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information from MEG signals during language production
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ABSTRACT
Speaking requires the temporally coordinated planning of core linguistic information, from
conceptual meaning to articulation. Recent neurophysiological results suggested that these
operations involve a cascade of neural events with subsequent onset times, whilst competing
evidence suggests early parallel neural activation. To test these hypotheses, we examined the
sources of neuromagnetic activity recorded from 34 participants overtly naming 134 images
from 4 object categories (animals, tools, foods and clothes). Within each category, word length
and phonological neighbourhood density were co-varied to target phonological/phonetic
processes. Multivariate pattern analyses (MVPA) searchlights in source space decoded object
categories in occipitotemporal and middle temporal cortex, and phonological/phonetic
variables in left inferior frontal (BA 44) and motor cortex early on. The findings suggest early
activation of multiple variables due to intercorrelated properties and interactivity of processing,
thus raising important questions about the representational properties of target words during
the preparatory time enabling overt speaking.
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Introduction

Language production is a fast process, which however
relies on the timely planning and coordination of
complex linguistic information. According to estab-
lished theory (e.g., Dell et al., 1997; Hickok et al.,
2011; Levelt, 1999; Levelt et al., 1999), this process
involves multiple stages. One proposal states that
these stages are ordered in time within subsequent
temporal frames (Indefrey & Levelt, 2004; Levelt,
1989, 1999). First, conceptual preparation enables
the activation of a concept, and then the selection
of the corresponding lexical entry, or lemma, from a
mental inventory of tens of thousands of words pro-
vides it with the appropriate grammatical/syntactic
information. At this point, the abstract phonological
code for the target lexical concept is selected, and
the retrieved word form is then encoded by phonolo-
gical information about syllabification, and phonetic
details (e.g., number and sequence of phonemes),
which are in turn translated into motor programmes
leading to overt articulation.

This series of operations is known to rely on the
functional orchestration of a left-lateralised network
of language regions, which earlier metabolic and neu-
ropsychological studies have well identified (e.g.,
Indefrey & Levelt, 2004; Price et al., 2005; Wilson
et al., 2010; for a review: Indefrey, 2011). For instance,
in picture naming tasks, conceptual preparation
engages a distributed set of cortical regions in bilat-
eral occipitotemporal and parietal cortex, reflecting
visual processing, as well as the semantic properties
of the activated target concept. Lexical selection
recruits left inferior and middle temporal cortex and
the left temporoparietal junction, and supramarginal
gyrus (e.g., Hultén et al., 2009), whilst phonological
code retrieval activates superior temporal cortex, par-
ticularly left middle-superior temporal gyrus and
sulcus (Wilson et al., 2010), where the phonetic fea-
tures are stored (Akbari et al., 2019; Mesgarani et al.,
2014). Later stages involving syllabification and pho-
netic encoding require activity in left inferior frontal
regions, with possible differentiation between more
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anterior and more posterior aspects of the inferior
frontal gyrus (Indefrey, 2011; Papoutsi et al., 2009),
although some studies did not confirm this (Liljeström
et al., 2015). This multistage process culminates with
activity in motor cortex supporting actual articulatory
execution of overt speech, with ventral motor cortex
underlying speech control (Bouchard et al., 2013),
and supplementary motor area enabling selection
and initiation of speech motor sequences (Hickok,
2022; Jürgens, 2009; Rogalsky et al., 2022; Teghipco
et al., 2022; Tremblay & Gracco, 2010; Wilson et al.,
2010).

While there is a general agreement on the core cor-
tical architecture of language production planning,
existing neurophysiological evidence has brought dis-
crepant findings regarding the relative times of the
neural activations involved, and the way the related
processes interact (for discussions: Indefrey, 2016;
Rapp & Goldrick, 2000; Strijkers & Costa, 2016). There-
fore, the specific spatio-temporal properties of word
planning processes and the related cortical mechan-
isms are still debated.

Based on an earlier meta-analysis of chronometric
and metabolic data from word production studies
(Indefrey, 2011), the orchestration of this network of
cortical regions relies on feed-forward processes
that are ordered over time (also see Hauk et al.,
2006; Munding et al., 2016 for a review), with approxi-
mately hundred milliseconds from the initiation of
activity specific to each computational stage and
the next one (e.g., Indefrey & Levelt, 2004). Recent
results from a picture naming study using magne-
toencephalography (MEG) have suggested a rapid
progression of neural activity over time, from early
bilateral activation of posterior occipitotemporal
sensor areas by conceptual preparation (within the
first 0–150 ms post stimulus onset), to left-lateralised
activation of anterior frontal sensor areas by phonolo-
gical/phonetic encoding at later time windows (start-
ing from 250–350 ms) (Carota et al., 2022).

Whilst this set of findings aligned with previous
neurophysiological evidence for cascading neural
dynamics of language planning (for a review:
Munding et al., 2016), results from other MEG
studies using different methodological approaches
led to a divergent picture (e. g.; Miozzo et al., 2015;
Strijkers et al., 2017; also see Liljeström et al., 2015).
For example, using multiple regression analyses of
MEG data, a first study (Miozzo et al., 2015) found

that activity in several cortical regions in frontotem-
poral, parietal, motor and occipital cortex becomes
correlated with multiple visual, semantic, lexical, pho-
nological and articulatory variables at the same time,
already within the first 130–160 ms post picture pres-
entation. Similarly, source reconstruction data from
the univariate approach followed by Strijkers et al.
(2017) provide further evidence for early (from 160
to 240 ms post picture onset) and simultaneous acti-
vation of frontotemporal regions by both word fre-
quency, a variable assumed to target lexical
selection and retrieval, and articulatory planning
(e.g., place of articulation of initial phonemes of the
to-be-named concepts). The execution of motor
activity for articulation would then already operate
at the initial stages of language planning, as
reflected by activation of the premotor cortex (also
see: Tremblay & Small, 2011). This possibility is also
envisaged by the interpretation of metabolic results
showing modulation of activation in pre-supplemen-
tary motor area by word length, a variable capturing
phonological retrieval, but also affecting later stages
until articulation (e.g., Wilson et al., 2010). Further-
more, functional connectivity results from another
recent MEG study suggest the interplay of activity in
posterior middle temporal and inferior parietal
cortex – linked to lexical selection – and (pre-)sup-
plementary motor area – linked to articulation –,
which was however temporally located within a
time window averaging MEG signals from 0 to
300 ms post picture onset (Liljeström et al., 2015).
Therefore, ambiguity about the precise time of such
motor activation persists across studies, possibly
due to a number of methodological and task-related
differences (e.g., analyses type, choice of linguistic
variables targeting the different operations, definition
and choice of regions of interest and of time windows
of interest, task and related demands).

Still, the data speaking in favour of early parallel
activation depart from a strict feed-forward proces-
sing principle, making a very different claim. Indeed,
if articulatory planning took place at the same early
time as conceptual access, the simultaneous acti-
vation of multiple and even long-distant cortical
regions would be explained, in terms of Hebbian
learning principles (Hebb, 1949), as a reflection of
immediate ignition of neuronal cells by the different
types of linguistic information required for word plan-
ning. Whilst both models allow for parallel processing,
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what becomes important for better evaluating the
theoretical implications of these competing sets of
findings on the neural processes supporting language
production, is to raise the question to what extent the
linguistic content of the different word planning oper-
ations becomes available to neural processing early
on, even within the first hundred millisecond after a
to-be-named picture is viewed.

In an earlier decoding study just mentioned above,
Carota et al. (2022) addressed this question focusing
on sensor-level data because they have the temporal
resolution to track how information patterns of neural
activity change over time (Stokes et al., 2015), while
also providing rich spatial information on the
decoded activity. The results suggested that semantic
category and phonological information are accessed
at subsequent time windows in the posterior
temporo-parietal and left frontal sensor areas,
respectively. The study exploited synthetic planar gra-
dients (Bastiaansen & Knösche, 2000), which allow for
easier interpretation of the sensor-level results, as the
maximal activity is typically located above the source
(Hämäläinen et al., 1993). However, the reconstruction
of the cortical sources of meaning-to-speech
mapping, and their time course, was not directly per-
formed, leaving the exact spatial localization of the
neural events associated with semantic and phonolo-
gical processing, and its comparability with existing
literature, still elusive.

In the present follow-up study then, to identify the
cortical dynamics underlying language planning, we
examined the sources of neuromagnetic activity
recorded from 34 participants overtly naming 134
images from 4 object categories (animals, tools,
foods and clothes). Within each category, word
length and phonological neighbourhood density
were co-varied to target phonological/phonetic pro-
cesses. Following a reviewer suggestion, we addition-
ally tested the decodability of a variable we had not
investigated in our earlier study (Carota et al., 2022):
the place-of-articulation of our test words’ onset pho-
nemes. For such variable, previous work by Strijkers
et al. (2017) had shown early cortical activations
(160–240 ms post-picture onset). Furthermore, we
included the decoding of Word Frequency, a variable
which could not be balanced across stimulus items.

We employed multivariate pattern analyses (MVPA)
searchlights in source space in order to decode object
categories and phonological variables, and thus

determine the specific spatio-temporal properties of
the neural activity of the conceptual, phonological/pho-
netic and articulatory planning operations which
prepare spoken language production. We discuss our
results by reviewing current theories of language
production.

Methods

Subjects

The current study presents the results from source
reconstruction analyses of recently published
sensor-level data (Carota et al., 2022). 34 native
Dutch speakers (mean age = 24 years, sd = 3.6) partici-
pated in the experiment after providing written
informed consent. All subjects were right-handed,
had normal or corrected-to-normal vision, and
reported no history of neurological, developmental,
or language deficits. The study was approved by the
ethical board CMO Arnhem/Nijmegen, under regis-
tration number CMO2014/288.

Materials

Stimuli consisted of 134 images from 4 object cat-
egories including animals, foods, tools and clothes.
We used coloured realistic images from the picture
database of Bank of Standardized Stimuli (BOSS)
(Brodeur et al., 2014), and public domain images
from the internet (e.g., Freepng.ru).

Images were selected on the basis of a list of
depictable target words that are most commonly
used to name the corresponding objects in Dutch.
The list of object words was generated by co-
varying the length of target words and phonological
neighbourhood density within each semantic cat-
egory. Word length affects lexical (word form retrie-
val) and post lexical (syllabification, phonetic and
articulatory encoding) processes, as duration
increases as a function of the number of phonemes/
syllables (Indefrey & Levelt, 2004; Indefrey, 2011;
Papoutsi et al., 2009). Phonological neighbourhood
density affects both lexical and post lexical processes
(Dell & Gordon, 2003; Harley & Bown, 1998; Vitevitch,
2002; Vitevitch et al., 1999), as shared phonemes in
phonological neighbours facilitate word form acti-
vation (Vitevitch, 2002), whilst the correlation of pho-
nological neighbourhood density with phonotactic
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probability facilitates phonetic/articulatory processes
(Vitevitch et al., 1999). Therefore, it is easier to phone-
tically encode and articulate words with many neigh-
bours, which contain more common phonemes and
phonological sequences than words with fewer
neighbours.

Word length was expressed by the number of syl-
lables (65 short monosyllabic words, 66 long bisyllabic
words and 3 trisyllabic words). Phonological neigh-
bourhood density was expressed by the number of
words that differ in one phone from the target
word. This was calculated by counting all word
entries in CELEX that differ in one phone symbol
from the target word, after discarding stress and sylla-
ble markers from the phonological word represen-
tation in CELEX. Words were ranked according to
such differences and subdivided into four groups
(lower, low, high, higher) while keeping the group
size as balanced as possible: 39 lower (0–4 neigh-
bours), 29 low (5–9 neighbours), 35 high (10–19
neighbours) and 31 higher (20–39 neighbours). The
psycholinguistic properties of the 134 stimulus
items are summarized in Table 1. Mean and standard
deviation (SD), median and range (R, the difference
between largest and smallest value of the variable)
are reported, as calculated across items (1.A), and
for mono – and disyllabic words separately (1.B).

Word length and phonological neighbourhood
density were negatively correlated with each other
(r(132) =−0.67, p < .001) (see Carota et al., 2021 for
discussion).

Word frequency could not be fully matched across
conditions. Word frequencies were obtained from
SUBTLEX (Keuleers et al., 2010), which provides a stan-
dard measure of word frequency independent of
corpus size: frequency per million words with a 4-
digit precision. Word frequency was negatively corre-
lated with word length (r(132) =−0.37, p < .001) and
positively correlated with phonological neighbour-
hood density (r(132) = 0.32, p < .001).

Because this variable is known to affect all stages of
the word production planning (Hanulová et al., 2011),
we assessed the related statistical effect on our variables
of interest, by conducting one-way repeated measure
ANOVA with Object category (animals, foods, tools,
clothes) and Word Length (short, long), and Phonologi-
cal Neighbourhood density (low, high). There was no
effect of Word Frequency on Object category. As for
the phonological variables, there was a main effect of

Word Frequency on Word Length (F[1,132] = 23.95, p
< .001), with short words being more frequent (M =
12.82) than long words (M = 3.95). There was also a
main effect of Word Frequency on Phonological Neigh-
bourhood Density (F[1,32] = 11.69, p= .001), with low-
density words being less frequent (M = 5.07) than high-
density words (M = 11.53).

Behavioural recordings

Stimuli were presented using the Presentation soft-
ware (Neurobehavioral Systems, Inc., Berkeley, CA,
www.neurobs.com). The pictures were displayed at
the centre of the screen at a size of 300 by 300px
(1920 by 1080 screen resolution and a refresh rate
of 120 Hz, delay <1 ms with almost instantaneous
presentation of the full screen), in a light grey back-
ground within a visual angle of 4 degrees. They
were presented using a liquid crystal display video
projector and back projected onto the screen using
two front-silvered mirrors.

Vocal responses were captured with a microphone
and recorded at 44.1 kHz using the Audacity software
(https://audacityteam.org/). Vocal responses were
recorded as wav files and response latencies were
determined offline using the Praat software (Boersma
& Weenink, 2019).

MEG recordings

Subjects were seated in the MEG system in a magneti-
cally shielded room. They were asked to sit comfortably
but to keep their body and head still during the task, and
to try to avoid blinking. They were instructed to look at
the stimulus screen, located 40 cm in front of them,
focusing on the centre of the screen. The MEG signals
were recorded using a high-density whole-head
system (OMEGA 2000; CTF Systems), consisting of 275
axial gradiometer channels and 29 dedicated reference
channels for environmental noise cancellation. The sub-
ject’s head was registered to theMEG sensor array using
three coils placedat 3anatomical landmarks (nasion, and
left and right ear canals). The head positionwas continu-
ously monitored during the MEG recordings, and read-
justed during breaks if it deviated more than 9 mm
from the initial position (Stolk et al., 2013). Head move-
ments did not exceed 1.25 cm between blocks. Pairs of
Ag/AgCl electrodes were used to record the horizontal
and vertical electro-oculograms (EOGs), the
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electrocardiogram, and the surface electromyogram
(EMG) from the orbicularis oris muscle (electrodes
placed above the upper lip and below the lower lip)
(impedancewaskept lower than15kΩ for all electrodes).
MEG, EMG and EOG signals were analogue low-pass
filtered at 300 Hz, digitized at 1200 Hz, and saved to
disk for offline processing.

MRI recordings and anatomical coregistration. For
each subject, a standard T1-weightedmagnetic reson-
ance image (MRI) of the subject’s head was acquired
with a 1.5 T Siemens Magnetom Sonata system using
a magnetization-prepared, rapid-acquisition gradient
echo sequence. Vitamin E capsules were placed in
the outer meatus of the ear canal to serve as fiducial
reference markers to facilitate coregistration with the
MEG coordinate system. Using a 3-D digitizer (Fastrak
Polhemus, Colchester, VA), the positions of the head
localizer coils were digitally recorded relative to the
same three anatomical landmarks as in the prior MEG
recording (nasion, left and right preauricular points).

Data analysis

Behavioural data

Latencies of the subjects’ verbal responses were cal-
culated offline by subtracting the time of picture

onset marked by a 10 ms auditory signal (inaudible
to the participants) from the time of speech onset.

Praat software (http://www.praat.org; Boersma &
Weenink, 2019) was used to analyse the recorded
audio signal and to semi-automatically identify the
onset of beep and articulation. Automatic silence/
non-silence interval boundaries were obtained by
using intensity (dB) thresholds, and the resulting
onset boundaries were manually inspected and cor-
rected where needed (most often at word-initial voice-
less consonants or vowels). 83% of response trials were
correctly named (identical to the target word). Incor-
rectlynamed trials (3%) and verbal disfluencies (stutter-
ing, utterance repairs and production of non-verbal
sounds) (14%) were excluded from the analyses.

In order to assess and assure synchrony between
the onsets of picture and the auditory beep signal for
subsequent MEG data analyses, the audio files were
alignedwith the picture onset triggers for the pre-pro-
cessing of theMEG data, andwith the audio channel in
theMEG. For the alignment, the (very small) difference
in clock speedof the computer for audio recording and
the MEG acquisition computer was taken into account
by estimating the delay between the presentation trig-
gers and the delivery of the beep.

For behavioural data analysis, the effects of the vari-
ables of interest on naming latencies were assessed by

Table 1. Psycholinguistic properties of the 134 stimulus items. Mean and SD, median and range are reported, as calculated across
items and for mosyllabic and disyllabic words separately.

All words

SUBTLEX word frequency Nr. of syllables Nr. of phon. neighbours

Category Mean (SD) Median (R) Mean (SD) Mean (SD) Median (R)

Animals 8 (10) 6.1 (49.9) 1.5 (0.6) 12.3 (10.1) 9 (45)
Clothes 9.8 (15.8) 4.2 (67.2) 1.5 (0.5) 11.7 (10) 8 (41)
Foods 5.7 (9.2) 2 (39.6) 1.5 (0.5) 12.2 (11) 9 (39)
Tools 9.4 (8.8) 6.8 (37.5) 1.6 (0.6) 11.9 (8.2) 11 (33)
All 8.3 (11.4) 4.8 (67.3) 1.5 (0.5) 12 (9.8) 9 (46)

Monosyllabic words

SUBTLEX word frequency Nr. of phon. neighbours

Category Mean (SD) Median (R) Mean (SD) Median (R)

Animals 11.1 (12.8) 7.5 (49.4) 19.1 (9.6) 18 (39)
Clothes 17.6 (19.6) 11.6 (65.3) 17.9 (10.2) 17 (35)
Foods 8.7 (12.3) 2.2 (39.5) 21.3 (9) 21 (29)
Tools 13.7 (10.5) 10.8 (35.7) 16.9 (7.4) 15 (26)
All 12.8 (14.4) 7.8 (67.1) 18.8 (9.1) 18 (39)

Bi- and tri-syllabic words

SUBTLEX word frequency Nr. of phon. neighbours

Category Mean (SD) Median (R) Mean (SD) Median (R)

Animals 5.4 (12.8) 2.9 (18.7) 6.1 (5.5) 4 (21)
Clothes 2.5 (19.6) 1 (19.1) 5.8 (5.3) 3.5 (15)
Foods 2.9 (12.3) 1.9 (10.1) 3.6 (2.8) 3 (9)
Tools 5.1 (10.5) 5 (11.5) 8 (5.9) 7 (24)
All 3.9 (14.4) 2 (19.2) 5.8 (5.1) 4 (26)
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conducting a one-way repeated measures ANOVA on
the averaged naming latencies of each subject with
Semantic Category, Word Length and Phonological
Neighbourhood Size as independent variables.

MEG data pre-processing

Data were processed using MATLAB (Version R2021a)
and the FieldTrip toolbox (Oostenveld et al., 2011).
Data were epoched into segments from −100 to
1000 ms relative to picture onset. For response-
locked analyses, data were epoched into segments
of −1000 to +100 ms relative to speech onset. Inde-
pendent Component Analysis (ICA) was used to
remove ECG artefacts using the logistic infomax ICA
algorithm (Bell & Sejnowski, 1995), using the
EEGLAB implementation (Delorme & Makeig, 2004;
http://eeglab.org). Prior to decomposing the MEG
signal into components, data were band-pass
filtered in the 1–30 Hz range and down-sampled to
300 Hz. The topographies of the components were
visually inspected, along with their time course for
the first 40 trials, and the effect of removing the com-
ponents that were identified as containing artefacts
was checked. Samples contaminated by artefacts
due to eye movements, muscular activity and super-
conducting quantum interference device jumps
were replaced by NaN (not a number) to allow exclud-
ing those samples from further analysis.

Source reconstruction

We applied linearly constrained minimum variance
beamforming (Van Veen et al., 1997), to reconstruct
the sources of neural activity onto a parcellated corti-
cally constrained source model. To this aim, we com-
puted single-trial covariance matrices between all
MEG sensor pairs. The covariance matrices were
used in combination with the forward model to
obtain time courses of source activity at 8196 dipole
locations on template cortical sheet to generate one
filter per dipole location, co-registered to a template
using the Caret software (Van Essen Laboratory at
the Washington University School of Medicine) (Van
Essen et al., 2001), and down sampled to 8196
nodes using the MNE software (https://mne.tools/
stable/index.html; Gramfort et al., 2014).

Data were parcellated using an anatomical atlas
including 374 parcels (Schoffelen et al., 2017). For

each parcel, we performed a principal component
analysis on the dipole time series, and selected for
further analysis the first five spatial components that
explained the most variance in the parcel-specific
reconstructed signal. These parcels were used as
searchlights in the subsequent analyses.

Classification pattern analyses

Spatiotemporal multivariate pattern analysis (MVPA)
was used to assess whether the experimentally
manipulated stimulus features could be decoded
from the MEG reconstructed signals. The stimulus fea-
tures of interest were 1. Object Category, 2. Word
Length as quantified by the number of syllables,
3. Phonological Neighbourhood Density, 4. Place of
Articulation and 5. Word Frequency.

The object category variable coded for the four cat-
egories of animals, tools, foods, clothes, the word
length variable coded for short (mono-) and long
(bisyllabic and trisyllabic) words, the phonological
neighbourhood density variable was discretized into
four classes of approximately equal size (smaller/
small/large/larger). As such, decoding for the vari-
ables of interest constituted 4-way and binary classifi-
cation tasks.

Regarding place of articulation, since our study was
not initially designed for analysing this specific con-
trast, we focused on the categories of labial and
coronal sounds, which could be directly compared
to the study by Strijkers et al. (2017). Therefore, we
created two groups of labial (/b/, /p/,/f/,/v/ and/m/)
and coronal (/t/,/d/,/s/,/l/and/k/) phonemes, for
which the lips and the tongue are the respective
places of articulation (see Strijkers et al., 2017). A
third group included all other initial phonemes of
the test items. This led to a 3-way classification task.

To control for low-level visual confounds, we
decoded the object categories while accounting for
low-level visual features of the object images in the
estimation of the within-subject null-distribution of
the category classification (see below). We took the
following visual features into account: contrast, as
measured by the intensity contrast between a pixel
and its neighbours over the whole image (Corchs
et al., 2016), visual complexity, quantified by Edge
Density as the percentage of pixels that are edge
pixels (Rosenholtz et al., 2007; Forsythe et al., 2008).
These variables were discretized into two classes of
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approximately equal size (low/high). In addition, we
controlled for pixel information, following (Krieges-
korte et al., 2008). The stimuli images were first con-
verted to greyscale with value range discretized into
6 parts, and then down-sampled from 450 × 450
pixels to 10 × 10 pixels (with bicubic interpolation).
Each of the 100 resulting pixels was included as an
additional visual variable to control for during classifi-
cation-based encoding. By modelling indirect and
direct image key characteristics we controlled for
visual characteristics to a fair degree and reduced
the chance that visual information affects results
considerably.

Since we could not balance word frequency across
stimuli, we decoded the phonological variables (word
length and PND), and the articulatory variables, while
accounting for the word frequency of the items in the
estimation of the within-subject null-distribution of
the pattern classification of these variables (see
below). We also tested for the decodability of the
Word Frequency variable per se.

We trained a Gaussian naive Bayes classifier (Mitch-
ell, 1997), as implemented in the MVPA-light toolbox
(Treder, 2020) to detect the neurocognitive states
linked to conceptual and phonological/phonetic pro-
cessing stages in the MEG spatiotemporal patterns
during language planning. To evaluate classification
performance and to control for overfitting, repeated
stratified five-fold cross-validation was employed.
The data were randomly split into five equal folds,
ensuring the equal presence of classes in each fold
(stratification). The model was trained on four folds
and validated on the fifth fold. The process was
repeated five times, such that each fold was used for
validation. The entire cross-validation was furthermore
repeated five times with new randomly assigned folds,
to reduce bias that might be caused because of how
data were randomly partitioned into folds, and the
final averaged results are reported. To avoid classifi-
cation bias due to class imbalance in the class labels,
random under-sampling was applied to training and
test data, by discarding randomly selected samples
from majority classes until each class was represented
by an equal number of samples.

We quantified the decoding performance by
means of classification accuracy, which is the fraction
of correctly predicted class labels. The higher the
classification accuracy, the better response patterns
associated with the class labels can be determined.

For each parcel and time-point a classifier was
trained on source data of all vertices within that
parcel while concatenating across all time-points
within a sliding window of width 100 ms. To assess
whether classifier performance was above chance
performance, we estimated the chance level empiri-
cally, using permutations at the single subject level.
We repeated the classification testing after shuffling
the class labels, and recomputed classifier perform-
ance on the shuffled class labels to obtain a distri-
bution under the null hypothesis of exchangeability
of class labels (see e.g., Cichy et al., 2014; Cichy & Pan-
zatis, 2017; Isik et al., 2014; Kaiser et al., 2016). The
randomization of class labels for the number of sylla-
bles and the phonological neighbourhood density
classification was constrained to account for the fact
that the object category was not fully orthogonal to
the other features of interest. To this end, the ran-
domization of class labels was performed for each
object category separately.

We controlled for low-level visual confounds in the
classification of semantic object categories, by con-
straining the within-subject randomization procedure
(to obtain the subject-specific distribution for object
classification under the null hypothesis) to binned col-
lections of stimuli, where the bins were defined
according to the visual features of the images. For
the phonological and articulatory variables, the bins
were defined according to word frequency (low,
high). For statistical inference, we used non-para-
metric cluster-based permutation tests across space
and time (Maris & Oostenveld, 2007), using 2000 per-
mutations. The cluster-based permutation procedure
employs the same spatial neighbourhood structure
that was used in the classification searchlight pro-
cedure, clustering the selected samples (sensors,
time points) on the basis of spatial and temporal adja-
cency. The test-statistic used was a group-level T-stat-
istic against the empirical chance level using the
subject-specific Z-standardised decoding accuracy
scores. These Z-scores for each subject were obtained
by subtracting the mean accuracy obtained from 100
randomizations from the observed accuracy, and
dividing by the standard deviation across randomiz-
ations. The T-values we report in our results refer to
a one-sided T-test testing whether decoding is
better than chance. Therefore, negative T-values
would mean worse than chance decoding, which, by
definition, is not possible and led us to treat negative
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peaks as irrelevant. Two analyses were performed, and
are reported here. One analysis was based on the
onset of the picture (−100 + 1000 ms post picture
onset), and the other one locked to the onset of the
speech responses (−1000 + 100 before speech onset).

Results

Behavioural results

Table 2 reports the averaged RT and naming accuracy
per semantic category, as quantified based on sub-
jects’ actual responses during the MEG experiment.
Standard deviation (SD) and range (calculated across
items) are reported.

The one-way repeated measures ANOVA on the
averaged naming latencies of each subject with
Semantic Category, Word Length and Phonological
Neighbourhood Size as independent variables
revealed a main effect of Semantic Category (F[1,
32] = 12.626, p < .001), with the RT being slower for
Clothes (see Table 2).

Furthermore, we inspected whether Semantic Cat-
egory interacted with Word Frequency. As expected,
high frequency words (M = 0.821 s, SD = 0.085) were
named faster (F(1, 32) = 50.43, p < .001) than low fre-
quency words (M = 0.877 s, SD = 0.102). Importantly
though, there was no interaction of Word Frequency
with Semantic category, suggesting that the semantic
effects were not linked to word frequency.

Results from MVPA searchlight analysis in source
space

We here report the cortical activity locked to both
stimulus onset (picture presentation), and speech
response onset. Results from the spatiotemporal
searchlight analyses of MEG data in source space
pointed to different underlying cortical dynamics
associated with the semantic, phonological and
articulatory variables of the present study.

Figure 1 displays the cortical sources of neuromag-
netic activity at above chance decoding accuracy
(expressed as T statistics) for object categories relative
to stimulus onset (Figure 2(A)) and to response onset
(Figure 1(B)). We found that the four conceptual cat-
egories were distinguished within the first 200 ms
post picture onset in occipital, left posterior inferior
temporal cortex and fusiform gyrus.

As shown in Figure 2(A), the above chance cortical
activity for word length seen after while controlling
for word frequency showed a decoding effect in BA
44 and premotor cortex (BA 6), respectively within
the first 200 ms and the first 100 ms. Early effects
were also found in the results from response-locked
data (Figure 2(B)).

Decoding accuracy for phonological neighbour-
hood density showed early effects in BA 44, peaking
around 100 ms post stimulus onset in the stimulus-
locked data, as depicted in Figure 3(A). Only a
weaker effect (T = 1.8) could be found in the
response-locked results (Figure 3(B)). However, an
early effect present in motor regions around
−800 ms before speech onset (Figure 3(B)) was also
found in the results from the stimulus-locked analyses
(Figure 3(A)).

Turning to the Place of Articulation data, there
were no early effects in either stimulus- or response-
locked results (Figure 4(A, B), respectively).

A mixed pattern of results was also found for Word
Frequency, as this variable was decoded at relatively
late latencies (550 ms) in the stimulus-locked data
(Figure 5(A)), and early on (−600 ms) in the
response-locked data (Figure 5(B)), possibly due to
its role at multiple processing stages of word
production.

Discussion

We investigated the neural dynamics of language
production in an overt picture-naming task using
multivariate pattern classification analyses (MVPA) of
MEG data in source space to determine the cortical
regions supporting core word planning compu-
tations, such as conceptual preparation and phonolo-
gical/phonetic encoding, and the relative times of
their activation. Conceptual access was indexed by
category distinctions of our stimulus objects, whilst
word length manipulation and phonological neigh-
bourhood density targeted phonological/phonetic
encoding. In addition, following a reviewer’s sugges-
tion, we included the variable of place-of-articulation
of the target words’ initial phonemes.

We identified two distinct sets of cortical sources of
neuromagnetic activity linked to these different pro-
cesses. Relative to picture onset, object categories
were differentiated in bilateral occipital cortex
within the first 90 ms post picture presentation, in
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posterior inferior temporal cortex and fusiform gyrus
(BA 37), and in posterior middle temporal cortex (BA
21), within the first 270 ms post picture onset. After
controlling for visual confounds, the time course of
decoding in these regions was however consistently
found within the first 200 ms post-picture onset. We
found a relatively weaker but still prominent effect
of decoding accuracy for the semantic categories in
the response-locked analysis early on.

Turning to the phonological variables, an early
effect of decoding for word length became apparent
in the results from both stimulus-locked response-
locked analyses.

As for phonological neighbourhood density, we
found a transient effect of early decoding (around
150 ms post stimulus onset) in LIFG BA 44, which was
however weaker in the results from the response-
lockedanalyses, andaneffect inmotor cortex (BA4) con-
sistent between stimulus- and response-locked data.

Furthermore, the places of articulation of the initial
phonemes of the target items could be distinguished
from the first 200 ms from stimulus onset, and within
the first −800 ms before speech onset in the LIFG BA
44, premotor and motor cortex.

Word frequency could be decoded at relatively late
latencies (550 ms) in the stimulus-locked data.
However, this variable could be reliably decoded
early on (−600 ms), possibly because it affects
several early processes and was thus robust against
the temporal jitter.

The present set of results differs from the results
reported in Carota et al. (2022), due to obvious meth-
odological differences. The previous paper reports
decoding results in sensor space, whilst the current
one focuses on source space. Decoding accuracy is a

highly derived metric from the actual neural data.
When the features for the decoding are (spatial search-
lights of neighbouring) sensors, the sources that are
seen by those sensors may constitute slightly different
cortical territory as compared to when approximately
spatially overlapping cortical parcels are used for the
features. This being said, there was no apparent discre-
pancy with respect to the semantic category decoding.
The sensor level paper shows that, after controlling for
low-level visual features, effects in occipitotemporal
sensors in the earliest time window from 0 to 150 ms
were no longer present, and the decoding effects
reflecting access to conceptual category information
were found within the time window starting from 150
to 250 ms post-stimulus onset. Taking into account
the temporal resolution of the time courses in Figure
2 of the current manuscript, the results we report in
the present study, showing a decoding effect in occipi-
totemporal cortex within the first 200 ms for the object
category distinctions, are well consistent with the ones
in Carota et al. (2022). Importantly, regarding the pho-
nological/phonetic comparisons, the results we
reported here were based on analyses controlling for
word frequency effects, as suggested by one of our
reviewers. Such a control was not performed in the pre-
vious publication based on sensor-level data. Another
difference was that we here directly tested for the
effects of articulatory information. Therefore, the two
sets of results cannot be directly compared, and the
outcome of the two studies differs according to such
methodological choices.

Taken together, thepresent results confirm function-
ally and temporally dissociable neural events, in line
with earlier neurophysiological evidence (e.g., Hultén
et al., 2009; Laaksonen et al., 2012; for a review, see

Table 2. Averaged RT and naming accuracy values per semantic category, monosyllabic and dysillabic words (length), different groups
based on PND, Word Frequency, and articulatory differences.

Mean RT SE Mean RT SE

Category Animals 0.8311 0.0172 Word Freq Low 0.8783 0.0176
Clothes 0.8915 0.0177 High 0.8210 0.0148
Foods 0.8410 0.0177
Tools 0.8342 0.0148 Labial-Coronal Labial 0.8557 0.0140

Coronal 0.8504 0.0177
Length Long 0.8565 0.0157 Other 0.8280 0.0167

Short 0.8369 0.0156
PND Lower 0.8702 0.8702

Low 0.8346 0.8346
High 0.8452 0.8452
Higher 0.8302 0.8302

Notes: The analyses also revealed a main effect of Word Length on the RT (F(1, 32) = 7.34, p = .011), monosyllabic words (M = 0.838 s, SD = 0.098) showing a
faster RT than bisyllabic words (M = 0.855 s, SD = 0.092). Neighbourhood density also had a main effect (F(1, 32) = 7.09, p = .012), as words with a high
number of phonological neighbours showed a faster RT (M = 0.838 s, SD = 0.086) than those with a low number of phonological neighbours (M =
0.854 s, SD = 0.095).
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Munding et al., 2016; Carota et al., 2022; Levelt et al.,
1998; Liljeström et al., 2009; Maess et al., 2002; Salmelin
et al., 1994; Sörös et al., 2003; Vihla et al., 2006), and
testing for the reliability of electrophysiological signa-
tures of language production results (e.g., Ala-Salomäki
et al., 2021; Laganaro, 2017; Roos&Piai, 2020).However,
the present results also bring some evidence for early
processing of phonological/phonetic, and, possibly,

articulatory variables, which can be put in parallel
with the findings by Strijkers et al. (2017), thus raising
a number of interesting theoretical questions, some of
which we will raise below.

Concerning conceptual preparation, activity linked
to the visual recognition of the pictures and identifi-
cation of the visual objects visual processing started
in early visual cortex within the first 90 ms post

Figure 1. Object categories. A. Stimulus-locked data. Top panel. Cortical distribution (left hemisphere) of the above chance decoded
activity specific to the object category condition (after controlling for visual features, including pixel information: see methods).
Bottom panels: Time course of the above chance decoded activity in early visual cortex (left panel), posterior inferior/middle temporal
cortex and posterior fusiform within the first 180 ms post-stimulus onset. B. Response-locked data. Top panel. Cortical distribution (left
hemisphere) of the above chance decoded activity specific to the object category condition (after controlling for visual features,
including pixel information: see methods). Bottom panels: Time course of the above chance decoded activity in inferior/middle tem-
poral and frontal cortex linked to conceptual preparation before speech onset time.
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Figure 2. Word length. A. Stimulus-locked data. Top panel. Cortical distribution (left hemisphere) of the above chance decoded
activity specific to the word length condition after controlling for word frequency. Bottom panel: Time course of the above
chance decoded activity in the LIFG BA 44 and premotor cortex (BA 6), respectively within the first 200 ms and 100 ms post-stimulus
onset. B. Response-locked data. Left panel. Cortical distribution (left hemisphere) of the above chance decoded activity specific to the
word length condition. Right panel: Time course of the above chance decoded cortical activity in the LIFG BA 44 and the premotor
cortex (BA 6) before speech onset: effects can be seen from about −800 before speech onset.
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Figure 3. Phonological neighbourhood density. A. Stimulus-locked data. Top panel. Cortical distribution (left hemisphere) of the
above chance decoded activity specific to the phonological neighbourhood density condition, after controlling for word frequency.
Bottom panel: Time course of the above chance decoded activity in the LIFG BA 44, peaking around 100 ms post-stimulus onset and
motor cortex, showing low levels of above chance decoding accuracy overall. B. Response-locked data. Top panel. Cortical distribution
(left hemisphere) of the above chance decoded activity specific to the phonological neighbourhood density condition. Bottom panel:
Time course of the above chance decoded activity in the LIFG BA 44 with no effects before speech onset. In motor cortex, a transient
early effect was seen, around 800 ms before speech onset, which could not be seen in the stimulus-locked analyses.
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Figure 4. Place of articulation. A. Stimulus-locked data. Top panel. Cortical distribution of the above chance decoded activity specific to
the Place of Articulation condition, after controlling forword frequency. Bottompanel: Time course of the above chance decoded activity
in the LIFG BA 44, premotor and motor cortex. B. Response-locked data. Top panel. Cortical distribution (left hemisphere) of the above
chance decoded activity specific to the Place of Articulation condition. Bottom panel: Time course of the above chance decoded activity
in the LIFG BA 44 and motor cortex.
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Figure 5. Word frequency. A. Stimulus-locked data. Top panel. Cortical distribution of the above chance decoded activity specific to
word frequency in widespread brain regions. Bottom panel: Time course of the above chance decoded activity in the LIFG BA 45 and
43, with effects present within the first 600 ms post-stimulus onset. B. Response-locked data. Top panel. Cortical distribution of the
above chance decoded activity specific to word frequency in widespread brain regions. Bottom panel: Time course of the above
chance decoded activity in the LIFG BA 37 and BA 39, with peaks around −700 ms before speech onset.

COGNITIVE NEUROPSYCHOLOGY 311



picture onset, then spanning to occipitotemporal
cortex, posterior portion of the inferior and fusiform
gyrus (Contini et al., 2020; Proklova et al., 2019; Sima-
nova et al., 2010, 2014, p. 2015; Vindiola & Wolmetz,
2011). After controlling for visual confounds, we
however found effects withing the first 190 ms in
inferior/middle temporal and fusiform cortex, which
more genuinely reflected access to conceptual infor-
mation, thus fully in line with the time window start-
ing from 150 to 250 ms post picture onset, in which
previous results from analyses of the same data in
sensor space showed that object category differen-
tiation (Carota et al., 2022). Our data are then consist-
ent with previous findings suggesting that this set of
cortical regions enables the emergence of object
concept representations from visual input, supporting
the extraction of the basic-level visual features and
feature conjunctions that are necessary for object
meaning identification and discrimination in both
object naming tasks (e.g., Clarke et al., 2013), and
object comprehension (e.g., Carlson et al., 2014;
Cichy et al., 2014; Kietzmann et al., 2019).

Our results also point to an effect of object cat-
egory discrimination in the left posterior/mid-middle
temporal cortex, an area known to be functionally rel-
evant for the storage of lexico-semantic represen-
tations in long-term semantic memory (Fuster et al.,
2009; Hagoort, 2020; Turken & Dronkers, 2011), in
both language comprehension and production tasks
(Hagoort & Levelt, 2009; Indefrey, 2011). Furthermore,
this region has been shown to differentiate the rep-
resentation of different action and object categories
(action words, tool nouns) from non-action-related
categories (e.g., animals) (e.g., Carota et al., 2017),
and has being particularly important in the encoding
of taxonomic semantic relations between concepts
(e.g., relating “strawberry” and “cherry” based on
their shared superordinate node “fruit”, while differ-
entiating them from “swan” due to the different
superordinate node “animal” of the latter: see
Carota et al., 2021). In language production, the con-
ceptual content encoded in the posterior and mid
portion of the left middle temporal cortex becomes
essential for concepts-to-word forms mapping in con-
ceptually driven lexical selection (Indefrey, 2011).

Also, the time course of left posterior middle tem-
poral activity was consistent with the ERP results from
go-nogo response paradigms, which indicate N200
nogo responses at about 200 and 260 ms (e.g., Guo

et al., 2005) as markers of the upper temporal bound-
ary at which animal information becomes available.
Later latencies (around 300 ms) were reported by
Hanulová et al. (2011). These different time courses
of conceptual access are likely due to task demands
(e.g., decision to press a button or withhold the
button press), but also to the type of conceptual infor-
mation needed for a given stage. For instance, in the
context of object naming, early (around 120 ms)
influence of conceptual information has been
reported in ERP studies manipulating the complexity
of conceptual information associated with novel vs.
familiar objects and names, even if naming novel
objects produced later latencies relative to familiar
objects (Abdel Rahman & Sommer, 2008). Abdel
Rahman and Sommer (2008) propose that this is
even evidence for the role of conceptual knowledge
in perceptual analysis and object recognition.
Although the presence of semantic processing starts
early on, the type of conceptual information that is
relevant for lexical access (e.g., “fruit” or “inanimate”
for “cherry”) may become available at later times.
Even then, some semantic features, such as
“animate”, “animal”, may be essential for activating a
to-be-named target concept such as “dog”, and
more peripheral semantic information about a dog’s
“diet” (carnivore/omnivore) is activated later than
more core information about “size” (small/big)
before, without delaying lemma and word form retrie-
val (Abdel Rahman & Sommer, 2003). This suggests
that conceptual processing continues to run along
with subsequent language production stages (see
also Carota et al., 2021 for MEG evidence in sensor
space for synchronous processing). Indeed, the
results from response-locked analyses indicated that
conceptual categories could still be distinguished
close to speech responses.

In our present study, we also decoded the variables
associated with phonological encoding (word length)
and phonetic encoding (phonological neighbour-
hood density) at relatively early time windows. This
means that using a different methodological
approach, such as MVPA searchlights in source
space, we replicated earlier findings by Miozzo et al.
(2015), suggesting an early effect of such variables
(see also Fairs et al., 2021, for an early effect of phono-
tactic frequency). The present data likewise showed
later effects of such variables, as expected by the cas-
cading model of Indefrey and Levelt (Indefrey &
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Levelt, 2004; Indefrey, 2011), and call for further theor-
etical refinement of the earliness, simultaneity and
sequentiality of conceptual and phonological proces-
sing stages.

As for articulation, Strijkers et al. (2017) reported an
early effect of a place-of-articulation contrast (labial vs.
coronal) onset consonants in the time-windowof 160–
240 ms in the motor cortex. Following the suggestion
of a reviewer, we tested the decodability of the same
contrast on a subset of our stimuli starting with these
consonants. In the present data, this articulatory vari-
able could be decoded with higher accuracy in the
LIFG BA 44 and motor cortex close to response onset,
but we also found a weaker but persistent effect in
both regions at earlier time windows. An important
caveat is, however, that our study was not designed
for testing this specific contrast so that the results of
our post-hoc analysis should be treated with caution
and require, as we feel, further investigation.

Regarding our initial question about the relative
time courses of conceptual and phonological/pho-
netic processing, the results of our study suggest
not only that semantic categories can be decoded
from MEG source data early on (within the first
200 ms post picture onset), but also the phonologi-
cal/phonetic and, possibly, articulatory variables. The
late effect of the phonetic/articulatory variable is in
line with both sequential and parallel models: with
sequential models because phonetic/articulatory
information about a target word will only become
fully available for execution once lexical selection
and word form retrieval take place, and with parallel
models because they assume that the representation
of phonetic/articulatory information is rapidly acti-
vated after stimulus presentation but is activated for
being executed later on (Fairs et al., 2021; Strijkers &
Costa, 2016). Activation for execution is close to
what is also assumed in sequential/cascading
models, so that it is the question of an early initial acti-
vation of word form representations that is the main
discrepancy between sequential/cascading models
and parallel models, and that is why we were particu-
larly interested in replicating (or not) the early decod-
ability of phonological/phonetic variables.

To date, early effects of different variables have
been reported. Miozzo et al. (2015) used a phonologi-
cal variable combining word length and phonological
neighbourhood density. Strijkers et al. (2017) used a
place-of-articulation variable. Fairs et al. (2021)

manipulated phonotactic frequency and were able
to show interaction effects of this variable in the
same time windows as effects of word frequency in
both word production and comprehension. Although
in all these studies effects of word-form related vari-
ables were shown to arise simultaneously with
semantic or lexical effects and were characterized as
“early” the exact time windows differ. Whereas
Miozzo et al. (2015) and Strijkers et al. (2017) report
early effects from about 150 ms onwards, Fairs et al.
(2021) report effects in an even earlier time window
(74–145 ms). Given the variability in variables and
design, it remains to be seen which early effects
turn out to be robust. In our view, the most important
issue, however, is the question of how such early
word-form related effects can come about and what
they reflect. Some authors refer to these effects as
reflecting the activation or “ignition” of cell assem-
blies representing the target words (“word assembly”,
Strijkers & Costa, 2016). We believe, however, that it
needs to be specified more clearly what kind of stimu-
lus information is necessary and sufficient to activate
the assembly of the target word. With respect to their
earliest effect of phonotactic frequency Fairs et al.
(2021) say that “we do not believe the early effect
indexes item specific retrieval of the target word, for
which the TW between 186 and 287 ms seems a
better candidate…”(p. 11). The authors rather
suggest that their early effect reflects differential acti-
vation of sets of words rather than a single word. This
possibility is interesting and may provide a bridge to
sequential models also assuming activations of mul-
tiple candidates in perception (“cohorts” based on
initial phonemes) and production (activation of mul-
tiple concepts based on a picture). Sequential com-
prehension models indeed in some sense assume
parallel activation in the form of activation of seman-
tic information of multiple cohort candidates and
weighting cohort candidates according to their
lexical frequencies. There is less compatibility with
sequential/cascading production models because
they do not assume that word form information is
activated for every candidate concept. Even if one
assumes that early word form effects reflect acti-
vations of sets of words the problem remains to
specify what determines the “set of potential words
linked to the input” (Fairs et al., 2021) and why, for
example, the set of words can be different for a
high phonotactic frequency input word starting
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with /pl/ and a low phonotactic frequency input word
starting with /pl/, when in the time interval of 74–
145 ms certainly no more than those two phonemes
are processed.

This is something that, as we feel, deserves further
experimental investigation and theoretical refine-
ment in future work in the field.
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