictability

Predictor b SE z p BIC

Model 1: Corpus future 3053.5
(Intercept) −4.05 0.34 −12.01 <.0001
Boundary at w−2 2.21 0.22 9.90 <.0001
Boundary at w−3 1.14 0.27 4.20 <.0001
Duration w−2 −0.84 0.09 −9.32 <.0001
Log Forward transitional probability: log p(w1|w−1) −0.11 0.07 −1.61 .107

Model 2: LSTM future 3051.7
(Intercept) −4.05 0.34 −12.08 <.0001
Boundary at w−2 2.20 0.22 9.86 <.0001
Boundary at w−3 1.12 0.27 4.13 <.0001
Duration w−2 −0.83 0.09 −9.31 <.0001
Forward surprisal: I(w1|w−1) 0.13 0.06 2.10 .036

Note. BIC = Bayesian Information Criterion; LSTM = long short-term memory.

Table A7
Statistical Versus LSTM Measures of Past Reactivation

Predictor b SE z p BIC

Model 1: Corpus past 2895.4
(Intercept) −3.21 0.24 −13.39 <.0001
Boundary at w−2 1.38 0.21 6.49 <.0001
Boundary at w−3 0.40 0.27 1.50 .133
Duration w−2 −0.52 0.09 −5.92 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.44 0.06 7.58 <.0001
Log backward transitional probability: log p(w−2|w−1) 1.45 0.13 11.08 <.0001

Model 2: LSTM past 2894.3
(Intercept) −3.19 0.24 −13.07 <.0001
Boundary at w−2 1.50 0.21 6.99 <.0001
Boundary at w−3 0.46 0.27 1.71 .087
Duration w−2 −0.52 0.09 −5.79 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.47 0.06 7.95 <.0001
Backward surprisal: I(w−2|w−1) −1.45 0.13 −10.88 <.0001

Note. BIC = Bayesian Information Criterion; LSTM = long short-term memory.

Table A8
Statistical Versus LSTM Measures of Initialness

Predictor b SE z p BIC

Model 1: Corpus initialness 2690.1
(Intercept) −2.17 0.24 −9.11 <.0001
Boundary at w−2 1.54 0.23 6.78 <.0001
Boundary at w−3 0.69 0.29 2.33 .02
Duration w−2 −0.39 0.09 −4.42 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.48 0.06 7.66 <.0001
Backward surprisal: I(w−2|w−1) −1.25 0.14 −9.22 <.0001
Log initial frequency w−1 0.36 0.10 3.56 .0004
Log initial frequency w−2 0.75 0.20 3.76 .0002

Model 2 LSTM initialness 2692.9
(Intercept) −2.21 0.24 −9.23 <.0001
Boundary at w−2 1.53 0.23 6.76 <.0001
Boundary at w−3 0.68 0.29 2.30 .021
Duration w−2 −0.40 0.09 −4.53 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.48 0.06 7.65 <.0001
Backward surprisal: I(w−2|w−1) −1.27 0.14 −9.35 <.0001
Initial surprisal w−1: I(w−1|start cue) −0.36 0.10 −3.74 .0002
Initial Surprisal w−2: I(w−2|start cue) −0.63 0.20 −3.20 .0014

Note. BIC = Bayesian Information Criterion; LSTM = long short-term memory.

(Appendix continues)

1142 HARMON AND KAPATSINSKI

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



Table A9
Statistical Versus Word-to-start LSTM Measures of Medial Surprisal

Predictor b SE z p BIC

Model 1: Corpus medial surprisal 2903
(Intercept) −2.90 0.23 −12.47 <.0001
Boundary at w−2 1.43 0.21 6.80 <.0001
Boundary at w−3 0.57 0.27 2.11 .035
Duration w−2 −0.52 0.09 −5.68 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.46 0.06 7.96 <.0001
Backward surprisal: I(w−2|w−1) −1.37 0.15 −9.14 <.0001
Medial frequency w−1 0.52 0.24 2.16 .031
Medial frequency w−2 −0.38 0.44 −0.88 .38
Contextual diversity w−1 0.01 0.27 0.03 .973
Contextual diversity w−2 0.64 0.47 1.37 .17
Mean FTP w−1 −0.14 0.14 −1.00 .316
Mean FTP w−2 −0.53 0.20 −2.62 <.01
Backward surprisal of start cue: I(start cue|w−2) −0.81 0.17 −4.75 <.0001
Backward surprisal of start cue: I(start cue|w−1) 0.24 0.11 2.17 .03

Model 2: LSTM medial surprisal 2871.7
(Intercept) −2.90 0.23 −12.57 <.0001
Boundary at w−2 1.33 0.21 6.47 <.0001
Boundary at w−3 0.44 0.26 1.65 .098
Duration w−2 −0.56 0.09 −6.18 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.47 0.06 8.12 <.0001
Backward surprisal: I(w−2|w−1) −1.44 0.15 −9.91 <.0001
Backward surprisal of the start cue I(start cue|w−2) −0.83 0.16 −5.22 <.0001
Backward surprisal of the start cue I(start cue|w−1) 0.03 0.10 0.35 .729
Mean forward surprisal w−1 −0.43 0.09 −4.51 <.0001
Mean forward surprisal w−2 0.43 0.15 2.80 .005

Note. BIC = Bayesian Information Criterion; LSTM = long short-term memory; FTP = Forward Transitional Probability.

Table A10
Statistical Versus Start-to-word LSTM Measures of Medial Surprisal

Predictor b SE z p BIC

Model 1: Corpus final 2696.7
(Intercept) −2.38 0.24 −9.97 <.0001
Boundary at w−2 1.43 0.22 6.52 <.0001
Boundary at w−3 0.62 0.29 2.18 .029
Duration w−2 −0.48 0.09 −5.15 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.46 0.06 7.67 <.0001
Backward surprisal: I(w−2|w−1) −1.55 0.16 −9.45 <.0001
Medial frequency w−2 0.88 0.32 2.77 .006
Medial frequency w−2 −1.32 0.50 −2.63 .009
Contextual diversity w−1 −0.10 0.26 −0.39 .695
Contextual diversity w−2 0.84 0.48 1.74 .081
Mean FTP w−1 −0.06 0.18 −0.35 .727
Mean FTP w−2 −0.89 0.28 −3.23 .0012
Initial surprisal w−1: I(w−1|start cue) 0.10 0.17 0.59 .556
Initial surprisal w−2: I(w−2|start cue) −1.07 0.28 −3.79 .0002

Model 2: LSTM final 2656.8
(Intercept) −2.42 0.22 −10.90 <.0001
Boundary at w−2 1.29 0.21 6.05 <.0001
Boundary at w−3 0.50 0.28 1.77 .077
Duration w−2 −0.51 0.09 −5.42 <.0001
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.46 0.06 7.74 <.0001
Backward surprisal: I(w−2|w−1) −1.53 0.16 −9.47 <.0001
Medial surprisal w−1 −0.49 0.13 −3.76 .0002
Medial surprisal w−2 1.14 0.18 6.19 <.0001
Initial surprisal w−1: I(w−1|start cue) −0.11 0.11 −0.99 .321
Initial surprisal w−2: I(w−2|start cue) −1.08 0.19 −5.59 <.0001

Note. BIC = Bayesian Information Criterion; LSTM = long short-term memory; FTP = Forward Transitional Probability.

(Appendix continues)
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Table A11
Final Bayesian Models

Predictor b EE l−95% CI u−95% CI rhat Bulk_ESS Tail_ESS

Model 1: One- versus two-word repetitions
Intercept −2.49 0.24 −2.98 −2.05 1 8,049 15,508
Medial surprisal w−1 −0.5 0.14 −0.78 −0.23 1 18,148 25,861
Medial surprisal w−2 1.18 0.19 0.8 1.56 1 12,812 22,163
Initial surprisal w−1: I(w−1|start cue) −0.11 0.12 −0.34 0.12 1 17,728 25,174
Initial surprisal w−2: I(w−1|start cue) −1.12 0.2 −1.53 −0.73 1 11,367 19,742
Backward surprisal w−2: I(w−2|w−1) −1.58 0.17 −1.92 −1.26 1 22,582 26,770
Relative surprisal: I(w1|w−1) − I(w1|w−2w−1) 0.47 0.06 0.35 0.6 1 31,046 28,160
Boundary at w−2 1.33 0.22 0.91 1.76 1 17,238 25,796
Boundary at w−3 0.53 0.29 −0.03 1.11 1 21,479 28,701
Duration w−2 −0.52 0.1 −0.71 −0.33 1 36,894 29,450

Model 2: Two- versus three-word repetitions
Intercept −2.33 0.54 −3.44 −1.3 1 9,823 17,015
Medial surprisal w−2 −0.94 0.32 −1.62 −0.34 1 11,927 15,755
Medial surprisal w−3 1.35 0.43 0.53 2.23 1 13,533 20,901
Initial surprisal w−2: I(w−2|start cue) 0.83 0.33 0.2 1.51 1 12,365 17,103
Initial surprisal w−3: I(w−3|start cue) −1.7 0.48 −2.72 −0.83 1 10,445 16,570
Backward surprisal: I(w−3|w−2) −1.69 0.39 −2.51 −0.97 1 15,706 22,290
Relative surprisal: I(w1|w−2w−1) − I(w1|w−3w−2w−1) 0.26 0.13 0 0.51 1 31,729 30,498
Boundary at w−3 0.77 0.71 −0.6 2.17 1 20,845 26,041
Boundary at w−1 −0.63 0.5 −1.66 0.31 1 15,130 20,224
Duration w−3 −0.55 0.19 −0.93 −0.17 1 31,870 30,236
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