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ABSTRACT. In this study, we investigate various deformations within the frame-
work of Bondi-van der Burg-Metzner-Sachs invariant field theory (BMSFT).
Specifically, we explore the impact of Bondi-van der Burg-Metzner-Sachs
(BMS) symmetry on the theory by introducing key deformations, namely, 77,
JT,, and VTT deformations. In the context of generic seed theories possess-
ing BMS symmetry, we derive the first-order correction of correlation functions
using the systematic application of BMS symmetry ward identities. However,
it is worth noting that higher-order corrections are intricately dependent on the
specific characteristics of the seed theories. To illustrate our findings, we select
the BMS free scalar and free fermion as representative seed theories. We then
proceed to analytically determine the deformed action by solving the nontrivial
flow equations. Additionally, we extend our analysis to include second-order
deformations within these deformed theories.
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1 Introduction

The holographic principle, foundational in quantum gravity [1,12]], reshapes our under-
standing of spacetime, black holes, and the universe, particularly through the anti-de
Sitter/conformal field theory (AdS/CFT) correspondence [3H5]. This correspondence un-
ravels the intricate relationship between quantum gravity properties and boundary field
theory. Renormalization group (RG) flow in the boundary field theory provides insights
into quantum gravity’s behavior across energy scales. We focus on investigating marginal
and irrelevant deformations using the double-current construction.

For irrelevant deformations, computational challenges arise due to an infinite number
of operators at a fixed point, necessitating an infinite number of counterterms. Solv-
able classes of 2D spacetime irrelevant deformations, such as 777" [6-8] and JT [9] for
U(1) current-conserving seed theories, present exceptions. The .J7), deformation [10]
generalizes JT. RG flow analysis shows these deformations lead to high-energy scales,
disrupting seed theory symmetries. Symmetries of 7’7", JT, and JT}, deformed CFTs are
explored in [11]]. In addition, 77 and J T,, deformations serve as probes for seed the-
ory’s ultraviolet (UV) behavior. Marginal deformations, like root-7'T [12,[13], arise from
a finite number of operators. Exact marginal deformations maintain symmetries, though
perturbative methods introduce deviations, discussed in sections 4| and Throughout
RG flows, these deformations impact quantum gravity in the bulk through the AdS/CFT
correspondence [14-22]].

To further understand quantum gravity, efforts extend the AdS/CFT correspondence
to flat holography [23-34]. Recent studies indicate two approaches for flat holography,
both centered on the BMS group in asymptotically flat spacetime (AFS) [35-37]].

The first flat holography approach, celestial holography, establishes a connection be-
tween 4D asymptotically flat spacetime (AFS) quantum gravity and a 2D conformal field
theory (CFT) on the celestial sphere at the null boundary Z* [38-44]]. This celestial CFT
incorporates irrelevant or marginal deformations, extending and enriching the celestial
holography framework. Co-dimensional two celestial holography applies 2D irrelevant
deformations to 4D quantum gravity, potentially constructing UV-complete theories of
general relativity [45]. Double current marginal deformations in celestial CFT corre-
spond to loop corrections in 4D AFS scattering amplitudes, impacting the moduli space
of bulk vacua [46], providing precise holographic dictionaries.

The second approach, co-dimension one Carrollian holography, proposes a duality
between quantum gravity in AFS and a Carrollian conformal field theory on the null
boundary [47,48]. This duality can also be observed through limits in the AdS/CFT
correspondence, where the transition from AdS to Minkowski spacetime, i.e., infinite
radius, corresponds to the limit of zero light velocity (¢ — 0) in the CFT [49,150]. This
limit gives rise to a Carrollian CFT or a BMS-invariant field theory (BMSFT). The ¢ — 0



limit is also known as the ultra-relativistic (UR) limit. The details of re-deriving BMSFT
from UR limit are presented in Appendix [Al Further investigations into the connection
between Carrollian and flat holography are discussed in [S1-359].

Given the interconnected nature of various flat holography approaches [60-62]], our
study delves into the impact of irrelevant or marginal deformations, adopting a Carrollian
perspective. Correlation functions, pivotal observables in quantum field theories, are the
focal points we focused on. Aiming to maintain simplicity and clarity, our examination
focuses on the 2D BMSFT as the seed theory, known for its foundational role in flat
holography. Specific deformations, such as 7T, .J T, and VTT, well-defined in Lorentz-
invariant quantum field theories, form the basis of our exploration.

Notably, extending these deformations to the relatively unexplored realm of BMSFT
becomes a central objective. Drawing inspiration directly from previous studies [63-68],
we directly define deformations on BMSFT using the same framework as deformations
on 2D Lorentz-invariant quantum field theories. The deformations can also be defined
by leveraging the UR limit on Lorentz-invariant quantum field theory definitions. Our
proposed approaches to defining deformations within the Carrollian structure are eluci-
dated, with potential equivalence between them suggested by the findings presented in
Appendix [Bl These results offer valuable insights into the compatibility and interchange-
ability of the two proposed methods, shedding light on the nuanced relationship between
deformations and the Carrollian structure in the context of flat holography.

The paper is structured as follows. In Section 2] we offer a comprehensive review
of the seed theory BMSFT, encompassing an overview of the operator product expan-
sions (OPEs) between the conserved currents and the primary operators. Moreover, we
present the non-vanishing correlation functions constructed by these primary operators.
Moving on to Section[3] we introduce and define the T, J T,, VTT deformations for 2D
BMSEFT. We then proceed to perturbatively calculate the first-order correction of these
deformations on the correlators in a generic form. To observe the flow effect, achieving
accuracy up to at least the second order becomes necessary. Therefore, we apply these
deformations to specific examples: the BMS-invariant free scalar model in Section 4l and
the BMS-invariant free Fermion model in Section [5l In these two sections, we provide
the all-order corrected Lagrangian for the 7T, .J T,, and VTT deformed theory. We then
proceed to compute the higher-order corrections of the deformed correlation functions
systematically.



2 2D BMSFT

2.1 BMS; algebra

The 2D BMSFT is a kind of quantum field theory which is invariant under the following
local BMS transform

z— f(z), y— f(x)y+g(x), (2.1)

where = denotes space while y denotes time, and f(z), g(x) are the local dilation and
local boost respectively, which can be expanded near z = 0 as

f(z) = Z apa™tt, g(w) = Z bzt an, by € R (2.2)

neZ neZ

The transform (2.1)) can be generated by the following BMS generators [69]
L, = —2"(20, + (n + 1)yd,), M, =—z""10,. (2.3)

By central extension, the algebra of BMSFT should be

(Lo, Ln] = (1 — 1) Ly + %(ﬁ )i,
(L Mp] = (0= 1) My + 22 (0" = 1) 1m0, (2.4)
[an Mm] = O>

which refers to BM S5 algebra, equivalently, the 2D Galilean or Carrollian conformal
algebra (in short, GCA or CCA). This algebra can be derived from UR limit, see appendix
Suppose the action is invariant under transformation (2.1)), the components of stress
tensor should satisfy [59]

7,=0, T¢ =0. (2.5)

Y

Therefore the components of stress tensor are defined as

T = (J\g _?\4) . T =1L+yd,M, (2.6)

where 1", M are Noether current of the translation symmetry along x, y respectively [69].
Then the conservation law ¢, ", = 0 yields

o,L =0, J,M=0. 2.7
Therefore the components can be expanded as

L=) L™ M=) Ma "> (2.8)

nez nez



Then by using the algebra (2.4)), the OPEs between the components of stress tensors can
be obtained as !

2L(x) N %L(m)

2@ -3 (@ —%)2 ¥ -7

M(x"YM(z) ~ 0,

(2.9)
L' )Mz) ~——=<7+ =~ =5+ ==
(@) M(x) 2@ =) (-7 T -2
The T'M-OPE can be simply obtained by using their relation 7" = L + yo, M
CrL 2T(l’, y) axT(xv y)
T(a',y)T(2,y) ~ e T
(@', y)T (2, y) i T T
2wy —y) AW M) (¢ —y)aM@)
(" —Z)° (@ —2)° @ -2)?2 7 (210

T( ) M () ~M (&) T, ) ~ —M_ 4 2M@) | M)

2@ -3t (@ —a32 ¥ -7

M(2')M (z) ~O.

2.2 Highest weight representation

In this subsection, we discuss the highest weight representation of 2D BMSFT. Since
the BMS algebra can be obtained by UR limit from Virasoro algebra, it is straight-
forward to borrow the highest weight representation from 2D CFT by using UR limit.
This representation in BMSFT is referred to as the induced representation [70], which is
unitary. Note, however, that the induced representation is not the highest weight repre-
sentation of 2D BMSFT, which can be derived parallelly as that of 2D CFT. In this way,
the Hilbert space of 2D BMSFT can be decomposed into the BMS module of as

H=> Hae, 2.11)
A

where A, £ are eigenvalues of Lg, M respectively. The requirement to the primary opera-
tor defined on origin O = O(0, 0) in each block can be derived by using the state-operator
correspondence

[L,,0] =0, [M,O]=0 n=>0. (2.12)

Unfortunately, it turns out that the Kac determinant for the highest weight representation
of 2D BMSFT with non-zero boost charge is negative [71]], which indicates that the high-
est weight representation of 2D BMSFT is not unitary. Therefore, even though L, M,
are commutative with each other, they may not be diagonalizable in the same module

! Here is some ambiguity we should remark. While implementing integration, = should be recovered as
z by the UR limit. Namely, ¢ — ¥ = z + iy, which belongs to the complex plane. Fortunately, this is
equivalent to the radial quantization and analytical continuation from cylinder to plane [69]. That is why
Wwe can use to derive OPE.



simultaneously. This will form a novel “multiplet” structure of primary operator which
shares a similar feature as logarithmic CFT [72H79]]. Then the eigenvalue of Ly, M, can
be read off as

[Lo, Ou) = AO,, [My, 04 = (£O0)s, a=0,---,r—1 (2.13)

where the rank T’H is the number of primary operators in the same module that are related
to each other, and the matrix £ can always be chosen as Jordan form

£
£ = ! f . . (2.14)
. 1. g
The operators on arbitrary position can be evolved by U = e*l-17¥M-1 a9
Ou(z,y) = UOL(0,0)U (2.15)

Then the transform of primary operators will be derived by using the Baker-Campbell-
Hausdorff (BCH) formula

[Ln: Oa(,y)] = [2"F10, + (0 + 1)a"yd, + (n + 1)(z"A + na"'y€) | Ou(, y),
[My, Oa(z,y)] = [2"T 0y + (n+ 1)2"€] Oy, y). (2.16)

Similarly, the OPEs between primary operators and stress tensors can be derived as

A a 2 -y : a 3m a —y')0 a
T(x',y')Oa(x,y)~ . O + (y y)(£ O) +: O (y y)OyO

(@ —7)? (@ —1)3 P (@ —7T)?
, (€-0). . ,0. @17
M(&)Ou(z,y) ~o Do | @

(@ -7 -7

where we substituted 7 for z, see the relevant discussion in footnote This matches
with the OPEs derived from [59]. The OPEs can also be derived from the UR limit, see
appendix [A.2

2In particular, the rank-1 multiplet of primary operators refer to as singlets, which is denoted as ©. They
form the singlet version of highest weight representation [70].



2.3 2D non-Lorentzian Kac-Moody algebra

The non-vanishing commutators of 2D non-Lorentzian Kac-Moody (NLKM) algebra are
[57]

[Ls Lin] = (m = 1) Ly + 2 (m® = )y n0:

12
[Lins Mu] = (1m0 = 1) My + 22 (00 = )0

[Lm7 JZ] = _nJﬁLJrnv [Lm7 Ka] = _an%an [Mm7 Jﬁ] = _nK;’II’L+7L7 (2.18)
[Ja, J2] = iF®Je,  +iGY K +mkid0®0m no,

[Jo, KD = iF™ KE . + mkad™6p 0,

where we sum over the double index ¢, and the first two lines are exactly the CCA (2.4)
derived in previous subsections, indicating that the subalgebra of NLKM is the BM S5
algebra. The NLKM algebra can also be derived from Virasoro Kac-Moody algebra by
taking UR limit, see appendix Furthermore, the NLKM algebra can be intrinsically
derived from the conserved Kac-Moody current with the following form

J* = (Jg(cla _J;)a (2.19)
where
=N ek ge= Y [J;; ~(n+ 1)%{;] . (2.20)
x
neZ neZ

The OPEs between the current and the primary operators are [S7]]

F-O(x,
To(al 4O, y) ~ 1700,
(2.21)
af ! ga .y Fe-0 )
Jo (@', y)O(x,y) ~ ﬁ i(y —y)r%?,

where G, F are two independent operators acting on fields, which denote the variation of
the fields under the infinitesimal NLKM transformation.

2.4 Correlators

2.4.1 Correlators of singlets

Since the vacuum is invariant under the global BMS symmetry, the two and three-point
function of primary operators can be fixed as

(Xs) = (O1 (w1, 91)Os(3, y2)) = NOay 2,06, 5 |112] 216 20013 (2.22)

3Note that the upper index p of the current % is raised by €*¥. Precisely, we have j* = e** J¢, This

depends on the structure of Newton-Cartan geometry [80], see also the review in [81]
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(X3) = (O1(21,y1)O2(22,y2) O3(x3,y3))
Y12

“ Ao — Ao _A. Y31 Y23
= Cro3|T10| 712 D3| T2 2y | A“QGXP( 51231,—12 —fgmx—31 _62311’—23) . (2.23)

where N is the normalization factor, cjo3 encodes dynamical information of BMSFTs,
and

Tjj =Ty — Ty, Yij = Yi — Y5 Aijk =A; + Aj — Ay, @'jk =&+ 53’ — & (2.24)

Moreover, the four-point function of primary operators can be defined up to an arbitrary
function

(Xy) :<Ol(171, Y1) O2(x2, Y2) O3(x3, Y3) Os(T4, Ys))

& Yi gz
_H|$ |Zk 1 ik Bexp (x] Z ?Zk) f(x,)),

1<j Y k=1

(2.25)

where the following defined cross ratios are invariant under the global BMS transform

L1234
X = , V=== = (2.26)
T13T24 X112 X34 x13 To4

2.4.2 Correlators of multiplets

Things will become more complex than singlet primary operators. For two and three
functions, we have

0, ¢g=a+b+1—-1r; <0,

Oz’a xy, Ojp(x ) =
< ( 1 yl) ]b( 2 y2)> 5@'jNi|$12|_2AZ€ gli 1' (_21/_12

z12

i 2.27)
>q ) qi = 07

(0i040kcy = A B Cy, (2.28)

where N, is the normalization factor and

Y12 Y31 Y23
A =exXp (_fijkxl gkm Sjkz ) )

=|$12|7A123 o |5631| Aaz, (2.29)

ni, n2, n3
T DT A
zyk Cijk n1!n2!n3!7 Di ¢ 108 A.

n1=0n2=0n3=0

3 Deformations for the 2D BMSFT

We will now discuss the effect of irrelevant and marginal deformations on the BMSFT.
As we have introduced before, little is known about how to define deformations acting

9



on BMSFT. Therefore, in this section, we will generically implement the definitions of
irrelevant and marginal deformations to the seed theory 2D BMSFT. Specifically, we will
discuss 77T and J7T), for irrelevant deformations and VTT for marginal deformation. As
we will see, the first-order correction to both correlators and the Lagrangians or actions
are all universal and are not affected by the flow of deformations. Our primary concern is
where the seed theory will be flowed by these deformations. The flow effect will be re-
flected in the higher-order corrections, which, unfortunately, are not universal and depend
on the concrete seed theory. As a generic introduction to show the universal properties of
the deformed correlation functions without knowing the fields, we will mainly focus on
the first-order correction of these deformations in this section, while the non-universal, or
higher-order corrections will be concerned in the next sections.

3.1 TT deformed BMSFT

The TT deformed action for BMSFT, which is a non-relativistic field theory, can be
defined in a similar way as that for CFT, namely

Oy SIN = A dedyOTT, Opp = detT", SN [®,0,0] = fdxdyﬁw. (3.1

Perturbatively, each quantity can be expanded as a Taylor series by the power of A

n © n % n
A — Z A O T,;[A] _ Z )‘_Tu(n)7 S — Z )‘_S(n)7 (3.2)

|
n=1 n: n=1 """ n=1

where S = Sda:dyﬁ(”). Then each order of deformed Lagrangian satisfies the follow-
ing recursion relation [82

n

n 1 7 1) v(n—i i) v(n—i
L n+1) :QZCH (T/L( Jrn=i _ il )Tu( )) :

(;Z? : (3.3)
T = 0, — LM =12,
2(0,®)
The 7% is defined in (2.6). Sometimes 74" = 2£9 5 ¢ — 6" L£O) without the EoM

200,9)
of ﬁelds is in the same form as 7% © defined in 2.6). In this case, the expression of
T"™ above can be formally extended ton = 0,1,2,---. We will show this in section
4l Generally, without the EoM of fields, T’J( is not in the same form as T‘,‘,(O), then
the T‘f,(") in the above equation should not include n = 0, and the EoM of fields should
be implemented after finishing the computation of all order corrections of the deformed

*One can also refer to the recent systematic investigation [83] of the deformed correlation function
which is independent of detailed data of the seed theory.
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Lagrangian. We will see this in section 5l The deformed correlation function can be
derived from the path integral definition as

[P0 X, e (X, )
[ DPe—SM RS

Therefore, the deformed correlators can be computed order by order

(Xl = 68 =S —3. (34)

0

_ )\TL N
O] = 24 X, (3.5)
where
(X)) =(Xpreo) = (X (3.6)
Xyt =(SWY (X, — (S X, 3.7)
2
(X2 = (SWSWX, 5 — (SWSDN (X, ) + (SPH (X, — (P X,

+2¢SMY (X)) —2(SMY (s X,) (3.8)

Note that (M*) = 0 for any integral k& > 0, since the M M OPE is zero. Therefore
the first-order correction of BMSFT correlators (3.7) can be derived as follows by using
un-deformed stress tensor defined in (2.6) and the recursion relation (3.3))

(X = J dzdy((MM)(z)X,,), (3.9)

where the integral range of (z, y) are all (—o0, o). Since the Ward identities between M
and primary operators are generic, the first-order correction of 7T deformed correlators is
universal. Meanwhile, since the first-order correction is based on the data in seed theory,
it does not contain the information on the flow effect, which will appear in the higher-
order corrections. However, the higher-order correction will not be universal anymore.
We will discuss this later. In this subsection, we only consider the first-order correction
to the correlators, which could be derived by using the Ward identity as

n _ N ¢ Oy, 3 0y,
(Xnyym = ;Jdmdy l@ =i+ ] l(’f ~Ey + 5 (X,).  (3.10)

Therefore we only need to deal with the integral with the following form

I = dedy l_["f (z(/%—_y%)')ai 7 (3.11)
i=1 ?

3 Another way to define the 7T deformation is to use the UR limit to borrow the definition from the 7T
deformation for Lorentz invariant field theory. At least, we can easily verify that the first-order correction
of these two definitions is almost the same, up to a constant, which can be absorbed to the coupling constant
A by redefinition. One may find the details in appendix [Bl

11



where f(y—y;) is an arbitrary function of the time direction y without poles. This integral
can be computed by attaching each operator to an arbitrary operator in (xy,yx), k €

{1’... ,n}

. an=—ZJ dyf(y — s §H —7 (3.12)
= 1 Ty

where all z; are all real numbers while the 1ntegral variable x is complex number, see
details in appendix [Cl Specifically, we will encounter the simplest case f = 1 for most
computations, such that

a1 er Z jk%l—[ Na: (313)
j=1 1= 1 Z

With all these preparations, the first-order correction can be easily computed as

; 1
Kolip = —2wi 2} o l_ b (60, + €,0,) + 0,0, [ (). (314)
ij

z;é] v

We should remark again that €, is a Jordan matrix acting on the i-th field of the correlator
(X, in the generic case, whose size depends on the rank of the multiplet primary fields.
Moreover, there still are some derivative operators ¢,,, which will have distinguishing
behavior depending on the different pole structures of the correlators in the seed theory.
The deformation will yield extra pole structures at the first-order correction level for the
correlation functions, which depend on the rank of the multiplets and the pole structure
of the un-deformed correlators. The extra pole structure might be complex, even though
the result seems simple. Therefore, it is worth computing some relevant specific
cases to detect these novel structures. To manifest them in the first correction level with-
out knowing the fields themselves, we only need to fix the rank of each field in (X,)
and we should know the pole structures of the un-deformed (X,,). Specifically, in some
cases, the pole structure yielded by the deformed and un-deformed pole structure is sim-
ply factorized at the first-order corrected correlators, which will appear only when the
pole structure can be fixed by the BMS symmetries in the seed theory and the rank of the
fields are all 1. Fortunately, the singlet version of 2-point and 3-point functions satisfy
these two conditions. But the first-order correction of 4-point functions may not be fac-
torized, since the un-deformed pole structure of 4-point functions is not completely fixed,
up to an arbitrary function of cross-ratio. Next in this subsection, we will compute 2-
point and 3-point functions for the singlet version to show the factorization property. As
a comparison, we will compute the 4-point functions in the singlet version and correlators
at 2-point, and 3-point to show that they are not factorized.

12



3.1.1 Correction to singlets

In the singlet case, the rank of the matrix £ in is 1, namely £ = £ is a number,
rather than a matrix.

2-point From (2.22)), we notice that only operators that have the same weights are non-
zero. Thus, the non-vanishing singlet 2-point function in seed theory is constructed by two
same singlets O with the conformal dimension A and boost charge ¢ defined at different

points
,25&

(X2) = (O(21,y1)O(22,42)) = N|9312|_2A6 1z, (3.15)

Then the first-order correction is Then the first-order correction through T'T flow is

(X = —40mig? 2 Xs), (3.16)

12

which is exactly factorized. Note that xj, are real numbers since we only implement
analytical continuation for x, not x;. The normalization factor /N can absorb the probable
minus sign caused by the removal of the absolute value sign of x5.

3-point We only consider a specific case in 3-pt case: three operators with the same
(A, &) are placed on 3 different points (1, y1), (22, y2), (73, y3). Namely, we choose

O01=0,=05=0, & =6&=8&=E, Ar=0A=A;=A. (3.17)

So the un-deformed 3-pt (2.23) is

Y12 +y31 Y23

(X3) = (O(x1,y1)O(2, y2) O(23,93)) = 0123($12$23$13)_A67§<m E+E>, (3.18)
where we absorbed the probable minus sign into c;23. Therefore the first-order correction
is

(Xp)) = 20mie? (% + 4y y—f’) (Xs). (3.19)

12 Tiz Lo
where we used (3.13) and the residue theorem. We can easily see that this result is factor-
ized.

4-point We first consider 4 same operators in four different points. In this case
L=8=8=88=¢ A=0=7A3=A;=A (3.20)

then the un-deformed 4-pt is

(O 102, 12) O, 45O, 1)) = e [—25 (y— N y—)} |

B |~”613$24|2A T3 To4
(3.21)

13



where we used the following formulas to simplify some of the ratios and absorb extra
X,Yinto F(X,))

T12T34 = T13Tou X, T14To3 = $13$24(1 - X)7

Y3y Y Y Y Y2 Y Y Y Y
X23 T4 X -1 x13 To4 T12 T34 X x13 To4

Then the 1-st correction of this case is

<O(:171, yl)O(l’g, y2)0(1'3, ?JS)O(I4’ y4)>§}%

2 2
= — 52 ($§4IQ404 + 1’11314040) + l’illgg <X2(é’§,lnF + (ayh’lF)2) + ﬁ) 12222
F(Xx _oe(¥13 | v2a
+ 261’141’23)(63;11’117 (1’3411313 + l’%gzglgl) i| %6 2§(“i§+z§i), (322)
T13T24

see the integrals in appendix

Then we consider another case: put O on 2,4 and put O on 1,3. In this case, we have
=== =-"8E=& A=A =A3=A,=A. (3.23)

So the un-deformed 4-point function is (2.23)

’ F(x,)) 2 (yos ¥
(X1 = (O (21, 51)O(2,42) O" (w3, y5) O, y)) = Wexp l? <$—Z N x—i)}

(3.24)
Then the 1-st correction of the 4-point function in this case is

<OT (1’1’ yl)O([L‘Z’ yQ)OT(x?n y3)0(x47 y4)>’§}%

= — {l’illggzggggxz [6§lnF + (é’ylnF)z] + 62 l$§410404 + 1'211314040 — 21’341’%312222

64 16
+ 6(10202 + Logoo — 2Z1111) + 3 ($§4(Io303 — Tizrz) + 23(Za030 — Izm))]
8 F(X,Y) 26(vwa_wa
+ 251’141’23X&y1nF lI§411313 - I%gzglgl + 5(11212 - 12121)] }ﬁe 3 (w24 9613)7
13424

(3.25)

see the integrals in appendix [Cl In general, we can explicitly see that the corrections of
4-point functions in the first-order level is not factorized.

3.1.2 Correction to multiplets

Then we will show the first-order correction to the 2-point and 3-point functions com-
posed with multiple operators and show that are not factorized in the first-order level.

14



2-point From (2.27) we notice that O;, and Oj, must in the same multiplet, namely
1 = 7. So we can drop ¢, 7, put them in 1,2 respectively (a + b+ 1 —r = 0)

2A —2e12 a+b+1—r
N|z12|~ 12 (_2?/12)

Oalzryn)Onl2, 1)) = 720770,

(3.26)
T12

For r = 1, the 1-st correction degenerates to the result of the singlet. We only discuss the
following condition

a=2, b=2, a+b+1—r=0. (3.27)

The MM-insertion as

@WM@X%@th%@mm»={@ﬁw—aw)[ S— ]+ 6(Cass ~ Fort)

(x—x1)*  (z—x2)*| (x—21)%(x — x2)?
2(Qsp — Pavs — 2Qursf) 1 1
(r—21)(w — ) hx—mw+«x—@>

2} }<0a0b>, (3.28)

where

2
T12 T12
Py =—(Q, — b+1—r)—]) ,
+b 2 (Qayp +&) =(a+b+ 7) (2?/12)
X112

o b+1—7r)— —
Qatb (a—i— + 7")2y12 3

(3.29)

Then, the 1-st correction of the multiplet 2-point function is

(Oa(z1,y1)Op (2, y2)>§1; == 167”&(%2@% 2Py — Qa+§){0a0y).  (3.30)

3-point consider a,b,c > 2 and ¢ = j = k (so we can drop ijk for simplicity). Put
Og, Oy, O, on 1,2,3 respectively. Then, the 1-st correction of the 3-point multiplet is

(Ou(T1, y1)Op(T2, Y2) Oc(3, y3)>;1%

zzm’B{z&ayl 0,,(CA) + 2980 o (€™ A) +2Y26,,0,,(C A)
12 Z13 3

X2

— 92 [(yﬂ yf’;) (CA) + (y;z + 932) 0,,(C™° A) + (y—f’ + yf’) 9%(0“66,4)]

51721 T31 Tio T3 Tig T3

_2A<y120a 1,b—1,c leCa 1,b,c— 1A+y230ab l,c— 1)

x12 9513 5’523

_2A€l<y12 yl?’)oa 1,b,c <y:132 >Cab 1,c <%+%> Cabc 1:|
$12 $13 T %3 5’513 9523

y a c y a,0,c— y a c y a,b,c—
= 50y, (CHTICA) = 2500, (CH0eTHA) — 2520, (CTHA) = S0, (O A)

21 31 12 32

y13 6%(0“ 1bcA> Y3 6%(0‘”’ 1cA> 4€2Acabc <y12 n % n %) }’
iy T3y Tl afy a3

(3.31)
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which may not be factorized.

From now on, we have shown the first-order corrections to the correlation functions,
which do not depend on the seed theory. As a perturbative version, the higher-order cor-
rections are based on the data defined in lower orders, which makes the higher-order cor-
rections non-universal and thus depend on the seed theory. The higher-order corrections
will be seen in the next sections, which discuss the concrete examples of TT deformed
free scalar and free Fermion models.

3.2 JT, deformed BMSFT

The JT,, deformation can be implemented for the seed BMSFT which contains the NLKM
symmetries. The generic definition of J7), deformation can be borrowed from [10] as
oS
ONG

where 7 is the Kac-Moody current. The first-order correction to the action is also uni-

- J dady eqp 3T (3.32)

versal, which can be expressed as
ST =104 % | dady (0% ~ J°T%) + AL [ dady (V7% = %) + o)
=810 4+ A0 J dedyJoM + A J dady (J;T — JgM) + o(X,) (3.33)

where the current without “[A]” is the data of the seed theory, and we used (2.6) and

@.19). Through the path integral, the first-order correction to the correlation function
will be

X = Xadh, + N0 + oM (3.34)
where
(X)) = (X,
<Xn>8(l) = dedy<J;MXn>a (3.35)

(X, = — J dady ((JOT X,y — (JEMX,,)) .

We can use the Ward identities and to compute the first-order corrections for
a generic n-point correlation function

a(l) . - ‘E’a £j ayj
(X — zi;dedyw — [(x e R %} (X)) (3.36)
a(l) . < gg _ Yy—Y a €j 89}’
i Zi;Jdﬁdy{ L -z (7 — xi)z}—i} l(m - x;)° i %} (337)
LA 2w, B )oYy '
r—x; | (v —x;)? (v—2;)27  x—ux (x — x;)? "
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By using the integral scheme (3.12)), one obtains

KXoy = Zy” Fo(&; + 210,,) (X0, (3.38)
1#]
and
_ Yii | g (B0 B o oo (&L s
(X2 27r2 l}" (xij+ 22,00 +ar]> ok <xij+oyj (X,). (3.39)

z;ﬁj

Similar to the discussion of TT case, these generic and simple results do not completely
manifest the pole structure of the deformed correlation functions at the first-order cor-
rection level. Unfortunately, even though the un-deformed pole structure and the rank
are fixed, the extra pole structure yielded by the deformation still cannot be completely
displayed without knowing the fields themselves because F;* depend on the internal struc-
ture of the i-th fields, which is different for distinct fields. Then there is no need for this
subsection to discuss examples like 2-point and 3-point functions for J7), deformations,
which will be left for the deformed free scalar and Fermion models.

3.3 Root-7T deformed BMSFT

The VI'T deformation is defined as [[12]

oS = dedyRW, (3.40)

where ) is a dimensionless coupling constant, and R is defined as

1 1 2
RD\] _ \/ﬁTé[A]Ti[A] _ Z (Ti[)\]> (3.41)

Similarly, quantities like the stress tensor, the Lagrangian, and the action can be expanded
as (3.2). So the recursion relation can be derived from the following formula

(n+1) _ p[A] _ Cli A(z B(n—i) A() B(n—1i)
E o —L = R = 2_ ) ZE L ( 5 1, 4T T ) (3.42)

n=0 7

The explicit form of £+

cannot be presented easily because we need to expand the
square root around det[T‘,ﬁ( )] by the power of A\. Therefore the recursion relation in
VTT case is not as simple as that in 7T case (3.3). But the first-order correction to the
Lagrangian is still universal

£ = RO — 1. (3.43)

The corrections of correlators will have the same form as (3.6) (3.7) and (3.8]) with differ-
ent S-s
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The first-order corrected correlator can be computed by using (3.7)

(Xt N fda:dy<M Z J dody_—#(X,). (B44)

((sAO))2 or (22 Tz are zero by using the

residue theorem. Since will be spoiled in this case, we cannot use the integral

where the term associated with the boost charge

scheme (C.4) directly. We need to divide the integral into 2 parts: y > yi,y < Y, but
the contour of = only contains half of the plane, namely, we can drop one range of y.
Dropping y > y; or y < y; are equivalent, we will see the reason as follows. Firstly,
we drop y < y, to compute contour of x surrounding upper half plane the 1-st order
correction as

<Xn> Z lim f dyﬁdx <Xn> = —2mi Z(A — Yk) 0y {Xn) (3.45)

k

Then, by using the translation conservation, namely > . Oy = 0, we obtain
<Xn> = QWiZyk(?yk<Xn> (3.46)
k
Next we drop y > yx

<Xn>(1 =Y lim J dyﬁdx

A—o0

<Xn> =2mi ) (A +yp) 0, (Xo)  (347)

k

where the lower half-plane contour of = has a minus sign difference from the upper half-
plane. By using conservation law to omit A, we can similarly obtain (3.46). As a final
remark, the generic form of 1-st order corrected root-7"T" deformation is (3.46) no matter
whether the un-deformed correlator is multiplet or singlet. The higher-order corrections
are not universal and depend on different theories. Next, we will implement the VTT
deformation to the free scalar model to see the higher-order effect.

4 Deformed BMS free scalar model

4.1 Data of seed theory

This subsection gives the data of the seed theory, the BMS free scalar model, to be well
prepared for the deformation. We mainly review [69] here. The un-deformed Lagrangian
of the BMSFT scalar model is

L9 = (8,0) (4.1)

The equation of motion is
02 = 0. 4.2)
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There are three kinds of primary operators defined in the seed theory: the identity opera-
tor, a rank-2 multiplet

Oo(l’) = iéygb, Ol(xa y) = Zax¢> (43)

and a singlet vertex operator
V, = @) 4.4)

The components of stress tensor defined in the seed theory can be derived from the defi-

nition (3.3) as
T4 =T =20,60,¢, T =M =-T79 = (9,9)>, T =0, (4.5)

which are consist with the generic discussion (2.6). The stress tensor equipped with the
EoM of fields is conserved, satisfying (2.7). The OPE between two scalar fields
defined at different points is

(1, 51) B, o) ~ 22 (4.6)
T12
One can easily use the above OPE to derive the OPEs between primary operators and

stress tensors

Oo N 009

T(2,y)Oo(x) ~ W —a? w2

;o Oy 01 2 —y)O0o Y -y

T(I‘ Y )Ol(x7 y) (.CL’/ _ I‘)2 + T — (I, _ .Z’)g (.CL’/ — I‘)2 (/yOh (47)

/ / Oo(l’) ayOl (l’, y)
M)0u(a) ~0, M()Oxla,) ~ AL+ DD,
and
Ty Vo) OValzy) (' —y)dValey) oy —y)Valz,y)

T ¥ -z (! — x)? (x/ — x)? ’ 438

MW y) OyValz,y)  ®Valz,y) 45
FIVALY ¥ —x 2(z' — )%’

Comparing with the generic form @.17), O, is a multiplet with weight A = 1 and van-
ishing ¢ = 0, while V,, is a singlet with boost charge £ = —0‘72 and vanishing weight
A = 0. The OPEs between the components of the stress tensor can also be derived from
the contraction (4.6]), which are also verified to be consistent with the generic form 2.10)
with ¢;, = 2 and ¢y, = 0.

Note that the seed Lagrangian also has the following affine U(1) symmetry

¢ — ¢'(z,y) = ¢(z,y) + A(w). 4.9)
Correspondingly, the Noether current in the seed theory is
W Lo ,
Jo) = _0(@u¢) = (J,0), Joy = Jp = J = =20,9. (4.10)
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The OPEs between J and primary operators in the seed theory are

J($,)00($,y) ~ 07
J(2")0y (2, y) ~ ——, 4.11)

r — X

«
« ) )

J(@)Valz,y) ~ =
which means that the 77, G defined in subsection[2.3]are

x —

Go=0, GiO1=-1, Gy =ia, F;=0. (4.12)
for Oy, Oy and V,, respectively. Here we dropped the superscript a, since the current .J
itself has no group indices.

The correlators among the primary operators can be derived from the OPEs between
the fields. We present the non-vanishing correlators here

1 2
<00(x1)01<$2ay2)>(0) = T2 <Ol(x17y1)01($27y2)>(0) = _%7
5p) . 279
(Op(21) Va2, y2) Voo (3, y3) )V = — 1t eQQ?T?é,
X12713
, a2¥23 (4.13)
<Ol($17yl)Va(xzayz)V—a(x?ny3)>(0) = - (y—f — y_;;;) e @23
Tio 213
n (0)
<H vak (l’k, yk)> = €Xp [—ZOQO@'%] 50722' i
k=1 i<j Lij

4.2 TT deformation
4.2.1 Deformed Lagrangian

We can compute the correction to the Lagrangian order by order, by using (3.3). For
example, the first 10-th order corrections are

L)

o = { — 1,4, -30, 336, —5040, 95040, —2162160),
Yy n

=1,-+,10

97657600, —1764322560, 60949324800}. (4.14)

We observe that these terms can be cast into a general form, which gives the closed form
of the deformed Lagrangian

N0, +1—1
2 ‘

In Appendix Bl we have provided a detailed demonstration that this Lagrangian is equiv-

L —

(4.15)

alent to implementing the UR limit from the 7T deformed Lagrangian of the free scalar
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model in the 2D relativistic CFT, as initially discussed in [8]. For further information,
refer to the review in [84]]. Consequently, (4.13) can be interpreted as the non-relativistic
Nambu-Goto Lagrangian, suggesting that the 7T deformation maps the local BMSFT
scalar model into a non-local and non-relativistic bosonic string.

4.2.2 Deformed correlators accurate to second order

Now we can compute the deformed correlator constructed by the primary operators from
the original data. From (3.7) and (3.8)), to compute the deformed correlator accurate to
second order of )\, one needs the data of S and S, which we have been derived in
4.14]) as

S = - f dady(0,0)!, S® = 4fdxdy(8y¢>6- (4.16)

Note that (¢,¢)* and (0,¢)° are in the classical level, which need to be rewritten in the
quantum level by normal ordering. However, the ways of quantization lead to different
results. For example, (0,¢)? can be quantized as : dy¢ = dy¢ : or : 0,¢0,¢ :, which
should be distinguished while calculating the deformed correlation functions, since they
have distinct OPEs with other operators. Actually, the quantum version of deformed
action depends on the data in the seed theory, or more precisely, it only depends on the
un-deformed stress tensor I' = 2 : 0,¢0,¢ :, M =: 0,¢0,¢ : rather than J = —2: 0,¢ :,
since the deformed action is only triggered by stress tensor. In particular, the first-order
correction only depends on M and must be § dzdyM M, as discussed in previous sections.
Moreover, the deformed action in the quantum level must be independent with 7', since
the deformed Lagrangian (4.13) is independent with d,¢. In conclusion, the quantum
level of the corrections are

S — _ fdxdyMM, S® —4q f dazdy M MM 4.17)
Then, the deformed correlators can be derived as
T ORRPENG) 3
<Xn>[)\] = <Xn> + )\<X”>TT + 5 X”>TT + O<)‘ )7 (418)
where
1 _
X = [ A )Xo,
2 _ 1 g0 /
X = [ drdy [ @ra QD) OONE X @19)

4 J dady( (MMM)(z, y) X,y
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With the Ward identities (2.17)), the generic form of the second order of the 7T deformed
BMS free scalar correlators can be derived as

2
<X”>TT 47T [Z & (ZL’ 5 5 + — (£i8yj + €jayi) + ayjayi)] <Xn>

i#j
) Tk + Tj; T + 2\ 2888k
— 81 Z yjk% — Yik 3 ’ 3j
i+j#k Tk ik i
(e 2ty ) B (4.20)
n % . M Sgiayjayk + (yzk yjk) ayLayJayk <X >
3, x?k Ty T Tk Ty "

£.0,, 0,0y
+ 247 Z Yy [ 952531 = —35’ 2V 4 ajiayj] (X))
ZJ

z;éj xij xij

The first-order <Xn> has been derived in (3.14). Actually, S with different integers
n are only related to M , and independent with 7". Therefore, in principle, the scheme of
the integral (3.13)) is enough to derive the correction in all order. Since our purpose is just
to see the flow effect to the poles of the correlators, we only need to be accurate to the
second-order correction, instead of all-order correction. The rest of this sub-subsection is
to manifest all the effects on the poles, by presenting some concrete examples.

Correlators full of vertex operators The n-point vertex function in the seed theory is

n (0)
<H Vak (xkv yk)> = €Xp [ Zaza] ] 502 ;- (421)

k=1 i<j
Then the first-order correction is

1) (0)
- Apo,  apon, “
= mOr— | 2AL A, + 2 — V.,
<1:[ > - = Z o Ozk l k + . 5 } <H s>

m#k Lkm Lem
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The second order correction is

n n (0) 2
HVO% H X { — Z amak— (QAkA + 2Akam — Oék204m)
k=1 TT k=1 m=k Lkm Tem ,I'km

— 8wt Z amakaslA m A s <ymk — %) + 3 Am A <y§m + yzk)

mk,s=1 Lms Tmk Lk 2$sm Lem Tk
(k#£m,k#s,m#s)
Qs Oy Tims + Tmk Tins + Ths 3OékamA5 Ysk 2xms + Tk
T Aps \YmkT 3 — Ysk—3 T3 R L S —
Tins xmk xks Lins zsk mk

m 1 9
— 1673 Z ozkoz2 Ik (AkAz ka — §ozkoz,2n — ZozkozmAska 3A2 akka) }
m#k ka

(4.23)

Therefore the first and second-order corrections of the n-point vertex correlators are all
factorized for arbitrary n. Further, we can easily deduce that the 7T deformed n-point
vertex correlators are factorized at all orders.

2-point In seed theory, the two-point functions are

(O (1) 0o (2))® = (Oo (', ¢/ WVl ) = O,y )WValz,y))¥ =0,

1 2 (4.24)
<Oo(931)01(172>y2)>(0) = 22 <01(931,y1)01(:)32,y2)>(0) = —%-
12 12

It is easy to confirm that the M M -insertion into the 2-point function of multiple primary
operators in this free scalar case are all zero. Note that each order of 7T deformed
correlator is corrected by inserting one or more composite operators M M. Therefore, the
correction of any order is exactly zero for a 2-point case

(0,008 =0V =0, Vk=1,2,, (4.25)

which indicates that these two-point functions will not flow. In a non-perturbative way,
we have

(00K = (0,000, (O Vo) = 0V (4.26)

3-point The non-zero three-point functions in the seed theory are

7:0[.2(323 a2¥23

(Op(21) V. (fz,yz)v—a(fg,y?,»(o) = - e w23,
12213 , , o 4.27)
<Ol($1ay1)va($2ay2)v—a($37y3)>(0) = —i (x—;z — x—f) e =23,
12 13
Their first-order corrections are
<%()%W(@ﬁ;mmﬂﬁ%()mwﬁﬁw, (4.28)
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and

(O1(z1, Y1) Va @2, y2)V_o(z3, y3)>§p1%
a2v2s | 2
3 9 2y23[ T23 < Y13 i Y23 )+ Y13 Y12

= 2mia°xTye ©23

T13T1a \ThTT3 13,75 2Pty 23Ty (4.29)
6112213 — T3 313 + T3 223 Y1z Y12
tyn— 5 5 5 tys_— ot 5~ ||
L13L12L23 L12273L23 Loz \T13 212
respectively. Their second-order corrections are
(O VaVou)? = —mat?2 (400m2@ - 756@') (OVaV_ 5O (4.30)
T3 €23

and

(Or(1,y2)Valwz, yo)Voa (s, ys))

2323 ( 122 T
4 « 23 | Y12 13 Ya3 2 2
= 21’5 w23 =50 (== + 1) + =2 (5ady + bafswas + 3wi3ad, + a3y)

2
5[ Y32 (70 5 N T23 (2 T3 )> N Y12 Y13 ]
5 3 2 .2 1 1
2 T12713T23 \ Ta3 X23T13L12 T13L19 X13T12 L1213 X13T19

o2 Y23 1 5)
Tip  T13/) Tog T23 Tip  T73 TipTiy 2 Ty

2
x53 — 619713 2%23 | Y23 Y13
+Y3—5—5— 1 (w3 + w21) — 5~ (213 + 712) (4.31)
L12213%23 L1213 [ T3 T13
respectively.

4.3 JT,, deformation

The JT), deformation can be constructed from the affine current j and the stress tensor
growing in the seed theory as

oL
ONH

In a perturbative level, since the composite operator of .J7, deformation is a vector oper-

= eapify TN = Gy T — Gty o (4.32)

ator with two components, the quantities needed to be computed should be expanded by
the power of two coupling constants A°, \!, and they might be mixed while implementing
the Taylor expansion, which will make the problem more complex. However, things will
become much easier if the two coupling constants are not mixed. Fortunately, in the case
we discussed here, we will prove that the contribution of A is zero, or in other words,
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there is only one coupling constant \'. We expand the quantities as follows

)\Mn

o

N (T g (4.33)

n!
1
— Iz

n N (T i

T
i

where the extra indices i - - - i, are all symmetrical, namely

B1pn E(m---un)a (T(Z)m---un - (T?/J/>(/Jfl'“/ln)’ (ja)mmun = (ja>(u1---un)' (4.34)

Then the recursion relation like (3.3) can be derived as

L

z oz B
ﬁm---ununﬂ EaﬁZC ub+1 Mn( un+1)u1"'ui

" (4.35)
= Z C;L [(jy)ﬂi+1"'M7L (Tftn+1)/il“‘lii - (jx)ﬂi+1"'M7L (Tzitn+1)/il“‘/ii:|
i=0
where
« 0Ly a 8 OLptis1pm
(Tu)ﬂl'“ﬂn = (31 ¢) 0u¢ - 5/1/5/»1'1"';“’77,7 (J )m+1~~~un = _W (4.36)
and (1)) 1y, = Tii[o] fori = 0 while (5°),,, . = j[ﬁo] for i = n. We then prove that
. 0L
() s eeopin = —W =0, VneN (4.37)
by using induction on n. For n = 0, then
@ 0Lyo)
’Cﬂl“‘ﬂn}nzo = Lo, ]Nl“‘ﬂn}n=0 —Jjo) = _5(§x¢) =0, (4.38)

which clearly satisfies the n = 0 case in (4.37). Suppose (4.37) is true for n less than

m+ 1
oL

T M1 fin
I gy, = ——=—=-=0, n=0,1,2,---m, (4.39)
( )Hl H 6(6@)
then the m + 1-th order of Lagrangian is
CHmMPm41 ZCZ Nz+l Nm( zm+1)/i1“‘/ii (4‘40)

From the definition (4.36)), together with the induction hypothesis (4.39), one can easily
express the currents lower than m + 1-th order as

0

(T tisr i = —W, (4.41)
Y
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oL

(T:Zmﬁ»l)ﬂl'“ﬂi = a(gla;)h aﬂm+l¢ - 5wum+1£u1---m = _5mﬂm+1£l‘1"'#i7 (4'42)

which indicate that they are all independent with J,.¢ because of

a(jy)ﬂi+1“‘ﬂvrz _ _ azﬁuiﬂ“'um — 07 (4.43)
0(0,9) 0(029)0(0y9)
I s s _ (4.44)
0(0:0) it 0(0.9)
Thus we deduce that the current in the m + 1-th order correction as
. 85#1---# +1
zy — _ mnr =0 4.45
(.] )Hl Hm+1 a(ax¢) ( )

Thus the eq (4.37) has been proved, in other words, only j E’/\] contribute to the corrections
of deformation. It turns out that the n-th order correction of the deformed Lagrangian is

Lo = 2 Col ) prssopin (T Do ¥ €N, (4.46)
i=0

By using the definition of the currents (&.36), one obtains

(T:;‘)Ml"'ﬂn = _ﬁm---um (TZ)MI“'}ML =0,

0Ly (4.47)
'Y — M1 hn T _
(j )Hi+1“'ﬂn a(ay¢) 9 (j )lu,iJrl---/J,n 0

which indicates that
T =0, jb; =0, (4.48)

or in other words, the only choice of the vector index p in the definition (4.32)) must be
i = x, otherwise, the RHS of will vanish

oMy oLl

oxr T ImtE oy

= Gy T3 = 0. (4.49)

So the coupling constant A’ will not appear in the definition (#.32)). Hence, the correc-
tions of currents will no longer depend on \° either since they are all derived from the
Lagrangian.

4.3.1 Deformed Lagrangian

Since all of the quantities in the deformed story only depend on \!, then (£.33)) will no
longer be the double-coefficient expansion. For convenience, we substitute A for !, and
use (4.48)) to rewrite the definition (@.32) as

oL
S T (4.50)
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Then the expansion (4.33) should be rewritten as

D0 \n o0
N ;ﬁﬁ(n)’ 70 g

like we did in T'T case. Then the recursion relation can be simply rewritten as

3|>’

)\n
%= Z 9(0) 4.51)

nO

n ) ) ) ’)L(n—i)
(n+1) _ iy (%) e@) _ _p) sy _ Y
L = '_EOCn](n )Tx , T ==L, Tn—iy = 39) ) (4.52)

Then the deformed Lagrangian can be derived order by order from the above recursion

relation. For example, we show the result for the first 10-th order of the deformed La-
grangian

= {2,10, 84, 1008, 15840,

308880, 7207200, 196035840, 6094932480, 213322636800}. (4.53)

As we discussed in T'T case, these terms can also be cast into a general form, which gives
the closed form of the deformed Lagrangian

_ _ _ A
£ 1 —2X0y0 —4/1 4)\oy<b. 4.54)
2)\2
Similarly to , this Lagrangian also indicates that the J7}, deformation maps the local

BMS free scalar to a non-local theory, aligning with the well-known characteristic of an
irrelevant deformation.

4.3.2 Deformed correlation functions

By expanding the action as SN = Don 2—75 (™) where S™ = dedyﬁ("), one can simi-
larly derive the corrections for the deformed correlation function as

o]

Ky = Z <X m, (4.55)

nO

where the corrections are formally the same as (3.6) (3.7) and (3.8))

G =iy = X (4.56)
Xy, =(SWY Xy = (S X,y (4.57)
(Xopp, =(SWSVX, 5 — (SWSDNX, ) + (SPH(X,) — (P X,

+2(8MY (X = 2(5W)(SVX.,) (458)
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The first two corrections of the action are (4.33))
SW =2 fdxdy(ayqs)?’, S@ =10 fdxdy(ayqsf (4.59)

which are the corrections of action in the classical level. Similar to the discussion of 7T,
to derive the corrected correlation functions perturbatively, the above corrections of action
should be promoted to quantum level by using normal ordering. However, things will
become more complex in JT), case than that in TT case, because the .J T,, deformation
is triggered by U(1) current and stress tensor, which indicates that the deformed action
in quantum level is not only dependent on the stress tensor 7', M in the seed theory, but
it also depends on the un-deformed U (1) current J,(= J). We have proved that the JT),
deformed Lagrangian of the free scalar is independent with ¢,¢, such that the deformed
quantities are not dependent on 7". The first-order correction here must match the most
generic case discussed in the subsection with J, = 0 here, namely the first-order
correction is always quantized as

S — fdxdyﬁ(l), LY = —JM (4.60)
Then the first-order corrected J7T), deformed correlator is
(X, = J dzdy( JMX,) 4.61)

Unlike 7T case, (J,¢)* can be quantized as JJM or MM in JT,, deformation. So the
quantization of the second order correction can be expressed as the linear combination of
§ dzdyJJM and { dzdyM M. Fortunately, the coefficient in front of them can be uniquely
fixed. We can see this precisely from the recursion relation (4.32))

0J oM
£@ = v =) Tr(o JIM — M M+ J 4.62
Ty T2 + 3ty o ey ) ¢
where we used
oJ oM
70 = O =gMm, gt o=J T =-M ¥ === :
= 5 ](0) ) T ) ](1) a(ay¢) + 6(5y¢)
As we discussed before, a(gJ L a(%M gy only depend on .J, M, so the quantization of &= a ¢ i a(aaM¢)
are unique
oJ oM
=2 —=2:0,0:=—J 4.63
L R I R o
Therefore
§@ _ J dedyL®, £O —2(JJM + MM). (4.64)
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Then the second order corrected J7), deformed correlator is

(X0, = dedy f da'dy/(TM (2, y) IM (2, y') X,
(4.65)
— 2 [ drdy M (0,)X,) — 20

Then we can use the Ward identities and 2.21) F; = 0 to compute the generic
form of <Xn>§17)1# and <X”>52%u in free scalar case as

Xnip, = —2m ), 2 Y gz (&, + 2450,,)(X.) (4.66)

z;é]

and

2
Yij

<Xn JT = —2<Xn>gpl% + 472 [Z x—;gi(ﬁj + mijayj)] (Xn)
ij

1#]
+ 4m{ D 9i9,j '_y;k (& + zandy,) — 25 (g, + xjkayk)] (4.67)
L= T4 Tk Toh
i#j#k J

+2530.6, 256, + 50,.) - RO E, + 200, [

1#£] ZJ 1#£] j

where <Xn>;1% has been derived in (3.14).

4.3.3 Examples

Then we need to manifest the deformed poles by showing some examples, like we did
in 7T deformation. We will compute the deformed correlators whose seeds have been
presented in .

Correlators full of vertex operators The first-order correction consisting of n-point
vertex operators is

n as n
H (o )5, = i i—ﬂaza3<—aj+xij > —)<H Vo (1, 4 (4.68)
k=1 k=1

i s(#5) %
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The second order correction is

n

]V (20, 90055,

p=1
2
1 Yij g
—2<Xn>§«% — l x—]OéZOé] <Oéj — Tij Z x—)] <Xn>
it s(2q) SI
7 (#7) (4.69)
oL i Qg i Qg
+27rz'{ Z ] kly; (ozk Tik Z > —y%k<ozk—xjk Z >}
i#j#k xz] xlk s(#k) Lsk xjk s(#k) Lsk
Yij o B
+ Z ;5 J [a? + oy — 245204 + ;) Z x_] }<H Voo (Tps Up))
7] s(5) A p=1

The first and second-order corrections are all factorized.

2-point Note that the two-point functions in vanishes while inserting the opera-
tors G; defined in (4.12). Therefore, the first-order correction for two—point functions all
vanished, and the second-order corrections <X2>f,2% —2( X5 >TT’ which are the first-
order Corrections of TT deformation derived in (@.24). Moreover, (#24) shows that
(X, > are all vanished. Therefore, the first-order and second-order correction of the
two- pomt functions all vanished, namely

(X3 =0, (X§) =0 (4.70)

3-point The first-order corrections of the three-point functions presented in (4.13)) are

(O0(@1)Val@2) VoaE5))3, = —6ria® Z2(O0(#) Vi (F2)V-a(3)) (4.71)

L3

and
(O1(Z1) Vo (%2) Voo (T3) 9%
—ora? | B2 (22 - 1) - 2 (02041 ) | Gl @)

Ty Ta3 T13 \ 223

.
g2 [ e gy (0 002 OV )00

L12X13T23 X23 X12 x13 X23 x13 x12
+ 2mia (ﬂ ~ 3a 2y23> (O (1) Vi (Fa) Vo () © (4.72)
X12713 9323
The second-order corrections are
(OVaVod? = —1270122 (n + 37ma? y23> (OGVa Vo) (4.73)
K Izg 372
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1 1 2 2471
Zm?’[i(—z——er + )+4m(y—§2—y—§>
2r93 \ W1y T3  T12T13  T23T12 Ti2 i3
1 [ao? 87 1 1
Sl Gy
2 x93 Tiy T3 T12T13 \ 2T13  Tas

Zyl?y”’)( B4 5a 2@+i>]<‘/( 2)Voa(@3))

2w15x73 x23 1’23

x
ol (12 w3 1 1 ) ( 37129313> Yo3
a2 (Y2 v (o 1+ 8r -
l <l’12 1’13) (l’%Q l’%g 1’53 1'12113'13113'23 (474)

2, + 22
8 + 3a° y23) <% - %) +16mio2s T2 T T
Z23 Ty, @iy Tz T12713

1 1 :
_8(y_+y_) (_+_)+4m(w+y_§)
Tio T3 Ti2  T13 xly iy

-2 (60240 (B ) | Va2

3
La3 T23

430493 l (3 2928 o4 12m) _
$23

L12%13

X23 x23

] (O1(Z1) Vi (Zo) Vg (5)H) @

L12213

4.4 Root-7T deformation
The data of the seed theory is @.1)

D = (2,6)° = M. (4.75)
As discussed before, the first-order correction to the Lagrangian is proportion to £©)
LW =0 = . (4.76)

Then the first-order correction to the stress tensor is

7Am _ 0L v opp — 0 LM = TH. (4.77)
b d(0a0)
From (3.42), one can then derive the second-order correction to the Lagrangian as

pBa—i 1, AG)B—i

L@ _ < 00 Ly
(4.78)

L (1 a0 B0 140,80
-5 (iTB( 5O LpA0TE0 ) Z s = )

This gives us an insight that each order of the Lagrangian is proportional to £(%), namely
ﬁ(n) = anﬁ(o)a Té(n) = anT%(0)7 ag = 1. (4.79)
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where a,,-s are real numbers.

This can be proved by using induction on the correction order n. To get start, the
#@.79) is right for n = 0,1,2 with ay = a; = ay = 1. Then, suppose @.79) is true for

Vn =1,2,---,ng. So the relation (3.42) can be rewritten as
o0 )\n
- n+1 _ M2 1 ; nfiCn
Z:: o { + Z ;a a no
1 (4.80)
SERMES pAOTBe-) _ Lpaw e 2
+ Cz ) n—i _r zT n—i :
3 almelsr {TAOT)

where the second line of the above equation will contribute to the higher power of \ after
the Taylor expansion, while the first line will contribute to the A"° power, which indicates
that £"0*1 is also proportion to £(). Thus T%("OH)
same coefficient as £+ Therefore the eq (3.42) has been proven.

is also proportion to T%(O) with the

Then the deformed Lagrangian and stress tensor can be rewritten as the following
factorized form

LN = L@, AN — p 07O, (4.81)
where
DO yn
— Z ~_a,. (4.82)
n!
n=0
Plugging this into the definition of the deformation, one obtains
1 1 2
FL® = ¢ STANTIN — 3 (TAM) = fo0m = L. (4.83)

Therefore the constraint of f(\)
F'A) =1 (4.84)

It is worth noting that when A = 0, the Lagrangian will degenerate to the seed theory,
which indicates that f(0) = 1. Thus, one can simply work out the solution of the above
equation

f) = ¢t (4.85)

Inserting this back to the factorized formula (4.81)), one then obtains the deformed data
LN = A AN ApA0), (4.86)

This indicates that all a,,-s are equal to 1. This is a trivial effect to the action since we can
rescale it to remove the constant e*. Then the deformed correlators defined in (3.4) are
not affected by the VI'T deformation, namely

<Xn>féﬁ = (Xwp)- (4.87)
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Finally, we should remark that the result we derived here does not contradict the first-order
correction computation because they are from different perspectives. On the one hand,
the computation of the correlator (4.87) is the non-perturbative version. It turns out that
the VIT deformed BMS free scalar model is still the BMS invariant field theory, which is
consistent with the property of a non-perturbative marginal deformation. Moreover, since
the action is invariant under scaling transformation, the VTT deformed free scalar model
is the same as its seed theory. On the other hand, the generic first-order correction of the
VTT discussed in subsection B.3]is computed from the perturbative method, which may
break the BMS symmetry. So it is normal to use some extra terms. Specifically, while
keeping the factor e* in (#.86)) to perturbatively compute the first-order correction for the
VTT deformed free scalar model, the result will be the same as the generic first-order
correction of the VT discussed in subsection 33|

5 Deforms for free Fermion model

5.1 Data of seed theory

The action of the BMS free fermion model is constructed by the field ¢, = (1, 12)
as [I81,185]]

1 1
SO = fdxdyﬂm, LO = p,0,4p, — SUadytn — St dyn, (5.1)

with the following equation of motion (EoM)

01 =0, 20,01 = 0. (5.2)

By using the definition (3.3), the prototype of stress tensor can be derived as

o0 _ LY e (—maml —;wzaml—éwx%). 53)

(0uta) ! Y10y a0, + 210y

This, however, is not in the same form as the standard expression of (2.6)), which is derived
from the invariance of the BMS transform. In addition, it is even not a conserved current
since is seemingly not satisfied. Fortunately, the standard stress tensor can be derived

by plugging the EoM (3.2)) into its prototype (3.3)) as

M T 1 1
o) = (0 _M> . M=o, T= —51/)26961/)1 - 51/)1(%1/)2, (5.4)

which satisfies the conservation law and is consistent with the standard form of
stress tensor (2.6). The enlarged symmetry of BMS free Fermion model is triggered by
the dilation symmetry D’ of the seed action (3.1)), where [86]

D' (2,y) — (,My), (1, 02) — (A"2401, A3hy), (5.5)
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whose Noether currents are

©(0) 1(0) u B oL 1
JD’ T Yy — J '](0) = mfaa Fa = 5(_1017%)- (5.6)

The BMS symmetry is enlarged by a dimension 1 current .J (‘6), whose components are

1
J(yO) = ngo) = ) D J(%) = —JZSO) = 0. 5.7

The generators yielded from the stress tensor and J (‘6) form the BMS Kac-Moody algebra,
which is a specific case of (2.18]), see the details in [81,86]. In BMS free Fermion model,
there are 3 kinds of primary fields: identity operators (singlet) with A = ¢ = 0; Fermion
field (multiplet) ¢ = (11,)" with conformal weight A = % and boost charge ¢ = 0;
composite operator P = —2J(yo) =: 11y : (singlet) with A = 1,& = 0. With the OPEs
between the fields

V1(x1)Y1(w2) ~ 0,  Yo(w1, y1)a(T2, Y2) ~ —%7
1 12 (5.8)
w1($1>¢2(x27y2) ¢2($1ay1)¢1($2) ~ 93—12

one can easily check that the OPEs between the currents and the primary operators as
x 0.1 (x
@) dh(a)

)2 -z’

2(z" —
Yalwyy) 2y —y)
2(x — x)? B (x' — x)3w1(x)

T’y )n(z) ~

T(xlv y,)¢2 (l’, y) ~

(5.9
Qatha(,y) ¥ —y
* x —x o (l.l _ x)2ay¢2( y)a
M(a")pr(z) ~0,  M(a")¢a(2,y) ~ (xlfplfxx)y + Oy?(_x;gy);
P 0.P(z, /_
T(x/7 yl)P(aj, y) (xl(x g))z + x! (_xxy) o (:Z.J/ _ 5)2 (%P(x,y%
0,P(2,y) (5.10)
M(a)P(r,y) ~ 22
P(xy,y1)P(x1,91) ~ xi ilz Oy P(22,y2),  P(x2,y2)1(22) ~ ¢;($1>,

1; ( )12 SN CATH

P(zl’yl)¢2(x27y2) ~ = 1122 2&?/11( ) 2i—zax2¢l(x2)

Comparing with (2.17)), one can easily deduce that v); is a multiplet with weight A = =
and vanished boost charge while P is a singlet with conformal weight A = 1 and vanished
boost charge. Moreover, it is easy to verify that OPEs between the components of stress
tensor also consist with (2.10) with ¢;, = 1 and c¢;; = 0.
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Similarly, the correlators of the primaries in free Fermion can be derived from the
OPEs between the fields

Wy (1) (@2, y2)) = L? (a1, y1) o (w2, y2))) = —QL;z,
o 12 (5.12)
<?/)1(171)¢2(932,yz)P($3,y3)>(0) = — L .
L2313

Other combinations of two-point and three-point functions of primaries are all vanished.

5.2 TT deformation

As derived in (3.3)), the recursion relation of the deformed Lagrangian is

1& ) ) ) ) )
n+1l) _ 7 1) rpv(n—t i) rpv(n—i
L (n+1) =3 E c (T/L( )TV( ) _ Tx;( )Tu( )) 7
i=0 (5.13)

oLm
Tr”) — O,y — O L) =1.2. ...
v 0(0H¢a)0 ¢ I/E Y n Y )

With the explicit form of the stress tensor in seed theory 7% derived in (.4), the de-
formed Lagrangian can be computed order by order. It is easy to verify that the first-order
correction of the Lagrangian is M M, which is consistent with the discussion in the section
However, one can immediately obtain that £(©) vanishes since MM = (¢10,91)% = 0.
This is because the Grassmann numbers v/; and d,%; should not appear twice. Therefore,
the first-order correction to the components of the stress tensor all vanished

T = 0. (5.14)

indicating that the second-order correction to the Lagrangian and stress tensor vanish,
which can be easily verified as

1
2 0) (1 1) (0 0)v(1 1) v (0
£ - 3 [T/;t( )Tl/( ) 4 T/;t( )TV( ) T’f,( )Tu( ) T’;( )Tu( )] =0
2 (5.15)
ey — LY o e g
Y 0(0uta) Y
By induction on n, one can verify that all the correction terms vanish
£M =, T‘f,(") =0, Yn=1,2---, (5.16)

causing the Lagrangian and the correlators of BMS free Fermion model to be unchanged
through the 7T flow, namely

LN =20 (XM = (x,)0. (5.17)
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Until now, we have not used the EoM for the corrected terms. Actually if one imposes
the definition of 7%™ in (5.13) for 7%A”, namely substitute 7% for 74"

£ :1 [7'96 7'y + Ty(O 7'96 T;(O)Ty(O) _ TZ(O)Ty(O)]
2 X X
=1120,110yYn,

one can also derive that 7" = 0 without the EoM of fields. Then (5.17) can be re-
derived by induction on n of £™

(5.18)

The 7T deformation will change the theory in normal circumstances. However, the
result here has shown that the 7T deformed free Fermion model is a fixed point through
the 7T flow. This is not strange, since the structure of the Fermion model requires that
correct terms with multi-M are all zero. Moreover, the deformed data only contain M
and are independent of T'. Therefore all corrections of 7T are vanished.

5.3 JT, deformation

The definition of JT, is (4.32). With the expansion similar to (4.33), one can similarly
deduce the recursion relation of the deformed Lagrangian as

1 Z CZ uz+1~~~un (Tznﬂ)m---m - (Jx)llzi+l"'/1/n(Tathrl)Ml“‘Mi] 5 (5.19)

where
o 0L, i N
(T,u)#l“'ﬂn = ( = 1/‘) a,uwa - 5 ‘Cﬂl"'urm
[t (5.20)
(Jﬁ) o — 16£U +1°Hn 1a£lh+1 an
Hit+1Hn 2 a(aﬁw2> 9 a<aﬁ¢1) -

Similarly, the BMS free Fermion model is also a fixed point for J7), flow. To see this,
we just need to compute the first-order correction of the Lagrangian. Having discussed
in subsection [5.2] the on-shell condition should not be implemented while computing
the corrections order by order, namely one should substitute the off-shell stress tensor
of the seed theory (3.3)) for T’,ﬂ(o) here, instead of (3.4). The first-order correction of the
Lagrangian should be ML, = AL, + A\*L,, where

1
Ly = T T3 = Ty T4 = Jun(Vadathy + 10:t) (5.21)
and
Lo = Jiy T3 = Jig T = ——¢1¢2(w20yw1 + 10,1n). (5.22)
Then one can easily deduce that the above two equations have all vanished since v,

or 1, appears twice on the right-hand side of both equations. Therefore even without
implementing the on-shell condition, the first-order corrections still vanished

L,=0, L,=0. (5.23)
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Then, by using mathematical induction, one can easily prove that the higher-order correc-
tions have also vanished, namely

c =0, Vn>1. (5.24)

U1l

This yields that the JT,, deformed Lagrangian and deformed correlators remain unchanged
£ =20, (X0 = (X0 (5.25)

which means that BMS free Fermion model is also a fixed point through J7}, flow.

5.4 Root-TT deformation
5.4.1 Deformed Lagrangian

The recursion relation can be derived from (3.42)), with 7 in G.4)

o A" o AT ¢ 1 aA@ By LAl mBin—i)
n i ) B(n—i ) B(n—i
n=o ' n=1"" i=0 (5.26)
oLm
TH™) — by — L LMW, =1,2,---.

© A0a)

Note that in the free Fermion case, M M is zero while the vV MM = M is formally
non-zero. So the first-order correction is

LY = M = 10,1, (5.27)

which consists of the generic discussion in section[3l Then the first-order correction of
the components of the stress tensor are

T = —M, TV = o0, T =120 =0, (5.28)
So the second order correction is
M-t M

Lo - = 20O - TAOTH | - — (5.29)
One can prove that the corrected terms £ with n = 1,2, - - - are all proportional to £()
by induction on n with the coefficient b,, for n-th order. We have verified that this is true

for n = 1, 2. Suppose this proposition is true for all n = 1,2, - - - , ng, namely
LM =p, M =00, n=12- ne. (5.30)

So the n-th order correction of the stress tensor is proportional to T4

T%(") _ bnT%(l), n=1,2---,ng. (5.31)
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Then the formula (5.26) can be divided into the following form
A pr ) g2y N 1) _ a0 80)
HZ::OHL {M +Z l ( - - 5T TB)
+ <n21 %b-b ) (TA(l)TB(l) _ ETA(I)TB(l)) }
2 B -4 97 A B (5.32)

i=1

o

o]

)\n - i n—i 1 i n—i :
-y 2 Cz( PO Aoy ))}

n=ng+1 '20

which can be rewritten as the following form with the expression of 7Y and 7% in

(5.28) and 2.6)

0 P At irg?
2,£<n+1 {M2[1+Z (ZCnbbm—bnﬂ

n=0

1 (5.33)
O AT o ci [ LpaopBe-i L a@yBo-i\ |
+Z;Zn(2 Ty =TT ) .
n=ng+ =0

After expanding the square root near M by the power of A and reading off the coefficient
in front of the \™ in the right-hand side, which comes from the first line of the above
equation, one can deduce that the ny + 1-th order correction of the deformed Lagrangian
at ng + 1-th order is also proportional to M (= L£(1)). Therefore the all-order corrected
Lagrangian and stress tensor can be expressed as

LW = O g, TN =T + T, (5.34)

Plugging them into the definition of the root-7T deformation (3.40) and (3.41)), one can
derive a constraint for the function g(\) as

1
¢ = 3ls0) 2 (535)

Similarly, the Lagrangian will degenerate to the seed theory £, so g(0) = 0. Together
with the constraints (5.27)) and (5.29)), the function g(\) can be fixed as

g(A) =2 —2e2. (5.36)

Unfortunately, if we substitute T’J(O) for T’,ﬁ(o), as we did in subsection [5.2] the off-shell
terms within the square root will not form a perfect square. Consequently, the definition
of the VVT'T deformation for the BMS fermion model becomes ill-defined, as the square
root of certain Grassmann numbers lacks a clear definition. Before proceeding further, it
is worth noting that the flow of the fields is not taken into account, which does not pose
any issues within the perturbative approach.
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5.4.2 Deformed correlator

The deformed correlators can be computed by path integral as

% Xn>[\/)\]TT _ <6—g<x> {dedyM (z) Xn>

= exp | 2mig(\) Zykayk] (Xon) (5.37)
%

= exp |4mi (1 — e_%> Zyk@yk] (Xn),
%

where we used the Ward identity (2.17) in the second line, and the integral here is the
same as we did in subsection Now the rest of this sub-subsection is to manifest the
extra poles generated from the deformation by using the data of the seed theory derived
in (5.12)), instead of leaving the derivative 0y, -s here. Apart from (115 in (5.12)), others
are all independent on vy, indicating that

() )T = (1), 1)),

(1 ()2 (22, y2) P a3, y3)>[A]TT = (r (1) (2, y2) P03, y3)).
Since (1o(z1, Y1 )12 (2, y2) Y?) is proportional to 71, together with the fact that >’ & UkOy,

(5.38)

is the identity operator of y;5, one can easily verify that

(Wa(@1, Y1) Y2 (22, y2)>[\A/]T_T = exp [4“ (1 - 6_%>] (a1, y1)tha (e, y2 ). (5.39)

Therefore, the only impact of the V7T deformation on (1hy(z1, y1 )2 (2, y2)) is a mere
phase factor. This assures us that the BMS symmetries of the correlators in the BMS-free
Fermion case remain intact despite the deformation. This outcome is expected because
the VTT deformation is a marginal deformation that preserves the original symmetries
of the seed theory. As a result, the VTT deformed BMS-free Fermion model can be
considered a well-defined marginal deformed theory that still qualifies as a BMSFT even
after deformation.

In conclusion, as emphasized in subsection it is important to reiterate that the
deformed correlators considered here encompass all order corrections and are cast into
closed forms. This non-perturbative approach differs significantly from the perturbative
method discussed in section 3l However, it is crucial to note that this disparity does
not imply a contradiction. Perturbative and non-perturbative methods operate at different
levels, and upon closer examination, it becomes evident that the first-order corrections
obtained from expanding the aforementioned results by power of \ are identical to those
derived from the perturbative method in section[3l Notably, the non-perturbative approach
offers greater precision and comprehensiveness compared to its perturbative counterpart.
Consequently, the perturbative method runs the risk of compromising the symmetries
inherent in the original theory.
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6 Conclusion

In this paper, we introduce various types of irrelevant and marginal deformations in the
BMSFT to evaluate the several types of action and lowest-order corrections to correlation
functions. Firstly, we define these irrelevant and marginal deformations properly which
is non-lorentize type of deformation. Based on the deformations, we apply the standard
perturbative field theory approach to analyze the universal first-order corrections to the
correlation functions of seed theories, which, based on our analysis, are only factorized
for two-point and three-point functions consisting of singlet primary operators. In addi-
tion, we also investigate the flow effects of the deformations by calculating the higher
order corrections for some specific case, e.g., free BMS Boson and Fermion theories,
since the first-order corrections do not flow the seed theory while the higher order correc-
tions depend on different seed theories. Particularly, we provide the all-order corrected
Lagrangian for the deformations for these two cases, and compute the higher-order cor-
rections of the deformed correlation functions systematically. As the classification of
the RG, the irrelevant deformation might flow the seed theory to different theories while
the well-defined marginal deformations will not. Specifically, the irrelevant 77 and J7T},
deformations will indeed flow the local BMS free scalar theory to the non-local, and
string-like theories, which can be observed from both classic levels, namely the all-order
corrected Lagrangian

E[Alscalar _ 4)‘<ay¢>2 +1-1 ﬁ[A]scalar _ 1 - 2)‘ay¢ - 1- 4)‘ay¢ 6.1
v .6

T 2\ ’ STy 2\

and the quantum level, namely the higher-order corrections of the deformed correlators.
However, the 77T or J T,, deformed free BMS Fermion model does not have any cor-
rections for both classic (Lagrangian) and quantum (Correlator) level, because of the
Grassmann structure of the Fermion. Besides, the VTT deformation for free BMS scalar
is a well-defined marginal deformation since it is simply a scale transform and the free
BMS scalar theory is scale invariant. Unfortunately, the VTT deformation for BMS-free
Fermion is not an invariant transform at the classic level, since the all-order corrected
Lagrangian is

LPfermion - (0) 9 (1 _ e*%) M. (6.2)

\TT

Even though the deformed correlators have no corrections, we cannot claim that the VTT
deformation for BMS-free Fermion is a well-defined marginal deformation since the van-
ishing of the corrections of correlators originates from the structure of Fermion, rather
than the deformation itself.
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A Seed BMSFT from UR limit

A.1 Algebras from UR limit

In this subsection, we discuss the BMS algebra (2.4) and NLKM algebra (2.18). The
BMS algebra can be derived from Virasoro algebra by implementing the UR limit. For
generators in 2D CFT

L,=—2"T0, L,=-2""0; (232 =(x+iy,z—1iy) (A.1)
which satisfies the Virasoro algebra after the central extension

['Cna ‘Cm] Z(TL - m)ﬁn-‘rm + _n(n2 1)6n+m,07

12
(Lo, L] =10 — 1) Lo + % n(n? — 1)6prmo, (A2)
(L., L] =0
By choosing the following UR limit
y—ey, x—x, €—0, (A.3)
together with
Ly = lim(L, — £.,), M,= lim €(Lp, + L ,). (A.4)
Cr, = hH(l)(C — 5), Cy = 111% E(C + E), (AS)

the Virasoro algebra will then recover (2.4).

Similarly, the NLKM can also be derived from the UR limit of the Virasoro Kac-
Moody algebra. The holomorphic part of the Virasoro Kac-Moody algebra is

[»Cnu 'Cm] = (m - n)£m+n + =

( 3 m>5m n,0 [ﬁmujZ] = _nj;ln n’
12 ! ’ (A.6)
[ m7 ]n] Zfabc]fnJrn + mk(sm-i—n,o(sab'
where the anti-holomorphic part is similar. By choosing the UR limit as (A.3)), (A.4), and
(A.3), together with
T = Jm 3% Ko = €(Gh = 3%) (A7)
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and 1 1
Fabc _ §<fabc + fabc>’ Gabc _ 2_€<fabc + fabc>’ (AS)

ki=Fk— ]2‘, ko = 6(/{5 + E), (A.9)
the NLKM (2.18)) will be explicitly re-derived.

A.2 OPEs from UR limit

In this subsection, we discuss the Ward identities of the stress tensor in BMSFT and its
OPE with the primary operators. We also need to give singlet and the multiplet result.

Singlets The OPE between 2 operators is related to their commutators from the radial
quantization

A jga(z)dz, B - jgb(w)dw
(4, B] — 3@ dwji dza(2)b(w), A b(w)] - 3@ dza(2)b(w).

w

(A.10)

The OPEs between the components of the stress tensor can be derived from as
2L Oy L
L(z')L(z) ~——L @, %L@)

2 —x)* (¢ —x)? -z

L(x")M(x) ~M(2")L(z) ~ 2(1,/C]i[ ) + (i/jw_(i%z a;/j\{(i)

The OPE between the singlet primary operators O and the stress tensor can be derived
from the UR limit. In CFT, we have

Mm0}=0n+whf+z“%40,[fm0}=«n+UH?+Z“W%O.m1D
By using UR limit (A.4)), we obtain
[Ly, O(z,y)] z[x"H(?x + (n+1)2"yo, + (n+ 1)z"A + n(n + 1)x"_1y£](’)(x,y),

., M(x")M(z) ~0,
(A11)

[M@O@wﬂ:P“WWMn+UﬂdO@y% n> -1 (A.13)

Then the OPE between the components of stress tensor and O can be easily derived from

(A.I0) as
ALOy, 20y = ye)kOr 02,0k (¥ — Yr) 0y, Ok
T, y)Or(xn, i) (x — xp)? (x — xp)3 + T — T (x — xp)?

§Ok N Oy Ok
(x —x)?2 o —x

M (x)Ok(w, yr) ~

(A.14)

We can only roughly see the pole structure by using the UR limit method. More precisely,
the pole structure can be observed by using the standard path integral method, which is
equivalent to substitute AT, = x — x; — ic(y — yx) for x — x, 0 < € « 1, see details
in [59].
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Multiplets Similarly, for multiplets, we have

AOia 2(y - yz)(£2 : Oi)a ainia (y - yi>ayi0ia
T(@,9)0u(v:) ~ 3753 RN AL
(52 i Oi)a 8yi0ia

A2 T AE

(A.15)

M(x)Osa (s, yi) ~

B Deformations from UR limit

In this appendix, we give some insights that the deformations for BMSFT can also be
derived from UR limit of the deformations for CFT. Without losing generality and keeping
simplicity, we will mainly focus on the discussion of 7T deformation. Suppose each
order of T'T deformed relativistic CFTs are consisted of stress tensors Tz(z), TQ in the
seed theories. The UR limit will link the coordinate in relativistic CFT (z, Z) and that in
BMSFT (z,y) as

z=x+ey+O(?), Z=x—ey+ O(?). (B.1)
The € here is equivalent to ¢ in footnote[ll The relation between volume element is
—2edzdy = d?z. (B.2)
Note that 7.2 and Tg(g) can be expanded by Virasoro generators as

TO(:) = Y 2" 2L, TE(2) = Y, 7" L. (B.3)

nez neZ

Then, by using (A.4), and (2.8)), one obtains

Tz(g) + TZ((Z)) — Z(zinigﬁn + 27”72271)

ZZ:C*’H [(1 j (n + 2)%) L, + (1 + (n + 2)%) Zn] +O(é%) (B.4)
=L(x) +yo:M(x) + O(€®) = T(x,y).
Similarly,

TZ(S) —Ts05 = Z(anf2£n — 577#22”)

n

(B.5)
—n—2 _ Y\ 45 oy 1
—Zx [( (n+2)Y )cn (1 + (n+2)xe> cn] +0(e) = —M(a)
Therefore, the UR limit yields
M
T = —e1l — 5 (B.6)
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So we just need to substitute M for 7Y and Tz(g) for BMSFT, which indicates that the cor-
rection terms for 71" deformed BMSFT consist entirely of M raised to different powers.
This is consistent with our proposal in the main text.

Specifically, the 7T deformed scalar model for BMSFT and relativistic CFT are ex-
actly associated with each other by UR limit. In the classic level, the action of the un-
deformed relativistic free scalar model is

1
Sr(e.ﬁtivistic == 5 fd2zaz¢caz¢c (B7)
The corresponding stress tensor in the relativistic seed theory is
T = (0.6°, T = (0:6.%, T =0. (B.8)

Together with the definition of M in (4.3) and the relation (B.6)), one obtains the relation
between the scalar fields in relativistic CFT and BMSFT

be = €2, (B.9)
The deformed action in relativistic CFT is [§]]

S[X]- ) — fd2 ﬁ[ ] ﬁ[A'] _ \/4)\,az¢caé¢c + 1 - ]-

(B.10)

relativistic relativistic relativistic D) )\/

Then, by taking UR limit, the action becomes

wéagﬁc +1-1 /AN, )2 + 1 —
dedy A fdxdy Oy¢ L 1, (B.11)

relat1v1st1c

where A = )'/e is the coupling constant of deformed BMSFT. Therefore, at the classic
level, the deformed free scalar model of BMSFT can also be derived from that of relativis-
tic CFT by taking the UR limit. In the quantum level, the 77T deformed correlators have
been discussed in [87,188] if the seed theory is relativistic CFTH One can easily check
that the quantum corrections of the correlators of the relativistic free scalar correlators
will fall off to the BMS free scalar derived in (4.19).

C Integral scheme

This appendix develops a scheme to work out the integral proposed in (3.11). Through
the analytical continuation, the integral of x for a; > 0 can be extended to a contour

%0r, one can use the deformed partition function of relativistic free Boson in [82]] to derive the deformed
correlators of relativistic CFT.
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integral surrounding the upper half plane with the anticlockwise direction. Notice that
the contour integral is trivial while considering all of the poles simultaneously

dx
§ szl(% — ka)ak - 07 (Cl)

T1~Tn

which means that the poles should be placed in different half-plane, or the result will be
zero, where the subscript 1 ~ x,, under the “<§” denotes the residue needs to be computed.
Moreover, the extra term ie(y — yy) inside the pole of ¥ requires that the integral of y
should be divided by (yx, yx+1) withk = 1,---  n— 1, because, for y > y, the pole xy, is
in the upper half plane, which is inside of the contour of z, while for y < v, the pole
is in the lower half-plane, which is outside of the contour of x. After the range of y has
already been divided, the extra term ie(y — yi) can be removed safely by ¢ — 0 since it
will no longer contribute to the integral of x. Therefore the area integral can be rewritten
as

7l . :J dyf(y — v f e
e [ oot (ATy )
ZJ'yJ+1

:_ZJ

dx

Wiy~ w) § [T (@ — z) (C2)

Tj41~Tn

Yji+1

dyf(y — vi) jgl_[ T
kl

T1~T;
This can be rewritten more beautifully, see the following Lemma and its corollary

Lemma C.1. Suppose y; < ys < --- < Yy, and () denotes the pole structure without
ie(y — yx) for simplicity. Then can be rewritten as

J dydx(-) nzl J dng dz (). (C.3)

Proof. This can be easily proved by combining the contour integrals with the same pole
x; together. OJ

Corollary C.1. By using (C1)), we can easily prove that for any k € {1,--- ,n}, (C3)

can be rewritten as
J drdy() = =) f dy jg du(- (C.4)

Jj#k
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n—1 Yit+1 k—1 Yk
D AR IR | dyﬁdxc)
ik Yy oy i j=1Yy
n=l ~yiig -
=ZJ dngdx ZJ dngdx
j=k =i

Tj4+1

f dyﬁdx(-)—ZJ dngdx

j=k+1

= LJ dyﬁd:): ZJ dngdx

j=k+1

where we used (C.1)) in the second step. O

Since y;, can be chosen as any operator there is no need to constrain y;, < --- < y,, while

using (C.4)). Therefore is
a an dyf Y—Yi § - (CS)
v Z J Hz 1 'l) v

Then the integrals can be easily computed. In 77, VTT case, one will meet f = 1
cases, namely to compute
1 1
Loyoa, = Oy Oup Ly ooy, - C.6
v = T e — 1] whoran (€.6)

is introduced for simplicity

dx
551 Tn T ) n 9 C.7
Zy]§Hk=1(x_$k) (€7

The new quantity Z7 .

‘Tn

where we choose the reference point as y;, = ;. This kind of integrals can be computed
by using residue theorem as

Tyyog, = 2 290 (C.8)
[Tk @it
Here we present the integrals that appeared in the main text
Zyoso = | Y14 3€ +Y24 3€ +Y34 3€

(x — x1) m—xg) (C.9)

211 1 211 1 Y13

= — + Y34.0° = y130° = —40me
6 3114%1 Y340, ) $13 6 Y130, 1 xf‘?) $13
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Tia13 = 270 l Y14 n Y3a — s 61’%21'%3 + 1'341’%3 + 31’211’231’42(1’12 + X392 + 1’42)
THT13TY  ThHhTnT 123573,
) . (C.10)
T Y14
I2222 :y14§4—2 + (1 <—>2) + (1 <—>3) = Omlﬁ + (1 <—>2) + (1 > 3)
[Tici (@ — ) L12T713%714

, 1 1 1
=—4m[yl4( 5 T 535 t 5 3)}+(1<—>2)+(1<—>3),

TioT13L14  T1aL13T14  L12T13%714

(C.11
dx i
Zs030 = y14§+y24§+y34§ 3 3 = 03, B _ 120 y?, (C.12)
(v —21)3(x — 23) $13 T3
x1 x9 x3
dx 2113 Y13
Too20 = + + = Oy = —4mi
2020 y14§ yz4§ y34§ (@ — 21)2(z — 73)2 2, 23,
xr1 2 z3
(C.13)
2 + +

Tioto :2m.l - Y14 - n . Y3a - ¥y L1223 237224@312 $32) 7 (C.14)

T1oT13L74  T39L31L3y T12L33Lo4

dx 27T’iy14
T = j€—+1<—>2+1<—>3=7+1<—>2+1<—>3.
1111 = Y14 H?=1(x _ 931) ( ) ( ) T19T15T 1a ( ) ( )
(C.15)
Then, in J7), deformation, one might meet f = (y — ;)" (n = 0, 1 < i < n) case,
namely
1 1

/= O, -+ 0y, IV C.16
ai--an (a1_1)| (a'n_]-)' n=r1Tp " ( )

The new quantity Z/ ...z, 18 introduced for simplicity

‘Tn

- dy( P L — C.17
VLN ZJ y(y —vi) §Hk1 70) (C.17)

This can easily be calculated by using the residue theorem as

. n+1
72 A L (C.18)
" n+ 1] Tz ik

Here we will not show some specific examples since the procedure is the same as that of
f = 1 case. The integrals in 7T case can be easily re-derived by setting n = 0.
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