
International Journal of Scientific and Research Publications, Volume 11, Issue 2, February 2021 444

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053 www.ijsrp.org

Real-Time Dynamic Fur and Hair Simulation using

Verlet Integration

Sachit Misra*

*Department of Computer Science, SRM Institute of Science and Technology

DOI: 10.29322/IJSRP.11.02.2021.p11053

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053

Abstract- Throughout the history of game development, the

physics behind the real-time hair simulation has continued to

pose a challenge due to lack of availability of computational

resources required by the system. Unlike rendering an animation,

where the requirement of real-time simulation is absent, game

hair physics needs more efficiency when it comes to utilization

of computational resources. Generally, for making a hair strand

mesh, a cylinder or a capsule mesh is an obvious choice despite

its requirement of a higher number of draw calls or resources.

This paper proposes the use of an innovative and highly efficient

use of quad polygons, whose normals face the render in

conjunction with the use of Verlet integration, which delivers

optimal results by keeping the frames per second (FPS) stable.

Additionally, the proposed physics also allows for physical

forces, such as gravity and wind, to affect hair movement as well

as simulate a natural curl in the hair strand.

Index Terms- Hair Simulation, Fur Simulation, Real-time hair

simulation, Hair movement, Verlet integration.

I. INTRODUCTION

air is one of the few areas where most game developers

struggle and have to make do by building a static textured

mesh on the character’s head, face or body which simply does

not look realistic. To enhance the experience of the observer and

adhere to the vision of the game character designer, it is possible

to write a module which imitates hair physics closely. Hair

simulation in an animation render gives a buffer time for

calculating the position of all hair strands to produce an after

render of the animation. On the other hand, video game hair

simulation is challenging since heavy computation is required in

real-time rather than an animation render. If hair simulation is

done in real-time with minimal computational requirements and a

reduced render time, it will aid to enhance the developer’s

capability in adding to the user experience.

3D hair physics was first displayed at the 1996 Tokyo Game

Show, where the viewers were pleasantly surprised upon

observing Aoi Umenokouji’s ponytail in Virtua Fighter 3 for

Sega's new Model 3 arcade system. Even though this was a huge

initiative taken by the company, it did not seem to have been

incorporated widely in the following years. For example, the

popular Assassin’s Creed franchise published by Ubisoft made

across different game engines has been using a static mesh for

hair till present day. The usage of hair physics escalated when

AMD’s TressFX and NVIDIA’s HairWorks were released in

2014 and 2015 respectively. But Indie developers have not been

able to fully embrace hair simulation softwares provided by these

graphics companies as the developers face difficulties in setting

up the environment because the process requires a 3D modeling

software and not all developers have prior knowledge of its

working. Furthermore, developers have to rely only on what is

within the scope of the presently available softwares and are

limited to only what they can offer. There are a few suggestions

that developers can benefit from if they build a hair algorithm

themselves. Firstly, they would be able to control the time

complexity as well as the memory that this feature required by

controlling specific aspects of hair simulation that they value in

the game. Secondly, the manipulation of hair physics and its

mechanism could be controlled by the developer. Thirdly, there

would be reduced reliance on third-party dependencies.

(Increased reliance on third party softwares can be problematic if

support is discontinued, the code changes drastically or in the

worst case, breaks). It is for these reasons that implementing this

algorithm would benefit the developer.

II. RELATED WORK

Most of the research done on hair simulation lies in three major

categories: volume-based, which relies heavily on shaders and is

GPU intensive, strand-based, which closely mimics the physics

of multiple hair fibers and is CPU intensive and hybrid-based,

which involves key hairs or wisps which direct the motion of the

strands around them while maintaining multiple volumetric

continuous meshes.

Volume-based approach is based on the observation that hair is

perceived to be a bulk material in its interactions with the

environment. The behavior of a hair body can be viewed as

collective material. This material is characterized by resilience to

shear and compression, and viscous damping. [11]

Strand-Based approach is simulating a single strand of hair as

opposed to a collective. Dynamic models capture credible strand

behaviors. The most common model used for simulating

individual hair strands is the mass-spring system. The mass-

spring system is used to simulate a hair strand which follows the

kinematic equations of a spring given by:

𝐹 = 𝐾𝑆 ∗ (𝑙 − 𝑙𝑒𝑛0) ∗ 𝑛𝑜𝑟𝑚(𝑒𝑖) + 𝐶𝑆 ∗ (𝑒𝑖+1 − 𝑒𝑖) ∗ 𝑛𝑜𝑟𝑚(𝑒𝑖)

H

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053
http://ijsrp.org/
http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053

International Journal of Scientific and Research Publications, Volume 11, Issue 2, February 2021 445

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053 www.ijsrp.org

Where, 𝑒𝑖 is the edge, the segment connecting every two points is

𝑒𝑖 = 𝑝𝑖+1 − 𝑝𝑖 where p is point and the length is l, 𝐾𝑆 is the

spring coefficient and 𝐶𝑆 is the damping coefficient. [8]

Verlet Integration modeling is another strand-based approach

which is highly effective and is used widely. Verlet Integration is

used to compute the movements of particles because it is more

stable than Euler integration with large time steps and does not

need to store particle velocities explicitly. The position of the kth

particle, 𝑃𝑘, is updated based on the previous two frames’

positions, 𝑃𝑘
−1 and 𝑃𝑘

−2, gravity acceleration, g, and wind force,

w, as follows:

𝑃𝑘 = (𝑃𝑘
−1 − 𝑃𝑘

−2)𝛥𝑡 + 𝑔∆𝑡2 +
|𝑤 × 𝑡𝑘|

|𝑤|
𝑤∆𝑡2

where w is a given wind force which has a direction and

magnitude. We assume that wind acceleration to each particle is

proportional to the angle between the hair direction (tangent

vector) 𝑡𝑘 at the particle and the direction of the wind force, w.

[10]

Hybrid-based approach aims to simulate hair by roughly

combining the aforementioned methods. The wisp and the

NURBS surface model falls under the hybrid method. [6] The

wisp model and hierarchical model of selectively subdivided

generalized cylinders are used to control the position and motion

of multiple hair strands following a key hair. In simulations

produced clustering methods, the group construction of hair is

often apparent.

Figure 1 : The elements defining the skeleton and the envelop of a wisp, and their

configurations [12]

Figure 1 shows elements defining the skeleton and the envelop of

a wisp, and their configurations [12]. Previous researchers also

studied the hair style and involve the statistical wisp model for

the hair style generation approach. The hair style is still denoted

by collision behavior between strands to maintain the realism of

3D virtual human or animal hair [2,4,5,14]. To improve

efficiency of the wisp model, the former part of the hair strands

are not simulated. [5]

A fourth approach relevant to the topic of discussion here is a

particle-based dynamic simulation technique. Since hair and

particle volume have some degree of connectivity, simulations of

smoke have been devised which can, in some cases, pass roughly

as hair simulations. Thus, a similar method can be used for

creating volumetric forces in the simulation of connected hair

particles. Taking the ideas from particle simulation, they can

produce hair strands by linking the particles easily. [1]

Studies have signified the importance for having hair-on-hair

collisions or interactions which has been studied by Hadap and

Magnenat-Thalman. They take a radical approach by considering

hair as a continuum. The continuum assumption states that the

physical properties of a medium such as pressure, density and

temperature are defined at each point in a specified region. [3]

III. METHODOLOGY AND EXPERIMENT

A. Location of hair root on mesh

The vertices in mesh model act as the origin of the hair root. The

mesh can be divided into areas where there is need for hair or fur.

The density of hair on the mesh model can be controlled through

a 3D modeling software, but an algorithm can be further devised

to control and optimize the hair density on the mesh to make it

developer friendly.

Algorithm 1: Hair Density Mapping

1

Load Mesh Data

Load Hair Data

From Mesh get Vertices Array v[]

From Hair get Hair root position Array hrp[]

Input: Number of Hair Strands n

if n ≠ 0 then

2 for i = 0 to length of v[] do

3 hrp[i] = v[i × (integer)(length of v[] / n)]

4 end for

5 end if

The instantiation of the hair roots depends on the number of hair

strands passed as an argument to the function. There have been

models that adopt surface sampling method based on quasi-

random numbers to position the hair root so that they have a

uniform distribution. [8] This requires a considerable amount of

computation at the first frame for instantiation. In Algorithm 1:

Hair Density Mapping, if the mesh is modeled ensuring

uniformity, the surface sampling may not be needed.

Furthermore, if the mesh that the developer is working with does

not have a satisfactory shape or uniformity, a new quad or a

sphere can be imported and subdivided to replace the unsuitable

mesh.

B. Hair/Fur Grain Mapping

Since the direction of the hair would always be pointing straight

outward from the mesh, it is reasonable to assume that hair

would be normal to the mesh. This is not always the case when

allowing for the natural hair grain pattern [7]. For the natural

grain of the hair/fur resting on the mesh, a point inside of the

mesh can be defined and projected as a ray passing through the

vertices to give a direction vector. The direction vector can be

computed as follows:

𝑣⃗ =
𝑏 − 𝑎

||𝑏 − 𝑎||

Where a and b are two points in 3D space, ||⋅|| denotes Euclidean

norm, and 𝑣⃗ is the direction vector.

This direction vector represents the direction of the hair

extending out of the vertex and is added as a constraint on the

hair. When external force vector is applied on the hair, the

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 11, Issue 2, February 2021 446

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053 www.ijsrp.org

motion of the hair is in the resultant vector direction of the

external force and the natural grain direction.

Figure 2: Hair grain projected from a centered point inside the mesh (left);

Wireframe of the rendered hair with hair grain (right)

Figure 3: Hair grain direction vectors (red) projected from an off-centered point

inside the mesh (left); Wireframe of the rendered hair with hair grain (right)

Figure 2 and 3 show hair grain projected from a centered point

inside the mesh (left); Wireframe of the rendered hair with hair

grain (right) and hair grain direction vectors (red) projected from

an off-centered point inside the mesh (left); Wireframe of the

rendered hair with hair grain (right) respectively.

C. Hair/Fur Physics Simulation

For physics simulation, Verlet Integration provides better

numerical stability, is efficient and easy to implement from the

standpoint of a developer. External physical forces like wind

drag and gravity can also be accommodated in this process. A

linearly interpolated (lerp) damping method is introduced to

represent a damping effect. Figure 4 below shows the

architecture of the hair strand in this study uses a

partitioned/segmented strand.

Figure 4: Hair architecture

Verlet integration is a solution to the kinematic equation for the

motion of an object which is given by:

𝑥 = 𝑥0 + 𝑣0𝑡 +
1

2
𝑎𝑡2 +

1

6
𝑏𝑡3 + ⋯ (…1)

For calculating the next time-step, a Taylor Series Expansion

about 𝑥(𝑡 ± 𝛥𝑡) yields:

𝑥(𝑡 + 𝛥𝑡) = 𝑥(𝑡) + 𝑣(𝑡)𝛥𝑡 +
1

2
𝑎(𝑡)𝛥𝑡2 +

1

6
𝑏(𝑡)𝛥𝑡3 + 𝑂(𝛥𝑡4)

(…2)

Where x is the position in 3D space, v denotes velocity of

segment, a is the acceleration, b is the jerk term, O is the error

value and t is the time.

And for the previous time-step, also yields,

𝑥(𝑡 − 𝛥𝑡) = 𝑥(𝑡) − 𝑣(𝑡)𝛥𝑡 +
1

2
𝑎(𝑡)𝛥𝑡2 −

1

6
𝑏(𝑡)𝛥𝑡3 + 𝑂(𝛥𝑡4)

(…3)

Solving equations (2) and (3) for 𝑥(𝑡 ± 𝛥𝑡) yields:

𝑥(𝑡 ± 𝛥𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − 𝛥𝑡) + 𝑎(𝑡)𝛥𝑡2 + 𝑂(𝛥𝑡4) (…4)

This implies that the value x or the next 3D coordinate is

independent of v. So programmatically, the values stored in the

previous frame are compared with the current frame to get the

coordinates without having to calculate the velocity of each

segment in a hair strand.

Verlet Integration describes the motion of hair simulation using

quad polygons, introduces a change in velocity and places some

constraints on the relative positions of the polygons to enhance

hair simulation considerably. The constraints [9] that are needed

in this process are:

 Damping forces determine the amount of time taken for

the hair to return to its mean position.

 Gravitational force, a direction vector, is a constant

acceleration in a particular direction vector.

 Hair grain amount is the extent to which the hair grain

affects the movement of hair.

 Wind speed adds a small random force value using

Perlin Noise to each hair strand for a smooth movement

multiplied by a direction vector.

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 11, Issue 2, February 2021 447

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053 www.ijsrp.org

The amount of elasticity of the hair can also be simulated by

Verlet Integration which can be closely compared to a mass-

spring model.

Figure 5: Implementation of Verlet integration in game engine

Figure 5 here illustrates the implementation of Verlet integration

in game engine. With Verlet Integration, each segment is linked

with the values of other segments, hence, this process reveals a

smooth looking inertial “string” like object. However, we

observe that while hair fibers do have physics that somewhat

represent a string, hair fibers in the real world have a natural

curve to them which is discussed in the next section.

For simulating fur, another parameter can be added which

controls the width of each strand. Empirically, it is observed that

fur strands are usually thick and tapering in width towards the

end of the strand. Having a start and an end width for each

segment inside a hair strand would require a lot of data to be

entered manually by the programmer. This problem can be

solved mathematically. There is a set start and end width that the

developer can alter. The developer feeds in the values that are

shared by all the strands. Each segment receives the value of the

width from the previous segment. This calculation can be

performed for all segments given by the experientially derived

formula,

𝑤𝑖 = 𝑤𝑛 − (
𝑤𝑛 − 𝑤0

𝑛
) 𝑖

where 𝑤0 is the start width, end width is denoted by 𝑤𝑛, number

of hair segments by n and hair length by l. The bottom segment,

which starts from the base width, has i = 0 which goes up to i =

n.

Figure 6: Fur simulation using Verlet integration on static ball (left) and rotating

ball (right)

Figure 6 shows fur simulation using Verlet integration on static

ball (left) and rotating ball (right). Another interesting dimension

of realism, a random additional length and width parameter can

be added along with another feature to cap the root vertices to

make them smooth. This feature will simulate realistic fur.

Increasing the starting width, 𝑤0, will not only visually increase

the hair density, but also decrease the time taken to render the

frame, as the relatively thicker hair strands occlude the thinner

ones behind them from the renderer.

Figure 7: Straight long hair strands simulated with Verlet Integration in a shaded

mesh geometry (left) and wireframe (right)

Figure 7 shows straight long hair strands simulated with Verlet

Integration in a shaded mesh geometry (left) and wireframe

(right).

D. Replicating the natural curl

A hair strand of any origin curls naturally in a particular direction

most of the times. These curls are caused by the asymmetrical

forces exerted on the fiber by the hHa8 keratin produced in the

body. These symmetrical forces may be produced by the shape of

the follicle and the amount of keratin coated on the hair. This

irregularity can be programmatically introduced in the generated

hair strand as a force. Most of the observed isolated hair strands

lie in three categories namely; straight, wavy and curly. A

straight hair strand would have no asymmetrical forces acting to

give a natural curvature, whereas a wavy or a curly hair would

have this asymmetry to varying extents along the edges.

Using trigonometric functions, we can introduce a curve in the

hair. The hair strand is made up of multiple segments that are

interconnected. A variable force can be applied to each

successive segment in a hair strand. The force on each hair

segment is determined by a trigonometric function and the

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 11, Issue 2, February 2021 448

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053 www.ijsrp.org

strength of the effect is variable and controlled. When the applied

strength is increased, the hair strand starts taking the shape of the

function more accurately and stiffly. For the hair to form a

complete circle the parametric equation a circle can be applied in

the form of an algorithm.

Algorithm 2: Natural Hair Curve

1

Load Hair Data

From Hair get Hair segment Array hs[]

Input: Curve Strength Multiplier position vector c

for i = 0 to length of hs[] do

2 x coordinate of Segment start point += sin(c.y×i) + cos(c.z×i)

3 y coordinate of Segment start point += sin(c.z×i) + cos(c.x×i)

4 z coordinate of Segment start point += sin(c.x×i) + cos(c.y×i)

5

6

 hs[i] = Segment start point

end for

The above algorithm needs to be offset by the local position and

rotation initialization. This offset integrates the simulation with

the game engine in a neat way, since the trigonometric functions

will always have fixed values and would not account for the

initial positions.

Figure 8: Zero gravity simulation of 100 strands of straight hair (extreme left);

wavy hair (middle); curly hair (extreme right) on a sphere

Figure 8 shows Zero gravity simulation of 100 strands of straight

hair (extreme left); wavy hair (middle); curly hair (extreme right)

on a sphere.

IV. RESULT AND DISCUSSION

From the aforementioned algorithms, a complete visual

representation of hair can be achieved with a relatively less CPU

intensive simulation.

As the number of hair strands increase, the load on the CPU also

increases with a higher chance of it causing a bottleneck. This

causes the hair simulation to retard and be visually glitchy. Table

1 shows geometrical data of the simulation based on the amount

of hair strands and segments generated. The algorithms presented

in the paper can be very easily combined and a hair simulation

model can be created on any game engine. C# programming

language in Unity3D offered by Unity Technologies has been

used for all simulations provided in this paper.

Number

of strands

(s)

Number of

segments per

strand (n)

n×s Vertices

(including 10.3k

vert main mesh

model) unlit

100 4 400 11.1k

500 4 2000 14.3k

1000 4 4000 18.3k

2000 4 8000 26.3k

4000 2 8000 26.3k
Table 1: Geometrical data with defined variables

Figure 9: Output of hair simulation algorithms on a scalp containing 112k

vertices having 10k hair strands

Figure 9 is the output of hair simulation algorithms on a scalp

containing 112k vertices having 10k hair strands with a varying

number of segments per main divisions (Top, Sides and Back) in

the scalp mesh. These can be performed on any mesh which

implies that the hair grain can be adjusted to different parts of the

sub-divided scalp mesh. In addition, to improve the appearance

of the hair strands, a texture can be applied with a directional

shader which can simulate real-time global lighting on to the hair

strands. There are a few more extensions and applications as to

what the above-mentioned algorithms are capable of on a game

engine. For example, a linear string of hair strands can be

interconnected horizontally to form a cloth. Real-time grass can

also be simulated. For this, a grass texture can be applied on a

plane, and the width of each strand can be increased to

accommodate the texture. This results in a grassy texture

covering a terrain mesh. Since quad used for a terrain mesh will

typically contain only four vertices and two triangles, the terrain

mesh should be sub-divided to ensure there are enough roots for

the grass. Figure 10 shows a wireframe of the terrain and grass

blades containing 1000 hair strands with 4 segments having a

total of 10.3K Tris (left) and rendered hair strands with grassy

texture (right).

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 11, Issue 2, February 2021 449

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053 www.ijsrp.org

Figure 10: Wireframe of the terrain and grass blades containing 1k hair strands

with 4 segments having a total of 10.3K Tris (left) Rendered hair strands with

grassy texture (right).

Figure 10 here shows a wireframe of the terrain and grass blades

containing 1k hair strands with 4 segments having a total of

10.3K Tris (left) Rendered hair strands with grassy texture

(right). Since Unity3D has been used for the development of this

simulation, it can be integrated into augmented and virtual reality

applications with minimal changes. This project can be exported

as a module which can additionally help indie developers with

character design/terrain design as this is highly scalable and

customizable. Post-processing features, for instance, anti-aliasing

can be used on hair strands to reduce the serrated appearance.

Another aspect to enhance this model is the use of shaders. A

semi-transparent shader would be required on each hair strand

and that texture would be continuous through all the segments in

the hair. This texture can either be tiled or stretched throughout

the length of the hair. There are still more flexible options that

the developer can use for mapping a texture to the strand when

using a shader.

A drawback worth mentioning in these algorithms is that they do

not account for hair-on-hair collisions, static friction or cohesion

and, therefore, there is interpenetration in hair strands. However,

empirical observations show that hair-on-hair collision

calculations do not make a huge impact on the visual appearance

of the simulation, but they do get pronounced when viewed up

close. [13]

V. CONCLUSION

In this research, a practical solution on the game engine

Unity3D is proposed to carry out a realistic looking real-time hair

simulation. This technique could be employed by game

developers to create realistic straight, long, short, curly and

wavy, wet or dry hair without the model taking a toll on the CPU

resources. Although, if the number of strands are excessive, it

could cause a bottleneck in the simulation. As a suggestion for

future research, the technique could include clump of textured

hair with pre-defined collision bodies, rather than having strands,

to speed up the process even further. The head model could have

a provision for inverse kinematics as a part of the hair rig and

also include bones. A valuable addition to this model could be

inclusion of collision in between hair strands to add depth to the

realism of this simulation.

APPENDIX

This project has been uploaded on Github

(https://github.com/SachitMisra/Real-Time-Dynamic-Fur-and-

Hair-Simulation-using-Verlet-Integration) and is under review in

the Unity Asset Store and will retail free of cost in support of

open source research.

ACKNOWLEDGMENT

Unity v2019.1.1f1 offered by Unity Technologies was used for

this simulation. The researcher is thankful to printable_models

from free3D.com for providing the Australian Cattle Dog model

and textures and 3dtextures.me for the grass and concrete texture.

REFERENCES

[1] Choe, B., and Ko, H.-S. 2005. A statistical wisp model and
pseudophysical approaches for interactive hairstyle generation. IEEE
Trans. on Vis. and Comput. Graph. 11, 2, 160–S170

[2] D. Patrick, S. Bangay, and A. Lobb, Modelling and rendering techniques
for african hairstyles, in Proceedings of the 3rd international conference
on Computer graphics, virtual reality, visualisation and interaction in
Africa. ACM Press, 2004.

[3] Hadap, S. and N. Magnenat-Thalmann (2001). "Modeling Dynamic Hair
as a Continuum." Computer Graphics Forum 20(3): 329-338.

[4] Han, D. & Harada, T.. (2012). Real-time hair simulation with efficient
hair style preservation. VRIPHYS 2012 - 9th Workshop on Virtual
Reality Interactions and Physical Simulations. 45-51.
10.2312/PE/vriphys/vriphys12/045-051.

[5] Jung, S. and S.-H. Lee, Hair Modeling and Simulation by Style.
Computer Graphics Forum, 2018. 37(2): p. 355-363.

[6] L. Chen, S. Saeyor, H. Dohi, and M. Ishizuka, A system of 3d hairstyle
synthesis based on the wisp model, The Visual Computer, 1999.

[7] Landauer, W. (1925). On the Hair Direction in Mammals. Journal of
Mammalogy, 6(4), 217-232. doi:10.2307/1373408

[8] Li, L., Li, R., & Yu, J. (2016). A mass spring based 3D virtual hair
dynamic system for straight and curly hair. 2016 35th Chinese Control
Conference (CCC). doi:10.1109/chicc.2016.7554457 W.-K. Chen,
Linear Networks and Systems (Book style). Belmont, CA: Wadsworth,
1993, pp. 123–135.

[9] Müller, Matthias & Kim, Tae & Chentanez, Nuttapong. (2012). Fast
Simulation of Inextensible Hair and Fur. VRIPHYS 2012 - 9th
Workshop on Virtual Reality Interactions and Physical Simulations.
10.2312/PE/vriphys/vriphys12/039-044.

[10] Oshita, M.(2007) Real-time Hair Simulation on GPU with a Dynamic
Wisp Model. Computer Animation and Virtual Worlds, Vol. 18, Issue 4,
Wiley, 2007. International Conference on Computer Animation and
Social Agents 2007 (CASA 2007). June 2007. Belgium

[11] Petrovic, L., M. Henne and John Anderson Pixar. “Volumetric Methods
for Simulation and Rendering of Hair.” (2006).

[12] Plante, Eric et al (2002). Graphical Models (GMOD), Volume 64,
Number 1, page 40-58.

[13] Poyart E., Faloutsos P. (2010) Real-Time Hair Simulation with
Segment-Based Head Collision. In: Boulic R., Chrysanthou Y., Komura
T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer
Science, vol 6459. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-16958-8_36

[14] Z. Xu and X. D. Yang, V-hairstudio: an interactive tool for hair design,
IEEE Computer Graphics & Applications, vol. 2001.

AUTHORS

First Author – Sachit Misra, 2nd Year Computer Science

Engineering, SRM Institute of Science and Technology,

sachitmisra01@gmail.com

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053
http://ijsrp.org/
https://github.com/SachitMisra/Real-Time-Dynamic-Fur-and-Hair-Simulation-using-Verlet-Integration
https://github.com/SachitMisra/Real-Time-Dynamic-Fur-and-Hair-Simulation-using-Verlet-Integration
mailto:sachitmisra01@gmail.com

International Journal of Scientific and Research Publications, Volume 11, Issue 2, February 2021 450

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053 www.ijsrp.org

http://dx.doi.org/10.29322/IJSRP.11.02.2021.p11053
http://ijsrp.org/

