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Abstract 
There is evidence that the process of executing a planned 
utterance involves the use of both preceding-context and top-
down cues. Utterance-initial words are cued only by the top-
down plan. In contrast, non-initial words are cued both by 
top-down cues and preceding-context cues. Co-existence of 
both cue types raises the question of how they interact during 
learning. We argue that this interaction is competitive: items 
that tend to be preceded by predictive preceding-context cues 
are harder to activate from the plan without this predictive 
context. A novel computational model of this competition is 
developed. The model is tested on a corpus of repetition 
disfluencies and shown to account for the influences on 
patterns of restarts during production. In particular, this model 
predicts a novel Initiation Effect: following an interruption, 
speakers re-initiate production from words that tend to occur 
in utterance-initial position, even when they are not initial in 
the interrupted utterance. 

Keywords: Serial order; language production; repetition; 
initiation; retrieval; planning; HiTCH 

Introduction 
The problem of producing actions in the right serial order is 
a classic one. Following Lashley (1951), an early period of 
chain models, in which each action activated its successor, 
gave way to a dominance of hierarchical models, in which 
each action was cued by top-down cues specifying its 
position in a hierarchical plan. Language became the 
paradigm example of hierarchical planning, with words or 
morphemes serving as nodes in the hierarchy. Yet, early on, 
Osgood (1963) argued that preceding-context and top-down 
cues can both activate upcoming items in processing. Our 
work develops this idea, arguing that the two types of cue 
both activate the future in processing, and compete for 
activating the future during learning. 

Empirical evidence for the existence of preceding-item 
cues in production comes from the existence of ‘habit slips’ 
(e.g., Bannard et al., 2019; Reason, 1980; Wickelgren, 
1966). Such an error is well exemplified by Benjamin 
Netanyahu’s recent slip of calling the British Prime Minister 
Boris Yeltsin instead of Boris Johnson. Boris is an 
exceptionally good cue to Yeltzin because it was almost 
always followed by Yeltzin before Johnson’s career took off. 
According to the habit slip account of such errors, Yeltzin is 
produced because it is activated by Boris, the predictive 
preceding item. Having habitually produced Yeltzin after 

Boris, Netanyahu slipped into a minor international scandal. 
Habit slips also occur outside of language (Reason, 1980). 
A likely familiar example is automatically turning off the 
lights on someone when exiting a room. 

While preceding-item cues can generate habit slips, they 
are generally useful in constraining the set of possible 
continuations. For example, Rubin (1977) shows that 
providing speakers with function words helps them recall 
upcoming content words in a familiar text (all … are … and 
… by their … with … such as … and the …).  

While preceding-context cues are helpful, they are 
insufficient. Top-down cues are necessary to navigate 
‘switch points’, where the preceding context is consistent 
with more than one continuation, and the less common 
continuation needs to be chosen. Such switch points are 
known to be particularly challenging to navigate and are 
targeted for extensive practice (e.g., Chaffin & Imreh, 2002, 
in piano performance). The use of top-down cues in such 
contexts is necessary for selecting the right continuation. 
For example, a writer can only know whether to continue I 
love my ca into cat or car because s/he knows which word 
s/he intends to produce.  

The need for both types of cues raises the question of how 
preceding-context and top-down cues interact during 
learning. We argue that this interaction is competitive. In 
particular, according to the HiTCH (Hierarchy To Chain) 
model we develop, top-down cues that routinely compete 
with strong preceding-context cues grow relatively 
ineffective as a result. This makes it difficult to produce an 
item that has always been preceded by a predictive cue 
outside of that predictive context. In this way, a predictive 
context grows increasingly sufficient and increasingly 
necessary to activate an upcoming item. For example, if one 
only makes the tongue motion producing the sound at the 
end of hang after a vowel, it becomes increasingly difficult 
to make the same motion in other contexts (e.g., to produce 
the beginning of the Vietnamese name Nguyen). 

The HiTCH Model 
We implemented the idea of competition between 

preceding-item and top-down cues in a simple 
computational model, which we call HiTCH, or Hierarchy 
to Chain, to indicate that practice with a predictive sequence 
increasingly weakens top-down cues to non-initial items in 
that sequence. This model is intended as the simplest 
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possible framework for investigating cue competition 
between preceding-item and top-down cues during learning. 
It is related to simple recurrent networks that include ‘plan’ 
or ‘goal’ input units alongside a representation of preceding 
context (Dell, Juliano & Govindjee, 1993; Cooper, Ruh & 
Mareschal, 2014) and the classic Widrow–Hoff/Rescorla–
Wagner learning rule (RW; Rescorla & Wagner, 1972).  

HiTCH claims that top-down cues can weaken when they 
co-occur with other cues, even if they are much more 
predictive than their competitors. In language, abdication of 
top-down control is necessary to explain the existence of 
collocations. To implement this claim, we modified the 
Rescorla-Wagner learning rule to allow preceding-context 
cues to interfere with top-down cues, but not vice-versa.  

HiTCH is intended to model the effects of experience on 
an important aspect of plan execution. Namely, it is well 
known that planning at the semantic/conceptual/lemma level 
outpaces planning at the form/phonological/lexeme level 
(Meyer, 1996).  The task of HiTCH is to select the right 
wordform for execution given a planned 
semantic/conceptual future and the preceding context.  

Whenever HiTCH encounters a word for the first time, it 
initializes a top-down connection from the corresponding 
semantic node to the wordform at an initial connection 
weight (𝑉!"#,%). These connections are intended to represent 
the activation that a planned wordform receives from the 
production plan. All associations between corresponding 
semantics and forms are initialized as having equal weights, 
which means that a novel word is approximately equally 
accessible in all contexts. These initial weights are relatively 
high because the claim of the model is that novel plans are 
hierarchical. That is, a novel plan is executed entirely via 
top-down control. Here, we report simulation results for the 
two values at the limits of the plausible range, 1 and 0.5 (see 
Figures 1 and 2).  

Top-down connections between noncorresponding 
semantics and words are initialized at −1 to ensure a low 
rate of occurrence of speech errors (Dell et al., 1993). These 
weights never change, providing a stable ability to produce 
the intended word most of the time. The greater stability of 
inhibitory connections is inspired by Liberti et al.’s (2016), 
“principle of motor stability: spatiotemporal patterns of 
inhibition can maintain a stable scaffold for motor dynamics 
while the population of principal neurons that directly drive 
behavior shift from one day to the next” (p. 1665). 

The model is exposed to a corpus word by word 
predicting each word from its semantics and the preceding 
word, if any. The model distinguishes between two types of 
word tokens. When a wordj occurs at the beginning of an 
utterance (i.e., 𝑗 = 1), it is activated by top-down input 
alone (𝑉!"#,%). When it is not utterance-initial (𝑗 > 1), it is 
cued both by the top-down input and the preceding word 
(𝑉&,%). Whenever wordj is utterance-initial, its top-down cue 
(𝑉!"#,%) is incremented; and when it is not initial, its top-
down cue is decremented in proportion to the strength of the 
preceding-word cue (𝑉&,%) occurring in that utterance. This 
implements the main claim of the model that top-down cues 

weaken because of competition from preceding-context 
cues.  

The preceding-word cue (𝑉&,%) is incremented whenever 
wordj occurs after wordi and decremented when one of the 
words occurs without the other, using the following rule: 

 
∆𝑉&,% = 𝛼𝛽+λ − 𝑉&,%.	 

 
As evident from the equation above, three sets of 

parameters influence the magnitude of change in the 
association weights of the preceding-word cue. Values of λ 
represent asymptotic levels of associative strength between 
items. For updating associations between adjacent words λ 
is set to 1. The (1 − 𝑉) term, which represents the 
difference between the correct activation for a present 
outcome and its current activation makes the growth of a 
weight decelerate as it grows, asymptotically approaching 1. 
For associations between an absent cue and a present 
outcome or a present cue and an absent outcome, λ is set to 
0, so that the weights of associations between items that do 
not co-occur asymptotically approach 0. Associations 
between absent cues and absent outcomes are not updated 
(Rescorla & Wagner, 1972; Bush & Mosteller, 1951). 

Values of 𝛼 and 𝛽 are restricted a priori to the interval 
0 < 𝛼, 𝛽 ≤ 	1. The parameter 𝛼,	represents the salience of 
the cue and 𝛽 represents the salience of the outcome. The 
product of 𝛼 and 𝛽 represents the learning rate. When both 
wordi and wordj are present, 𝛼 is set to 0.1 and 𝛽 is set to 1. 
This corresponds to a learning rate of 0.1, a rather high 
value intended to make sure that conditional probabilities 
between adjacent words are learned even for the words that 
are rare in our relatively small training corpus (the 
Switchboard Corpus of American English conversations; 
1.7 million words; Godfrey et al., 1992).  

There is evidence that absences are less salient than 
presences (Tassoni, 1995).  They are also less informative 
than presences because any two words occur apart much 
more often than they occur together (see McKenzie & 
Mikkelsen, 2007). For this reason, 𝛼 and 𝛽 are reduced for 
absent cues and outcomes respectively. We set 𝛽 to 0.1 for 
absent outcomes and 𝛼 to 0.00003 for absent cues. Setting 𝛽 
to 0.1 for absent outcomes ensures that item-to-item 
association weights are affected equally by 
log(C(wordi,wordj)) and −log(C(wordi)) exactly like 
surprisal conditional on the preceding word. This means 
that, like surprisal (Levy, 2008), 𝑉&,% tracks how much 
information wordi provides about the following wordj. 

Following Rescorla and Wagner (1972), we assumed 
absent cues preceding present outcomes to be less salient 
than absent outcomes following present cues. This is 
justified by the idea that an absent outcome can be 
unexpectedly absent when anticipated on the basis of a 
present cue, whereas the absence of a cue is not surprising 
(Rescorla & Wagner, 1972). While the classic RW model 
sets 𝛼	 for absent cues at 0, we set it at a near-zero value of 
0.00003, selected as the mean probability of occurrence 
across the words in Switchboard. The low but non-zero 
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setting indicates that one learns a little about absent cues (as 
observed in the literature; Tassoni, 1995). 

The top-down cue weight to wordj from its semantics is 
updated as follows: 

 

∆𝑉!"#,% = 4
𝛼𝛽+1 − 𝑉!"#,%.,																																				j = 1
𝛼𝛽𝛾𝑉&,%+0 − 𝑉!"#,%.,																													j > 1

 

 
Whenever a wordj is utterance-initial, that is, not preceded 

by another word within the same utterance (𝑗	 = 	1), the 
association from semj to wordj is incremented by 𝛼𝛽+1 −
𝑉!"#,%.. That is, when a word occurs without a preceding 
word, it becomes more accessible from top-down input. To 
the extent that a word needs to be produced context-
independently, its context-independent, top-down 
accessibility strengthens. Here, 𝛼 is set to 0.1 and 𝛽 set to 1 
because both the cue and the outcome are present 

The second equation above implements cue competition. 
Whenever a wordj is not utterance-initial (𝑗 > 1), the weight 
of the association from semj to wordj is decremented by 
𝛼𝛽𝛾𝑉&,%+0 − 𝑉!"#,%., where the magnitude of change in top-
down associations is determined not only by 𝛼 and 𝛽 but 
also by the weight of the item-to-item association (𝑉&,%). 
According to this equation, the top-down association from 
semantics to the corresponding word decreases to the extent 
that the word is encountered in predictive preceding 
contexts (𝑉&,% > 0). This is an important difference between 
HiTCH and the RW rule, which would not decrease these 
cue weights. In RW, being the most predictive cues to 
upcoming words, top-down cues face negligible cue 
competition. Because 𝛼𝛽𝑉&,% is always less than 1, top-down 
accessibility of a word recovers on initial trials, where top-
down access is necessary, more quickly than it diminishes 
on trials when it is unnecessary.  

Multiplication by the weight of the preceding-context cue 
(𝑉&,%) is motivated by results in habit formation. In particular, 
Ouelette and Wood (1998) found that, in predicting the 
likelihood of continued performance for actions that are 
performed frequently in fixed contexts, the frequency of 
prior performance of a behavior is more important than 
stated desire to perform the behavior, while the opposite is 
true for actions performed rarely or in variable contexts.  

Here, the parameter 𝛾	(0 < 𝛾 ≤ 1)	determines the extent 
to which the strengthening preceding-item cues interfere 
with top-down cues. The predictions tested below hold for 
any value of 𝛾 above 0. However, we set this parameter 
fairly low, at 0.05 in the following simulations because if 𝛾 
is set too close to 1, then any increase in the weight of a 
preceding-item cue is offset by a corresponding decrease in 
the weight of the top-down cue. In contrast, when 𝛾 is low, 
preceding-item cues can strengthen without reducing the 
top-down weights (too) much.  We believe the latter is the 
right behavior, because experience makes words (and other 
actions) more accessible in the kinds of contexts in which 
they have been experienced.  

Simulation Results 
Top-down association weights in HiTCH are influenced by 
three lexical characteristics, Initialness proportion, 
Predictiveness of preceding-item cues and Word frequency. 
The Initialness proportion refers to the proportion of all 
occurrences of a word that are utterance-initial. Words with 
a low Initialness proportion tend to be poorer initiators, 
having a lower top-down cue weight (Figure 1). The 
prediction that initiating production from these words is 
more difficult is the Initiation Effect. The extreme examples 
are words like know and ago, which almost never occur 
utterance-initially.  
 

 
Figure 1: Top-down cue weight to a word as a function of 
the proportion of times the word occurs in the utterance-
initial position. Top-down cues are initialized at 1, the 

maximum possible weight, in the left panel, and at 0.5, the 
mean possible weight, in the right panel.  

 
The strength of the top-down cue weight to a word also 
depends on how predictive the preceding-item cues to the 
word are on the occasions that the word is not utterance-
initial. Here, again, the cases of know and ago are 
instructive. Know tends to occur after you or don’t, which 
are highly predictive of its occurrence. Ago always occurs 
after some unit of time (years, weeks, months, summers or 
Wednesdays in this corpus), and these words are predictive 
of ago’s occurrence: they greatly raise the likelihood of ago 
occurring next. The influence of cue predictiveness means 
that, other things being equal, a word that often occurs 
unexpectedly should be more accessible in new contexts 
than a word that tends to be expected when it occurs (as 
found by Adelman, Brown & Quesada, 2006, and Yan, 
Mollica & Tanenhaus, 2018).  

Word frequency influences how far the top-down cue 
weight for a word can move away from its initial value. As 
Figure 2 shows, word frequency is negatively correlated 
with top-down association weight to the extent that words 
start out with high top-down weights. At the extreme, if top-
down weights have nowhere to go but down, frequent words 
have more opportunities to reduce in top-down cue weight 
but no words have an opportunity to exceed the initial 
weight of a top-down cue. As a result, only frequent words 
develop weak top-down weights. This is why all infrequent 
words have strong top-down weights in the left panel of 
Figure 2. However, not all frequent words have weak top-
down weights. The top-down cues to words like well or 
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yeah, which tend to occur utterance-initially, retain their 
strength.  

When top-down cues start out with lower-than-maximal 
weights (right panel of Figure 2), infrequent words have 
intermediate top-down cue weights while frequent words 
have more extreme weights, which make them either 
excellent or poor initiators (yeah, well, like vs. know, ago). 
We believe this to be closer to the truth because it is 
frequent words like well and yeah that serve as placeholders 
and discourse markers, intervening in many different 
contexts to buy time.  

 Frequent words that occur in predictive contexts still 
become poor initiators when the weights have as much room 
to grow as to shrink. Thus, words like know end up with 
lower top-down weights than they start with even in the 
right panel of Figure 2. A word like know within a sequence 
like you know is therefore expected to be produced in large 
part because of its strong association with the preceding 
word rather than top-down input. Sequences like you know 
are more chain-like, less hierarchical, and less subject to 
top-down control than novel sequences. This is the sense in 
which hierarchical plans become chainlike in HiTCH.  

The reduction of top-down weights does not affect all 
words in all contexts. Indeed, depending on initial weights 
of top-down cues and the amount of interference that the 
strengthening item-to-item associations generate, most 
sequences may become more reliant on top-down control. 
This is the case in the right panel of Figure 2 because the 
effective learning rate for top-down weight increases for 
initial word tokens was set to be 20 times larger than the 
rate for weight decreases for non-initial tokens. As a 
speaker’s experience with the language grows, s/he learns 
where control is needed, and where it can be abdicated in 
favor of habit.  

Figure 3 shows that item-to-item cue weights in HiTCH 
largely track log probability of an item conditioned on the 
item that precedes it in the processing sequence, with the 
caveat that many items’ weights are at floor. The correlation 
is stronger at fast learning rates: a fast learning rate allows 
all cue weights to approximate conditional probabilities, 
whereas a slow learning rate prevents the weights of rare 
cue from moving far away from their initial weights. This 
appears to be appropriate, as one knows less about rare cues. 
Accordingly, the strongest associations are between items 
comprising highly cohesive sequences like kind of, going to, 
used to, lot of, grew up and junior high. 

Controlling for conditional probability of an outcome 
given a cue, the cue-outcome association is weaker when 
the outcome is frequent in the absence of the cue (Figure 4). 
This constitutes the Inverse Base Rate Effect: controlling for 
the probability of an outcome given a cue, the cue activates 
a frequent outcome less than it activates a rare outcome. 

Repetition Disfluencies: A Test Case 
Disfluencies are thought to arise primarily when the speaker 
is in a temporary tip-of-the-tongue state. That is, the speaker 
knows what they want to say next but is unable to retrieve 

the next word (Hieke, 1981). For this reason, they are 
especially likely to occur primarily before hard-to-access 
content words that are low in predictability given the 
preceding context, and have many semantically similar 
competitors (Harmon & Kapatsinski, 2015; Schnadt, 2009). 
In a repetition disfluency, one or more words preceding a 
difficult content word are repeated. Repetitions are common 
in preposing languages like English, where hard-to-retrieve 
content words are preceded by highly predictable related 
function words. For example, in I work for the speech, for 
the speech group, for the speech is repeated as the speaker is 
trying to come up with group. 
  

 
Figure 2: Frequent words have the chance to depart from 

their initial weights, whether those weights are at maximum 
(left) or in the middle of the range (right). 

 

 
Figure 3: Item-to-item cue weights track forward 

conditional probabilities (left) rather than bigram frequency 
(right) 

 

 
Figure 4: Item-to-item cue weights are strongly 

influenced by forward conditional probability (left) and 
weakly weakened by the high frequency of the outcome 

item after other cues (right). Right panel shows residuals of 
cue weights from a generalized additive model fit to the left 

panel as a function of log frequency in other contexts. 
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Interestingly, repetition disfluencies are rare to unattested 
in postposing languages, where function words are not 
related to, and therefore less predictive of the content words 
that follow (Fox, Hayashi & Jasperson, 1996). We believe 
repetition disfluencies occur in preposing languages because 
they allow the speaker to repeatedly cue the upcoming 
word—the word they are having trouble retrieving—with a 
somewhat predictive preceding-item cue. Existence of 
repetition disfluencies in preposing but not postposing 
languages therefore provides support for the hypothesis that 
words cue their successors.  

Predictions 
Initiation: A novel prediction of cue competition A 
repetition disfluency involves interrupting and reinitiating 
speech production. According to HiTCH, initiating speech 
production from a word involves activating this word using 
top-down input alone, without activation from a preceding-
item cue. Initiation of speech production from a word 
should therefore be difficult when the top-down cue to the 
word is weak. Because speakers avoid attempting to 
produce difficult words (Schwartz & Leonard, 1982), they 
should avoid restarting speech production from words with 
weak top-down cues. While this effect is predicted by 
HiTCH, it has not previously been tested. 

 
Retrievability of the past We assume that words need to be 
deactivated upon execution so that the speaker does not 
continue to repeat the word they have just selected forever 
(Dell, Burger & Svec, 1997). However, if the future is 
unavailable, repetition of the current word is the optimal 
behavior as it allows the speaker to buy time without 
accessing any word other than the word currently active. 
Repetition disfluencies occur when the future is unavailable, 
and therefore the present is not yet deactivated. 

About 25% of the time the speaker repeats more than one 
word. Words that have already been produced by the time 
the speaker encounters a difficulty in accessing the 
upcoming word – e.g., for and the in the example for the 
speech, for the speech group – must have already been 
deactivated before they are repeated. We propose that 
speakers must retrieve deactivated words from working 
memory by using the words that follow them as cues. 

The ability to retrieve a word therefore depends at least in 
part on how strongly it is activated by its successor. We 
propose that backward associations from following words to 
preceding words are learned by retrodiction of recently 
encountered words from the words that follow, i.e., using 
wordj to predict and retrieve wordi. Just like forward 
associations are predicted to track log forward conditional 
probability, backward associations are predicted to track log 
backward conditional probability, or p(wordi|wordj). In 
either case, these probabilities reflect the surprisal of the 
outcome conditioned on the form cue that is used to retrieve 
it. Human learners are known to be sensitive to backward 
conditional probabilities, presumably because retrodiction 
allows the listener to fill in words they might have missed 

(Lieberman, 1963; Connine et al., 1991; Gwilliams et al., 
2018), but the position of disfluencies other than repetitions 
is not predicted well by backward conditional probabilities 
(Schneider, 2018). 

 
Inverse Base Rate Effect Because in HiTCH, an 
association from a cue to an outcome weakens (slightly) 
when the outcome occurs without the cue, we expect an 
Inverse Base Rate Effect: words that are frequent in contexts 
other than the current one should be less accessible given 
the current context as a cue (Ellis, 2006; Schneider, 2018). 
For this reason, frequent words should be less likely to be 
repeated when their probability in context is controlled. 
 
Accessibility of the Future The word following the 
disfluency may also affect how many words are repeated. 
Since repetition is assumed to occur whenever the future is 
unavailable, future words that are easier to access are 
expected to favor shorter repetitions. Accessibility of a 
future word in HiTCH is increased by its log probability 
given the preceding word—i.e., forward conditional 
probability or p(wordj|wordi)—and decreased by high 
frequency in other contexts. Repetitions are therefore 
expected to be shorter before probable words, especially 
low-frequency ones. 

Data and Analysis 
One- and two-word repetitions were retrieved from 
Switchboard. We excluded all repetitions in which the 
interruption was fewer than three words into the utterance. 
The result is a sample of 8128 one-word repetitions and 
1852 two-word repetitions. Note that this exclusion means 
that none of the repeated words are utterance-initial. This is 
crucial for testing the Initiation Effect because it rules out 
the possibility that speakers restart from good initiators 
simply because they restart from the beginning of the 
utterance. Restarting from a good initiator means restarting 
from something that tends to begin utterances in the 
speaker’s experience but does not in the particular utterance 
being constructed. It therefore requires storing some 
indication that a word is a good initiator with that word’s 
lexical representation. 

Data were analyzed using generalized linear (logistic) 
mixed-effect models using the lme4 package (Bates et al., 
2015) in R (R Core Team, 2019). The regression approach 
is chosen because HiTCH predicts the directions of the 
effects of the predictors in the regression model regardless 
of parameter settings but the relative contributions of these 
predictors to model weights depend on parameters like how 
much top-down weights recover when a word occurs 
utterance-initially. Because there is much investigator 
freedom in determining model-internal weights, while 
predictor values from corpora can be objectively measured, 
we use variables such as forward and backward conditional 
probability and initialness proportion as predictors of 
behavior rather than model-internal predictors. The 
empirical results then provide support for the model if the 
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measurable predictors that the model expects to account for 
the behavior do account for it, and if their effects are in the 
expected direction. 

We included two important control predictors. One 
predictor implements the assumption that speakers restart 
production from the nearest syntactic constituent boundary 
(Kapatsinski, 2005). The location of the nearest major 
boundary in each repetition token (before 𝑤𝑜𝑟𝑑'(, 𝑤𝑜𝑟𝑑'), 
or 𝑤𝑜𝑟𝑑'*) was coded by a trained linguist blind to how 
many words were repeated following the Simpler Syntax 
framework (Culicover & Jackendoff, 2006).  

The second important control predictor is word duration. 
We reasoned that, given the overall tendency for repetitions 
to be short (mostly a single word), speakers may be less 
likely to repeat long words compared to short words. Since 
duration correlates with frequency and predictability, even 
when segmental content is controlled (Seyfarth, 2014), we 
consider it an important predictor to include in the model. 
Mean durations of all 𝑤𝑜𝑟𝑑')’s (the word that the speaker 
may or may not repeat) were extracted from Switchboard. 

Finally, random intercepts for the three words preceding 
the interruption of speech and the word that followed were 
also included. This is the most complex random-effects 
structure that allows the model to converge. These random 
effects are intended to account for other differences between 
individual words that might affect their accessibility or their 
likelihood of being repeated. 

Results 
While controlling for syntax and word duration, we observe 
the effects of the probability of the future (FCP) and the past 
(BCP) conditioned on the present, in the expected 
directions. Speakers tend to repeat the past when it is 
accessible from the present while the future is inaccessible.  
As expected, in both cases, non-directional, joint 
probabilities (bigram frequency) performed more poorly in 
model comparisons. The IBRE effect is evident from the 
finding that log frequency of an outcome has the opposite 
effect to that of its conditional probability (FCP or BCP). 
Initialness proportion effects indicate that speakers tend not 
to restart speech from poor initiators. This novel prediction 
of cue competition is illustrated in Figure 5, which shows a 
very strong relationship between top-down cue weights in 
the HiTCH model and the location of the speech restart. 

Conclusion 
We proposed a novel model of the effects of experience on 
execution of word sequences. In this model, item-to-item 
associations compete with top-down associations during 
learning. When a word’s occurrences tend to be predictable, 
the model claims that it will become a poor initiator, and 
speakers would avoid initiating speech with it. This novel 
prediction—the Initiation Effect—is confirmed in a corpus 
study of speech reinitiation in repetition disfluencies. We 
show that speakers tend to reinitiate speech from words that, 
in their prior experience, frequently initiate utterances. With 
experience, highly predictive cues become increasingly 

sufficient and increasingly necessary to activate predictable 
upcoming items, turning a hierarchical plan into something 
more akin to an associative chain.  
 

Table 1: Choosing to restart from the second (𝑤𝑜𝑟𝑑'), 
positive) or first (𝑤𝑜𝑟𝑑'(, negative) word preceding the 

interruption. Logistic GLMM results. Subscripts are 
exemplified by ['* 𝑓𝑜𝑟'* [') 𝑡ℎ𝑒') ['( 𝑠𝑝𝑒𝑒𝑐ℎ'(, 𝑢ℎ,
𝑓𝑜𝑟	𝑡ℎ𝑒	𝑠𝑝𝑒𝑒𝑐ℎ	𝑔𝑟𝑜𝑢𝑝(]]]. Brackets are syntactic 

boundaries.1 
 

 b z p 
(Intercept) –2.13 –8.179 <.0001 
Log FCP1 –0.50 –4.342 <.0001 
Log Frequency1 0.32 2.753 .006 
Log BCP–2 1.16 8.964 <.0001 
Log Frequency–2 –0.60 –2.89 .004 
Log Initialness–1 –0.32 –3.094 .00197 
Log Initialness–2 0.89 6.078 <.0001 
Log Duration–2 –0.67 –7.263 <.0001 
Syntax–2  –1.35 –6.337 <.0001 
Syntax–3 –0.50 –2.04 .04     

 

 
Figure 5: The likelihood of restarting production from the 

word that immediately precedes the disfluency (𝑤𝑜𝑟𝑑'() vs. 
the word before it (𝑤𝑜𝑟𝑑')) as a function of whether word–2 

is a good initiator (i.e., has a strong top-down weight). 
Restarts appear to be attracted to good initiators.  
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