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Theoretical methods are a compelling alternative to
experiments. Many of these are motivated by a free energy
formalism based on the thermodynamic cycle shown in Figure
1. Here, we consider a residue of interest (A) in both protein

(Figure 1, right) and reference peptide in solution (Figure 1,
left). We assume that the reference pKa° is known, then
pKa(protein) is given by
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Note that ΔΔGp,s(AH, A−) implicitly contains two terms. The
first (ΔΔGenv) represents the free energy of dissociating a
proton within a protein relative to the reference state (e.g.,
capped peptide), where the protein residues are fixed to some
state such that the value is pH independent; the second
(ΔGtitr(pH)) accounts for the contribution from the titratable
residues in the protein as they (de)protonate with pH. A
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In most cases, it is safe to assume that the mutual dependence
(or coupling) of a residue A and its protein microenvironment
is small, and by simply assigning residues to the charge state
most likely for a corresponding model compound in solution
(e.g., capped peptide) at pH ≈ 7.4, we can assume
pKa(protein) ≈ pKint. However, there are cases where this
assumption will fail, and a consideration of ΔGtitr(pH), at least

for nearby titratable residues, is necessary to correctly resolve
pKa(protein). To that end, we have elsewhere introduced a
thermodynamic-cycle-based formalism to account for this
additional titration contribution and therein discuss the role
of microscopic pKa values in the context of coupled residues.43

Whether or not the pH dependence on the pKa is taken into
account, the fundamental aim of most theoretical methods is to
resolve the free energy difference in eq 1 and thus estimate the
pKa. This can be done within a macroscopic or microscopic
framework; we briefly describe both.

Macroscopic frameworks model the entire system, protein,
and solvent as either a regularly shaped or an irregularly shaped
object situated within a dielectric medium. From this, the
energy terms can be resolved using the Poisson−Boltzmann
equation (PBE). For a regularly shaped protein (e.g., idealized
sphere), the PBE can be solved analytically;44,45 however, for a
more realistic, irregularly shaped protein, the PBE must be
solved numerically. The numerical Poisson−Boltzmann (PB)
approach for computing pKa values was pioneered by Bashford
and Karplus46 and has since been continually refined.47

Changes in both the underlying algorithmic and numerical
formalism (e.g., parameter selection, linearized PBE,48 etc.)
and the structural descriptions of the system (e.g., partial
charge changes,49 side-chain rotamers,50 etc.) have aimed to
increase accuracy and applicability.

A microscopic framework based on atomistic simulations,51

unlike a macroscopic one, in theory, does not require the
definition of empirical parameters (e.g., charge density) or
physical quantities (e.g., permittivity). The principal drawback
is the computational cost that can be overcome by
modification of the underlying model representation or
implementation (e.g., the reintroduction of pseudoparameters)
or by improvements in computing power. Molecular dynamics
(MD) simulations offer an attractive solution for sampling
biomolecular ensembles spanning meaningfully long time
scales with fully atomistic representations of both protein
and solvent. These simulations and the resultant ensembles
might be used as an input for a PB-based approach,52−55 or can
be performed in conjunction with a free energy method (e.g.,
thermodynamic integration,56,57 free energy perturbation,58

etc.), allowing for a direct resolution of the ΔΔG between
protonation states. An alternative MD-based approach is
constant pH molecular dynamics (CpHMD) simulations.
Here, Monte Carlo sampling59−62 (discrete CpHMD) or �-
dynamics63−66 (continuous CpHMD) is used to explicitly
sample protonation events. This allows for an explicit
consideration of the proton concentration, where the
protonation states of titratable residues are not restrained but
are allowed to dynamically follow the free energy gradient.

Empirical (EM) approaches stand in contrast to those
described above, which are primarily based on a rigorous free
energy formalism. Empirical methods tend to rely on sets of
approximate functional forms (e.g., hydrogen bonds) with
knowledge-based parameters that are optimized based on large
training sets of measured pKa values. Such approaches have
generated predictors with impressive accuracy at low computa-
tional cost,67,68 which have been further enhanced with the
advent of machine learning.69,70

It can be said that for all of the methods mentioned above,
the objective is to provide predictive accuracy within the same
range as that reached by experiment (i.e., <0.2 pK units). A
perfect method ought to be system independent and hence not
require fitting to experimental data. It should be able to

Figure 1. Thermodynamic cycle to compute the free energy
difference between protonating a residue in a capped peptide in
solution and the same residue in a protein. This ΔΔG can be related
to pKa(protein) given the reference pKa° via eq 1.
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DelPhiPKa125,126 (v2.3), H++127 (v4.0), MCCE50,128 (v2.8),
and PypKa129 (v2.9.4); and evaluated a machine-learning-
based predictor pKa-ANI70 (v.0.1.0).

PropKa is an empirical predictor, where the ΔG
contributions are captured by Coulombic, desolvation, and
intrinsic electrostatic (e.g., hydrogen bonding) energy
equations. Default settings were used when performing the
calculations.

DelPhiPKa, as with all PB methods considered here,
calculates the electrostatic potential by numerically solving
the PBE using a finite difference method. Based on DelPhi
software, this method uses a smooth Gaussian function to
capture the heterogeneous dielectrics of the solute and solvent.
Default settings were used except for the salt concentration,
which was set according to the experimental setup (Table S1).

H++ relies on the single-conformer version of MEAD130 and
assigns charges and parameters based on Amber99SB. Default
settings were used except for the default pH, which was set to
7.4, and the salt concentration, which was set according to the
experimental setup (Table S1).

MCCE, based on DelPhi, uses Monte Carlo simulations to
capture dynamic side-chain conformational changes. Default
settings were used except for the salt concentration, which was
set according to the experimental setup (Table S1).

PypKa uses Monte Carlo calculations to probe the proton
tautomers and employs DelPhi to solve the PBE. Default
settings were used, except for the salt concentration, which was
set according to the experimental setup (Table S1).

pKa-ANI can also be considered an empirical predictor. This
predictor utilizes deep representation learning131 that

combines an atomic environment vector and the neural
network potential ANI-2x.132 Default settings were used when
performing the calculations, including a gas-phase minimiza-
tion of the initial PDB structures in GROMACS using the
Amber14SB force field.

■ RESULTS
Overall Performance. Double free energy differences

(ΔΔG) were calculated for all 144 residues (48 aspartates, 57
glutamates, and 39 lysines), allowing us to robustly evaluate
performance on a large data set. For the MD-based and PB-
based approaches, a consensus estimate was used to make
comparison easier. The EM-based approach corresponds to
PropKa calculations, while the ML-based pKa-ANI method is
discussed in a separate section.

With respect to the MD approach, we observed two
important sources of prediction inaccuracy: residue coupling
and lysine parametrization. Adjusting the pKa calculation
framework to account for these led to an adjusted estimate that
we compare to the unadjusted one. This is extensively
discussed in the Determinants of Accuracy: Lysine Para-
metrization and Determinants of Accuracy: Protonation
Neighborhood and Residue Coupling sections.

Figure 2 summarizes the main findings: in absolute terms,
MD-based nonequilibrium free energy calculations perform
comparably to conventional in silico predictors, with an overall
adjusted predictive AUE of 0.68 ± 0.05 pK taken as an average
over each residue class (compared to 0.74 ± 0.07 and 0.70 ±
0.06 pK for the consensus of the Poisson−Boltzmann (PB)
methods and empirical (EM) PropKa method, respectively)

Figure 2. Full data set residue-wise performance. (a) Correlation between the calculated and experimental pKa values. MD values are adjusted for
residue coupling and lysine parametrization. Marker color indicates deviation from experiment. Regression lines are indicated in red. The
proportion of residue 1 pK units from experiment is indicated. (b) Average unsigned errors (AUEs) and Pearson correlation coefficients computed
for the various methods: molecular dynamics (MD), Poisson−Boltzmann (PB), and the empirical PropKa approach (EM). (c) AUEs and Pearson
correlation coefficients were computed for the two force fields: CHARMM36m and Amber14SB, and their consensus. Transparent markers
indicate the unadjusted estimates. Numerical values indicate the number of residues considered. When available, bootstrapped standard errors are
depicted.
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(Figure 2a,b). Regarding the individual residue classes
computed using the MD approach, for the adjusted estimate,
AUEs were 0.77 ± 0.09 pK (aspartate), 0.69 ± 0.09 pK
(glutamate), and 0.52 ± 0.04 pK (lysine) (Figure 2a,b).

The unadjusted force-field differences revealed that
CHARMM36m performed as well or better for each residue
class compared to Amber14SB (Figure 2c). The most notable
differences were evident for lysine, where Amber14SB
significantly underperformed compared to CHARMM36m
(AUE: 0.42 ± 0.05 vs 1.48 ± 0.18 pK).

The Pearson correlation coefficients revealed a similar trend;
for aspartate and lysine, the adjusted MD-based estimate gave
values of 0.81 ± 0.04 and 0.48 ± 0.12, respectively, performing
as well or better than the alternative approaches (PB: 0.61 ±
0.16 and 0.52 ± 0.13; EM (PropKa): 0.67 ± 0.08 and −0.09 ±
0.19). For glutamate, weaker correlations with the MD-based
approach (0.33 ± 0.19) were evident. Regardless of the
method, the highest correlations were for aspartate, where the
experimental pKa values had the largest dynamic range, while
the weakest correlations were for lysine, where the dynamic
range of the experimental values was narrower (Figure 3).

We did not observe a strong dependence of the prediction
accuracy on the protein system. Rather, the systems for which
higher accuracy was observed (Figure S2) contained a higher
proportion of probed lysine residues (e.g., 1NZP and 1LKJ),
again illustrating disparate pKa prediction accuracy for different
residue types. In general, residues with larger ΔpKa values
(Figure S3) and lower solvent exposure (Figure S4) tended to
be predicted worse. We note that these two variables are
related: probed residues with smaller ΔpKas were also found to
be more solvated (Figure S5).

Determinants of Accuracy: Lysine Parametrization.
As discussed above, Amber14SB provided markedly poorer
estimates of the ΔΔG compared with CHARMM36m for most
of the lysine residues considered, significantly underestimating
the pKa values (Figure 4a,d). We conceived of two potential
sources of error: (1) environmental and (2) residue para-
metrization. Given the discussions in the literature pertaining
to ion overbinding133−135 and the role of a solvent model on
protein solvation,136 we began by assessing the role of
environmental conditions. Specifically, we probed K+ (rather
than Na+) counterions, NBFIX parameters,134 Åqvist137

(rather than Joung/Cheatham138) ion parameters, and
TIP4P-D water139 (rather than TIP3P). Using these variants,
the pKa values of lysines from a 13 residue data set (i.e., hen
egg-white lysozyme (HEWL) and calbindin 9k) were
computed. No significant improvement in the estimates was
observed (Figure 4a,c).

To consider the role of parametrization, simulations were
performed with three different versions of Amber, namely,
Amber99SB*-ILDN,140−142 Amber03*,141,143 and Am-
ber99SB-disp.144 On the same lysine data set, a dramatic
improvement was observed with Amber99SB-disp (Figure
4a,c). Given that differences in the dihedral parametrization
between Amber99SB*-ILDN and Amber14SB appeared to
confer almost no performance improvement, this narrowed the
likely cause of the difference to the nonbonded interactions.
Regarding the Lennard-Jones terms, Amber99SB-disp alters the
parameters of aspartate, glutamate, and arginine, leaving open
the possibility of more accurate interactions between lysine
and other charged residues in the protein as the source of this
discrepancy. However, more notable was the inclusion of the
Best et al. lysine partial charges (i.e., Amber99SB*-ILDN-Q75)
with Amber99SB-disp. Although both Amber14SB and
Amber99SB*-ILDN have the same partial charge assignment,
Amber99SB-disp uses altered backbone charges for aspartate,
glutamate, lysine, arginine, and doubly protonated histidine
(Figure 4b). These were originally developed in the
Amber99SB*-ILDN-Q force field to correct for aberrant
helical propensities and create consistency among the amino
acids. In both Amber99SB*-ILDN and Amber14SB, with the
exception of proline, all but these five charged residues have
the same assigned backbone partial charge set for C, O, N, and
HN. By using the updated parameters by Best et al., both
protonated (LYS) and deprotonated (LYN) lysine in
Amber99SB*-ILDN-Q and Amber99SB-disp have the same
charge assignment for C, O, N, and HN.

Such a backbone partial charge assignment is akin to that in
the CHARMM36m force field, which has the same backbone
partial charge sets (including the C� and H� atoms) for all
residues except proline and glycine.

We constructed a hybrid Amber14SB-K force field with the
altered lysine partial charges but only for the probed residue.
We found that this force field performed markedly better on
the lysine data set, cutting the average unsigned error by
almost half, from 1.48 ± 0.18 to 0.81 ± 0.08 pK (Figure 4a,c).
The improvement was most pronounced for lysine residues in
the helical regions (Figure S6). This result, in addition to that
from Best et al.,75 suggested that the default partial charges of
lysine were erroneous. To further assess the effect of partial
charges, we computed the thermostability of 15 lysine
mutations using CHARMM36m, Amber14SB, and Am-
ber14SB-K. We again observed a marked improvement in
the AUE using the altered lysine partial charges, which shifted
the value from 10.42 to 5.54 kJ/mol (Figure 4e).

While Amber99SB-disp exhibited the highest accuracy on
the lysine data set (Figure 4c), suggesting its general use for
pKa prediction, this behavior did not hold for aspartate and
glutamate. On a reduced data set (i.e., SNase + ΔPHS and
HEWL), Amber99SB-disp exhibited below-average accuracy
(Figure S7).

Determinants of Accuracy: Protonation Neighbor-
hood and Residue Coupling. Overall, alchemical free
energy calculations and conventional pKa predictors provide
comparable accuracy. However, unlike many alternative

Figure 3. Performance of methods on coupled residues. Average
unsigned errors (AUEs) and Pearson correlation coefficients were
computed for both the coupled data set (i.e., 18 aspartates and
glutamates) and the full data set aspartate and glutamate residues,
with the coupled set discarded. Dashed lines indicate the performance
of the MD-based approach before coupling was accounted for (see
text). Bootstrapped standard errors are depicted.
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approaches, the alchemical method described here allows for
the resolution of conditional pKa values. The consideration of
such values may not only improve the estimates but also allow
one to determine the pH-dependent pKa of a residue. Recently,
we derived a formalism to conveniently combine double free
energy differences from alchemical calculations in order to
account for coupling between residues when predicting the
pKa.

43

In this work, we selected 18 residues, including several acidic
dyads across the data set, for which the deviation from
experiment was >1 pK. We further calculated the pKa values of

these residues by taking into account possible couplings with
the protonatable residues in their neighborhood. For residues
neighboring a histidine, standard pKa calculations were
performed in the presence of doubly protonated histidine,
i.e., we assume this to be the protonation state at the pH where
aspartate and glutamate titrate. For pairs of nearby (i.e., <0.5
nm) acidic residues, we applied the aforementioned
thermodynamic formalism, while for apparent triads, an
assessment of the most probable deprotonation event was
first determined, followed by an application of the formalism
on the remaining dyad. Explicitly accounting for residue

Figure 4. Calculating lysine pKa values with different force fields. (a) Correlation between the calculated and experimental pKa values. Marker color
indicates deviation from experiment. Regression lines are indicated in red. The proportion of residues 1 pK unit from experiment is indicated. (b)
Partial charge assignment differences between Amber14SB and Amber14SB-K. Numeric values correspond to backbone atoms. (c) Average
unsigned errors (AUEs) and Pearson correlation coefficients computed for the various force-field combinations: five variants of Amber14SB (with
TIP4P-D (D), with NBFIX (N), with K+ counterions (+), with Åqvist ions (A), or with Best et al. charges assigned to the probed lysine (K)), as
well as “plain” (p) CHARMM36m, Amber14SB, Amber03*, Amber99SB*-ILDN, and Amber99SB-disp. (d) Distribution of differences between
the unadjusted MD-based and experimental pKa values. (e) AUEs and Pearson correlations computed on a lysine thermostability data set. When
available, bootstrapped standard errors are depicted.
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coupling reduced the AUE from 1.28 to 0.76 pK of the
residues considered, bringing the accuracy close to the AUE
observed over the full data set (Figure 3). For all of the
methods considered, this coupled residue subset had higher
errors than those observed on the remaining aspartate and
glutamate residues (i.e., full data set minus coupled subset).

We note that this analysis was retrospective, where we have a
priori access to the correct pKa values, i.e., we could preselect
which residues to subject to these more involved calculations
involving inter-residue couplings. However, in principle, such
calculations can be applied to any residues with nearby
protonatable neighbors. Our formalism43 ensures that if
alchemical calculations suggest no coupling, the final pKa
estimate will remain similar to that of a standard calculation
without coupling considerations.

Method Comparison. Recently, FEP+ was used to
compute the pKa values of 79 aspartate and glutamate
residues.58 We observed comparable performance on the
overlapping 65 residue data set (referred to as the FEP+ data
set); the average unsigned error was 0.65 ± 0.08 for NEQ and
0.61 ± 0.07 for FEP+ (Figure 5a), and the Pearson correlation
coefficients were 0.74 ± 0.06 and 0.80 ± 0.09, respectively.
These represented the two strongest performing methods on
the FEP+ data set. We also assessed the degree of correlation
between the ΔpKa estimates for both methods; here, the
Pearson correlation coefficient was 0.83 ± 0.05, suggesting a
strong relationship (Figure 5a). This was the second strongest
correlation between any two methods on the FEP+ data set.

Regarding residues, glutamate pKa values were predicted with a
higher accuracy than aspartate (Figure 5b).

We also considered our NEQ approach in relation to
individual computational methodologies (rather than a
consensus), including the popular PropKa software. Given
the computational efficiency of this empirical method, it
presents a compelling approach for large-scale pKa calculations.
We found that NEQ and FEP+ could outperform PropKa on
the FEP+ data set (Figure 5a,b); however, PropKa still showed
strong performance on the full data set (Figures S8 and S9).
For the full data set, while the AUE values for PropKa
predictions were small, the correlations also tended to be
weaker. This was particularly evident for lysine, where the
Pearson correlation coefficient was near zero. For the precise
discrimination of individual residues and an absolute ordering
of pKa values, an MD-based free energy approach may be
warranted.

As with FEP+, we evaluated the degree of correlation and
deviation between the ΔpKa values computed using various
methods. The strongest correlations were observed within
method classes (e.g., DelPhiPKa/MCCE) rather than between
them (e.g., DelPhiPKa/NEQ). Strong correlations were
particularly evident within the PB-based approaches when
evaluating on both the FEP+ data set and the full data set
(Figures 5a and S9).

Probing the full data set revealed a general decrease in the
AUE and stronger correlations with experiment (Figure S9).
Given that the FEP+ data set contains a higher proportion of

Figure 5. Comparison of the ΔpKa predictions by each method. (a) Pearson correlations (upper right triangle) and AUEs (lower left triangle)
between ΔpKa estimates were calculated for each method over the FEP+ data set. Comparison with experiment means that the bottom row and
rightmost column correspond to the overall performance. DelPhiPKa is abbreviated DelPhi. (b) Individual residue-wise error plot of the NEQ,
FEP+, and PropKa methods on the FEP+ data set. Numerical values (i.e., 28 and 37) indicate the number of residues considered. (c) Pearson
correlations and AUEs for the three ΔpKa consensus estimates were calculated over the full data set; note that EM corresponds to PropKa.
Comparison with experiment means that the bottom row and rightmost column correspond to overall performance. Bootstrapped standard errors
are indicated.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00721
J. Chem. Theory Comput. 2023, 19, 7833−7845

7839







(4) Pace, C. N.; Grimsley, G. R.; Scholtz, J. M. Protein Ionizable
Groups: pK Values and Their Contribution to Protein Stability and
Solubility. J. Biol. Chem. 2009, 284, 13285−13289.
(5) Schaefer, M.; Sommer, M.; Karplus, M. pH-Dependence of

Protein Stability: Absolute Electrostatic Free Energy Differences
between Conformations. J. Phys. Chem. B 1997, 101, 1663−1683.
(6) Tollinger, M.; Crowhurst, K. A.; Kay, L. E.; Forman-Kay, J. D.

Site-specific contributions to the pH dependence of protein stability.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4545−4550.
(7) Shaw, K. L.; Grimsley, G. R.; Yakovlev, G. I.; Makarov, A. A.;

Pace, C. N. The effect of net charge on the solubility, activity, and
stability of ribonuclease Sa. Protein Sci. 2001, 10, 1206−1215.
(8) Kramer, R. M.; Shende, V. R.; Motl, N.; Pace, C. N.; Scholtz, J.

M. Toward a Molecular Understanding of Protein Solubility:
Increased Negative Surface Charge Correlates with Increased
Solubility. Biophys. J. 2012, 102, 1907−1915.
(9) Watanabe, H.; Yoshida, C.; Ooishi, A.; Nakai, Y.; Ueda, M.;

Isobe, Y.; Honda, S. Histidine-Mediated Intramolecular Electrostatic
Repulsion for Controlling pH-Dependent Protein−Protein Inter-
action. ACS Chem. Biol. 2019, 14, 2729−2736.
(10) Sheinerman, F. B.; Norel, R.; Honig, B. Electrostatic aspects of

protein−protein interactions. Curr. Opin. Struct. Biol. 2000, 10, 153−
159.
(11) Paulsen, C. E.; Carroll, K. S. Cysteine-Mediated Redox

Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev.
2013, 113, 4633−4679.
(12) Isom, D. G.; Dohlman, H. G. Buried ionizable networks are an

ancient hallmark of G protein-coupled receptor activation. Proc. Natl.
Acad. Sci. U.S.A. 2015, 112, 5702−5707.
(13) Dwyer, J. J.; Gittis, A. G.; Karp, D. A.; Lattman, E. E.; Spencer,

D. S.; Stites, W. E.; García-Moreno, E. B. High Apparent Dielectric
Constants in the Interior of a Protein Reflect Water Penetration.
Biophys. J. 2000, 79, 1610−1620.
(14) Harms, M. J.; Castañeda, C. A.; Schlessman, J. L.; Sue, G. R.;

Isom, D. G.; Cannon, B. R.; García-Moreno, E. B. The pKa Values of
Acidic and Basic Residues Buried at the Same Internal Location in a
Protein Are Governed by Different Factors. J. Mol. Biol. 2009, 389,
34−47.
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(16) Isom, D. G.; Castañeda, C. A.; Cannon, B. R.; García-Moreno,

E. B. Large shifts in pKa values of lysine residues buried inside a
protein. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 5260−5265.
(17) Stites, W. E.; Gittis, A. G.; Lattman, E. E.; Shortle, D. In a

staphylococcal nuclease mutant the side-chain of a lysine replacing
valine 66 is fully buried in the hydrophobic core. J. Mol. Biol. 1991,
221, 7−14, DOI: 10.1016/0022-2836(91)80195-z.
(18) Zhang, M.; Vogel, H. Determination of the side chain pKa

values of the lysine residues in calmodulin. J. Biol. Chem. 1993, 268,
22420−22428.
(19) Thompson, J. E.; Raines, R. T. Value of General Acid-Base

Catalysis to Ribonuclease A. J. Am. Chem. Soc. 1994, 116, 5467−5468.
(20) Walsh, K. A.; Neurath, H. Trypsinogen and Chymotrpsinogen

as Homologous Proteins. Proc. Natl. Acad. Sci. U.S.A. 1964, 52, 884−
889.
(21) Dodson, G. Catalytic triads and their relatives. Trends Biochem.

Sci. 1998, 23, 347−352.
(22) Matthews, B. W.; Sigler, P. B.; Henderson, R.; Blow, D. M.

Three-dimensional Structure of Tosyl-�-chymotrypsin. Nature 1967,
214, 652−656.
(23) Onufriev, A. V.; Alexov, E. Protonation and pK changes in

protein−ligand binding. Q. Rev. Biophys. 2013, 46, 181−209.
(24) Kim, M. O.; Blachly, P. G.; McCammon, J. A. Conformational

Dynamics and Binding Free Energies of Inhibitors of BACE-1: From
the Perspective of Protonation Equilibria. PLOS Comput. Biol. 2015,
11, No. e1004341, DOI: 10.1371/journal.pcbi.1004341.
(25) Gohlke, H.; Klebe, G. Approaches to the Description and

Prediction of the Binding Affinity of Small-Molecule Ligands to

Macromolecular Receptors. Angew. Chem., Int. Ed. 2002, 41, 2644−
2676.
(26) Smith, R.; Brereton, I. M.; Chai, R. Y.; Kent, S. B. Ionization

states of the catalytic residues in HIV-1 protease. Nat. Struct. Mol. Biol.
1996, 3, 946−950.
(27) Yamazaki, T.; Nicholson, L. K.; Wingfield, P.; Stahl, S. J.;

Kaufman, J. D.; Eyermann, C. J.; Hodge, C. N.; Lam, P. Y. S.; Torchia,
D. A. NMR and X-ray Evidence That the HIV Protease Catalytic
Aspartyl Groups Are Protonated in the Complex Formed by the
Protease and a Non-Peptide Cyclic Urea-Based Inhibitor. J. Am.
Chem. Soc. 1994, 116, 10791−10792.
(28) Xie, D.; Gulnik, S.; Collins, L.; Gustchina, E.; Suvorov, L.;

Erickson, J. W. Dissection of the pH Dependence of Inhibitor Binding
Energetics for an Aspartic Protease: Direct Measurement of the
Protonation States of the Catalytic Aspartic Acid Residues.
Biochemistry 1997, 36, 16166−16172.
(29) Kim, M. O.; McCammon, J. A. Computation of pH-dependent

binding free energies. Biopolymers 2016, 105, 43−49.
(30) Luo, R.; Head, M. S.; Moult, J.; Gilson, M. K. pKa Shifts in

Small Molecules and HIV Protease: Electrostatics and Conformation.
J. Am. Chem. Soc. 1998, 120, 6138−6146.
(31) Bastys, T.; Gapsys, V.; Doncheva, N. T.; Kaiser, R.; de Groot,

B. L.; Kalinina, O. V. Consistent Prediction of Mutation Effect on
Drug Binding in HIV-1 Protease Using Alchemical Calculations. J.
Chem. Theory Comput. 2018, 14, 3397−3408.
(32) McGee, T. D.; Edwards, J.; Roitberg, A. E. pH-REMD

Simulations Indicate That the Catalytic Aspartates of HIV-1 Protease
Exist Primarily in a Monoprotonated State. J. Phys. Chem. B 2014,
118, 12577−12585.
(33) Markley, J. L. Observation of histidine residues in proteins by

nuclear magnetic resonance spectroscopy. Acc. Chem. Res. 1975, 8,
70−80.
(34) Forman-Kay, J. D.; Clore, G. M.; Gronenborn, A. M.

Relationship between electrostatics and redox function in human
thioredoxin: characterization of pH titration shifts using two-
dimensional homo- and heteronuclear NMR. Biochemistry 1992, 31,
3442−3452.
(35) Poon, D. K. Y.; Schubert, M.; Au, J.; Okon, M.; Withers, S. G.;

McIntosh, L. P. Unambiguous Determination of the Ionization State
of a Glycoside Hydrolase Active Site Lysine by 1H-15N
Heteronuclear Correlation Spectroscopy. J. Am. Chem. Soc. 2006,
128, 15388−15389.
(36) Webb, H.; Tynan-Connolly, B. M.; Lee, G. M.; Farrell, D.;

O’Meara, F.; Søndergaard, C. R.; Teilum, K.; Hewage, C.; McIntosh,
L. P.; Nielsen, J. E. Remeasuring HEWL pKa values by NMR
spectroscopy: Methods, analysis, accuracy, and implications for
theoretical pKa calculations. Proteins: Struct., Funct., Bioinf. 2011,
79, 685−702.
(37) Sakurai, K.; Goto, Y. Principal component analysis of the pH-

dependent conformational transitions of bovine �-lactoglobulin
monitored by heteronuclear NMR. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 15346−15351.
(38) Joshi, M. D.; Sidhu, G.; Pot, I.; Brayer, G. D.; Withers, S. G.;

McIntosh, L. P. Hydrogen bonding and catalysis: a novel explanation
for how a single amino acid substitution can change the ph optimum
of a glycosidase 1 1Edited by M. F. Summers. J. Mol. Biol. 2000, 299,
255−279.
(39) Hass, M. A. S.; Jensen, M. R.; Led, J. J. Probing electric fields in

proteins in solution by NMR spectroscopy. Proteins: Struct., Funct.,
Bioinf. 2008, 72, 333−343.
(40) Reijenga, J.; van Hoof, A.; van Loon, A.; Teunissen, B.

Development of Methods for the Determination of pKa Values. Anal.
Chem. Insights 2013, 8, No. ACI.S12304, DOI: 10.4137/ACI.S12304.
(41) Zhang, Z. Y.; Dixon, J. E. Active site labeling of the Yersinia

protein tyrosine phosphatase: The determination of the pKa of the
active site cysteine and the function of the conserved histidine 402.
Biochemistry 1993, 32, 9340−9345.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00721
J. Chem. Theory Comput. 2023, 19, 7833−7845

7842



(42) Thurlkill, R. L.; Grimsley, G. R.; Scholtz, J. M.; Pace, C. N.
Hydrogen Bonding Markedly Reduces the pK of Buried Carboxyl
Groups in Proteins. J. Mol. Biol. 2006, 362, 594−604.
(43) Wilson, C. J.; de Groot, B. L.; Gapsys, V. Resolving Coupled pH

Titrations Using Non-equilibrium Free Energy Calculations; ChemRxiv,
2023.
(44) Kirkwood, J. G. Theory of Solutions of Molecules Containing

Widely Separated Charges with Special Application to Zwitterions. J.
Chem. Phys. 1934, 2, 351−361.
(45) Tanford, C.; Kirkwood, J. G. Theory of Protein Titration

Curves. I. General Equations for Impenetrable Spheres. J. Am. Chem.
Soc. 1957, 79, 5333−5339.
(46) Bashford, D.; Karplus, M. pKa’s of ionizable groups in proteins:

atomic detail from a continuum electrostatic model. Biochemistry
1990, 29, 10219−10225.
(47) Alexov, E.; Mehler, E. L.; Baker, N.; Baptista, A. M.; Huang, Y.;

Milletti, F.; Nielsen, J. E.; Farrell, D.; Carstensen, T.; Olsson, M. H.
M.; Shen, J. K.; Warwicker, J.; Williams, S.; Word, J. M. Progress in
the prediction of pKa values in proteins. Proteins: Struct., Funct., Bioinf.
2011, 79, 3260−3275.
(48) Sharp, K. A.; Honig, B. Calculating total electrostatic energies

with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem. A
1990, 94, 7684−7692.
(49) Demchuk, E.; Wade, R. C. Improving the Continuum Dielectric

Approach to Calculating pKas of Ionizable Groups in Proteins. J. Phys.
Chem. A 1996, 100, 17373−17387.
(50) Alexov, E.; Gunner, M. Incorporating protein conformational

flexibility into the calculation of pH-dependent protein properties.
Biophys. J. 1997, 72, 2075−2093.
(51) Warshel, A.; Sussman, F.; King, G. Free energy of charges in

solvated proteins: microscopic calculations using a reversible charging
process. Biochemistry 1986, 25, 8368−8372.
(52) Nielsen, J. E. On the evaluation and optimization of protein X-

ray structures for pKa calculations. Protein Sci. 2003, 12, 313−326.
(53) Witham, S.; Talley, K.; Wang, L.; Zhang, Z.; Sarkar, S.; Gao, D.;

Yang, W.; Alexov, E. Developing hybrid approaches to predict pKa
values of ionizable groups. Proteins: Struct., Funct., Bioinf. 2011, 79,
3389−3399.
(54) Meyer, T.; Knapp, E.-W. pKa Values in Proteins Determined by

Electrostatics Applied to Molecular Dynamics Trajectories. J. Chem.
Theory Comput. 2015, 11, 2827−2840.
(55) Zheng, Y.; Cui, Q. Microscopic mechanisms that govern the

titration response and pKa values of buried residues in staphylococcal
nuclease mutants. Proteins: Struct., Funct., Bioinf. 2017, 85, 268−281.
(56) Simonson, T.; Carlsson, J.; Case, D. A. Proton Binding to

Proteins: pKa Calculations with Explicit and Implicit Solvent Models.
J. Am. Chem. Soc. 2004, 126, 4167−4180.
(57) Awoonor-Williams, E.; Rowley, C. N. Evaluation of Methods

for the Calculation of the pKa of Cysteine Residues in Proteins. J.
Chem. Theory Comput. 2016, 12, 4662−4673.
(58) Coskun, D.; Chen, W.; Clark, A. J.; Lu, C.; Harder, E. D.;

Wang, L.; Friesner, R. A.; Miller, E. B. Reliable and Accurate
Prediction of Single-Residue pKa Values through Free Energy
Perturbation Calculations. J. Chem. Theory Comput. 2022, 18,
7193−7204.
(59) Baptista, A. M.; Teixeira, V. H.; Soares, C. M. Constant-pH

molecular dynamics using stochastic titration. J. Chem. Phys. 2002,
117, 4184−4200.
(60) Bürgi, R.; Kollman, P. A.; van Gunsteren, W. F. Simulating

proteins at constant pH: An approach combining molecular dynamics
and Monte Carlo simulation. Proteins: Struct., Funct., Bioinf. 2002, 47,
469−480.
(61) Mongan, J.; Case, D. A.; McCammon, J. A. Constant pH

molecular dynamics in generalized Born implicit solvent. J. Comput.
Chem. 2004, 25, 2038−2048.
(62) Meng, Y.; Roitberg, A. E. Constant pH Replica Exchange

Molecular Dynamics in Biomolecules Using a Discrete Protonation
Model. J. Chem. Theory Comput. 2010, 6, 1401−1412.

(63) Kong, X.; Brooks, C. L. �-dynamics: A new approach to free
energy calculations. J. Chem. Phys. 1996, 105, 2414−2423.
(64) Lee, M. S.; Salsbury, F. R.; Brooks, C. L. Constant-pH

molecular dynamics using continuous titration coordinates. Proteins:
Struct., Funct., Bioinf. 2004, 56, 738−752.
(65) Khandogin, J.; Brooks, C. L. Constant pH Molecular Dynamics

with Proton Tautomerism. Biophys. J. 2005, 89, 141−157.
(66) Donnini, S.; Tegeler, F.; Groenhof, G.; Grubmüller, H.

Constant pH Molecular Dynamics in Explicit Solvent with �-
Dynamics. J. Chem. Theory Comput. 2011, 7, 1962−1978.
(67) Søndergaard, C. R.; Olsson, M. H. M.; Rostkowski, M.; Jensen,

J. H. Improved Treatment of Ligands and Coupling Effects in
Empirical Calculation and Rationalization of pKa Values. J. Chem.
Theory Comput. 2011, 7, 2284−2295.
(68) Olsson, M. H. M.; Søndergaard, C. R.; Rostkowski, M.; Jensen,

J. H. PROPKA3: Consistent Treatment of Internal and Surface
Residues in Empirical pKa Predictions. J. Chem. Theory Comput. 2011,
7, 525−537.
(69) Chen, A. Y.; Lee, J.; Damjanovic, A.; Brooks, B. R. Protein pKa

Prediction by Tree-Based Machine Learning. J. Chem. Theory Comput.
2022, 18, 2673−2686.
(70) Gokcan, H.; Isayev, O. Prediction of protein pKa with

representation learning. Chem. Sci. 2022, 13, 2462−2474.
(71) Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B. L.

Accurate and Rigorous Prediction of the Changes in Protein Free
Energies in a Large-Scale Mutation Scan. Angew. Chem., Int. Ed. 2016,
55, 7364−7368.
(72) Gapsys, V.; Pérez-Benito, L.; Aldeghi, M.; Seeliger, D.; van

Vlijmen, H.; Tresadern, G.; de Groot, B. L. Large scale relative
protein ligand binding affinities using non-equilibrium alchemy. Chem.
Sci. 2020, 11, 1140−1152.
(73) Gapsys, V.; Yildirim, A.; Aldeghi, M.; Khalak, Y.; van der Spoel,

D.; de Groot, B. L. Accurate absolute free energies for ligand−protein
binding based on non-equilibrium approaches. Commun. Chem. 2021,
4, No. 61, DOI: 10.1038/s42004-021-00498-y.
(74) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.;

Hauser, K. E.; Simmerling, C. ff14SB: Improving the Accuracy of
Protein Side Chain and Backbone Parameters from ff99SB. J. Chem.
Theory Comput. 2015, 11, 3696−3713.
(75) Best, R. B.; de Sancho, D.; Mittal, J. Residue-Specific �-Helix

Propensities from Molecular Simulation. Biophys. J. 2012, 102, 1462−
1467.
(76) Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B. L. pmx:

Automated protein structure and topology generation for alchemical
perturbations. J. Comput. Chem. 2015, 36, 348−354.
(77) Parkin, S.; Rupp, B.; Hope, H. Structure of bovine pancreatic

trypsin inhibitor at 125 K definition of carboxyl-terminal residues
Gly57 and Ala58. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1996, 52,
18−29.
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