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A B S T R A C T   

EEG and eye-tracking provide complementary information when investigating language comprehension. Evi-
dence that speech processing may be facilitated by speech prediction comes from the observation that a listener’s 
eye gaze moves towards a referent before it is mentioned if the remainder of the spoken sentence is predictable. 
However, changes to the trajectory of anticipatory fixations could result from a change in prediction or an 
attention shift. Conversely, N400 amplitudes and concurrent spectral power provide information about the ease 
of word processing the moment the word is perceived. In a proof-of-principle investigation, we combined EEG 
and eye-tracking to study linguistic prediction in naturalistic, virtual environments. We observed increased 
processing, reflected in theta band power, either during verb processing - when the verb was predictive of the 
noun - or during noun processing - when the verb was not predictive of the noun. Alpha power was higher in 
response to the predictive verb and unpredictable nouns. We replicated typical effects of noun congruence but 
not predictability on the N400 in response to the noun. Thus, the rich visual context that accompanied speech in 
virtual reality influenced language processing compared to previous reports, where the visual context may have 
facilitated processing of unpredictable nouns. Finally, anticipatory fixations were predictive of spectral power 
during noun processing and the length of time fixating the target could be predicted by spectral power at verb 
onset, conditional on the object having been fixated. Overall, we show that combining EEG and eye-tracking 
provides a promising new method to answer novel research questions about the prediction of upcoming lin-
guistic input, for example, regarding the role of extralinguistic cues in prediction during language 
comprehension.   

1. Introduction 

Listeners can process spoken language incredibly quickly. One 
mechanism that is thought to help with such fast processing is the pre-
diction of upcoming linguistic input. Eye-tracking studies, such as a long 
tradition of work using the visual world paradigm (VWP), have been 
fundamental in showing that listeners can use visual and linguistic 
constraints to predict upcoming referents prior to them being mentioned 
(Allopenna et al., 1998; Altmann and Kamide, 1999). However, a change 
to the trajectory of eye movements can be difficult to interpret (Huettig 
et al., 2011), as it could indeed reflect a shift in processing linguistic or 
semantic input, but also, alternatively, a mere shift in visual attention, 
without a change in linguistic processing. More specifically, in regards 

to the prediction of upcoming words, it is possible for eye movement 
patterns to differ, but the underlying prediction to remain the same. 
Eye-tracking can reliably tell us that listeners predict upcoming infor-
mation, but the absence of anticipatory looks cannot with full certainty 
be taken to mean that there is no prediction. In contrast, while 
event-related potential (ERP) amplitudes, time-locked to the onset of the 
predicted word, provide limited information about whether a word has 
been predicted before its onset, they can provide information about the 
ease of word processing the moment the word is perceived. Combining 
these measures within a single study and single analysis could therefore 
help to answer more nuanced theoretical questions about language 
comprehension (Knoeferle, 2015) and the types of cues used to inform 
predictions. 
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Listeners may rely on both linguistic and extralinguistic cues to 
anticipate upcoming speech content. The extent that predictions are 
informed by extralinguistic cues is unclear. For example, the speaker’s 
facial expressions, eye gaze and gestures could provide useful informa-
tion about upcoming and concomitant spoken input (Holler and Lev-
inson, 2019; Perniss, 2018; ter Bekke, Drijvers and Holler, 2020). 
Moreover, disfluencies in speech (filled hesitations, repairs, silent pau-
ses) are thought to provide information about the certainty of the 
speaker, or the ease of producing the upcoming word (Bortfeld et al., 
2001; Brennan and Williams, 1995; Fraundorf and Watson, 2014; 
Schachter et al., 1991; Smith and Clark, 1993). Listeners have been 
shown to predict that the speaker will utter less frequent words or 
discourse-new information after producing a disfluency, rather than 
highly frequent or discourse-given information (Arnold et al., 2003; 
Arnold and Tanenhaus, 2011; Arnold et al., 2004). In a recent virtual 
reality (VR) study, Huizeling et al. (2022) observed a reduced propor-
tion of fixations towards a predictable referent after the constraining 
verb was followed by a hesitation (e.g. “cutting down uhh the tree”), 
compared to if the sentence was spoken fluently. Instead, participants’ 
eye gaze moved towards the virtual speaker upon hearing the hesitation. 
It is unclear whether this shift in eye gaze signifies the listener losing 
confidence in or even abandoning their prediction altogether. Alterna-
tively, this shift in gaze may indicate a shift in visual attention towards 
the speaker, either to search for meaningful visual bodily signals to aid 
in language comprehension or in response to the saliency of the dis-
rupted flow of speech. 

Measuring ERPs, such as the N400, in response to the predicted word 
onset could help to better understand the role of extralinguistic cues, like 
disfluencies and gestures, on predictive language processing. The N400 
is a negative ERP that typically occurs around 400ms after stimulus 
onset, with a centroparietal topography. It is thought to reflect the 
amount of new information to be integrated with the prior semantic 
context (Brothers and Kuperberg, 2021; Hagoort et al., 2009; Hodapp 
and Rabovsky, 2021; Kutas and Federmeier, 2011; Nieuwland et al., 
2020). The N400 amplitude is larger (more negative) when a word is 
more difficult to integrate with the prior sentential context. A larger 
N400 amplitude is therefore observed if a word is semantically incon-
gruent with the prior context of the sentence (Hagoort et al., 2004; Kutas 
and Hillyard, 1980; Nieuwland and van Berkum, 2006). Moreover, as 
the context provided by the sentence becomes more constraining and 
upcoming words become more predictable, the N400 amplitude de-
creases (Dambacher et al., 2006; Federmeier and Kutas, 1999; Kutas and 
Hillyard, 1984; Terporten et al., 2019). A larger N400 amplitude is also 
observed when listeners are presented with an image that is incongruent 
with the coinciding linguistic input (Federmeier and Kutas, 2001; Ganis 
et al., 1996; Knoeferle et al., 2011; Özyürek et al., 2007; Sitnikova et al., 
2008; Tromp et al., 2018; Willems et al., 2008a,b), however, with a more 
anterior topography. If disfluencies in speech cause listeners to lose 
confidence in or disregard their prediction, then the N400 amplitude in 
response to predictable nouns might be expected to be larger if the noun 
is preceded by a disfluency, relative to if the sentence was spoken 
fluently (Corley et al., 2007; MacGregor et al., 2010). Before such hy-
potheses can be tested in more naturalistic virtual environments, we first 
need to test whether effects of sentence predictability can be measured 
in the EEG signal while participants are engaged in VR (Tromp et al., 
2018). 

The event-related signal in a post-N400 time window (e.g. 
600–1000ms) has also been found to be sensitive to the constraints 
employed by the sentence context. An enhanced late posterior positivity 
has been found in response to semantic information that is incongruent 
with the preceding context, whereas an enhanced late anterior positivity 
has been associated with lexical items that are plausible but unexpected 
in highly constraining contexts (DeLong et al., 2014; Federmeier et al., 
2007; Quante et al., 2018; Thornhill and Van Petten, 2012; Van Petten 
and Luka, 2012). Where the anterior positivity is thought to reflect 
either updating, inhibiting an incorrect lexical prediction, or integrating 

unexpected semantic information with the prior context, the posterior 
positivity is thought to reflect the detection of conflict and a failure to 
integrate new information into the preceding context, leading to a 
reanalysis of the sentence context and altered expectations about the 
upcoming content (Brothers et al., 2020; Kuperberg et al., 2020; Rom-
mers and Federmeier, 2018; Van Petten and Luka, 2012). However, it 
should be noted that evidence that differential anterior and posterior 
post-N400 effects map onto different functions of language processing 
has so far been acquired from laboratory-based paradigms. It is not clear 
to what extent findings generalise to more natural language processing. 

ERPs, such as the N400 and the post-N400 positivity, could provide 
useful information regarding the influence of sentence context con-
straints on word processing the moment the word is perceived and could 
provide information about the processing consequences of disfluencies. 
The brain’s response to sentence predictability has also been observed in 
ongoing neurophysiological oscillatory activity. Unlike ERPs, oscilla-
tions are sensitive to effects that are not phase-locked to a stimulus 
onset. This makes them particularly useful to study on-line predictions, 
which may form gradually with the build-up of context. Prystauka and 
Lewis (2019) provide an informative review of oscillatory dynamics of 
sentence comprehension and anticipatory processing. 

There is increasing evidence that alpha (8–12 Hz) and beta (13–30 
Hz) power are reduced when the context of a sentence is highly con-
strained. Broadly, reductions in alpha and beta band power are associ-
ated with increased cognitive processing in the cortex, increased 
attention, memory encoding and memory retrieval (Foxe et al., 1998; 
Jensen and Mazaheri, 2010; Klimesch et al., 1994). Increased alpha 
power is thought to reflect the suppression of cognitive processing in the 
cortex and inhibition (Klimesch et al., 2007; Strauß et al., 2014a,b). 
Lower alpha and beta power have been observed directly prior to a 
target word when the target word is predictable compared to unpre-
dictable (Gastaldon et al., 2020; Leon-Cabrera et al., 2022; Molinaro 
et al., 2017; Piai et al., 2014; Rommers et al., 2017; Roos and Piai, 2020; 
Terporten et al., 2019; Wang et al., 2018) and in response to highly 
constraining compared to unconstraining information (Li et al., 2017). 
Moreover, lower pre-stimulus alpha power has been linked to increased 
effects of word congruence on N400 amplitudes (Lago et al., 2023). 
However, alpha/beta power modulation does not seem to be linearly 
modulated by constraint. Terporten et al. (2019) found the greatest 
alpha desynchronisation prior to the critical noun in moderately con-
straining sentences, followed by highly and then weakly constraining 
sentences. Unexpected words and incongruent visual information have 
been shown to result in lower alpha and beta power compared to ex-
pected words or congruent visual information (Rommers et al., 2017; 
Wang et al., 2012; Willems et al., 2008a). In contrast, two studies have 
found no effect of word predictability on alpha or beta power after word 
onset when the word was consistent with the sentence context (Rom-
mers and Federmeier, 2018; Terporten et al., 2019). 

Oscillations in the theta band have been associated with a range of 
cognitive functions, and tend to increase with increased cognitive pro-
cessing (Cavanagh and Cohen, 2022; Cavanagh and Frank, 2014; 
Demiralp and Başar, 1992; Klimesch et al., 1994). Within the language 
literature, increased theta power has been related to memory retrieval 
during sentence comprehension and when hearing repeated names or 
pronouns (Coopmans and Nieuwland, 2020; Heine et al., 2006; Meyer 
et al., 2015). Less attention has been devoted to reporting effects of 
predictability in the theta frequency band with EEG data. Prior to the 
critical noun onset, in response to the constraining information, Li et al. 
(2017) found no significant differences in theta frequency in response to 
high compared to low constraining verbs in written Chinese sentences. 
Higher theta power has been observed, however, in response to unex-
pected words compared to expected words, for both semantically plau-
sible and anomalous continuations (Bastiaansen and Hagoort, 2015; Li 
et al., 2017; Rommers et al., 2017; Willems et al., 2008a). It is thought 
that increased theta power reflects the increased effort to retrieve less 
predictable words from long term memory. 
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The large majority of studies discussed above have presented visual 
and/or auditory stimuli to individual participants in restricted labora-
tory set-ups that relatively poorly resemble the rich and dynamic situ-
ations of language processing in everyday life. An emerging realisation 
in psycholinguistic research is to move away from artificial laboratory 
experiments towards more ecologically valid, naturalistic paradigms, 
where language can be embedded in an enriched context (Hasson et al., 
2018; Peeters, 2019). The rapidly growing VR industry means that it is 
now feasible to conduct psycholinguistic research in increasingly 
enriched naturalistic contexts, while maintaining the high level of 
experimental control afforded by laboratory experiments. In our recent 
work we have shown that people also make predictive eye movements in 
visually rich, naturalistic environments in the presence of a virtual 
speaker (Heyselaar et al., 2020; Huizeling et al., 2022). The presence of a 
virtual speaker shed new light on listeners’ behaviour when they hear a 
disfluency in speech (Huizeling et al., 2022). Rather than the listener’s 
eye gaze moving towards potential upcoming referents in the visual 
scene, participants looked towards the virtual speaker upon hearing a 
disfluency. This leaves an open question as to whether listeners lose 
confidence in their prediction in such instances, or wait for the sentence 
to become disambiguated. Obtaining the aforementioned eye gaze and 
electrophysiological measures concomitantly in naturalistic paradigms 
could provide information about the ease of word processing when 
listening to disfluent predictable sentences. However, it first needs to be 
established whether these two measures can be acquired in parallel 
while participants engage in VR. 

Previously, combined EEG-eye-tracking experiments have been 
largely avoided due to eye movement artifacts, which can correlate with 
the variables of interest, contaminating the EEG data. One method to 
overcome this issue is to time-lock EEG analysis to the fixation onset to 
measure fixation related potentials (Dimigen et al., 2011). However, this 
is only possible with visually presented linguistic stimuli and not audi-
tory stimuli. Recent advances in data processing have drastically 
improved the ability to correct for eye movement artifacts in the data 
(Dimigen, 2020). Although modern artifact correction techniques have 
been shown to be successful in computer-based reading and scene 
viewing paradigms, it is not clear to what extent such methods would be 
successful with EEG data recorded while participants are engaged in VR. 
Recording EEG in VR faces a number of additional challenges, such as 
muscle artifacts from head movements and potential interference from 
electrical noise. Before one can combine EEG and eye-tracking in 
naturalistic virtual environments to answer more nuanced research 
questions regarding the extent of extralinguistic cues on predictive 
processing, it is first vital to test to what extent it is possible to combine 
EEG, eye-tracking and VR to investigate predictive language processing. 

1.1. The current study 

The current study was a proof-of-principle investigation into the 
feasibility of simultaneously collecting EEG and eye-tracking data in VR 
to investigate the prediction of upcoming speech. EEG has previously 
been used successfully in VR settings both in our VR laboratory (Peeters, 
2020; Raghavan et al., 2023; Tromp et al., 2018) and other laboratories 
(Badia et al., 2013). Recent studies have also begun to record EEG and 
eye-tracking simultaneously within free-viewing paradigms (Coco et al., 
2020; Dimigen, 2020). Here we go one step further by combining 
eye-tracking and EEG in VR. We specifically wanted to test whether we 
could replicate effects of (a) the context constraint, and (b) the con-
gruency of the sentence with the listener’s predictions, on eye gaze and 
electrophysiological measures, including ERPs and frequency power, 
during a free-viewing VR paradigm. Robust effects of predictability and 
congruency on the EEG signal would pave the way for future studies to 
answer new theoretical questions regarding the influence of extralin-
guistic cues, such as disfluencies, on predictive processing. 

To this end, we conceptually replicated Experiment 1 from Huizeling 
et al. (2022). In a 3D VWP, Huizeling et al. (2022) tracked participants’ 

eye gaze in VR while they listened to predictable and unpredictable 
sentences. Here we additionally simultaneously recorded EEG. Senten-
ces (pre-recorded by a Dutch native speaker) were spoken by a virtual 
agent to the participant during a virtual tour of eight scenes (e.g. a street, 
a forest, a bathroom). Sentences were either predictable or unpredict-
able based on the constraints of the verb, where the verb in the sentence 
could either be constrained towards a single item in the scene, making 
the sentence conclusion predictable (e.g. sentence 1 in Section 2.5), or 
unconstrained, related to multiple items in the scene, making the sen-
tence unpredictable (e.g. sentence 2 in Section 2.5). In addition, the 
noun in the sentence could either refer to an item visible in the scene, 
confirming the listener’s prediction (congruent) or the referent could be 
absent from the scene, disconfirming the listener’s prediction (incon-
gruent). The noun in the sentence was always a plausible continuation of 
the sentence, but manipulated congruency given that predictions were 
formed by combining the linguistic context of the sentence with the 
visual context of the scene. 

We hypothesised that, in a critical time window between verb and 
noun onset, there would be an increased proportion of fixations towards 
the target object in the predictable but not the unpredictable condition 
(Heyselaar et al., 2020; Huizeling et al., 2022). 

Based on the aforementioned literature, we also hypothesised that, in 
response to unpredictable relative to predictable nouns and prediction- 
incongruent relative to -congruent nouns, there would be a larger N400 
response, a more positive anterior post-N400 effect, lower alpha and 
beta power, and higher theta power. These effects can be expected to 
result from the increase in processing required to suppress the predicted 
word and/or retrieve the unexpected/unpredicted word from long term 
memory. However, it should be noted that findings as to whether a late 
positivity is sensitive to mismatches between linguistic and visual in-
formation are mixed (Federmeier and Kutas, 2001; Willems et al., 
2008b). In addition, it remains an open question as to what extent 
previous EEG findings actually generalise to more naturalistic and 
ecologically valid environments. 

We additionally expected that, in the critical time window between 
verb onset and noun onset, there would be lower alpha and beta power 
in the predictable relative to unpredictable condition. Although there 
are a limited number of studies investigating the effect of constraining 
information on theta power, we hypothesised that we would either see 
no difference between predictable and unpredictable conditions (Li 
et al., 2017) or that there may be increased theta power in the pre-
dictable compared to unpredictable condition, given the increased 
retrieval of information from long term memory that is associated with 
making predictions. 

Advancing technologies enable the on-line recording and co- 
registration of several data types at once. For example, EEG has been 
co-registered together with fMRI, MEG, eye-tracking and behavioural 
data, and eye-tracking has been co-registered with fMRI (Bonhage et al., 
2015). However, these different data types are often analysed separately 
and only qualitatively compared. Prior research has used the EEG signal 
to predict RT data, as well as subsequent EEG effects (Alday & 
Kretzschmar, 2019; Lago et al., 2023; Maess et al., 2016). Here we 
quantitatively link EEG and eye-tracking data. First, we assessed to what 
extent the N400 amplitude and frequency power in response to the 
noun, which may quantify the ease of word processing, could be pre-
dicted from the proportion of anticipatory referent fixations prior to 
noun onset, which quantified noun predictability. We hypothesised that 
there would be a negative relationship between the proportion of 
anticipatory fixations prior to noun onset and the N400 amplitude in 
response to the noun. We additionally expected that anticipatory fixa-
tions may predict spectral power, consistent with expected effects of 
predictability on spectral power. Second, we investigated to what extent 
oscillatory activity after the constraining verb onset was associated with 
anticipatory fixations. We hypothesised that predictability-related 
modulations in alpha/beta and theta power would be associated with 
an increased proportion of target fixations. We additionally assessed to 
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what extent N400 amplitude at noun onset could be predicted by 
spectral power at verb onset. 

2. Methods 

2.1. Participants 

Thirty-eight right-handed native Dutch speakers took part in ex-
change for a standard fee. Three participants were excluded due to poor 
EEG data quality, two were excluded due to a technical fault and one 
was excluded due to poor performance on the comprehension questions 
and distracted behaviour during the experiment, suggesting they were 
not paying attention during the experiment. Thirty-two participants 
remained for the analysis (21 female, 10 male, 1 unreported gender, 
median age = 23 years, age range = 18–34 years, SD = 4). Participants 
with epilepsy, uncorrected visual or hearing impairments, colour- 
blindness, language impairments, dyslexia or developmental disorders 
were excluded from participation. The research was approved by Rad-
boud University’s Faculty of Social Sciences (ethics application ECSW- 
2020-046) and complied with the Declaration of Helsinki. 

2.2. Cave system 

Stimuli were presented in VR using a cave automatic virtual envi-
ronment (CAVE) system (Cruz-Neira et al., 1992). An example of the 
set-up can be seen in Fig. 1. A detailed description of the CAVE envi-
ronment has previously been described in Eichert et al. (2018). The 
CAVE system consisted of three 255 × 330 cm projector screens (VIS-
CON GmbH, Neurkirchen-Vluyn, Germany) arranged at right angles. 
Two vertically displaced, overlapping displays were back-projected onto 
each projector screen via a mirror by two projectors (F50, Barco N.V., 
Kortrijk, Belgium). 

The experiment was programmed and run in Python through 3D VR 
software Vizard (Floating Client 5.4, WorldViz LLC, Santa Barbara, CA). 
Audio was presented through four surrounding speakers (Logitech, US) 
that were located in the four bottom corners of the CAVE, plus one 
centred at the bottom of the middle screen. 

2.3. Eye- and head-tracking 

Eye movements were recorded with specialised eye-tracking shutter 
glasses, which both tracked the participant’s eye movements and 
allowed them to see in 3D through a synchronised shutter mechanism 
for stereoscopic vision (SMI eye-tracking glasses 2 Wireless, SensoMo-
toric Instruments GmbH, Teltow, Germany). The interface for the eye- 
tracking calibration and data recording were on a tablet, which trans-
mitted data wirelessly to the tracking software. A camera on the glasses 
measured 60 Hz binocular recordings with automatic parallax 
compensation. The accuracy of gaze tracking was 0.5◦ along each 
dimension according to manufacturer reports. The eye tracker’s latency 
of 60ms ± 10ms was corrected for in the analysis. 

Head movements were tracked through six passive reflective 
markers that were placed on the left and right side of the frames of the 
eye-tracking glasses. Ten infrared cameras (Bonita 10, Vicon Motion 
Systems Ltd, UK) tracked the position of the reflective markers. Four of 
the infrared cameras were distributed below the screens at six were 
distributed above the screens. Head-tracking data were recorded to an 
accuracy of 0.5 mm with Tracker 3 software (Vicon Motion Systems Ltd, 
UK) at a sampling rate of 250 frames per second and were continuously 
combined with the eye-tracking data to determine where the participant 
was looking in 3D space. 

The accuracy of the eye-tracking was determined with a two-step 
calibration procedure. The first step used the SMI software’s One 
Point Calibration procedure and assessed the accuracy of the eye- 
tracking alone (without the head-tracking). The participant was asked 
to look at a specific point in front of them (e.g. the corner of a piece of 
paper) and the experimenter corrected the gaze location in the software. 
The second step to the calibration procedure assessed the combined eye- 
and head-tracking, using an in-house calibration programme in VR, 
previously described by Eichert et al. (2018). Participants were pre-
sented with three spheres in 3D space, which each differed in position 
along the X, Y and Z axis. Participants were asked to look towards the 
centre of each sphere, during which the error between the estimated 
gaze position and the actual gaze position was corrected. 

2.4. EEG acquisition 

EEG data were continuously recorded with actiCAP EEG caps, which 

Fig. 1. An example of the CAVE set up. Six of the ten infrared motion tracking cameras are visible, four above the three projector screens and two below. The scene 
displays the virtual agent in the street scene with six target objects (lamppost, basketball, flag, tree, letterbox, and wheelbarrow). 
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contained 64 active Ag/AgCl electrodes, arranged in an equidistant 
montage. We used BrainAmp DC amplifiers (Brain Products, Gilching, 
Germany). The reference electrode was placed on the left mastoid. The 
ground electrode was placed on the forehead. 

Four EOG electrodes recorded electric potentials caused by eye 
movements. Two electrodes were placed to the left of the left eye and to 
the right of the right eye to record horizontal eye movements. One 
electrode was placed above and one electrode was placed below the left 
eye to record vertical eye movements. 

The data was recorded in BrainVision Recorder 1.2 (Brain Products, 
Gilching, Germany), at a sampling rate of 500 Hz and filtered online at 
0.016–200 Hz. Impedance was kept below 10 kΩ (mean = 2.98, SD =
0.85) and measured with actiCAP 006 (Brain Products, Gilching, 
Germany). 

2.5. Spoken sentence stimuli 

Spoken sentence stimuli were adapted from Huizeling et al. (2022). 
Sentences consisted of 128 Dutch sentence sets that contained a 
subject-verb-object clause. All four sentences in a set were identical 
apart from the critical verb and the critical noun in the sentence. Sen-
tences were predictable (50%) or unpredictable (50%) based on the verb 
constraints, where the verb in the sentence could either be related to a 
single object in the visual scene (predictive), or related to multiple ob-
jects in the scene (unpredictive). Verbs were matched for length (num-
ber of letters) and frequency, derived from SUBTLEX-NL (Keuleers et al., 
2010). In 50% of sentences the noun referred to an object that was 
visible in the scene, congruent with the participant’s prediction, whereas 
the other 50% of sentences the noun referred to an object absent from 
the scene, incongruent with the participant’s prediction. The sentence 
always referred to a plausible object, but the constraints of the verb 
combined with the constraints of the visual scene determined congru-
ency (see Fig. 1 for an example). Participants were presented with one of 
two sets of objects for any given scene, so that objects that were con-
gruent/incongruent with the participant’s prediction were counter-
balanced. In other words, referents perceived as congruent in one 
version of the experiment were perceived as incongruent in the second 
version of the experiment and vice versa. As a result, there were four 
versions of each sentence (predictable, object 1; unpredictable, object 1; 
predictable, object 2; unpredictable, object 2), as shown below (English 
translations written underneath, with critical verbs and nouns presented 
in bold font). The full set of sentence stimuli can be found in the sup-
plementary material.  

1. Mijn buurman is niet zo goed in het sturen van de kruiwagen. 

My neighbour is not very good at steering the wheelbarrow.  

2. Mijn buurman is niet zo goed in het fixen van de kruiwagen. 

My neighbour is not very good at fixing the wheelbarrow.  

3. Mijn buurman is niet zo goed in het sturen van de skelter. 

My neighbour is not very good at steering the go-kart.  

4. Mijn buurman is niet zo goed in het fixen van de skelter. 

My neighbour is not very good at fixing the go-kart. 
Sentences were recorded by a trained native Dutch speaker with the 

aim to sound as natural as possible. During the experiment, sentences 
appeared to the participant to be spoken by a virtual agent, who 
matched the recorded voice in apparent age and ethnicity, with lip 
synchronisation and eye gaze towards the participant. At the beginning 
of each scene the virtual agent began with an opening sentence about the 
scene. 

2.6. Visual stimuli 

Visual stimuli consisted of eight scenes (e.g. street, bathroom, 
restaurant) in which six critical objects were embedded. Each of the 
eight scenes were presented twice during the experiment, with different 
objects (and hence different sentences) embedded on each presentation. 
Each scene was presented once, followed by a reiteration of all the 
scenes in the reverse order (e.g. the experiment always started and 
ended with the street scene). The order of the scenes remained consis-
tent across experiments, but the order of the sentence-object sets was 
counterbalanced. Note that, due to counterbalancing objects across the 
condition of congruency (see Section 2.2, Spoken Stimuli), there were in 
fact four different object sets that were associated with each scene, but 
each participant only ever saw two of these sets. 

For example, for 50% of participants the first street scene contained 
sentence-object set A (lamppost/traffic light, basketball/volleyball, 
flag/table cloth, tree/bush, letterbox/dustbin, and wheelbarrow/go- 
kart) and for 50% of participants the first street scene contained ob-
ject set B (lolly/donut, hula hoop/marbles, traffic barrier/firework, 
umbrella/garden chair, balls/marbles, and bucket/watering can). 

Objects were placed so as to appear as natural as possible within the 
scene in regards to scale and position. The virtual agent was positioned 
in the scene so as to be easy to locate, often towards the centre of the 
scene. Visual stimuli, including the scenes, the virtual agent and 
approximately half of the objects were the same as those used in 
(Huizeling et al., 2022). 

In order to counterbalance the objects that would confirm vs 
disconfirm participants’ predictions, for each sentence set there were 
two possible objects that could be displayed. For example, the scene 
presented in Fig. 1 could either display the wheelbarrow (as shown) or a 
go-kart. The former would mean that sentence 1 above (in Section 2.5) 
confirms the participant’s prediction but sentence 3 disconfirms the 
participant’s prediction, and the latter would mean that sentence 3 
above confirms the participant’s prediction but sentence 1 disconfirms 
the participant’s prediction. 

2.7. Procedure 

Participants listened to sentences spoken by a virtual agent during a 
virtual tour of eight scenes (e.g., an office, a living room, a canteen). The 
agent discussed her relation to each scene while participants’ eye 
movements and EEG were continuously recorded. Participants were 
instructed that they would be taken on a tour through the virtual agent’s 
life, that they only needed to listen to the virtual agent but that they 
would be asked questions about what she said at the end of the exper-
iment to check that they were paying attention. 

Sentence sets were separated into eight lists (4 sentence types × 2 
object sets) that participants were randomly assigned to, so that no 
participant heard more than one sentence from a set (see Section 2.5 and 
Section 2.6 for details). 

During the experiment participants were seated on a chair in the 
centre of the CAVE, with the EEG and eye-tracking equipment placed on 
a table behind them. Participants were instructed that they could make 
small, gentle head movements, but they should not turn their head fully 
to the right or left, up or down. The experiment was divided into four 
blocks of four scenes, allowing the participant opportunities for self- 
paced breaks. In between each block the experimenter checked the 
calibration of the eye tracker using the 3D calibration step (see Section 
2.6 Eye- and head-tracking). 

After the experiment was complete, participants completed two 
questionnaires on LimeSurvey. The “Object questionnaire” presented 
participants with a list of all the objects that had been presented during 
the experiment and, for each object, participants selected either “Ja” 
(yes) or “Nee” (no) to indicate whether the virtual agent had referred to 
the object during the experiment. The “Verb questionnaire” presented 
participants with the list of critical verbs that the virtual agent had 
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spoken within a sentence during the experiment (both the word form 
spoken in the experiment, and the full verb). Participants selected “Ja” 
(yes) or “Nee” (no) to indicate whether or not they knew the meaning of 
the verb. Data are available from the Max Planck Institute for Psycho-
linguistics’ Language Archive (https://hdl.handle.net/1839/607d53a 
d-9a81-4891-856c-8bfcaff99a8b). 

2.8. Data analysis 

2.8.1. Eye-tracking 
Eye-tracking data were analysed in R (version 4.1.2; R Core Team, 

2021). Trials were time locked to 60ms after sentence onset to account 
for the eye tracker latency. To account for eye blinks or loss of eye 
tracker connectivity, samples were removed if eye-tracking coordinates 
along all three dimensions (X-Y-Z) remained the same for more than two 
samples. Trials were excluded from further analysis if >25% of samples 
were removed from within the critical time window. There was a 
maximum exclusion of nine trials per participant (mean = 2.72, SD =
2.22). Eye gaze on an object was considered a fixation if it exceeded 
100ms. 

In line with our previous work and with recommendations of ana-
lysing VWP data (Porretta et al., 2018) we analysed the data with 
generalized additive mixed effects models (GAMMs) using the bam 
function from mgcv (version 1.8–26; Wood, 2017) and using itsadug 
(version 2.3; Van Rij, Wieling, Baayen and Van Rijn, 2017) to interpret 
results. GAMMs extend the linear mixed-effects regression framework to 
include smooth curves and so can detect both linear and non-linear ef-
fects. Detailed discussions of the advantages of using GAMMs can be 
found in the previous literature (Porretta et al., 2018; Van Rij, Hendriks, 
Van Rijn, Baayen and Wood, 2019; Wieling, 2018; Winter and Wieling, 
2016). In sum, GAMMs allowed us to model non-linear effects of 
continuous variables, which enabled us to enter time as a continuous 
predictor in our model to investigate whether target fixations changed 
dependent on time and condition. Moreover, as GAMMs can model both 
linear and nonlinear effects we were not required to make assumptions 
about the linearity of our data. 

Data were analysed during a critical window of 200ms after verb 
onset until the mean noun onset to account for the time it takes to 
programme an eye-movement (Rayner et al., 1983). Binomial responses 
of whether the target object was fixated or not were entered into the 
model as a dependent variable, applying a logit link function. Sentence 
Predictability (predictable/unpredictable) was entered into the model as 
a parametric effect along with factor smooth interactions of Time ×
Predictability, Time × Sentence, and Time × Subject. Predictability was 
coded with a deviation contrast-coding scheme (with contr. sum), which 
compares the mean proportion of fixations for each level of predict-
ability with the overall mean across levels. To avoid overfitting, the 
parameter k (which limits the number of basis functions used to fit the 
model) was limited to five. To remain consistent with (Huizeling et al., 
2022), Maximum Likelihood estimation was selected to smooth 
parameter estimates (Wieling, 2018). Segments of time with significant 
differences between conditions were estimated with the plot_diff func-
tion. Analysis scripts for modelling eye-tracking and EEG data are 
available from the Max Planck Institute for Psycholinguistics’ Language 
Archive (https://hdl.handle.net/1839/607d53ad-9a81-4891-856c-8bf 
caff99a8b). 

2.8.2. EEG 

2.8.2.1. Preprocessing. Data were analysed in MATLAB toolbox 
fieldtrip-20200,831 (Oostenveld et al., 2011). Data were band pass 
filtered between 0.1 and 35 Hz, using a forward-backward zero-phase 
4th order Butterworth filter with a Hamming window, and re-referenced 
to the average of the left and right mastoids. For the optimal detection of 
eye artifacts we followed the recommendations for free-viewing 

paradigms outlined in Dimigen (2020). Specifically, the independent 
component analysis (ICA) training data (henceforth called ICA data) 
were band-pass filtered between 2 and 100 Hz using a 
forward-backward zero-phase finite impulse response window sync fil-
ter with a Hamming window. The ICA data was demeaned and line noise 
was removed using a discrete Fourier transform. 

Both the ICA data and “true” data were then epoched from -1000- 
2000ms relative to verb and noun onset. Note that this meant that the 
baseline window of the noun often overlapped with the verb and thus 
differed between conditions. This was controlled for in the analysis by 
including the baseline and an interaction between baseline and condi-
tion as predictors in the model (see Section 2.8 ERPs and Spectral 
analysis). However, it meant that the ICA assumption of independent 
samples was violated. On visual inspection of the ICs, this did not appear 
to affect the performance of the ICA. Trials were then visually inspected 
and noisy trials were removed prior to running ICA (with fieldtrip’s 
runica). Components were visually inspected and those resembling ar-
tifacts caused by eye blinks, horizontal eye movements and spike po-
tentials were then removed from the main data. Noisy sensors were 
interpolated with the average signal of neighbouring sensors. 

2.8.2.2. ERPs. For the analysis of the N400 in response to the critical 
noun, the EEG signal was averaged over time, from 300 to 500ms, and 
over space across centroparietal sensors, plotted in Fig. 4. Averaged data 
were entered into a linear mixed effects model, using lmer from lme4 
(Bates et al., 2015), with baseline (centred), condition (predictable vs 
unpredictable/congruent vs incongruent) and a baseline × condition 
interaction as covariates, and random intercepts for subject and item. 
The baseline was defined as the average amplitude in the 100ms prior to 
noun onset and was included in the model to control for fluctuations in 
pre-stimulus EEG amplitude (Alday, 2019). A model comparison pro-
cedure revealed no significant difference between a model containing 
random slopes of condition and random intercepts for subject and item 
(χ2 = 6.10, df = 4, p > .10). The model was therefore simplified to 
include only random intercepts in order to maintain parsimony and 
computational efficiency (Bates, 2019; Matuschek et al., 2017). Separate 
models were used to investigate the effect of congruency (congruent vs 
incongruent) and the effect of predictability (predictable vs unpredict-
able). The degrees of freedom (df) of fixed effects were computed with 
Satterthwaite approximation using the lmerTest package (version 
0.9–40; Kuznetsova et al., 2017). 

For the analysis of the post-N400 time window, time-locked to the 
critical noun, a time window of 700–1700ms was selected to avoid 
overlap with the N400 itself. Data were down-sampled to 125 Hz. The 
paradigm used in the current study was different to those used in most 
previous studies that investigate the post-N400 time window and we had 
no clear hypothesis about the specific latency of expected effects. Data 
were therefore analysed with GAMMs (k limited to 10), allowing us to 
include time as a continuous predictor in the models (see Section 2.8 
Data Analysis, Eye-tracking). GAMMs have been used to model EEG data 
in past research (Hendrix et al., 2017; Lago et al., 2023; Tremblay and 
Newman, 2015). Previous investigations of the post-N400 have found 
differential anterior and posterior effects (DeLong et al., 2014; Feder-
meier et al., 2007; Quante et al., 2018; Thornhill and Van Petten, 2012; 
Van Petten and Luka, 2012). Data were averaged over sensors encom-
passed in two regions of interest (ROI), including an anterior and a 
posterior ROI (see selected electrodes for each ROI plotted in Fig. 5). In 
addition to time (in steps of 8ms and centred) and ROI, condition, 
baseline (centred), and an interaction between condition and ROI were 
entered into the model as parametric effects, as well as smooth terms for 
time by condition and time by condition aggregated with ROI. Random 
smooths were entered for subject and item. Separate models were fit to 
investigate the effect of congruency (congruent vs incongruent) and the 
effect of predictability (predictable vs unpredictable). For each model, 
condition was coded with a deviation contrast-coding scheme (with 
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contr. sum). 

2.8.2.3. Spectral analysis. Time frequency analysis was performed from 
-1000 - 1500ms relative to verb and noun onset, from 2 to 30 Hz for 
every 1 Hz, with a sliding window moving in stages of 50ms with four 
cycles per time window and applying a Hann taper (as specified by 
“Hanning” in fieldtrip). 

A time window of 0–1000ms relative to verb/noun onset was 
selected for further investigation, as well as theta (4–6 Hz), alpha (7–11 
Hz) and beta (14–30 Hz) frequency bands, within which frequency 
power was averaged for further analysis. The specific alpha range was 
selected based on visual inspection of Figure SM1, which displays a time 
frequency representation (TFR) averaged across all conditions and all 
electrodes (Luck and Gaspelin, 2017). As no specific frequency effects 
are visible in the theta or beta ranges in Figure SM1, standard theta and 
beta ranges of 4–6 Hz and 14–30 Hz, respectively, were selected, while 
avoiding overlap with the selected alpha band. 

As there was no clear hypothesis about the latency at which effects 
may be observed in theta and alpha frequencies, we again kept time as a 
continuous predictor (in steps of 50ms) and analysed the data with 
GAMMs. Data were averaged across sensors within two ROIs, an anterior 
and a posterior ROI (see Fig. 8) and log transformed for the analysis. 
Posterior and anterior sensors were selected as ROIs in accordance with 
previous effects of context constraints on pre-stimulus alpha power 
recorded with EEG (Rommers et al., 2017). In addition to time (centred) 
and ROI, condition and a condition × ROI interaction were entered into 
the model as parametric effects. Smooth terms for time by condition and 
time by condition aggregated with ROI were added to the model. 
Random smooths were entered for subject and item. Separate models 
were used to investigate the effect of congruency (congruent vs incon-
gruent) and the effect of predictability (predictable vs unpredictable). 

The baseline was not entered into models analysing oscillatory 
power, as the time-frequency decomposition does not suffer from the 
slow drifts in EEG data that is present in ERPs. 

2.8.3. Predicting N400 amplitude and frequency power from anticipatory 
fixations 

We hypothesised that the prediction of the referent before noun 
onset would influence the ease of noun processing and that this would be 
reflected in the EEG data. The proportion of fixations towards the 
referent prior to noun onset was taken as a metric of prediction. This 
differs from using the condition of predictability as a (binary) predictor, 
as there may be variability within conditions and across participants as 
to whether the referent was predicted or not. 

To this end, N400 amplitude and log frequency power (alpha and 
theta, 0–1000ms) were exported from MATLAB, read into R with 
R. matlab (Bengtsson, 2017) and then entered into three separate linear 
mixed effects model (lmer from lme4) as dependent variables, with the 
time (number of samples) spent fixating the target as a predictor vari-
able and random intercepts for subject and item. Random slopes of 
condition for subject and item were included in the frequency models 
but omitted from the N400 model because the resultant fit was singular 
(Bates, 2019). Baseline amplitude and ROI (anterior/posterior) were 
entered as additional predictor variables for the N400 and frequency 
models respectively. A model comparison procedure showed that adding 
an interaction between baseline amplitude and target fixations did not 
improve the model fit (χ2 = 2.36, df = 1, p > .10). Similarly, whereas 
including ROI as a predictor improved the model fit for both theta (χ2 =

228.60, df = 1, p < .001) and alpha (χ2 = 26.49, df = 1, p < .001) 
models, adding an interaction between ROI and target fixations did not 
improve the model fit for either theta (χ2 = 1.28, df = 1, p > .10) or 
alpha (χ2 = 0.03, df = 1, p > .10). Nevertheless, we report the models 
containing the interaction in Table 8 in Section 3.3, as the theta model 
without the interaction failed to converge. This did not change the 
overall pattern of results and made only minor differences to the models’ 

estimates. 
The time spent fixating the target in the time window between 

490ms after the verb onset until mean noun onset was selected as a 
metric for predictability, consistent with the time window in which a 
significant effect of predictability on target fixations was found (see 
Section 3.1). Trials were restricted to those in which the referent was 
visible in the scene, confirming the participant’s prediction, rather than 
those in which the referent was not present in the scene, as we were only 
interested in effects of noun predictability and not congruence of the 
referent with the prediction. 

2.8.4. Predicting N400 amplitude from frequency power 
We hypothesised that frequency power at verb onset would be pre-

dictive of N400 amplitude at noun onset. Frequency power (theta, 4–6 
Hz; alpha 7–11 Hz) averaged over time (0–1000ms relative to verb 
onset) and electrodes within two ROIs (anterior and posterior; see Fig. 8) 
was centred and entered as a predictor in two linear mixed effects 
models with additional predictors of baseline N400 amplitude (centred), 
condition (predictable-congruent, unpredictable-congruent, predict-
able-incongruent, and unpredictable-incongruent) and condition ×
anterior frequency power and condition × posterior frequency power 
interactions. The models contained random intercepts for sentence and 
subject. Models containing additional random slopes did not converge. A 
model comparison procedure revealed no significant difference between 
models containing only random intercepts and models containing 
random slopes of frequency power for subject and item (p > .10). 
Separate models were fit for alpha and theta power. There was some 
collinearity between frequency power in the two ROIs (the generalized 
variance-inflation factors, GVIFs ^(1/(2*Df)), for the two respective 
interaction terms were alpha: 1.79 and 1.50; theta: 2.19 and 2.23) and so 
caution should be taken when making inferences about the topography 
of effects. 

2.8.5. Predicting anticipatory fixations from frequency power 
For anticipatory fixations to take place, the listener must first 

combine information from the constraining verb with the constraints of 
the visual scene. Anticipatory processing may therefore be reflected in 
the brain signal prior to fixations towards the predicted item. We 
therefore tested whether anticipatory fixations could be predicted by 
frequency power after verb onset, with the length of time spent fixating 
the referent between 490ms relative to verb onset until noun onset as the 
dependent variable. 

Frequency power (theta, 4–6 Hz; alpha 7–11 Hz) averaged over time 
(0–1000ms relative to verb onset) and electrodes within two ROIs 
(anterior and posterior; see Fig. 8) was a predictor in the models. Due to 
the collinearity between the data within the two ROIs, fixation data were 
modelled as a function of frequency power in each ROI in separate 
models. Alpha and theta frequency bands were additionally run as 
separate models. Multiple comparisons of two tests for the two separate 
ROIs were corrected for with Bonferroni correction, adjusting the sig-
nificance threshold to p < .025. 

Due to the large number of trials in which the target was not fixated, 
there was a disproportionately large number of zeros in the data, which 
could not be accommodated by distributions typically used to model 
count data, such as Poisson or negative binomial distributions. The 
pattern of fixations can be separated into a) the decision to fixate on the 
target object and b) the length of time (number of samples) the item is 
fixated for during the critical time window. Such differences could 
reflect different underlying cognitive processes. We therefore imple-
mented a hurdle model to model fixations. A hurdle model fits the model 
in two stages, thereby accounting for the large number of zeros. The first 
part of the model fits the probability of the target being fixated. The 
second part of the model describes the length of time (number of sam-
ples) the object was fixated, given that it was fixated, with a Poisson 
distribution. 

To allow for modelling a nested random effects design, in order to 
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control for items and subjects, and for continuity across analyses, data 
were modelled using the gam function from the mgcv package, with a 
ziplss family. For both stages of each hurdle model, average frequency 
power was entered as a parametric predictor and as a smooth term. 
Random smooths were entered for subject and item. Here, GAMMS 
allowed the number of fixations to vary non-linearly as a function of 
frequency power, but could also detect linear effects if present. GAMMs 
have previously been used to co-register EEG and eye-tracking data 
(Kretzschmar et al., 2015; Nikolaev et al., 2016; Van Humbeeck, 
Meghanathan, Wagemans, van Leeuwen and Nikolaev, 2018). 

3. Results 

All participants achieved over 71% accuracy on the Object ques-
tionnaire (mean = 86.69%, SD = 6.43%), suggesting that all participants 
were attentive. For each verb, we calculated the percentage of partici-
pants who knew the meaning of the verb. Each individual verb was 
known by an average of 98.62% participants (SD = 5.71). No further 
analysis was conducted on the questionnaire data. 

3.1. Eye gaze 

Fig. 2 presents the proportion of fixations towards the target, dis-
tractors and virtual agent while listening to predictable and unpredict-
able sentences. 

The model (see Table 1) revealed a parametric effect of condition, 
with a greater proportion of target fixations in the predictable compared 
to unpredictable condition. There was a significant smooth for time for 
predictable but not unpredictable sentences, which resulted from an 
increase in fixations over time in the predictable but not the unpre-
dictable condition (see smooth plotted in Fig. 3). 

Model estimated difference curves are presented in Fig. 3. As the 
model estimated the effect to be linear, it estimated the proportion of 
fixations to be greater in the unpredictable relative to predictable con-
dition from the beginning of the analysis window (200ms after verb 
onset) until 380ms after verb onset and greater in the predictable rela-
tive to unpredictable condition from 480ms after the verb onset until 
mean noun onset (unadjusted for the time to programme a fixation). 

3.2. EEG 

3.2.1. N400 
ERPs in response to noun onset, averaged over centroparietal elec-

trodes, are presented for each condition in Fig. 4. The waveform of a 
single centroparietal electrode is presented in Figure SM2 in the 

supplementary material. To investigate effects of predictability and 
congruence on the N400 amplitude, two linear mixed effects models 
were conducted on the average data from a group of centroparietal 
electrodes between 300 and 500ms (see Fig. 4 panel A for a schematic of 
the selected electrodes). The model (see Table 3) revealed a significant 
effect of congruency on the N400 amplitude, in which the N400 time- 
locked to noun onset was larger for prediction-incongruent compared 
to congruent nouns. However, contrary to our hypotheses, there was no 
significant effect of predictability on N400 amplitude (see Table 2). 

3.2.2. Post-N400 
A later, post-N400, component is thought to reflect ongoing pro-

cessing after the word has been perceived, for example, through rean-
alysis or updating of the sentence interpretation, or integrating new 
semantic information to the prior context. Based on the aforementioned 
literature, we hypothesised that there would be a more positive post- 
N400 in response to unpredictable compared to predictable nouns and 
in response to incongruent relative to congruent nouns. To investigate 
amplitude modulations in a post-N400 time window, we used GAMMs to 
model the change in amplitude over time 700–1700ms after noun onset, 
in a posterior and an anterior ROI. ERP waveforms for the two ROIs are 
presented in Fig. 5 and the model summaries can be found in Table 4. 

There was a significant parametric effect of predictability on post- 
N400 amplitude, as well as ROI and the baseline amplitude. Model 
estimated post-N400 amplitude was more positive in the predictable 
compared to unpredictable condition, contrary to our hypotheses (see 
Figure SM3 in the supplementary material for time windows of signifi-
cant differences). There was a significant interaction between predict-
ability and ROI. Inspection of the smooth terms revealed that the change 
in amplitude during the post-N400 time window reversed in direction 
for anterior and posterior ROIs but was qualitatively similar across 
predictable and unpredictable conditions (see Fig. 6). 

We found a significant parametric effect of congruency on the post- 
N400 amplitude in response to the noun, as well as effects of ROI and the 
baseline amplitude. Consistent with our hypotheses, model estimated 
post-N400 amplitude was overall more positive in the incongruent 
compared to congruent condition. There was a significant interaction 
between congruency and ROI. The smooth terms presented in Fig. 7 
revealed that the change in amplitude over time predominantly differed 
across conditions in the posterior ROI, where there was a decrease in 
amplitude over time in the congruent but not the incongruent condition 
(also shown in the model estimated difference curves presented in 
Figure SM4 in the supplementary material). 

In summary, we found effects of both predictability and congruence 
on post-N400 components, where amplitude was overall greater in the 
predictable and incongruent conditions relative to the unpredictable 
and congruent conditions, respectively. The effect of time on EEG 
amplitude was qualitatively similar across predictable and unpredict-
able conditions. In contrast, an effect of congruency over time was 
predominantly seen in the posterior ROI, where amplitude further 
decreased over time in the congruent but not the incongruent condition. Fig. 2. Proportion of target fixations. Vertical lines represent critical time 

points (mean verb onset and mean noun onset). Shaded ribbons display the 
standard error of the mean. Zero indicates 500ms prior to verb onset. 

Table 1 
Model summary for target fixations in Predictable vs Unpredictable conditions 
after verb onset.  

Parametric coefficients Estimate SE Z value P 

Intercept − 3.28 0.13 − 25.60 <.001 
Condition 0.13 0.01 14.19 <.001 
Smooth terms edf Ref. df Chi sq. P 
Smooth for Time: Predictable 1.01 1.02 60.83 <.001 
Smooth for Time: Unpredictable 1.00 1.01 2.48 .116 
Random effect for Subjects 147.08 287.00 3099.43 <.001 
Random effect for Sentence 598.13 1151.00 8520.55 <.001 

edf, effective degrees of freedom; Ref. df, reference degrees of freedom; SE, 
standard error. Deviation contrast-coding: Predictable (1); Unpredictable (− 1). 
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3.2.3. Frequency 

3.2.3.1. Verbs. TFRs and topographical plots presenting frequency 
power in the time window following verb onset are presented in Fig. 8. 
To investigate theta power modulations in response to (un)predictive 
verbs, we used GAMMs to model the change in theta power over time 
0–1000ms after critical verb onset in a posterior and an anterior ROI. 
Effects in theta power in response to constraining information have not 
often been reported in the previous literature. In one study, Li et al. 
(2017) reported no significant difference in theta power in response to 
constraining and unconstraining verbs in written Chinese sentences. 

We found a significant parametric effect of verb predictivity on theta 
power after verb onset, where theta power was higher in response to 
predictive relative to unpredictive verbs. There was a significant effect 
of ROI, with higher theta power in the anterior relative to posterior ROI 
(see also TFR in Fig. 8 panel A), but no significant interaction between 
ROI and condition. 

Significant smooth terms show a linear (edf is close to 1; see Table 5) 

change in theta power over time for predictive verbs in the anterior ROI. 
Theta power was greater in response to predictive compared to unpre-
dictive verbs from 650ms (see differences between predictive and 
unpredictive smooth terms presented in Fig. 9 panel A and B). There was 
also a significant smooth for time for the unpredictive verbs in the 
anterior ROI, however, this was close to the threshold of significance (p 
= .043). There were no other significant smooths for time. 

It was hypothesised that there would be lower alpha and beta power 
in response to predictive compared to unpredictive verbs (Gastaldon 
et al., 2020; Leon-Cabrera et al., 2022; Li et al., 2017; Molinaro et al., 
2017; Piai et al., 2014; Rommers et al., 2017; Roos and Piai, 2020; 
Terporten et al., 2019; Wang et al., 2018). The model summary for alpha 
power can be found in Table 5. Only tentative effects of verb predictivity 
were found in beta power. Results for beta power can be found in the 
supplementary material (see pable SM1). 

There was a significant parametric effect of verb predictivity on 
alpha power after verb onset, as well as a significant effect of ROI and a 
significant interaction between ROI and condition. Contrary to our 

Fig. 3. Model estimated smooths and difference curve for target fixations: Model estimated smooths for the proportion of fixations in predictable (red) and un-
predictable (teal) sentences (panel A) and the difference between the model-estimated smooth splines of the predictable and unpredictable conditions (panel B). Red 
dashed lines mark windows of significant differences. Time is relative to verb onset. 

Fig. 4. ERP amplitudes (μV) in response to noun onset averaged over centroparietal sensors. A baseline of 100ms prior to the noun onset was subtracted from the 
amplitude. Topographical plots display the difference in amplitude (congruent – incongruent left, predictable – unpredictable right) averaged between 300 and 
500ms after noun onset. Time (s) is relative to noun onset. The grey shaded area highlights the time segment that was averaged over and entered into the linear 
model. **p < .01, ns p > .10. 
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Fig. 5. ERP amplitudes (μV) for frontal (panel A) and posterior (panel B) electrodes. The electrodes that were selected are presented in the schematic in the top right 
of each panel. A baseline of 100ms prior to the noun onset was subtracted from the amplitude. Topographical plots present the difference between conditions 
(predictable congruent – predictable incongruent, predictable congruent – unpredictable congruent). The grey shaded area highlights the time segment that was 
averaged over and entered into the linear model. 

Table 2 
Model summary for N400 amplitude in response to Predictable vs Unpredictable 
nouns.  

Random effects: 

Groups Name Variance SD   
Sentence (Intercept) 0.79 0.89   
Subject (Intercept) 1.34 1.16   
Residual  42.99 6.56   

Fixed effects:  
Estimate SE df t Pr(>|t|) 

Intercept − 1.43 0.27 36.90 − 5.39 <.001 
Predictability 0.19 0.15 1762.06 1.27 .205 
Baseline 0.06 0.02 1883.74 2.84 .005 
Condition × Baseline − 0.06 0.02 1878.95 − 3.11 .002 

df, degrees of freedom; Estimate, beta coefficient; SD; standard deviation; SE, 
standard error. 

Table 3 
Model summary for N400 amplitude in response to Congruent vs Incongruent 
nouns.  

Random effects: 

Groups Name Variance SD   
Sentence (Intercept) 0.47 0.69   
Subject (Intercept) 1.11 1.05   
Residual  38.96 6.24   

Fixed effects:  
Estimate SE df t Pr(>|t|) 

Intercept − 1.91 0.24 34.68 − 7.86 <.001 
Congruence 0.67 0.14 1775.70 4.66 <.001 
Baseline 0.04 0.02 1887.17 2.13 .033 
Condition × Baseline − 0.05 0.02 1861.81 − 2.36 .018 

For abbreviations, see legend of Table 2. 
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Table 4 
Model summary for post-N400 in response to Predictable vs Unpredictable and Congruent vs Incongruent nouns.   

Parametric coefficients 
Predictability Congruency 

B SE t P B SE t P 

Intercept 0.50 0.12 4.23 <.001 0.52 0.14 3.67 <.001 
Condition 0.06 0.01 5.84 <.001 − 0.03 0.01 − 3.19 .001 
ROI − 0.30 0.01 − 28.47 <.001 − 0.39 0.01 − 37.18 <.001 
Baseline − 0.34 <0.01 − 196.25 <.001 − 0.32 <0.01 − 178.60 <.001 
Condition × ROI 0.10 0.01 9.77 <.001 0.19 0.01 17.90 <.001 

Smooth terms edf Ref. df F P edf Ref. df F P 

S: Cong/Pred 1.04 1.05 0.26 .624 1.15 1.19 0.95 .327 
S: Incong/Unpred 1.41 1.53 0.32 .780 1.42 1.53 0.05 .958 
S: Cong/Pred A 6.21 7.19 9.72 <.001 6.43 7.35 8.28 <.001 
S: Cong/Pred P 1.05 1.06 2.87 .089 1.17 1.22 4.25 .033 
S: Incon/Unpred A 5.68 6.75 8.18 <.001 3.74 4.53 3.38 .010 
S: Incon/Unpred P 3.29 4.00 4.29 .002 4.86 5.95 6.64 <.001 
RS: subject 230.94 287.00 21.92 <.001 240.72 287.00 25.65 <.001 
RS: sentence 915.34 1151.00 12.02 <.001 945.63 1151.00 13.53 <.001 

A, anterior ROI; P, posterior ROI; Pred, predictable condition; Unpred, unpredictable condition; Cong, congruent; Incong, incongruent; B, beta estimate; edf, effective 
degrees of freedom; RS, random smooth for time; Ref. df, reference degrees of freedom; SE, standard error; S, smooth for time. Deviation contrast-coding: Predictable 
(1); Unpredictable (− 1). 

Fig. 6. Model estimated smooths for amplitude in response to predictable and unpredictable nouns in anterior (panel A) and posterior (panel B) ROIs. Time is relative 
to noun onset. 

Fig. 7. Noun congruency model estimated smooths for amplitude in response to congruent and incongruent nouns in anterior (panel C) and posterior (panel D) ROIs. 
Time is relative to noun onset. 
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hypotheses, alpha power was higher in response to predictive compared 
to unpredictive verbs, specifically in the anterior ROI throughout the 
entire analysis window (see estimated differences presented in Fig. 9 
panels C–D). 

There was a linear increase in alpha power over time in the anterior 
ROI for the predictive condition only, reflected in a significant smooth 
for time for this condition (see Table 5). There were no other significant 
smooths for time. 

3.2.3.2. Nouns. TFRs and topographical plots presenting frequency 
power in the time window following noun onset are presented in Fig. 10. 
Greater theta responses to both unpredictable and incongruent nouns 
relative to predictable and congruent nouns were expected (Bastiaansen 
and Hagoort, 2015; Li et al., 2017; Rommers et al., 2017; Willems et al., 
2008a), reflecting an increased effort to retrieve lexical and semantic 
information from long term memory. 

There was a significant parametric effect of predictability and ROI on 
theta power after noun onset, where theta power was lower in response 

to predictable compared to unpredictable nouns. There was no signifi-
cant interaction between condition and ROI. 

There was a significant smooth for time for unpredictable nouns, 
which stemmed from the posterior ROI (see Table 6). Accordingly, a 
peak in theta power in response to unpredictable nouns can be seen in 
the posterior ROI’s TFR in Fig. 10 and the smooths in Fig. 11 panel F, 
peaking at around 600–700ms after noun onset. From the model esti-
mated difference curves presented in Fig. 11 panel A–B, it can be seen 
that theta was greater for unpredictable relative to predictable nouns 
from 220 to 880ms in the posterior ROI and from 250 to 860ms in the 
anterior ROI. There were no other significant smooths for time (p > .10). 

Supporting our hypotheses, there was a significant parametric effect 
of congruency on theta power, where theta power was higher in 
response to incongruent compared to congruent nouns (see Table 7). 
There was a significant effect of ROI, with higher theta power in the 
anterior compared to posterior ROI, and a significant interaction be-
tween condition and ROI. 

Theta power significantly changed over time in the posterior ROI in 
response to incongruent nouns only (see smooth terms in Table 7). In 
both posterior and anterior ROIs theta was higher in the incongruent 
relative to congruent nouns from around 400ms (340ms and 420ms for 
posterior and anterior ROIs respectively), as can be seen in the model 
estimated difference curves presented in Fig. 12 panel A and B. Differ-
ences peaked at around 600ms after noun onset. 

We expected lower alpha and beta power for incongruent compared 
to congruent nouns (Rommers et al., 2017; Wang et al., 2012; Willems 
et al., 2008a). On the other hand, we had no clear evidence to expect a 
difference in alpha or beta power between predictable and unpredict-
able nouns (Rommers and Federmeier, 2018; Terporten et al., 2019). 
Only tentative effects of noun predictability and congruence were found 
in beta power. Results for beta power can be found in the supplementary 
material (see Tables SM2 and SM3). 

There was a significant parametric effect of noun predictability and 
ROI on alpha power in response to noun onset, but no interaction be-
tween predictability and ROI (see Table 6). Alpha power was lower in 
response to predictable compared to unpredictable nouns, around 
200–720ms relative to noun onset (see model estimated difference 
curves in Fig. 11 panels C and D). 

There was a significant smooth for time for unpredictable nouns 
when collapsed across ROIs, suggesting that alpha power changed over 
time in this condition. However, when separated across ROIs the 
smooths for time did not reach significance (p = .089). 

There were significant parametric effects of congruence and ROI on 
alpha power, but no significant interaction between condition and ROI. 
Alpha power was higher in the incongruent relative to congruent nouns 
from 350 to 1000ms in the anterior ROI and between 410 and 1000ms in 
the posterior ROI (see model estimated differences in Fig. 12). The 
smooth for time for alpha power in the congruent condition did not 
reach significance (p = .057). There were no other significant smooths 
for time (p > .10). 

Summary of frequency results. 
In summary, effects of verb predictivity and noun predictability were 

observed most robustly in theta and alpha power. Higher theta and 
alpha power were both seen either after hearing a predictive verb 
(relative to unpredictive) or an unpredictable or incongruent noun 
(relative to predictable or incongruent respectively). 

3.3. Combined analysis 

3.3.1. Predicting N400 amplitude from anticipatory fixations 
We hypothesised that the prediction of the referent before noun 

onset would influence the ease of processing once the noun was 
perceived. In the analysis of the eye-tracking data (see Section 3.1), an 
effect of predictability on target fixations was found from 490ms after 
the verb onset. We therefore investigated to what extent the proportion 
of fixations from 490ms post-verb onset until mean noun onset could 

Fig. 8. Panel A: Verbs’ TFRs for the time window following predictive and 
unpredictive verbs. Frequency power (μV2/Hz for 4–30 Hz) plotted for pre-
dictive and unpredictive conditions represents the absolute difference from 
baseline (-100-0ms). No baseline correction was applied when plotting the 
difference between conditions. The vertical black line overlaying TFRs marks 
the verb onset. The variable black line overlaying TFRs represents the pro-
portion of fixations towards the target object. Panel B: Topographical plots of 
differences in frequency power 0–1000 ms after verb onset for theta (4–6 Hz), 
alpha (7–11 Hz) and beta (14–30 Hz) frequency bands. No baseline correction 
was applied. Significance levels are based on parametric effects: ***p < .001, 
ns: not significant. 
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predict N400 amplitude in response to the noun. As we were only 
interested in sentence predictability and not congruence, for this anal-
ysis we only included trials where the referent was visible in the scene, 
confirming the participant’s prediction. 

This question was investigated with a linear mixed effects model 
with N400 amplitude as a dependent variable, the proportion of target 
fixations and baseline EEG amplitude as predictor variables (see 
Methods Section 2.8 for details). Target fixations did not significantly 

predict N400 amplitude (B = 1.32, SE = 0.86, t = 1.54, p > .10). The 
model summary can be found in the supplementary material 
(Table SM4). 

3.3.2. Predicting N400 amplitude from frequency power 
The processing of the constraining information at verb onset was 

expected to influence the ease of subsequent noun processing. We 
therefore expected frequency (theta/alpha) power at verb onset to 

Table 5 
Model summary for theta and alpha power in response to Predictive vs Unpredictive verbs.   

Parametric coefficients 
Theta Alpha 

B SE t P B SE t P 

Intercept 0.79 0.07 10.93 <.001 1.14 0.10 12.02 <.001 
Condition 0.01 <0.01 3.36 .001 0.01 <0.01 4.35 <.001 
ROI 0.11 <0.01 65.38 <.001 − 0.06 <0.01 − 31.50 <.001 
Condition × ROI <0.01 <0.01 0.14 .889 <0.01 <0.01 2.50 .013 

Smooth terms edf Ref. df F P edf Ref. df F P 

S: Pred 1.00 1.01 26.95 <.001 1.00 1.01 1.73 .189 
S: Unpred 2.44 2.98 2.24 .080 1.00 1.01 1.23 .269 
S: Pred Ant 1.01 1.01 7.58 .006 1.02 1.03 8.26 .004 
S: Pred Post <0.01 <0.01 <0.01 .999 <0.01 0.01 0.01 .993 
S: Unpred Ant 1.36 1.92 2.93 .043 1.01 1.01 0.56 .452 
S: Unpred Post 1.02 1.03 0.19 .670 <0.01 <0.01 <0.01 .999 
RS for subject 140.40 287.00 219.73 <.001 130.00 287.00 285.90 <.001 
RS for sentence 504.70 1151.00 3.09 <.001 478.50 1151.00 2.70 <.001 

Ant, anterior ROI; Post, posterior ROI; Pred, predictive condition; Unpred, unpredictive condition; B, beta estimate; edf, effective degrees of freedom; RS, random 
smooth for time; Ref. df, reference degrees of freedom; SE, standard error; S, smooth for time. Deviation contrast-coding: Predictive (1); Unpredictive (− 1). 

Fig. 9. Verb modulated frequency power difference curves: The difference between the model-estimated smooth splines of the predictive and unpredictive conditions 
for log theta (panels A–B) and alpha (panels C–D) power, in anterior (panels A and C) and posterior (panels B and D) ROIs in the 1000 ms following verb onset. Red 
dashed lines mark windows of significant differences. 
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predict the N400 amplitude at noun onset. N400 amplitude was entered 
into two linear mixed effects models as a dependent variable, with 
anterior frequency power, posterior frequency power, baseline ampli-
tude, condition, a condition × anterior frequency power interaction and 
a condition × posterior frequency power interaction as predictors (see 
Methods Section 2.8 for details). Here we focused only on theta and 
alpha frequencies, as it was in these frequency bands that we predomi-
nantly observed effects of noun predictability (see Results, Frequency, 
Section 3.2.3). 

The model summaries are presented in Tables 8 and 9. There was no 
main effect of theta power on N400 amplitude (p > .05). However, there 
was a significant interaction between theta power and condition, in both 
predictable congruent and predictable incongruent conditions in the 
anterior ROI. An estimate of 0.24 for the predictable congruent condi-
tion interaction (see Table 8) suggests that, relative to the average of all 
other conditions, the N400 amplitude was more positive with increased 
theta power. In other words, when the noun was predictable and 
congruent with the prediction, the N400 amplitude at noun onset 
decreased with increased theta power after verb onset. An estimate of 
− 0.17 suggests that the opposite pattern was true for the predictable 
incongruent condition, where increased anterior theta power at verb 
onset resulted in a more negative (larger) N400 amplitude at noun onset. 

There was a main effect of alpha power on N400 amplitude for the 
unpredictable congruent condition and the predictable incongruent 
condition. There was additionally a significant interaction between 
condition and alpha power in the anterior ROI, where N400 amplitude 
at noun onset decreased (became more positive) with increased alpha 
power at verb onset when the noun was predictable and congruent, as 
shown by the estimate of 0.15 (see Table 9). 

3.3.3. Predicting frequency power from anticipatory fixations 
We investigated to what extent the proportion of fixations before 

noun onset could predict log frequency power in the 0–1000ms after 
noun onset. To this end, log theta power and log alpha power were 
entered into two linear mixed effects models as dependent variables, 
with target fixations, ROI and a target fixations × ROI interaction as 
predictors (see Methods Section 2.8 for details). 

The proportion of fixations prior to noun onset was negatively 
associated with both theta and alpha power in the time period after the 
noun onset (see Tables 10 and 11, respectively for model summaries). A 
greater proportion of anticipatory target fixations was therefore asso-
ciated with a weaker theta/alpha increase at noun onset. There was a 
significant effect of ROI, but no interaction between ROI and target 
fixations. 

3.3.4. Predicting anticipatory fixations from frequency power 
We hypothesised that oscillatory activity time-locked to the verb 

onset would predict anticipatory target fixations. We therefore investi-
gated the extent that spectral power, averaged over 0–1000ms after verb 
onset, could predict the proportion of fixations in the time window from 
490ms after verb onset until noun onset. 

Due to the large number of zeros in the data, hurdle GAMM models 
were used (see Methods, Data Analysis Section 2.8). The proportion of 
target fixations was entered into the model as a dependent variable, with 
frequency power as a predictor and subject and sentence as random 
smooths. Data from anterior and posterior ROIs, and for alpha and theta 
frequencies, were entered into separate models. Model summaries are 
presented in Tables 12 and 13. 

3.3.4.1. Theta anterior ROI. The zero part of the model tested the extent 
to which each variable predicted the binary outcome of whether or not 
the target object was fixated during the specified time window. There 
was no parametric effect of theta power and no significant smooth for 
theta power. These findings demonstrate that frontal theta power is not 
a good predictor of whether the participant will fixate on the target. 

Fig. 10. Panel A: Nouns’ TFRs for the time window following predictable 
congruent (PC), predictable incongruent (PI) and unpredictable congruent (UC) 
nouns. Frequency power (μV2/Hz for 4–30 Hz) plotted in PI, PC, and UC TFRs 
represents the absolute difference from baseline (-100-0ms). No baseline 
correction was applied when plotting the differences between conditions. 
Vertical black lines overlaying the TFRs mark the noun onset. Panel B: Topo-
graphical plots of differences in frequency power 0–1000ms after verb onset for 
theta (4–6 Hz), alpha (7–11 Hz) and beta (14–30 Hz) frequency bands. No 
baseline correction was applied. Significance levels are based on parametric 
effects: ***p < .001, *p < .05, ns: not significant. 
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The non-zero part of the model tested the extent to which theta 
power predicted the total fixation time during the selected time window, 
conditional on having fixated the object. There was no parametric effect 
of theta power but there was a significant smooth for theta power. 

3.3.4.2. Theta posterior ROI. There was no parametric effect of posterior 
theta power on whether or not the target object was fixated during the 
critical window. The smooth for theta power in the zero part of the 
model did not reach significance after Bonferroni correction for multiple 
tests (p = .044 uncorrected). There was, however, a significant para-
metric effect of theta power on the duration of fixations given the target 
was fixated and a significant smooth for posterior theta power on the 
total duration of fixations during the critical window. 

For abbreviations, see legend of Table 5. 

3.3.4.3. Alpha anterior ROI. Neither the zero nor non-zero parts of the 
model revealed significant parametric effects nor any significant smooth 
for anterior alpha power. 

3.3.4.4. Alpha posterior ROI. In the zero part of the model, there was no 
significant parametric effect of posterior alpha power on the number of 
fixations and no significant smooth for alpha power. In the non-zero part 
of the model, there was no significant parametric effect of alpha power 
on total fixation duration, but a significant smooth for posterior alpha 
power. 

3.3.5. Summary of combined analysis results 
Anticipatory target fixations predicted spectral power (alpha and 

theta) but not N400 amplitude after noun onset. Spectral power after 
verb onset did not predict the binary outcome of whether or not the 
target was fixated prior to noun onset. However, posterior theta power 
after verb onset predicted the amount of time spent fixating on the target 
prior to noun onset given the target was fixated to begin with. No such 
relationship was found with alpha power. Theta and alpha power at verb 
onset interacted with condition when predicting N400 amplitude at 
noun onset, where an increase in anterior alpha and theta was associated 
with a smaller N400 in the predictable congruent condition, but there 
was a larger N400 in the predictable incongruent condition with 
increased anterior theta power. 

4. Discussion 

We tested the extent to which EEG and eye-tracking data could be 
simultaneously recorded and combined to investigate predictive pro-
cessing of upcoming speech in naturalistic environments, in VR. Ad-
vancements in recording and data processing techniques mean that it is 

now possible to record EEG during free-viewing paradigms, uncovering 
a wide range of possibilities to study important theoretical questions in 
naturalistic environments in the lab. When studying prediction during 
spoken language comprehension, although eye gaze allows us to see 
whether a prediction can be made before the verbal onset of the referent, 
it is not possible to determine whether a reduction in the proportion of 
fixations is due to a shift in visual attention or an actual change in the 
listener’s prediction. On the other hand, although the EEG signal at the 
onset of a spoken word provides an indication of the ease of word pro-
cessing the moment it is perceived, we are not yet able to use the EEG 
signal alone to determine whether a noun was predicted or not. These 
two methods therefore provide complementary information that can be 
combined to answer important theoretical research questions (Knoe-
ferle, 2015). Here we present a proof-of-principle investigation to test 
whether these methods can indeed be successfully combined to study the 
prediction of speech in naturalistic environments. 

In summary, we replicated increased anticipatory fixations towards a 
referent when the verb in the sentence was predictive compared to 
unpredictive. We also found that the predictiveness of the verb and 
predictability of the noun were related to modulations in theta (4–6 Hz) 
and alpha (7–11 Hz) frequency bands at verb and noun onsets. Only 
tentative modulations were found in the beta frequency band (14–30 
Hz). Increased theta power, arguably reflecting increased processing, 
occurred either at the constraining verb onset in predictable sentences or 
at noun onset in unpredictable sentences. Accordingly, anterior theta 
and alpha power after verb onset predicted subsequent N400 amplitude 
at the noun onset. Although spectral power (alpha and theta) at verb 
onset did not predict whether or not the target was fixated prior to noun 
onset, posterior theta power at verb onset did predict the amount of time 
spent fixating on the target prior to noun onset given the target was 
fixated to begin with. No such relationship was found with alpha power. 
The proportion of anticipatory fixations was found to predict theta and 
alpha power after the noun onset, possibly reflecting the need for fewer 
processing resources to process a word that has been predicted. The 
predictability of the noun was also associated with modulations in post- 
N400 ERP amplitudes, but not with the N400 amplitude itself, con-
trasting with the previous literature. Nouns congruent with the predic-
tion were, however, associated with a smaller N400 amplitude relative 
to incongruent nouns. Noun congruence was additionally associated 
with modulations in the post-N400 ERP amplitude, as well as in alpha 
and theta band power. Below we discuss these results, and their theo-
retical and methodological implications, in more detail. 

4.1. Noun predictability 

We replicated the finding of increased anticipatory target fixations 
prior to noun onset in the predictable relative to the unpredictable 

Table 6 
Model summary for theta and alpha power in response to Predictable vs Unpredictable nouns.   

Parametric coefficients 
Theta Alpha 

B SE t P B SE t P 

Intercept 0.84 0.07 12.31 <.001 1.11 0.09 12.10 <.001 
Condition − 0.02 <0.01 − 9.84 <.001 − 0.01 <0.01 − 4.16 <.001 
ROI 0.10 <0.01 41.39 <.001 − 0.05 <0.01 − 18.94 <.001 
Condition × ROI <0.01 <0.01 0.91 .365 <0.01 <0.01 0.37 .711 

Smooth terms edf Ref. df F P edf Ref. df F P 

S: Pred 2.08 2.41 1.79 .122 1.01 1.01 2.13 .144 
S: Unpred 3.84 4.62 9.24 <.001 3.50 4.25 12.24 <.001 
S: Pred Ant 1.01 1.49 1.31 .205 1.01 1.01 0.09 .777 
S: Pred Post 1.00 1.01 0.95 .329 0.68 1.04 0.21 .761 
S: Unpred Ant 0.01 0.02 0.10 .967 <0.01 <0.01 0.04 .992 
S: Unpred Post 3.74 4.59 7.38 <.001 1.00 1.00 2.89 .089 
RS for subject 144.69 287.00 96.23 <.001 143.40 287.00 145.91 <.001 
RS for sentence 534.24 1151.00 3.29 <.001 528.60 1151.00 2.56 <.001 

For abbreviations, see legend of Table 5. 
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Fig. 11. Noun predictability modulated frequency power difference curves (panels A–D) and model estimated smooths (panels E–H): The difference between the 
model-estimated smooth splines of the predictive and unpredictive conditions for log theta (panels A–B) and alpha (panels C–D) power, and model estimated smooths 
for log theta (panels E and F) and alpha (panels G and H) power in anterior (panels A, C, E and G) and posterior (panels B, D, F and H) ROIs in the 1000 ms following 
noun onset. Red dashed lines mark windows of significant differences. 
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condition in a naturalistic virtual environment (Heyselaar et al., 2020; 
Huizeling et al., 2022). Fixations towards the target increased 480ms 
after verb onset to a proportion of ~0.12, which is consistent with 
Huizeling et al. (2022) and Heyselaar et al. (2020), where anticipatory 
fixations were found to increase at around 400ms after the constraining 

verb onset to a proportion of ~0.15. Importantly, these findings confirm 
that the referent was predicted before noun onset. 

Both theta and alpha power were found to be greater in response to 
unpredictable compared to predictable nouns. Additionally, an increase 
in the proportion of anticipatory target fixations prior to the noun 

Table 7 
Model summary for theta and alpha power in response to Congruent vs Incongruent nouns.   

Parametric coefficients 
Theta Alpha 

B SE t P B SE t P 

Intercept 0.83 0.07 12.08 <.001 1.11 0.09 12.42 <.001 
Condition − 0.02 <0.01 − 7.26 <.001 − 0.01 <0.01 − 3.90 <.001 
ROI 0.11 <0.01 46.82 <.001 − 0.05 <0.01 − 18.33 <.001 
Condition × ROI − 0.01 <0.01 − 4.41 <.001 <0.01 <0.01 − 0.32 .747 

Smooth terms edf Ref. df F P edf Ref. df F P 

S: Cong 2.31 2.68 1.97 .087 1.01 1.01 3.61 .057 
S: Incong 4.93 5.89 8.72 <.001 1.01 1.02 0.81 .360 
S: Cong Ant 0.96 1.43 1.07 .255 1.84 2.27 1.87 .151 
S: Cong Post 1.01 1.01 1.01 .315 <0.01 0.01 0.01 .994 
S: Incong Ant <0.01 0.01 0.13 .973 1.01 1.01 0.65 .414 
S: Incong Post 1.00 1.00 13.92 <.001 <0.01 0.01 0.21 .971 
RS for subject 136.30 287.00 95.77 <.001 147.30 287.00 138.84 <.001 
RS for sentence 547.90 1151.00 3.35 <.001 498.00 1151.00 2.42 <.001 

For abbreviations, see legend of Table 5. 

Fig. 12. Noun congruence modulated frequency power difference curves: The difference between the model-estimated smooth splines of the predictive and 
unpredictive conditions for log theta (panels A–B) and alpha (panels C–D) power, in anterior (panels A and C) and posterior (panels B and D) ROIs in the 1000 ms 
following noun onset. Red dashed lines mark windows of significant differences. 
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significantly predicted reduced theta and alpha power at the subsequent 
noun onset, independently of condition. Prediction of the referent 
therefore seems to reduce the amount of processing effort required when 
processing the noun, as is reflected in weaker alpha/theta increases. A 
relationship between the constraints provided by the verb in a sentence 
and the ease of subsequent noun processing has previously been found 
by Maess et al. (2016), who observed a negative correlation between the 
N400 amplitude at the onset of a constraining verb and the N400 
amplitude at the predictable noun. Here the N400 could not be predicted 
by anticipatory fixations, in line with the absence of an effect of pre-
dictability on N400 amplitude. N400 amplitude was, however, related to 
frequency power at verb onset, dependent on condition. As anterior 
theta and alpha power in response to the verb increased, N400 ampli-
tude decreased in the predictable congruent condition but increased 
with anterior theta power in the predictable incongruent condition. 
These findings corroborate that processing of the preceding contextual 
constraints facilitated subsequent noun processing when the noun was 

congruent with the prediction, but may have interfered with processing 
when the noun was incongruent with the prediction. A relationship 
between pre-word alpha power and N400 amplitude has previously been 
found by Lago et al. (2023), where lower pre-word alpha power was 
associated with larger N400 amplitude in response to incongruent 
words. These recent findings are difficult to compare with the findings 
we present here, as we did not find the typical alpha decrease prior to 
predictable words. 

Our findings of an effect of noun predictability on frequency power 
contrast with two previous studies that have found no effects of pre-
dictability on frequency power at the critical word onset (Rommers and 
Federmeier, 2018; Terporten et al., 2019). An increase in theta power for 
unpredictable nouns is consistent with an increase in processing re-
sources being required to retrieve the lexical and semantic information 
of an unpredictable word, as well as integrate it with the prior sentence 
context. The experiment presented here was different from previous 
reports in that the (un)predictable referent was presented visually in 
parallel to the sentence. Going beyond a flat visual presentation, the 
referent was part of the virtual environment that the participant was 
immersed in. This visual and virtual presence meant that the participant 
could activate the semantic features of the object to a richer degree than 
if the participant predicted the object while reading a sentence. This may 
have led to a greater and more robust differentiation between the pro-
cessing of predictable and unpredictable nouns in the present results. If 

Table 8 
Model summary: Predicting N400 amplitude at noun onset from theta power at 
verb onset.  

Random effects: 

Groups Name Variance SD   

Sentence (Intercept) 0.18 0.43   
Subject (Intercept) 0.99 1.00   
Residual  40.56 6.37   

Fixed effects:      
Estimate SE df t Pr(>|t|) 

(Intercept) − 2.01 0.21 33.04 − 9.64 <.001 
Pred cong 0.85 0.18 3622.00 4.67 <.001 
Unpred cong 0.46 0.18 3616.00 2.55 .011 
Pred incong − 0.62 0.18 3620.00 − 3.41 <.001 
Ant theta power 0.10 0.06 2695.00 1.81 .070 
Post theta power 0.00 0.08 2644.00 − 0.04 .970 
Baseline 0.07 0.01 3722.00 5.08 <.001 
Pred cong:ant 0.24 0.10 3702.00 2.41 .016 
Unpred cong:ant − 0.03 0.09 3712.00 − 0.28 .777 
Pred incong:ant − 0.17 0.09 3714.00 − 1.99 .047 
Pred cong:post − 0.15 0.13 3696.00 − 1.22 .222 
Unpred cong:post 0.00 0.14 3725.00 − 0.02 .983 
Pred incong:post 0.10 0.12 3715.00 0.84 .403 

For abbreviations, see legend of Table 5. 

Table 9 
Model summary: Predicting N400 amplitude at noun onset from alpha power at 
verb onset.  

Random effects: 

Groups Name Variance SD   

Sentence (Intercept) 0.16 0.40   
Subject (Intercept) 0.98 0.99   
Residual  40.57 6.37   

Fixed effects:      
Estimate SE df t Pr(>|t|) 

(Intercept) − 2.01 0.21 33.25 − 9.71 <.001 
Pred cong 0.84 0.18 3622.00 4.66 <.001 
Unpred cong 0.46 0.18 3617.00 2.54 .011 
Pred incong − 0.61 0.18 3621.00 − 3.38 <.001 
Ant theta power 0.01 0.03 2275.00 0.32 .746 
Post theta power 0.02 0.01 2633.00 1.23 .220 
Baseline 0.07 0.01 3723.00 5.05 <.001 
Pred cong:ant 0.15 0.05 3718.00 2.81 .005 
Unpred cong:ant − 0.06 0.05 3712.00 − 1.27 .204 
Pred incong:ant − 0.01 0.04 3732.00 − 0.37 .713 
Pred cong:post − 0.03 0.02 3717.00 − 1.17 .242 
Unpred cong:post 0.02 0.03 3721.00 0.79 .430 
Pred incong:post 0.00 0.02 3718.00 − 0.07 .946 

For abbreviations, see legend of Table 5. 

Table 10 
Predicting theta power at noun onset from fixations prior to noun onset.  

Random effects: 

Groups Name Variance SD Corr  

Sentence (Intercept) 0.01 0.08   
Target 
fixations 

0.06 0.24 − 0.11  

Subject (Intercept) 0.15 0.39   
Target 
fixations 

0.02 0.16 0.38  

Residual  0.19 0.44   

Fixed effects:  
Estimate SE df t Pr(>| 

t|) 

Intercept 0.98 0.07 32.67 14.20 <.001 
Target fixations − 0.17 0.05 35.00 − 3.13 <.001 
ROI 0.11 0.01 3524.00 13.96 <.001 
Target fixations ×

ROI 
0.04 0.03 3524.00 1.13 .260 

For abbreviations, see legend of Table 2. 

Table 11 
Predicting alpha power at noun onset from fixations prior to noun onset.  

Random effects: 

Groups Name Variance SD Corr  

Sentence Intercept 0.01 0.07   
Target 
fixations 

0.06 0.24 − 0.28  

Subject (Intercept) 0.29 0.54   
Target 
fixations 

0.04 0.19 − 0.22  

Residual  0.20 0.45   

Fixed effects:  
Estimate SE df t Pr(>| 

t|) 

(Intercept) 1.30 0.10 32.27 13.45 <.001 
Target fixations − 0.20 0.06 38.16 − 3.42 <.001 
ROI − 0.04 0.01 3534.00 − 4.88 <.001 
Target fixations ×

ROI 
0.01 0.04 3534.00 0.18 0.85 

For abbreviations, see legend of Table 2. 
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this tentative conclusion is correct, this would confirm the added value 
of testing hypotheses in environments that are as rich as the settings in 
which listeners typically process speech in their everyday lives. 

Contrary to our hypothesis and the previous literature, we did not 
observe an effect of noun predictability on the N400 amplitude. 
Although from Fig. 4 it appears as though the N400 was on average 
slightly larger in the unpredictable compared to predictable condition, 
this difference was not significant. These findings contrast with the ef-
fect of noun predictability on the pattern of anticipatory fixations in the 
current study, which show that participants could predict the noun in 
the predictable but not the unpredictable condition. Thus, together our 
findings provide concrete evidence supporting that the N400 reflects the 
integration of linguistic information, rather than directly reflecting 
predictive processes (Baggio and Hagoort, 2011; Mantegna et al., 2019). 
As previously mentioned, our paradigm differs from previous paradigms 
in that sentences were presented within a relevant 3D visual context, 
where the referent was visible in the scene. The N400 can be interpreted 
as reflecting the amount of new semantic information to be integrated or 
retrieved (Brothers and Kuperberg, 2021; Hagoort et al., 2009; Hodapp 
and Rabovsky, 2021; Kutas and Federmeier, 2011; Nieuwland et al., 
2020). It is likely that the visual context in our experiment reduced the 
amount of new semantic information to be processed upon hearing 
unpredictable nouns, thereby resulting in a smaller N400 amplitude 
relative to if the referent had not been visible. Indeed, a post hoc analysis 
revealed a smaller N400 amplitude in response to unpredictable refer-
ents that were visible in the scene compared to those absent from the 
scene (see Table SM5 in the supplementary material). This finding seems 
to confirm the importance of the degree of richness of the environment 
in which stimuli are presented to the language user. 

Our model estimated the post-N400 response to be more positive in 
response to predictable relative to unpredictable nouns. This is in the 

opposite direction to our expectations and the previous literature 
(DeLong et al., 2014; Federmeier et al., 2007; Quante et al., 2018; 
Thornhill and Van Petten, 2012; Van Petten and Luka, 2012). However, 
our results could be explained in reference to the work by Brothers et al. 
(2020), where plausible but unexpected words elicited a larger late 
anterior positivity compared to expected words only when the preceding 
context was globally rather than locally constraining. Similar to Exper-
iment 2a in Brothers et al. (2020), here the overall sentence context was 
unconstraining and sentences were only constrained by the verb. 
Moreover, the verb was always positioned locally to the noun, often only 
separated with a single preposition and a determiner. The authors pro-
pose that post-N400 positivities are elicited only when a substantial 
situation model has been formed, when the prior linguistic context is 
rich and constraining. With locally predictive constraints, the predicted 
event had not yet been built into the situation model, resulting in no 
requirement for the situation model to be updated. Our findings are also 
in line with Lau et al. (2013), who found a late negativity, rather than a 
positivity, in response to unpredicted targets in prime-target word pairs. 
Again, with word pairs there was no opportunity to build up a rich and 
meaningful situation model. In relation to the current paradigm, this 
explanation raises the question of how much time is needed for the 
listener’s situation model to be updated with the highly constraining 
information. Our findings also raise the question of to what extent the 
visual context affects post-N400 effects. If they are indeed reflecting the 
updating of the situation model then it might be expected for them to 
also be influenced by visual context constraints. Indeed, situation 
models should integrate information that is concurrently and consecu-
tively perceived via the different (visual, auditory) modalities and 
senses. 

Alternatively, it may be that the post-N400 effects are task-specific. 
Previous studies investigating the effect of prediction on post-N400 

Table 12 
Model summary for predicting fixations from anterior and posterior theta power in response to verbs.   

Parametric coefficients 
Anterior Posterior 

B SE z P B SE z P 

Intercept 3.05 0.05 61.83 <.001 3.04 0.05 60.33 <.001 
Log theta power − 0.03 0.02 − 1.04 .298 − 0.08 0.03 − 2.61 <.001 
Intercept − 1.84 0.10 − 18.74 <.001 − 1.85 0.10 − 18.90 <.001 
Log theta power 0.04 0.02 1.84 .066 0.02 0.04 0.53 .594 

Smooth terms edf Ref. df χ2 P edf Ref. df χ2 P 

S: Log theta power 6.28 8.00 246.90 <.001 5.29 8.00 158.25 .002 
RS for subject 28.45 31.00 1416.51 <.001 28.61 31.00 1469.60 <.001 
RS for sentence 109.61 123.00 1737.56 <.001 109.80 123.00 1890.27 <.001 
S: Log theta power 0.78 8.00 1.27 .205 2.48 8.00 7.82 .044 
RS for subject 23.44 31.00 89.64 <.001 23.21 31.00 86.81 <.001 
RS for sentence 69.86 127.00 166.23 <.001 70.19 127.00 167.89 <.001  

Table 13 
Model summary for predicting fixations from anterior and posterior alpha power in response to verbs.   

Parametric coefficients 
Anterior Posterior 

B SE z P B SE z P 

Intercept 3.04 0.05 62.45 <.001 3.04 0.05 62.21 <.001 
Log alpha power <0.01 <0.01 − 1.01 .315 <0.01 <0.01 − 0.84 .402 
Intercept − 1.84 0.10 − 17.97 <.001 − 1.84 0.10 − 17.79 <.001 
Log alpha power <0.01 0.01 0.23 .819 <0.01 <0.01 − 0.56 .577 

Smooth terms edf Ref. df χ2 P edf Ref. df χ2 P 

S: Log alpha power 2.67 8.00 14.94 .399 4.78 8.00 242.63 .001 
RS for subject 28.36 31.00 1319.00 <.001 28.27 31.00 1412.49 <.001 
RS for sentence 109.71 123.00 1791.03 <.001 110.00 123.00 1749.90 <.001 
S: Log alpha power 0.03 8.00 0.03 .434 <0.01 8.00 <0.01 .756 
RS for subject 24.18 31.00 102.91 <.001 24.35 31.00 104.69 <.001 
RS for sentence 70.33 127.00 168.63 <.001 70.42 127.00 169.13 <.001 

For abbreviations, see legend of Table 5. 
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components have been conducted in the laboratory with (un)con-
straining sentence stimuli (Brothers et al., 2020; DeLong et al., 2014; 
Federmeier et al., 2007; Kuperberg et al., 2020; Quante et al., 2018; 
Rommers and Federmeier, 2018; Thornhill and Van Petten, 2012; Van 
Petten and Luka, 2012). Nieuwland et al. (2020) highlighted that 
components observed over hundreds of milliseconds, like the post-N400, 
are likely a result of the combined activity of multiple sources, as is 
evident from source localisation of the magnetoencephalography signal 
in response to single words (Arana et al., 2020; Huizeling et al., 2021; 
Pylkkänen and Marantz, 2003). The combination of components 
contributing to the signal can therefore be expected to be different when 
the linguistic stimuli are integrated with a rich visual context, as was the 
case in the present study. In addition to post-N400 effects being 
task-specific, later components, which are further from the baseline, are 
more vulnerable to error when traditional baseline correction tech-
niques are used instead of including the baseline as a regressor in the 
statistical model, as we did here. Indeed, there is evidence to suggest 
that some post-N400 effects in the literature may be artefactual and 
disappear when improved baseline correction techniques are applied 
(Alday, 2019). 

4.2. Noun congruence 

Consistent with our hypothesis and the previous literature, in the 
predictable condition the N400 amplitude was significantly smaller 
when the referent was congruent with the context provided by the visual 
scene, confirming the listener’s prediction, compared to when the 
referent was incongruent with the visual context, disconfirming their 
prediction. These findings are consistent with the wider N400 literature 
and with multimodal N400 effects to incongruent visual and linguistic 
information (Sitnikova et al., 2008; Willems et al., 2008a,b). A larger 
N400 amplitude for incongruent nouns likely reflects an increased 
amount of semantic information to be retrieved and integrated with the 
prior context at the time of word onset (Brothers and Kuperberg, 2021; 
Hagoort et al., 2009; Hodapp and Rabovsky, 2021; Kutas and Feder-
meier, 2011), in comparison to the congruent condition where the 
referent was visible and thus some of the semantic features may have 
already been retrieved prior to word onset. 

Effects of noun congruence were found on both theta and alpha 
power in response to the noun onset, an effect that interacted with ROI 
for theta frequency. Consistent with the previous literature, higher theta 
was found in response to incongruent relative to congruent nouns and in 
the anterior relative to posterior ROI (Bastiaansen and Hagoort, 2015; Li 
et al., 2017; Rommers et al., 2017; Willems et al., 2008a), an effect that 
was sustained throughout the 1000ms analysis window after noun onset. 
An increase in theta power has been observed for both unexpected yet 
plausible nouns and to semantically anomalous nouns. Higher theta 
could reflect the retrieval of semantic and lexical information from 
memory or increased cognitive control to suppress the predicted word 
and to update the sentence interpretation (Cavanagh and Cohen, 2022; 
Cavanagh and Frank, 2014; Demiralp and Başar, 1992; Klimesch et al., 
1994). It is likely that both information retrieval and cognitive control 
contributed to increased theta here. 

Alpha power was higher in the incongruent relative to congruent 
condition and was stable across time. The direction of this effect is 
inconsistent with our hypotheses, where we expected increased atten-
tion and processing, and therefore reduced alpha, in the incongruent 
compared to congruent condition (Rommers et al., 2017; Wang et al., 
2012; Willems et al., 2008a). For example, Willems et al. (2008a) found 
lower alpha power when the linguistic and visual information mis-
matched the sentence context. In the current paradigm, both the audi-
torily presented noun and the visual input mismatched the participant’s 
expectation but were plausible within the sentence context, rather than 
anomalous. High alpha is often seen during sustained attention and 
when inhibiting irrelevant distracting information (Dockree et al., 2007; 
Rihs et al., 2007, 2009). It could be that a stronger inhibitory response is 

needed to suppress the predicted item in the current paradigm due to the 
object’s presence in the virtual environment with the participant. 
Furthermore, increased alpha may reflect the effects of sustained 
attention, where attention towards the virtual speaker is sustained for 
longer when the linguistic information is more challenging to process. 
This could particularly be the case in the rich visual environment in VR 
where there is additional irrelevant information to inhibit, including the 
ongoing presence of the predicted object. Indeed, alpha synchronisation 
has been shown to be associated with supressing irrelevant information 
in listening tasks (Dimitrijevic et al., 2019; Strauß et al., 2014b). Such 
speculative hypotheses require further investigation in relation to the 
current paradigm. 

Consistent with our hypotheses and the previous literature, the 
model estimated the post-N400 response to be more positive in response 
to incongruent relative to congruent nouns, particularly in the posterior 
ROI. Typically, a greater anterior positivity has been associated with 
lexical items that are plausible but unexpected in highly constraining 
contexts (Brothers et al., 2020; DeLong et al., 2014; Federmeier et al., 
2007; Kuperberg et al., 2020; Quante et al., 2018; Thornhill and Van 
Petten, 2012; Van Petten and Luka, 2012), but here the model estimated 
the positivity to be greater in incongruent relative to congruent nouns in 
the posterior ROI. The posterior positivity is typically seen in response to 
anomalous sentence endings and has been argued to reflect an inability 
to integrate the word with the prior context and a reanalysis of the 
sentence (Brothers et al., 2020; Kuperberg et al., 2020; Rommers and 
Federmeier, 2018; Van Petten and Luka, 2012). Here we saw a 
discrepancy between the data plotted in Fig. 5 and the outcome of the 
model, making our findings difficult to interpret in relation to previous 
results. Moreover, the differences between the current paradigm and 
previous reports make it difficult to directly compare our results with the 
results of others. For example, later effects are further from the baseline 
and thus more subject to slow drifts in the data. This could be exacer-
bated in a VR environment, where the participant is making small 
movements with their head and the data is more vulnerable to envi-
ronmental noise. Further research is needed to test whether the current 
post-N400 findings are robust. 

4.3. Verb’s predictiveness 

Both theta and alpha power were higher in response to predictive 
relative to unpredictive verbs and changed over time in response to the 
predictive verbs in an anterior ROI. Theta additionally changed over 
time in an anterior ROI in response to unpredictive verbs. Higher alpha 
and theta power in response to predictive relative to unpredictive verbs 
contrasts with the previous literature. Li et al. (2017) found lower alpha 
in response to predictive compared to unpredictive verbs and no effect of 
verb predictivity on theta power. Moreover, numerous studies have 
found lower alpha power in response to predictive context directly 
preceding predictable words (Gastaldon et al., 2020; Leon-Cabrera et al., 
2022; Li et al., 2017; Molinaro et al., 2017; Piai et al., 2014; Rommers 
et al., 2017; Roos and Piai, 2020; Terporten et al., 2019; Wang et al., 
2018). On inspection of Fig. 8, it appears as though the observed effects 
are a result of an anterior power increase in a broader theta-alpha fre-
quency band in the predictable condition, ranging from 4 to 12 Hz. This 
could reflect the same process across frequencies. However, similar 
broad effects have been found in response to spoken auditory stimuli in 
past reports and were found to be dissociated across alpha and theta 
frequency bands at the source level (Strauβ et al., 2014a). Conducting 
source level analysis went beyond the scope of the current paper and so 
we cannot make any such conclusions here. 

In the current data, theta but not alpha power in a posterior ROI 
predicted more time spent fixating the object, providing the object had 
been fixated to begin with. Neither theta nor alpha power, however, 
predicted the binary outcome of whether or not the object was fixated. 
One reason for this could be that a prediction can take place without an 
eye movement towards the object. A lack of eye gaze towards the 
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referent could occur either when the referent has been predicted but not 
fixated or when the referent has not been predicted. In contrast, eye gaze 
towards the referent is more strongly indicative of the item having been 
predicted and the time spent gazing at an object may therefore be pre-
dicted more robustly by the associated neural correlates. 

4.4. Application to new research directions 

The results presented here lay the foundations for future work that 
leverages the complementary advantages of eye-tracking and EEG data 
to answer new theoretical questions. Combining these methods will be 
particularly useful to distinguish between theories about the extent that 
listeners use disfluencies to inform their predictions about upcoming 
spoken language. Huizeling et al. (2022) found that anticipatory 
referent fixations no longer increased if the speaker hesitated prior to 
naming a predictable referent, contrasting with sentences spoken 
fluently. Instead, looks towards the virtual speaker increased. However, 
it was not clear whether a change to the pattern of fixations reflected a 
change to the listener’s prediction or a shift in their visual attention 
towards the speaker. It could be that the hesitation caused listeners to 
lose confidence in their prediction and wait for the sentence to be 
disambiguated as they placed less weight on their prediction. Alterna-
tively, the salient interruption to speech may have captured the lis-
tener’s attention to the speaker without a change to their prediction. 
Recording EEG while participants listen to (un)predictable sentences 
under fluent and disfluent conditions could help to disentangle these 
different theoretical accounts. In the current results we found higher 
theta power in response to unpredictable compared to predictable 
nouns, possibly reflecting a greater amount of resources required to 
retrieve the semantic and lexical information associated with unpre-
dictable relative to predictable words. If listeners indeed abandon or 
place less weight on their prediction after hearing a hesitation, it might 
be expected that the theta response to predictable nouns would be larger 
after hearing a hesitation compared to when hearing a fluent sentence 
and would instead reflect a similar theta response to that of unpredict-
able nouns. Our future work aims to answer these questions. 

In addition to opening new theoretical research avenues, the current 
work demonstrates the need to determine which effects from the liter-
ature can be replicated under conditions of more naturalistic language 
processing. Some of our findings were surprising in the context of pre-
vious reports that were conducted in computer-based laboratory settings 
(e.g. there was no effect of predictability on the N400 and alpha power 
was higher instead of lower in response to increased contextual con-
straints). Overall, embedding language within a rich context seems to 
introduce some changes to language processing compared to in a 
traditional laboratory setting. However, further research is needed to 
replicate the findings that we present here to determine which of our 
findings are robust. This research trajectory will yield many important 
insights for contextually rich and naturalistic language processing. 

4.5. Conclusions 

In summary, we demonstrate that it is possible to combine EEG and 
eye-tracking in VR to study the prediction of speech through the analysis 
of anticipatory eye movements, ERPs and spectral power effects. We 
were able to use the proportion of anticipatory fixations as an estimate of 
predictability, independently of condition, to successfully predict EEG 
signal at noun onset. Furthermore, we were able to predict the propor-
tion of anticipatory fixations from the theta power in response to the 
constraining verb. Verb predictivity and noun predictability modulated 
alpha and theta frequency power. Overall, we found that increased 
processing resources, as reflected in increased theta power, were applied 
either at the verb onset when the verb was predictive of the noun, or at 
noun onset if the verb was not predictive of the noun. As such, listeners 
flexibly allocate cognitive resources at different moments in time while 
processing a sentence as a function of when this allocation is most 

effective and required for quickly and efficiently grasping the overall 
message-level meaning provided through the incoming information. 
Spectral power effects were best observed in lower frequency bands 
(alpha and theta, as opposed to beta) that have a better signal to noise 
ratio than higher frequency bands and are less susceptible to interfer-
ence from muscle artifacts. Surprisingly, alpha power was higher, rather 
than lower, in response to the predictive verb and to unpredictable 
nouns. We replicated typical effects of noun congruence but not pre-
dictability on the N400 in response to the noun. The rich visual context 
that accompanied speech therefore altered the findings compared to 
previous reports. The visual context seems to ease the processing of 
unpredictable nouns, possibly as part of the semantic information has 
already been retrieved, and may result in a stronger inhibitory response 
to suppress the predicted item that is present in the scene. As such, our 
findings suggest that predictive processing in rich and dynamic 
everyday situations may be subserved by mechanisms that partially 
differ from those proposed by experimental studies that used a computer 
monitor as their means of stimulus display. 
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between alpha/beta oscillations and the encoding of sentence induced contextual 
information. Sci. Rep. 9 (1), 20255 https://doi.org/10.1038/s41598-019-56600-x. 

Thornhill, D.E., Van Petten, C., 2012. Lexical versus conceptual anticipation during 
sentence processing: frontal positivity and N400 ERP components. Int. J. 
Psychophysiol. 83 (3), 382–392. https://doi.org/10.1016/j.ijpsycho.2011.12.007. 

Tremblay, A., Newman, A.J., 2015. Modeling nonlinear relationships in ERP data using 
mixed-effects regression with R examples. Psychophysiology 52 (1), 124–139. 
https://doi.org/10.1111/psyp.12299. 

Tromp, J., Peeters, D., Meyer, A.S., Hagoort, P., 2018. The combined use of virtual reality 
and EEG to study language processing in naturalistic environments. Behav. Res. 
Methods 50 (2), 862–869. https://doi.org/10.3758/s13428-017-0911-9. 

Van Humbeeck, N., Meghanathan, R.N., Wagemans, J., van Leeuwen, C., Nikolaev, A.R., 
2018. Presaccadic EEG activity predicts visual saliency in free-viewing contour 
integration. Psychophysiology 55 (12), e13267. https://doi.org/10.1111/ 
psyp.13267. 

Van Petten, C., Luka, B.J., 2012. Prediction during language comprehension: benefits, 
costs, and ERP components. Int. J. Psychophysiol. 83 (2), 176–190. https://doi.org/ 
10.1016/j.ijpsycho.2011.09.015. 

Van Rij, J., Hendriks, P., Van Rijn, H., Baayen, R.H., Wood, S.N., 2019. Analyzing the 
time course of pupillometric data. Trends in Hearing 23, 2331216519832483. 
https://doi.org/10.1177/2331216519832483. 

Van Rij, J., Wieling, M., Baayen, R.H., Van Rijn, H., 2017. Itsadug: Interpreting Time 
Series and Autocorrelated Data Using GAMMs, vol. 2. R package version. 

Wang, L., Bastiaansen, M., Yang, Y., Hagoort, P., 2012. Information structure influences 
depth of syntactic processing: event-related potential evidence for the chomsky 
illusion. PLoS One 7 (10), e47917. https://doi.org/10.1371/journal.pone.0047917. 

Wang, L., Hagoort, P., Jensen, O., 2018. Language prediction is reflected by coupling 
between frontal gamma and posterior alpha oscillations. J. Cognit. Neurosci. 30 (3), 
432–447. https://doi.org/10.1162/jocn_a_01190.%M.28949823. 

E. Huizeling et al.                                                                                                                                                                                                                               

https://doi.org/10.1146/annurev.psych.093008.131123
https://doi.org/10.1126/science.7350657
https://doi.org/10.1126/science.7350657
https://doi.org/10.1038/307161a0
https://doi.org/10.1038/307161a0
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1111/psyp.14388
https://doi.org/10.1162/jocn_a_00328.&percnt;M.23163410
https://doi.org/10.1016/j.neuropsychologia.2022.108286
https://doi.org/10.1016/j.neuropsychologia.2017.05.017
https://doi.org/10.1016/j.neuropsychologia.2017.05.017
https://doi.org/10.1111/psyp.12639
https://doi.org/10.1111/psyp.12639
https://doi.org/10.1016/j.neuropsychologia.2010.09.024
https://doi.org/10.3389/fnhum.2016.00591
https://doi.org/10.1016/j.neuropsychologia.2019.107199
https://doi.org/10.1016/j.neuropsychologia.2019.107199
https://doi.org/10.1016/j.jml.2017.01.001
https://doi.org/10.1016/j.jml.2017.01.001
https://doi.org/10.1016/j.cortex.2015.06.027
https://doi.org/10.1016/j.cognition.2017.03.012
https://doi.org/10.1016/j.cognition.2017.03.012
https://doi.org/10.1098/rstb.2018.0522
https://doi.org/10.1098/rstb.2018.0522
https://doi.org/10.1162/jocn.2006.18.7.1098
https://doi.org/10.1162/jocn.2006.18.7.1098
https://doi.org/10.1016/j.bandc.2016.06.004
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1162/jocn.2007.19.4.605
https://doi.org/10.3758/s13423-019-01571-3
https://doi.org/10.1016/j.cognition.2019.104107
https://doi.org/10.1016/j.cognition.2019.104107
https://doi.org/10.3389/fpsyg.2018.01109
https://doi.org/10.3389/fpsyg.2018.01109
https://doi.org/10.1016/j.neuropsychologia.2013.11.014
http://refhub.elsevier.com/S0028-3932(23)00264-6/sref84
http://refhub.elsevier.com/S0028-3932(23)00264-6/sref84
https://doi.org/10.1111/lnc3.12347
https://doi.org/10.1016/S1364-6613(03)00092-5
https://doi.org/10.1016/S1364-6613(03)00092-5
https://doi.org/10.7717/peerj.5717
https://doi.org/10.1016/j.cognition.2023.105581
https://doi.org/10.1016/j.cognition.2023.105581
https://doi.org/10.1037/0096-1523.9.6.912
https://doi.org/10.1111/j.1460-9568.2007.05278.x
https://doi.org/10.1016/j.neuroimage.2008.08.022
https://doi.org/10.1080/23273798.2016.1183799
https://doi.org/10.1080/23273798.2016.1183799
https://doi.org/10.1016/j.cortex.2017.12.018
https://doi.org/10.1111/ejn.14785
https://doi.org/10.1037/0022-3514.60.3.362
https://doi.org/10.1037/0022-3514.60.3.362
https://doi.org/10.1162/jocn.2008.20143
https://doi.org/10.1162/jocn.2008.20143
https://doi.org/10.1006/jmla.1993.1002
https://doi.org/10.1016/j.neuroimage.2014.04.005
https://doi.org/10.3389/fnhum.2014.00350
https://doi.org/10.3389/fnhum.2014.00350
https://doi.org/10.31234/osf.io/b5zq7
https://doi.org/10.1038/s41598-019-56600-x
https://doi.org/10.1016/j.ijpsycho.2011.12.007
https://doi.org/10.1111/psyp.12299
https://doi.org/10.3758/s13428-017-0911-9
https://doi.org/10.1111/psyp.13267
https://doi.org/10.1111/psyp.13267
https://doi.org/10.1016/j.ijpsycho.2011.09.015
https://doi.org/10.1016/j.ijpsycho.2011.09.015
https://doi.org/10.1177/2331216519832483
http://refhub.elsevier.com/S0028-3932(23)00264-6/sref108
http://refhub.elsevier.com/S0028-3932(23)00264-6/sref108
https://doi.org/10.1371/journal.pone.0047917
https://doi.org/10.1162/jocn_a_01190.&percnt;M.28949823


Neuropsychologia 191 (2023) 108730

24

Wieling, M., 2018. Analyzing dynamic phonetic data using generalized additive mixed 
modeling: a tutorial focusing on articulatory differences between L1 and L2 speakers 
of English. J. Phonetics 70, 86–116. https://doi.org/10.1016/j.wocn.2018.03.002. 

Willems, R.M., Oostenveld, R., Hagoort, P., 2008a. Early decreases in alpha and gamma 
band power distinguish linguistic from visual information during spoken sentence 
comprehension. Brain Res. 1219, 78–90. https://doi.org/10.1016/j. 
brainres.2008.04.065. 
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