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ABSTRACT. In this study, we investigate various deformations within the frame-

work of Bondi-van der Burg-Metzner-Sachs invariant field theory (BMSFT).

Specifically, we explore the impact of Bondi-van der Burg-Metzner-Sachs

(BMS) symmetry on the theory by introducing key deformations, namely, TT ,

JTµ, and
?
TT deformations. In the context of generic seed theories possess-

ing BMS symmetry, we derive the first-order correction of correlation functions

using the systematic application of BMS symmetry ward identities. However,

it is worth noting that higher-order corrections are intricately dependent on the

specific characteristics of the seed theories. To illustrate our findings, we select

the BMS free scalar and free fermion as representative seed theories. We then

proceed to analytically determine the deformed action by solving the nontrivial

flow equations. Additionally, we extend our analysis to include second-order

deformations within these deformed theories.
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1 Introduction

The holographic principle, foundational in quantum gravity [1, 2], reshapes our under-

standing of spacetime, black holes, and the universe, particularly through the anti-de

Sitter/conformal field theory (AdS/CFT) correspondence [3–5]. This correspondence un-

ravels the intricate relationship between quantum gravity properties and boundary field

theory. Renormalization group (RG) flow in the boundary field theory provides insights

into quantum gravity’s behavior across energy scales. We focus on investigating marginal

and irrelevant deformations using the double-current construction.

For irrelevant deformations, computational challenges arise due to an infinite number

of operators at a fixed point, necessitating an infinite number of counterterms. Solv-

able classes of 2D spacetime irrelevant deformations, such as TT [6–8] and JT [9] for

Up1q current-conserving seed theories, present exceptions. The JTµ deformation [10]

generalizes JT . RG flow analysis shows these deformations lead to high-energy scales,

disrupting seed theory symmetries. Symmetries of TT , JT , and JTµ deformed CFTs are

explored in [11]. In addition, TT and JTµ deformations serve as probes for seed the-

ory’s ultraviolet (UV) behavior. Marginal deformations, like root-TT [12,13], arise from

a finite number of operators. Exact marginal deformations maintain symmetries, though

perturbative methods introduce deviations, discussed in sections 4 and 5. Throughout

RG flows, these deformations impact quantum gravity in the bulk through the AdS/CFT

correspondence [14–22].

To further understand quantum gravity, efforts extend the AdS/CFT correspondence

to flat holography [23–34]. Recent studies indicate two approaches for flat holography,

both centered on the BMS group in asymptotically flat spacetime (AFS) [35–37].

The first flat holography approach, celestial holography, establishes a connection be-

tween 4D asymptotically flat spacetime (AFS) quantum gravity and a 2D conformal field

theory (CFT) on the celestial sphere at the null boundary I˘ [38–44]. This celestial CFT

incorporates irrelevant or marginal deformations, extending and enriching the celestial

holography framework. Co-dimensional two celestial holography applies 2D irrelevant

deformations to 4D quantum gravity, potentially constructing UV-complete theories of

general relativity [45]. Double current marginal deformations in celestial CFT corre-

spond to loop corrections in 4D AFS scattering amplitudes, impacting the moduli space

of bulk vacua [46], providing precise holographic dictionaries.

The second approach, co-dimension one Carrollian holography, proposes a duality

between quantum gravity in AFS and a Carrollian conformal field theory on the null

boundary [47, 48]. This duality can also be observed through limits in the AdS/CFT

correspondence, where the transition from AdS to Minkowski spacetime, i.e., infinite

radius, corresponds to the limit of zero light velocity (c Ñ 0) in the CFT [49, 50]. This

limit gives rise to a Carrollian CFT or a BMS-invariant field theory (BMSFT). The c Ñ 0
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limit is also known as the ultra-relativistic (UR) limit. The details of re-deriving BMSFT

from UR limit are presented in Appendix A. Further investigations into the connection

between Carrollian and flat holography are discussed in [51–59].

Given the interconnected nature of various flat holography approaches [60–62], our

study delves into the impact of irrelevant or marginal deformations, adopting a Carrollian

perspective. Correlation functions, pivotal observables in quantum field theories, are the

focal points we focused on. Aiming to maintain simplicity and clarity, our examination

focuses on the 2D BMSFT as the seed theory, known for its foundational role in flat

holography. Specific deformations, such as TT , JTµ, and
?
TT , well-defined in Lorentz-

invariant quantum field theories, form the basis of our exploration.

Notably, extending these deformations to the relatively unexplored realm of BMSFT

becomes a central objective. Drawing inspiration directly from previous studies [63–68],

we directly define deformations on BMSFT using the same framework as deformations

on 2D Lorentz-invariant quantum field theories. The deformations can also be defined

by leveraging the UR limit on Lorentz-invariant quantum field theory definitions. Our

proposed approaches to defining deformations within the Carrollian structure are eluci-

dated, with potential equivalence between them suggested by the findings presented in

Appendix B. These results offer valuable insights into the compatibility and interchange-

ability of the two proposed methods, shedding light on the nuanced relationship between

deformations and the Carrollian structure in the context of flat holography.

The paper is structured as follows. In Section 2, we offer a comprehensive review

of the seed theory BMSFT, encompassing an overview of the operator product expan-

sions (OPEs) between the conserved currents and the primary operators. Moreover, we

present the non-vanishing correlation functions constructed by these primary operators.

Moving on to Section 3, we introduce and define the TT , JTµ,
?
TT deformations for 2D

BMSFT. We then proceed to perturbatively calculate the first-order correction of these

deformations on the correlators in a generic form. To observe the flow effect, achieving

accuracy up to at least the second order becomes necessary. Therefore, we apply these

deformations to specific examples: the BMS-invariant free scalar model in Section 4 and

the BMS-invariant free Fermion model in Section 5. In these two sections, we provide

the all-order corrected Lagrangian for the TT , JTµ and
?
TT deformed theory. We then

proceed to compute the higher-order corrections of the deformed correlation functions

systematically.
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2 2D BMSFT

2.1 BMS3 algebra

The 2D BMSFT is a kind of quantum field theory which is invariant under the following

local BMS transform

x Ñ fpxq, y Ñ f 1pxqy ` gpxq, (2.1)

where x denotes space while y denotes time, and fpxq, gpxq are the local dilation and

local boost respectively, which can be expanded near x “ 0 as

fpxq “
ÿ

nPZ

anx
n`1, gpxq “

ÿ

nPZ

bnx
n`1, an, bn P R. (2.2)

The transform (2.1) can be generated by the following BMS generators [69]

Ln “ ´xnpxBx ` pn` 1qyByq, Mn “ ´xn`1By. (2.3)

By central extension, the algebra of BMSFT should be

rLn, Lms “ pn´ mqLn`m ` cL

12
pn3 ´ nqδn`m,0,

rLn,Mms “ pn´ mqMn`m ` cM

12
pn3 ´ nqδn`m,0,

rMn,Mms “ 0,

(2.4)

which refers to BMS3 algebra, equivalently, the 2D Galilean or Carrollian conformal

algebra (in short, GCA or CCA). This algebra can be derived from UR limit, see appendix

A.1. Suppose the action is invariant under transformation (2.1), the components of stress

tensor should satisfy [59]

T x
y “ 0, T µ

µ “ 0. (2.5)

Therefore the components of stress tensor are defined as

T µ
ν “

˜
M T

0 ´M

¸
, T “ L ` yBxM, (2.6)

where T,M are Noether current of the translation symmetry along x, y respectively [69].

Then the conservation law BµT
µ
ν “ 0 yields

ByL “ 0, ByM “ 0. (2.7)

Therefore the components can be expanded as

L “
ÿ

nPZ

Lnx
´n´2, M “

ÿ

nPZ

Mnx
´n´2. (2.8)
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Then by using the algebra (2.4), the OPEs between the components of stress tensors can

be obtained as 1

Lpx1qLpxq „ cL

2prx1 ´ rxq4 ` 2Lpxq
prx1 ´ rxq2 ` BxLpxq

rx1 ´ rx , Mpx1qMpxq „ 0,

Lpx1qMpxq „ cM

2prx1 ´ rxq4 ` 2Mpxq
prx1 ´ rxq2 ` BxMpxq

rx1 ´ rx .

(2.9)

The TM-OPE can be simply obtained by using their relation T “ L ` yBxM

T px1, y1qT px, yq „ cL

2px1 ´ xq4 ` 2T px, yq
prx1 ´ rxq2 ` BxT px, yq

rx1 ´ rx

´ 2cMpy1 ´ yq
prx1 ´ rxq5 ´ 4py1 ´ yqMpxq

prx1 ´ rxq3 ´ py1 ´ yqBxMpxq
prx1 ´ rxq2 ,

T px1, y1qMpxq „Mpx1qT px, yq „ cM

2prx1 ´ rxq4 ` 2Mpxq
prx1 ´ rxq2 ` BxMpxq

rx1 ´ rx ,

Mpx1qMpxq „0.

(2.10)

2.2 Highest weight representation

In this subsection, we discuss the highest weight representation of 2D BMSFT. Since

the BMS algebra (2.4) can be obtained by UR limit from Virasoro algebra, it is straight-

forward to borrow the highest weight representation from 2D CFT by using UR limit.

This representation in BMSFT is referred to as the induced representation [70], which is

unitary. Note, however, that the induced representation is not the highest weight repre-

sentation of 2D BMSFT, which can be derived parallelly as that of 2D CFT. In this way,

the Hilbert space of 2D BMSFT can be decomposed into the BMS module of (2.4) as

H “
ÿ

∆,ξ

H∆,ξ, (2.11)

where ∆, ξ are eigenvalues of L0,M0 respectively. The requirement to the primary opera-

tor defined on origin O “ Op0, 0q in each block can be derived by using the state-operator

correspondence

rLn,Os “ 0, rMn,Os “ 0, n ą 0. (2.12)

Unfortunately, it turns out that the Kac determinant for the highest weight representation

of 2D BMSFT with non-zero boost charge is negative [71], which indicates that the high-

est weight representation of 2D BMSFT is not unitary. Therefore, even though L0,M0

are commutative with each other, they may not be diagonalizable in the same module

1 Here is some ambiguity we should remark. While implementing integration, x should be recovered as

z by the UR limit. Namely, x Ñ rx “ x ` iεy, which belongs to the complex plane. Fortunately, this is

equivalent to the radial quantization and analytical continuation from cylinder to plane [69]. That is why

we can use (2.4) to derive OPE.
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simultaneously. This will form a novel “multiplet” structure of primary operator which

shares a similar feature as logarithmic CFT [72–79]. Then the eigenvalue of L0,M0 can

be read off as

rL0, Oas “ ∆Oa, rM0, Oas “ pξOqa, a “ 0, ¨ ¨ ¨ , r ´ 1 (2.13)

where the rank r 2 is the number of primary operators in the same module that are related

to each other, and the matrix ξ can always be chosen as Jordan form

ξ “

¨
˚̊
˚̊
˝

ξ

1 ξ
. . .

. . .

1 ξ

˛
‹‹‹‹‚
. (2.14)

The operators on arbitrary position can be evolved by U “ exL´1´yM´1 as

Oapx, yq “ UOap0, 0qU´1 (2.15)

Then the transform of primary operators will be derived by using the Baker-Campbell-

Hausdorff (BCH) formula

rLn, Oapx, yqs “
“
xn`1Bx ` pn ` 1qxnyBy ` pn` 1qpxn∆ ` nxn´1yξq

‰
Oapx, yq,

rMn, Oapx, yqs “
“
xn`1By ` pn` 1qxnξ

‰
Oapx, yq. (2.16)

Similarly, the OPEs between primary operators and stress tensors can be derived as

T px1, y1qOapx, yq „ ∆Oa

prx1 ´ rxq2 ` 2py ´ y1qpξ ¨ Oqa
prx1 ´ rxq3 ` BxOa

rx1 ´ rx ` py ´ y1qByOa

prx1 ´ rxq2

Mpx1qOapx, yq „ pξ ¨Oqa
prx1 ´ rxq2 ` ByOa

rx1 ´ rx,
(2.17)

where we substituted rx for x, see the relevant discussion in footnote 1. This matches

with the OPEs derived from [59]. The OPEs can also be derived from the UR limit, see

appendix A.2.

2In particular, the rank-1 multiplet of primary operators refer to as singlets, which is denoted as O. They

form the singlet version of highest weight representation [70].
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2.3 2D non-Lorentzian Kac-Moody algebra

The non-vanishing commutators of 2D non-Lorentzian Kac-Moody (NLKM) algebra are

[57]

rLn, Lms “ pm´ nqLm`n ` cL

12
pm3 ´ mqδm`n,0,

rLm,Mns “ pm´ nqMm`n ` cM

12
pm3 ´ mqδm`n,0,

rLm, J
a
ns “ ´nJa

m`n, rLm, K
a
ns “ ´nKa

m`n, rMm, J
a
ns “ ´nKa

m`n,

rJa
m, J

b
ns “ iF abcJc

m`n ` iGabcKc
m`n ` mk1δ

abδm`n,0,

rJa
m, K

b
ns “ iF abcKc

m`n ` mk2δ
abδm`n,0,

(2.18)

where we sum over the double index c, and the first two lines are exactly the CCA (2.4)

derived in previous subsections, indicating that the subalgebra of NLKM is the BMS3

algebra. The NLKM algebra can also be derived from Virasoro Kac-Moody algebra by

taking UR limit, see appendix A.1. Furthermore, the NLKM algebra can be intrinsically

derived from the conserved Kac-Moody current with the following form 3

jaµ “ pJa
x ,´Ja

y q, (2.19)

where

Ja
y “

ÿ

nPZ

x´n´1Ka
n, Ja

x “
ÿ

nPZ

x´n´1

”
Ja
n ´ pn ` 1qy

x
Ka

n

ı
. (2.20)

The OPEs between the current and the primary operators are [57]

Ja
y px1, y1qOpx, yq „ i

Fa ¨Opx, yq
rx1 ´ rx ,

Ja
xpx1, y1qOpx, yq „ i

Ga ¨Opx, yq
rx1 ´ rx ´ ipy1 ´ yqF

a ¨Opx, yq
prx1 ´ rxq2 ,

(2.21)

where G,F are two independent operators acting on fields, which denote the variation of

the fields under the infinitesimal NLKM transformation.

2.4 Correlators

2.4.1 Correlators of singlets

Since the vacuum is invariant under the global BMS symmetry, the two and three-point

function of primary operators can be fixed as

xX2y “ xO1px1, y1qO2px2, y2qy “ Nδ∆1,∆2
δξ1,ξ2 |x12|´2∆1e

´2ξ1
y12
x12 , (2.22)

3Note that the upper index µ of the current jaµ is raised by ǫµν . Precisely, we have jaµ “ ǫµνJa

ν
. This

depends on the structure of Newton-Cartan geometry [80], see also the review in [81]
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xX3y “ xO1px1, y1qO2px2, y2qO3px3, y3qy

“ c123|x12|´∆123 |x23|´∆231 |x31|´∆312exp

ˆ
´ξ123

y12

x12
´ ξ312

y31

x31
´ ξ231

y23

x23

˙
, (2.23)

where N is the normalization factor, c123 encodes dynamical information of BMSFTs,

and

xij “ xi ´ xj , yij “ yi ´ yj ∆ijk “ ∆i ` ∆j ´ ∆k, ξijk “ ξi ` ξj ´ ξk (2.24)

Moreover, the four-point function of primary operators can be defined up to an arbitrary

function

xX4y “xO1px1, y1qO2px2, y2qO3px3, y3qO4px4, y4qy

“
4ź

iăj

|xij |
ř

4

k“1
´∆ijk{3exp

˜
yij

xij

4ÿ

k“1

ξijk

3

¸
fpX ,Yq,

(2.25)

where the following defined cross ratios are invariant under the global BMS transform

X “ x12x34

x13x24
, Y “ y12

x12
` y34

x34
´ y13

x13
´ y24

x24
. (2.26)

2.4.2 Correlators of multiplets

Things will become more complex than singlet primary operators. For two and three

functions, we have

xOiapx1, y1qOjbpx2, y2qy “

$
&
%

0, qi “ a ` b` 1 ´ ri ă 0,

δijNi|x12|´2∆ie
´2ξi

y12
x12

1

qi!

´
´2y12

x12

¯qi

, qi ě 0,
(2.27)

xOiaOjbOkcy “ A B Cabc
ijk , (2.28)

where Ni is the normalization factor and

A “exp

ˆ
´ξijk

y12

x12
´ ξkij

y31

x31
´ ξjki

y23

x23

˙
,

B “|x12|´∆123 |x23|´∆231 |x31|´∆312 ,

Cabc
ijk “

aÿ

n1“0

bÿ

n2“0

cÿ

n3“0

cn1n2n3

ijk

pn1

1 p
n2

2 p
n3

3

n1!n2!n3!
, pi “ Bξi logA.

(2.29)

3 Deformations for the 2D BMSFT

We will now discuss the effect of irrelevant and marginal deformations on the BMSFT.

As we have introduced before, little is known about how to define deformations acting
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on BMSFT. Therefore, in this section, we will generically implement the definitions of

irrelevant and marginal deformations to the seed theory 2D BMSFT. Specifically, we will

discuss TT and JTµ for irrelevant deformations and
?
TT for marginal deformation. As

we will see, the first-order correction to both correlators and the Lagrangians or actions

are all universal and are not affected by the flow of deformations. Our primary concern is

where the seed theory will be flowed by these deformations. The flow effect will be re-

flected in the higher-order corrections, which, unfortunately, are not universal and depend

on the concrete seed theory. As a generic introduction to show the universal properties of

the deformed correlation functions without knowing the fields, we will mainly focus on

the first-order correction of these deformations in this section, while the non-universal, or

higher-order corrections will be concerned in the next sections.

3.1 TT deformed BMSFT

The TT deformed action for BMSFT, which is a non-relativistic field theory, can be

defined in a similar way as that for CFT, namely

BλS
rλs “ λ

ż
dxdyO

rλs

T T̄
, OT T̄ “ detT µ

ν , SrλsrΦ, BµΦs “
ż
dxdyLrλs. (3.1)

Perturbatively, each quantity can be expanded as a Taylor series by the power of λ

Lrλs “
8ÿ

n“1

λn

n!
Lpnq, T µrλs

ν “
8ÿ

n“1

λn

n!
T µpnq

ν , Srλs “
8ÿ

n“1

λn

n!
Spnq, (3.2)

where Spnq “
ş

dxdyLpnq. Then each order of deformed Lagrangian satisfies the follow-

ing recursion relation [82]4

Lpn`1q “1

2

nÿ

i“0

C i
n

`
T µpiq

µ T νpn´iq
ν ´ T µpiq

ν T νpn´iq
µ

˘
,

T µpnq
ν “ BLpnq

BpBµΦqBνΦ ´ δµνL
pnq, n “ 1, 2, ¨ ¨ ¨ .

(3.3)

The T
µp0q
ν is defined in (2.6). Sometimes T

µp0q
ν “ BLp0q

BpBµΦq
BνΦ ´ δµνL

p0q without the EoM

of fields is in the same form as T
µp0q
ν defined in (2.6). In this case, the expression of

T
µpnq
ν above can be formally extended to n “ 0, 1, 2, ¨ ¨ ¨ . We will show this in section

4. Generally, without the EoM of fields, T
µp0q
ν is not in the same form as T

µp0q
ν , then

the T
µpnq
ν in the above equation should not include n “ 0, and the EoM of fields should

be implemented after finishing the computation of all order corrections of the deformed

4One can also refer to the recent systematic investigation [83] of the deformed correlation function

which is independent of detailed data of the seed theory.
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Lagrangian. We will see this in section 5. The deformed correlation function can be

derived from the path integral definition as

xXnyTT
rλs “

ş
DΦ Xn e

´Srλs

ş
DΦe´Srλs

“
@
Xn e

´δS
D

xe´δSy , δS “ Srλs ´ S. (3.4)

Therefore, the deformed correlators can be computed order by order

xXnyTT
rλs “

8ÿ

n“0

λn

n!
xXnypnq, (3.5)

where

xXnyp0q

TT
“xXnyrλ“0s “ xXny (3.6)

xXnyp1q

TT
“

@
Sp1q

D
xXny ´

@
Sp1qXn

D
, (3.7)

xXnyp2q

TT
“

@
Sp1qSp1qXn

D
´

@
Sp1qSp1q

D
xXny `

@
Sp2q

D
xXny ´

@
Sp2qXn

D

` 2
@
Sp1q

D2 xXny ´ 2
@
Sp1q

D @
Sp1qXn

D
(3.8)

...

Note that xMky “ 0 for any integral k ą 0, since the MM OPE (2.9) is zero. Therefore

the first-order correction of BMSFT correlators (3.7) can be derived as follows by using

un-deformed stress tensor defined in (2.6) and the recursion relation (3.3) 5

xXnyp1q

TT
“

ż
dxdyxpMMqpxqXny, (3.9)

where the integral range of px, yq are all p´8,8q. Since the Ward identities between M

and primary operators are generic, the first-order correction of TT deformed correlators is

universal. Meanwhile, since the first-order correction is based on the data in seed theory,

it does not contain the information on the flow effect, which will appear in the higher-

order corrections. However, the higher-order correction will not be universal anymore.

We will discuss this later. In this subsection, we only consider the first-order correction

to the correlators, which could be derived by using the Ward identity (2.17) as

xXnyp1q

TT
“

nÿ

i,j

ż
dxdy

„
ξi

prx ´ rxiq2
` Byi

rx´ rxi

 „
ξj

prx´ rxjq2
` Byj

rx´ rxj


xXny. (3.10)

Therefore we only need to deal with the integral with the following form

If
a1¨¨¨an “

ż
dxdy

fpy ´ yiqśn
i“1

prx´ rxiqai
, (3.11)

5Another way to define the TT deformation is to use the UR limit to borrow the definition from the TT

deformation for Lorentz invariant field theory. At least, we can easily verify that the first-order correction

of these two definitions is almost the same, up to a constant, which can be absorbed to the coupling constant

λ by redefinition. One may find the details in appendix B.
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where fpy´yiq is an arbitrary function of the time direction y without poles. This integral

can be computed by attaching each operator to an arbitrary operator in pxk, ykq, k P
t1, ¨ ¨ ¨ , nu

If
a1¨¨¨an “ ´

nÿ

j“1

ż yk

yj

dyfpy ´ yiq
¿

xj

dxśn
i“1

px ´ xiqai
, (3.12)

where all xk are all real numbers while the integral variable x is complex number, see

details in appendix C. Specifically, we will encounter the simplest case f “ 1 for most

computations, such that

Ia1¨¨¨an “
nÿ

j“1

yjk

¿

xj

dxśn
i“1

px´ xiqai
. (3.13)

With all these preparations, the first-order correction can be easily computed as

xXnyp1q

TT
“ ´2πi

ÿ

i‰j

yij

xij

„
2

x2ij
ξiξj ` 1

xij

`
ξiByj ` ξjByi

˘
` ByjByi


xXny. (3.14)

We should remark again that ξi is a Jordan matrix acting on the i-th field of the correlator

xXny in the generic case, whose size depends on the rank of the multiplet primary fields.

Moreover, there still are some derivative operators Byi , which will have distinguishing

behavior depending on the different pole structures of the correlators in the seed theory.

The deformation will yield extra pole structures at the first-order correction level for the

correlation functions, which depend on the rank of the multiplets and the pole structure

of the un-deformed correlators. The extra pole structure might be complex, even though

the result (3.14) seems simple. Therefore, it is worth computing some relevant specific

cases to detect these novel structures. To manifest them in the first correction level with-

out knowing the fields themselves, we only need to fix the rank of each field in xXny
and we should know the pole structures of the un-deformed xXny. Specifically, in some

cases, the pole structure yielded by the deformed and un-deformed pole structure is sim-

ply factorized at the first-order corrected correlators, which will appear only when the

pole structure can be fixed by the BMS symmetries in the seed theory and the rank of the

fields are all 1. Fortunately, the singlet version of 2-point and 3-point functions satisfy

these two conditions. But the first-order correction of 4-point functions may not be fac-

torized, since the un-deformed pole structure of 4-point functions is not completely fixed,

up to an arbitrary function of cross-ratio. Next in this subsection, we will compute 2-

point and 3-point functions for the singlet version to show the factorization property. As

a comparison, we will compute the 4-point functions in the singlet version and correlators

at 2-point, and 3-point to show that they are not factorized.
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3.1.1 Correction to singlets

In the singlet case, the rank of the matrix ξ in (3.14) is 1, namely ξ “ ξ is a number,

rather than a matrix.

2-point From (2.22), we notice that only operators that have the same weights are non-

zero. Thus, the non-vanishing singlet 2-point function in seed theory is constructed by two

same singlets O with the conformal dimension ∆ and boost charge ξ defined at different

points

xX2y “ xOpx1, y1qOpx2, y2qy “ N |x12|´2∆e
´2ξ

y12
x12 . (3.15)

Then the first-order correction is Then the first-order correction through TT flow is

xX2yp1q

TT
“ ´40πiξ2

y12

x3
12

xX2y, (3.16)

which is exactly factorized. Note that xk are real numbers since we only implement

analytical continuation for x, not xk. The normalization factor N can absorb the probable

minus sign caused by the removal of the absolute value sign of x12.

3-point We only consider a specific case in 3-pt case: three operators with the same

p∆, ξq are placed on 3 different points px1, y1q, px2, y2q, px3, y3q. Namely, we choose

O1 “ O2 “ O3 “ O, ξ1 “ ξ2 “ ξ3 “ ξ, ∆1 “ ∆2 “ ∆3 “ ∆. (3.17)

So the un-deformed 3-pt (2.23) is

xX3y “ xOpx1, y1qOpx2, y2qOpx3, y3qy “ c123px12x23x13q´∆e
´ξ

´
y12
x12

`
y31
x31

`
y23
x23

¯

, (3.18)

where we absorbed the probable minus sign into c123. Therefore the first-order correction

is

xX3yp1q

TT
“ 20πiξ2

ˆ
y12

x312
` y13

x313
` y23

x323

˙
xX3y. (3.19)

where we used (3.13) and the residue theorem. We can easily see that this result is factor-

ized.

4-point We first consider 4 same operators in four different points. In this case

ξ2 “ ξ4 “ ξ1 “ ξ3 “ ξ, ∆1 “ ∆2 “ ∆3 “ ∆4 “ ∆ (3.20)

then the un-deformed 4-pt (2.25) is

xOpx1, y1qOpx2, y2qOpx3, y3qOpx4, y4qy “ F pX ,Yq
|x13x24|2∆ exp

„
´2ξ

ˆ
y13

x13
` y24

x24

˙
,

(3.21)
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where we used the following formulas to simplify some of the ratios and absorb extra

X ,Y into F pX ,Yq

x12x34 “ x13x24X , x14x23 “ x13x24p1 ´ X q,
y23

x23
` y14

x14
“ Y

X ´ 1
` y13

x13
` y24

x24
,

y12

x12
` y34

x34
“ Y

X
` y13

x13
` y24

x24
.

Then the 1-st correction of this case is

xOpx1, y1qOpx2, y2qOpx3, y3qOpx4, y4qyp1q

TT

“ ´
„
ξ2px4

24
I0404 ` x4

13
I4040q ` x2

14
x2
23

ˆ
X 2pB2

Y lnF ` pBY lnF q2q ` 2ξ2

p1 ´ X q2
˙
I2222

` 2ξx14x23X BYlnF
`
x2
24
I1313 ` x2

13
I3131

˘ 
F pX ,Yq

|x13x24|2∆ e
´2ξ

´
y13
x13

`
y24
x24

¯

, (3.22)

see the integrals in appendix C.

Then we consider another case: put O on 2,4 and put O: on 1,3. In this case, we have

ξ2 “ ξ4 “ ´ξ1 “ ´ξ3 “ ξ, ∆1 “ ∆2 “ ∆3 “ ∆4 “ ∆. (3.23)

So the un-deformed 4-point function is (2.25)

xX 1
4y “ xO:px1, y1qOpx2, y2qO:px3, y3qOpx4, y4qy “ F pX ,Yq

|x13x24|2∆ exp

„
2ξ

3

ˆ
y24

x24
´ y13

x13

˙

(3.24)

Then the 1-st correction of the 4-point function in this case is

xO:px1, y1qOpx2, y2qO:px3, y3qOpx4, y4qyp1q

TT

“ ´
"
x2
14
x2
23
I2222X

2

”
B2

Y lnF ` pBY lnF q2
ı

` ξ2
„
x4
24
I0404 ` x4

13
I4040 ´ 2x2

24
x2
13
I2222

` 64

9
pI0202 ` I2020 ´ 2I1111q ` 16

3

´
x2
24

pI0303 ´ I1212q ` x2
13

pI3030 ´ I2121q
¯

` 2ξx14x23X BY lnF

„
x224I1313 ´ x213I3131 ` 8

3
pI1212 ´ I2121q

 *
F pX ,Yq

|x13x24|2∆ e
2ξ

3

´
y24
x24

´
y13
x13

¯

,

(3.25)

see the integrals in appendix C. In general, we can explicitly see that the corrections of

4-point functions in the first-order level is not factorized.

3.1.2 Correction to multiplets

Then we will show the first-order correction to the 2-point and 3-point functions com-

posed with multiple operators and show that are not factorized in the first-order level.
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2-point From (2.27) we notice that Oia and Ojb must in the same multiplet, namely

i “ j. So we can drop i, j, put them in 1,2 respectively (a` b ` 1 ´ r ě 0)

xOapx1, y1qObpx2, y2qy “ N |x12|´2∆e
´2ξ

y12
x12

pa` b` 1 ´ rq!

ˆ
´2y12

x12

˙a`b`1´r

. (3.26)

For r “ 1, the 1-st correction degenerates to the result of the singlet. We only discuss the

following condition

a ě 2, b ě 2, a` b ` 1 ´ r ě 0. (3.27)

The MM-insertion as

xMMpxqOapx1, y1qObpx2, y2qy “
"

pQ2

a`b´Pa`bq
„

1

px´ x1q4 ` 1

px´ x2q4


` 6pQ2

a`b ´ Pa`bq
px´ x1q2px ´ x2q2

´ 2pQ2

a`b ´ Pa`b ´ 2Qa`bξq
px ´ x1qpx´ x2q

„
1

px´ x1q2 ` 1

px ´ x2q2
 *

xOaOby, (3.28)

where

Pa`b “ x12

2y12
pQa`b ` ξq “ pa ` b` 1 ´ rq

ˆ
x12

2y12

˙2

,

Qa`b “pa` b ` 1 ´ rq x12
2y12

´ ξ

(3.29)

Then, the 1-st correction of the multiplet 2-point function is

xOapx1, y1qObpx2, y2qyp1q

TT
“ ´ 16πi

y12

x3
12

p2Q2

a`b ´ 2Pa`b ´ Qa`bξqxOaOby. (3.30)

3-point consider a, b, c ě 2 and i “ j “ k (so we can drop ijk for simplicity). Put

Oa, Ob, Oc on 1,2,3 respectively. Then, the 1-st correction of the 3-point multiplet is

xOapx1, y1qObpx2, y2qOcpx3, y3qyp1q

TT

“2πiB

"
2
y12

x12
By1By2pCabcAq ` 2

y13

x13
By1By3pCabcAq ` 2

y23

x23
By2By3pCabcAq

´ 2ξ

„ˆ
y21

x221
` y31

x231

˙
By1pCabcAq `

ˆ
y12

x212
` y32

x232

˙
By2pCabcAq `

ˆ
y13

x213
` y23

x223

˙
By3pCabcAq



´ 2A

ˆ
y12

x312
Ca´1,b´1,c ` y13

x313
Ca´1,b,c´1A ` y23

x323
Ca,b´1,c´1

˙

´ 2Aξ

„ˆ
y12

x3
12

` y13

x3
13

˙
Ca´1,b,c `

ˆ
y12

x3
12

` y23

x3
23

˙
Ca,b´1,c `

ˆ
y13

x3
13

` y23

x3
23

˙
Ca,b,c´1



´ y21

x2
21

By1pCa,b´1,cAq ´ y31

x2
31

By1pCa,b,c´1Aq ´ y12

x2
12

By2pCa´1,b,cAq ´ y32

x2
32

By2pCa,b,c´1Aq

´ y13

x213
By3pCa´1,b,cAq ´ y23

x223
By3pCa,b´1,cAq ´ 4ξ2ACabc

ˆ
y12

x312
` y13

x313
` y23

x323

˙ *
,

(3.31)
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which may not be factorized.

From now on, we have shown the first-order corrections to the correlation functions,

which do not depend on the seed theory. As a perturbative version, the higher-order cor-

rections are based on the data defined in lower orders, which makes the higher-order cor-

rections non-universal and thus depend on the seed theory. The higher-order corrections

will be seen in the next sections, which discuss the concrete examples of TT deformed

free scalar and free Fermion models.

3.2 JTµ deformed BMSFT

The JTµ deformation can be implemented for the seed BMSFT which contains the NLKM

symmetries. The generic definition of JTµ deformation can be borrowed from [10] as

BSrλs

Bλµa
“

ż
dxdy ǫαβ j

aα
rλsT

βrλs
µ (3.32)

where jaµ is the Kac-Moody current. The first-order correction to the action is also uni-

versal, which can be expressed as

Srλs “Sr0s ` λ0a

ż
dxdy

`
jayT x

y ´ jaxT y
y

˘
` λ1a

ż
dxdy pjayT x

x ´ jaxT y
xq ` opλµaq

“Sr0s ` λ0a

ż
dxdyJa

yM ` λ1a

ż
dxdy

`
Ja
yT ´ Ja

xM
˘

` opλµaq (3.33)

where the current without “rλs” is the data of the seed theory, and we used (2.6) and

(2.19). Through the path integral, the first-order correction to the correlation function

will be

xXnyJTµ

rλs “ xXnyp0q
JTµ

` λµaxXnyap1q
µ ` opλµaq (3.34)

where

xXnyp0q “ xXny,

xXnyap1q
0 “ ´

ż
dxdyxJa

yMXny,

xXnyap1q
1

“ ´
ż

dxdy
`
xJa

yTXny ´ xJa
xMXny

˘
.

(3.35)

We can use the Ward identities (2.17) and (2.21) to compute the first-order corrections for

a generic n-point correlation function

xXnyap1q
0 “ i

nÿ

i,j“1

ż
dxdy

Fa
i

x´ xi

„
ξj

px´ xjq2
` Byj

x´ xj


xXny (3.36)

xXnyap1q
1 “ i

nÿ

i,j“1

ż
dxdy

" „
Ga
i

x´ xi
´ y ´ yi

px´ xiq2
Fa

i

 „
ξj

px´ xjq2
` Byj

x ´ xj



´ Fa
i

x ´ xi

„
∆j

px ´ xjq2
´ 2py ´ yjq

px ´ xjq3
ξj ` Bxj

x ´ xj
´ py ´ yjqByj

px´ xjq2
 *

xXny
(3.37)
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By using the integral scheme (3.12), one obtains

xXnyap1q
0 “ ´2π

ÿ

i‰j

yij

x2ij
Fa

i pξj ` xijByjqxXny, (3.38)

and

xXnyap1q
1 “ 2π

ÿ

i‰j

yij

xij

„
Fa

i

ˆ
∆j

xij
` yij

2xij
Byj ` Bxj

˙
´ Ga

i

ˆ
ξj

xij
` Byj

˙
xXny. (3.39)

Similar to the discussion of TT case, these generic and simple results do not completely

manifest the pole structure of the deformed correlation functions at the first-order cor-

rection level. Unfortunately, even though the un-deformed pole structure and the rank

are fixed, the extra pole structure yielded by the deformation still cannot be completely

displayed without knowing the fields themselves because Fa
i depend on the internal struc-

ture of the i-th fields, which is different for distinct fields. Then there is no need for this

subsection to discuss examples like 2-point and 3-point functions for JTµ deformations,

which will be left for the deformed free scalar and Fermion models.

3.3 Root-TT deformed BMSFT

The
?
TT deformation is defined as [12]

BλS
rλs “

ż
dxdyRrλs, (3.40)

where λ is a dimensionless coupling constant, and Rrλs is defined as

Rrλs “
c

1

2
T

Arλs
B T

Brλs
A ´ 1

4

´
T

Arλs
A

¯2

(3.41)

Similarly, quantities like the stress tensor, the Lagrangian, and the action can be expanded

as (3.2). So the recursion relation can be derived from the following formula

8ÿ

n“0

λn

n!
Lpn`1q “ Rrλs “

gffe
8ÿ

n“0

λn

n!

nÿ

i“0

C i
n

ˆ
1

2
T

Apiq
B T

Bpn´iq
A ´ 1

4
T

Apiq
A T

Bpn´iq
B

˙
(3.42)

The explicit form of Lpn`1q cannot be presented easily because we need to expand the

square root around detrT µp0q
ν s by the power of λ. Therefore the recursion relation in?

TT case is not as simple as that in TT case (3.3). But the first-order correction to the

Lagrangian is still universal

Lp1q “ Rp0q “ M. (3.43)

The corrections of correlators will have the same form as (3.6) (3.7) and (3.8) with differ-

ent Spnq-s.
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The first-order corrected correlator can be computed by using (3.7)

xXnyp1q?
TT

“ ´
ż

dxdyxMpxqXny “ ´
nÿ

k“1

ż
dxdy

Byk

x ´ xk
xXny. (3.44)

where the term associated with the boost charge
pξi¨Oiqa
p∆x̃iq2

or ξiOi

p∆x̃iq2
are zero by using the

residue theorem. Since (C.1) will be spoiled in this case, we cannot use the integral

scheme (C.4) directly. We need to divide the integral into 2 parts: y ą yk, y ă yk, but

the contour of x only contains half of the plane, namely, we can drop one range of y.

Dropping y ą yk or y ă yk are equivalent, we will see the reason as follows. Firstly,

we drop y ă yk to compute contour of x surrounding upper half plane the 1-st order

correction as

xXnyp1q?
TT

“ ´
ÿ

k

lim
ΛÑ8

ż
Λ

yk

dy

¿

xk

dx
Byk

x´ xk
xXny “ ´2πi

ÿ

k

pΛ ´ ykqBykxXny (3.45)

Then, by using the translation conservation, namely
ř

k Byk “ 0, we obtain

xXnyp1q?
TT

“ 2πi
ÿ

k

ykBykxXny (3.46)

Next we drop y ą yk

xXnyp1q?
TT

“
ÿ

k

lim
ΛÑ8

ż yk

´Λ

dy

¿

xk

dx
Byk

x ´ xk
xXny “ 2πi

ÿ

k

pΛ ` ykqBykxXny (3.47)

where the lower half-plane contour of x has a minus sign difference from the upper half-

plane. By using conservation law to omit Λ, we can similarly obtain (3.46). As a final

remark, the generic form of 1-st order corrected root-TT deformation is (3.46) no matter

whether the un-deformed correlator is multiplet or singlet. The higher-order corrections

are not universal and depend on different theories. Next, we will implement the
?
TT

deformation to the free scalar model to see the higher-order effect.

4 Deformed BMS free scalar model

4.1 Data of seed theory

This subsection gives the data of the seed theory, the BMS free scalar model, to be well

prepared for the deformation. We mainly review [69] here. The un-deformed Lagrangian

of the BMSFT scalar model is

Lp0q “ pByφq2 (4.1)

The equation of motion is

B2

yφ “ 0. (4.2)
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There are three kinds of primary operators defined in the seed theory: the identity opera-

tor, a rank-2 multiplet

O0pxq “ iByφ, O1px, yq “ iBxφ, (4.3)

and a singlet vertex operator

Vα “: eαφpx,yq : . (4.4)

The components of stress tensor defined in the seed theory can be derived from the defi-

nition (3.3) as

T yp0q
x “ T “ 2ByφBxφ, T yp0q

y “ M “ ´T xp0q
x “ pByφq2, T xp0q

y “ 0, (4.5)

which are consist with the generic discussion (2.6). The stress tensor equipped with the

EoM of fields (4.2) is conserved, satisfying (2.7). The OPE between two scalar fields

defined at different points is

φpx1, y1qφpx2, y2q „ ´y12

x12
. (4.6)

One can easily use the above OPE to derive the OPEs between primary operators and

stress tensors

T px1, y1qO0pxq „ O0

px1 ´ xq2 ` BxO0

x1 ´ x
,

T px1, y1qO1px, yq „ O1

px1 ´ xq2 ` BxO1

x1 ´ x
´ 2py1 ´ yqO0

px1 ´ xq3 ´ y1 ´ y

px1 ´ xq2 ByO1,

Mpx1qO0pxq „0, Mpx1qO1px, yq „ O0pxq
px1 ´ xq2 ` ByO1px, yq

x1 ´ x
,

(4.7)

and

T px1, y1qVαpx, yq „ByVαpx, yq
x1 ´ x

´ py1 ´ yqByVαpx, yq
px1 ´ xq2 ` α2py1 ´ yqVαpx, yq

px1 ´ xq3 ,

Mpx1qVαpx, yq „ByVαpx, yq
x1 ´ x

´ α2Vαpx, yq
2px1 ´ xq2 ,

(4.8)

Comparing with the generic form (2.17), Oa is a multiplet with weight ∆ “ 1 and van-

ishing ξ “ 0, while Vα is a singlet with boost charge ξ “ ´α2

2
and vanishing weight

∆ “ 0. The OPEs between the components of the stress tensor can also be derived from

the contraction (4.6), which are also verified to be consistent with the generic form (2.10)

with cL “ 2 and cM “ 0.

Note that the seed Lagrangian (4.1) also has the following affine Up1q symmetry

φ Ñ φ1px, yq “ φpx, yq ` Λpxq. (4.9)

Correspondingly, the Noether current in the seed theory is

j
µ

p0q “ ´ BLp0q

BpBµφq “ pJ, 0q, j
y

p0q “ Jx “ J “ ´2Byφ. (4.10)
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The OPEs between J and primary operators in the seed theory are

Jpx1qO0px, yq „ 0,

Jpx1qO1px, yq „ ´i
x1 ´ x

,

Jpx1qVαpx, yq „ ´α
x1 ´ x

Vαpx, yq,

(4.11)

which means that the Fa
i ,G

a
i defined in subsection 2.3 are

G0 “ 0, G1O1 “ ´1, GV “ iα, Fi “ 0. (4.12)

for O0, O1 and Vα respectively. Here we dropped the superscript a, since the current J

itself has no group indices.

The correlators among the primary operators can be derived from the OPEs between

the fields. We present the non-vanishing correlators here

xO0px1qO1px2, y2qyp0q “ 1

x212
, xO1px1, y1qO1px2, y2qyp0q “ ´2y12

x312
,

xO0px1qVαpx2, y2qV´αpx3, y3qyp0q “ ´ iαx23

x12x13
e
α2 y23

x23 ,

xO1px1, y1qVαpx2, y2qV´αpx3, y3qyp0q “ ´iα
ˆ
y12

x2
12

´ y13

x2
13

˙
e
α2 y23

x23

C
nź

k“1

Vαk
pxk, ykq

Gp0q

“ exp

«
´

ÿ

iăj

αiαj

yij

xij

ff
δ0,

ř
i αi

(4.13)

4.2 TT deformation

4.2.1 Deformed Lagrangian

We can compute the correction to the Lagrangian order by order, by using (3.3). For

example, the first 10-th order corrections are

Lpnq

pByφq2pn`1q

ˇ̌
ˇ̌
n“1,¨¨¨ ,10

“
!

´ 1, 4,´30, 336,´5040, 95040,´2162160,

57657600,´1764322560, 60949324800
)
. (4.14)

We observe that these terms can be cast into a general form, which gives the closed form

of the deformed Lagrangian

Lrλs “
a
4λpByφq2 ` 1 ´ 1

2λ
. (4.15)

In Appendix B, we have provided a detailed demonstration that this Lagrangian is equiv-

alent to implementing the UR limit from the TT deformed Lagrangian of the free scalar
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model in the 2D relativistic CFT, as initially discussed in [8]. For further information,

refer to the review in [84]. Consequently, (4.15) can be interpreted as the non-relativistic

Nambu-Goto Lagrangian, suggesting that the TT deformation maps the local BMSFT

scalar model into a non-local and non-relativistic bosonic string.

4.2.2 Deformed correlators accurate to second order

Now we can compute the deformed correlator constructed by the primary operators from

the original data. From (3.7) and (3.8), to compute the deformed correlator accurate to

second order of λ, one needs the data of Sp1q and Sp2q, which we have been derived in

(4.14) as

Sp1q “ ´
ż

dxdypByφq4, Sp2q “ 4

ż
dxdypByφq6. (4.16)

Note that pByφq4 and pByφq6 are in the classical level, which need to be rewritten in the

quantum level by normal ordering. However, the ways of quantization lead to different

results. For example, pByφq2 can be quantized as : Byφ :: Byφ : or : ByφByφ :, which

should be distinguished while calculating the deformed correlation functions, since they

have distinct OPEs with other operators. Actually, the quantum version of deformed

action depends on the data in the seed theory, or more precisely, it only depends on the

un-deformed stress tensor T “ 2 : ByφBxφ :, M “: ByφByφ : rather than J “ ´2 : Byφ :,

since the deformed action is only triggered by stress tensor. In particular, the first-order

correction only depends onM and must be
ş

dxdyMM , as discussed in previous sections.

Moreover, the deformed action in the quantum level must be independent with T , since

the deformed Lagrangian (4.15) is independent with Bxφ. In conclusion, the quantum

level of the corrections are

Sp1q “ ´
ż

dxdyMM, Sp2q “ 4

ż
dxdyMMM (4.17)

Then, the deformed correlators can be derived as

xXnyTT
rλs “ xXny ` λxXnyp1q

TT
` λ2

2!
xXnyp2q

TT
` Opλ3q, (4.18)

where

xXnyp1q

TT
“

ż
dxdyxpMMqpx, yqXny,

xXnyp2q

TT
“

ż
dxdy

ż
dx1dy1xpMMqpx, yqpMMqpx1, y1qXny

´ 4

ż
dxdyxpMMMqpx, yqXny

(4.19)
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With the Ward identities (2.17), the generic form of the second order of the TT deformed

BMS free scalar correlators can be derived as

xXnyp2q

TT
“ ´ 4π2

«
ÿ

i‰j

yij

xij

ˆ
2

x2ij
ξiξj ` 1

xij

`
ξiByj ` ξjByi

˘
` ByjByi

˙ff2

xXny

´ 8πi
ÿ

i‰j‰k

« ˜
yjk

xjk ` xji

x3jk
´ yik

xik ` xij

x3ik

¸
2ξiξjξk

x3ij

´
˜
yjk

x3jk
` yij

2xik ` xij

x3ij

¸
3ξiξjByk

xik

`
˜
yik

x2ik
´ yjk

x2jk

¸
3ξiByjByk

xij
`

ˆ
yik

xik
´ yjk

xjk

˙ ByiByjByk

xij

ff
xXny

` 24πi
ÿ

i‰j

yij

x2ij

«
4
ξ2

iξj

x3ij
´ 9

ξiξjByi

x4ij
´ 3

ξiByiByj

xij
` B2

yi
Byj

ff
xXny

(4.20)

The first-order xXnyp1q

TT
has been derived in (3.14). Actually, Spnq with different integers

n are only related to M , and independent with T . Therefore, in principle, the scheme of

the integral (3.13) is enough to derive the correction in all order. Since our purpose is just

to see the flow effect to the poles of the correlators, we only need to be accurate to the

second-order correction, instead of all-order correction. The rest of this sub-subsection is

to manifest all the effects on the poles, by presenting some concrete examples.

Correlators full of vertex operators The n-point vertex function in the seed theory is

C
nź

k“1

Vαk
pxk, ykq

Gp0q

“ exp

«
´

ÿ

iăj

αiαj

yij

xij

ff
δ0,

ř
i αi
. (4.21)

Then the first-order correction is

C
nź

k“1

Vαk

Gp1q

TT

“ πi
ÿ

m‰k

αmαk

ykm

xkm

„
2AkAm ` 2

Akαm

xkm
´ αkαm

x2km

 C
nź

s“1

Vαs

Gp0q

(4.22)
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The second order correction is

C
nź

k“1

Vαk

Gp2q

TT

“
C

nź

k“1

Vαk

Gp0q

ˆ
"

´ π2

«
ÿ

m‰k

αmαk

ykm

xkm

ˆ
2AkAm ` 2

Akαm

xkm
´ αkαm

x2km

˙ff2

´ 8πi

nÿ

m,k,s“1

pk‰m,k‰s,m‰sq

αmαkαs

„
AmAkAs

xms

ˆ
ymk

xmk

´ ysk

xsk

˙
` 3αkAmAs

2xsm

ˆ
ykm

x2km
` ysk

x2sk

˙

´ αkαsαm

4x3ms

ˆ
ymk

xms ` xmk

x3mk

´ ysk
xms ` xks

x3ks

˙
` 3αkαmAs

x2ms

ˆ
ysk

x2sk
´ ymk

2xms ` xmk

x3mk

˙ 

´ 16πi
ÿ

m‰k

αkα
2

m

ykm

x5km

ˆ
AkA

2

mx
3

km ´ 1

2
αkα

2

m ´ 9

4
αkαmAsxkm ´ 3A2

mα
2

kx
2

km

˙ *

(4.23)

Therefore the first and second-order corrections of the n-point vertex correlators are all

factorized for arbitrary n. Further, we can easily deduce that the TT deformed n-point

vertex correlators are factorized at all orders.

2-point In seed theory, the two-point functions are

xO0px1qO0px2qyp0q “ xO0px1, y1qVαpx, yqyp0q “ xO1px1, y1qVαpx, yqyp0q “ 0,

xO0px1qO1px2, y2qyp0q “ 1

x212
, xO1px1, y1qO1px2, y2qyp0q “ ´2y12

x312
.

(4.24)

It is easy to confirm that the MM-insertion into the 2-point function of multiple primary

operators in this free scalar case are all zero. Note that each order of TT deformed

correlator is corrected by inserting one or more composite operators MM . Therefore, the

correction of any order is exactly zero for a 2-point case

xOaObypkq

TT
“ xOaVαypkq

TT
“ 0, @k “ 1, 2, ¨ ¨ ¨ , (4.25)

which indicates that these two-point functions will not flow. In a non-perturbative way,

we have

xOaObyTT
rλs “ xOaObyp0q, xOaVαyTT

rλs “ xOaVαyp0q. (4.26)

3-point The non-zero three-point functions in the seed theory are

xO0px1qVαpx2, y2qV´αpx3, y3qyp0q “ ´ iαx23

x12x13
e
α2 y23

x23 ,

xO1px1, y1qVαpx2, y2qV´αpx3, y3qyp0q “ ´iα
ˆ
y12

x212
´ y13

x213

˙
e
α2 y23

x23 .

(4.27)

Their first-order corrections are

xO0p~x1qVαp~x2qV´αp~x3qyp1q

TT
“ 20πiα4

y23

x3
23

xO0p~x1qVαp~x2qV´αp~x3qyp0q, (4.28)
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and

xO1px1, y1qVαpx2, y2qV´αpx3, y3qyp1q

TT

“ 2πiα3x2
23
e
α2 y23

x23

„
2x23

x13x12

ˆ
y13

x312x
2
13

` y23

x321x
2
23

˙
` y13

x212x
4
13

´ y12

x213x
4
12

` y23
6x12x13 ´ x2

23

x213x
2
12x

4
23

` y23
3x13 ` x23

x12x
2
13x

4
23

` 5α2
y23

x523

ˆ
y13

x213
´ y12

x212

˙ 
,

(4.29)

respectively. Their second-order corrections are

xO0VαV´αyp2q

TT
“ ´πα6

y23

x5
23

ˆ
400πα2

y23

x23
´ 756i

˙
xO0VαV´αyp0q (4.30)

and

xO1px1, y1qVαpx2, y2qV´αpx3, y3qyp2q

TT

“ 2πα5x4
23
e
α2 y23

x23

"
12x23

x12x
6
13

„
y12

x412

ˆ
x13

x12
` 1

˙
` y23

x723

`
5x3

13
` 5x2

13
x23 ` 3x13x

2

23
` x3

23

˘

´ 5

2

„
y32

x12x13x
5
23

ˆ
70

x323
´ 5

x23x13x12
` x23

x213x
2
12

ˆ
2 ´ x2

23

x13x12

˙˙
` y12

x12x
4
13

´ y13

x13x
4
12



´ 252

ˆ
y12

x2
12

´ y13

x2
13

˙
y23

x9
23

*
` 40π2i

y23

x23
α7e

α2 y23
x23

" ˆ
y12

x2
12

´ y13

x2
13

˙ ˆ
1

x2
12
x2
13

` 5

2
α5
y23

x5
23

˙

` y23
x223 ´ 6x12x13

x2
12
x2
13
x4
23

` 2x23

x4
12
x13

„
y23

x3
23

px23 ` x21q ´ y13

x3
13

px13 ` x12q
 *

(4.31)

respectively.

4.3 JTµ deformation

The JTµ deformation can be constructed from the affine current j and the stress tensor

growing in the seed theory as

BLrλs

Bλµ “ ǫαβj
α
rλsT

βrλs
µ “ j

y

rλsT
xrλs
µ ´ jxrλsT

yrλs
µ (4.32)

In a perturbative level, since the composite operator of JTµ deformation is a vector oper-

ator with two components, the quantities needed to be computed should be expanded by

the power of two coupling constants λ0, λ1, and they might be mixed while implementing

the Taylor expansion, which will make the problem more complex. However, things will

become much easier if the two coupling constants are not mixed. Fortunately, in the case

we discussed here, we will prove that the contribution of λ0 is zero, or in other words,
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there is only one coupling constant λ1. We expand the quantities as follows

Lrλs “
8ÿ

n“0

1

n!
λµ1 ¨ ¨ ¨λµnLµ1¨¨¨µn

,

T αrλs
µ “

8ÿ

n“0

1

n!
λµ1 ¨ ¨ ¨λµnpT α

µqµ1¨¨¨µn
,

jαrλs “
8ÿ

n“0

1

n!
λµ1 ¨ ¨ ¨λµnpjαqµ1¨¨¨µn

,

(4.33)

where the extra indices µ1 ¨ ¨ ¨µn are all symmetrical, namely

Lµ1¨¨¨µn
“ Lpµ1¨¨¨µnq, pT α

µqµ1¨¨¨µn
“ pT α

µqpµ1¨¨¨µnq, pjαqµ1¨¨¨µn
“ pjαqpµ1¨¨¨µnq. (4.34)

Then the recursion relation like (3.3) can be derived as

Lµ1¨¨¨µnµn`1
“ ǫαβ

nÿ

i“0

C i
npjαqµi`1¨¨¨µn

pT β
µn`1

qµ1¨¨¨µi

“
nÿ

i“0

C i
n

“
pjyqµi`1¨¨¨µn

pT x
µn`1

qµ1¨¨¨µi
´ pjxqµi`1¨¨¨µn

pT y
µn`1

qµ1¨¨¨µi

‰ (4.35)

where

pT α
µqµ1¨¨¨µn

“ BLµ1¨¨¨µn

BpBαφq Bµφ ´ δαµLµ1¨¨¨µn
, pjβqµi`1¨¨¨µn

“ ´BLµi`1¨¨¨µn

BpBβφq . (4.36)

and pT α
µqµ1¨¨¨µi

“ T
αr0s
µ for i “ 0 while pjβqµi`1¨¨¨µn

“ j
β

r0s for i “ n. We then prove that

pjxqµ1¨¨¨µn
“ ´BLµ1¨¨¨µn

BpBxφq “ 0, @n P N (4.37)

by using induction on n. For n “ 0, then

Lµ1¨¨¨µn

ˇ̌
n“0

“ Lr0s, jxµ1¨¨¨µn

ˇ̌
n“0

“ jxr0s “ ´ BLr0s

BpBxφq “ 0, (4.38)

which clearly satisfies the n “ 0 case in (4.37). Suppose (4.37) is true for n less than

m ` 1

pjxqµ1¨¨¨µn
“ ´BLµ1¨¨¨µn

BpBxφq “ 0, n “ 0, 1, 2, ¨ ¨ ¨m, (4.39)

then the m` 1-th order of Lagrangian is

Lµ1¨¨¨µmµm`1
“

mÿ

i“0

C i
npjyqµi`1¨¨¨µm

pT x
µm`1

qµ1¨¨¨µi
(4.40)

From the definition (4.36), together with the induction hypothesis (4.39), one can easily

express the currents lower than m` 1-th order as

pjyqµi`1¨¨¨µm
“ ´BLµi`1¨¨¨µm

BpByφq , (4.41)
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pT x
µm`1

qµ1¨¨¨µi
“ BLµ1¨¨¨µi

BpBxφq Bµm`1
φ ´ δxµm`1

Lµ1¨¨¨µi
“ ´δxµm`1

Lµ1¨¨¨µi
, (4.42)

which indicate that they are all independent with Bxφ because of (4.39)

Bpjyqµi`1¨¨¨µm

BpBxφq “ ´ B2Lµi`1¨¨¨µm

BpBxφqBpByφq “ 0, (4.43)

BpT x
µm`1

qµ1¨¨¨µi

BpBxφq “ ´δxµm`1

BLµ1¨¨¨µi

BpBxφq “ 0. (4.44)

Thus we deduce that the current in the m` 1-th order correction as

pjxqµ1¨¨¨µm`1
“ ´BLµ1¨¨¨µm`1

BpBxφq “ 0 (4.45)

Thus the eq (4.37) has been proved, in other words, only j
y

rλs contribute to the corrections

of deformation. It turns out that the n-th order correction of the deformed Lagrangian is

Lµ1¨¨¨µn
“

nÿ

i“0

C i
npjyqµi`1¨¨¨µn

pT x
µn`1

qµ1¨¨¨µi
, @n P N, (4.46)

By using the definition of the currents (4.36), one obtains

pT x
xqµ1¨¨¨µn

“ ´Lµ1¨¨¨µn
, pT x

yqµ1¨¨¨µn
“ 0,

pjyqµi`1¨¨¨µn
“ ´BLµ1¨¨¨µn

BpByφq , pjxqµi`1¨¨¨µn
“ 0

(4.47)

which indicates that

T xrλs
y “ 0, jxrλs “ 0, (4.48)

or in other words, the only choice of the vector index µ in the definition (4.32) must be

µ “ x, otherwise, the RHS of (4.32) will vanish

BLrλs

Bλ1 “ j
y

rλsT
xrλs
x ,

BLrλs

Bλ0 “ j
y

rλsT
xrλs
y “ 0. (4.49)

So the coupling constant λ0 will not appear in the definition (4.32). Hence, the correc-

tions of currents will no longer depend on λ0 either since they are all derived from the

Lagrangian.

4.3.1 Deformed Lagrangian

Since all of the quantities in the deformed story only depend on λ1, then (4.33) will no

longer be the double-coefficient expansion. For convenience, we substitute λ for λ1, and

use (4.48) to rewrite the definition (4.32) as

BLrλs

Bλ “ j
y

rλsT
xrλs
x . (4.50)
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Then the expansion (4.33) should be rewritten as

Lrλs “
8ÿ

n“0

λn

n!
Lpnq, T xrλs

x “
8ÿ

n“0

λn

n!
T xpnq

x , j
y

rλs “
8ÿ

n“0

λn

n!
j
y

p0q, (4.51)

like we did in TT case. Then the recursion relation can be simply rewritten as

Lpn`1q “
nÿ

i“0

C i
nj

y

pn´iqT
xpiq
x , T xpiq

x “ ´Lpiq, j
y

pn´iq “ ´BLpn´iq

BpByφq . (4.52)

Then the deformed Lagrangian can be derived order by order from the above recursion

relation. For example, we show the result for the first 10-th order of the deformed La-

grangian

Lpnq

pByφqn`2

ˇ̌
ˇ̌
n“1„10

“ t2, 10, 84, 1008, 15840,

308880, 7207200, 196035840, 6094932480, 213322636800u. (4.53)

As we discussed in TT case, these terms can also be cast into a general form, which gives

the closed form of the deformed Lagrangian

Lrλs “ 1 ´ 2λByφ´
a

1 ´ 4λByφ

2λ2
. (4.54)

Similarly to (4.15), this Lagrangian also indicates that the JTµ deformation maps the local

BMS free scalar to a non-local theory, aligning with the well-known characteristic of an

irrelevant deformation.

4.3.2 Deformed correlation functions

By expanding the action as Srλs “ ř
n

λn

n!
Spnq, where Spnq “

ş
dxdyLpnq, one can simi-

larly derive the corrections for the deformed correlation function as

xXnyJTµ

rλs “
8ÿ

n“0

λn

n!
xXnypnq, (4.55)

where the corrections are formally the same as (3.6) (3.7) and (3.8)

xXnyp0q “xXnyJTµ

rλ“0s “ xXny (4.56)

xXnyp1q
JTµ

“
@
Sp1q

D
xXny ´

@
Sp1qXn

D
, (4.57)

xXnyp2q
JTµ

“
@
Sp1qSp1qXn

D
´

@
Sp1qSp1q

D
xXny `

@
Sp2q

D
xXny ´

@
Sp2qXn

D

` 2
@
Sp1q

D2 xXny ´ 2
@
Sp1q

D @
Sp1qXn

D
(4.58)

...
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The first two corrections of the action are (4.53)

Sp1q “ 2

ż
dxdypByφq3, Sp2q “ 10

ż
dxdypByφq4 (4.59)

which are the corrections of action in the classical level. Similar to the discussion of TT ,

to derive the corrected correlation functions perturbatively, the above corrections of action

should be promoted to quantum level by using normal ordering. However, things will

become more complex in JTµ case than that in TT case, because the JTµ deformation

is triggered by Up1q current and stress tensor, which indicates that the deformed action

in quantum level is not only dependent on the stress tensor T,M in the seed theory, but

it also depends on the un-deformed Up1q current Jxp“ Jq. We have proved that the JTµ

deformed Lagrangian of the free scalar is independent with Bxφ, such that the deformed

quantities are not dependent on T . The first-order correction here must match the most

generic case discussed in the subsection 3.2 with Jy “ 0 here, namely the first-order

correction is always quantized as

Sp1q “
ż

dxdyLp1q, Lp1q “ ´JM (4.60)

Then the first-order corrected JTµ deformed correlator is

xXnyp1q
JTµ

“
ż

dxdyxJMXny (4.61)

Unlike TT case, pByφq4 can be quantized as JJM or MM in JTµ deformation. So the

quantization of the second order correction can be expressed as the linear combination ofş
dxdyJJM and

ş
dxdyMM . Fortunately, the coefficient in front of them can be uniquely

fixed. We can see this precisely from the recursion relation (4.52)

Lp2q “ j
y

p0qT
xp1q
x ` j

y

p1qT
xp0q
x “ JJM ´ M

ˆ BJ
BpByφqM ` J

BM
BpByφq

˙
, (4.62)

where we used

T xp1q
x “ ´Lp1q “ JM, j

y

p0q “ J, T xp0q
x “ ´M, j

y

p1q “ BJ
BpByφqM ` J

BM
BpByφq .

As we discussed before, BJ
BpByφq

, BM
BpByφq

only depend on J,M , so the quantization of BJ
BpByφq

, BM
BpByφq

are unique
BJ

BpByφq “ ´2,
BM

BpByφq “ 2 : Byφ :“ ´J (4.63)

Therefore

Sp2q “
ż

dxdyLp2q, Lp2q “ 2pJJM ` MMq. (4.64)
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Then the second order corrected JTµ deformed correlator is

xXnyp2q
JTµ

“
ż

dxdy

ż
dx1dy1xJMpx, yqJMpx1, y1qXny

´ 2

ż
dxdyxJJMpx, yqXny ´ 2xXnyp1q

TT

(4.65)

Then we can use the Ward identities (2.17) and (2.21) Fi “ 0 to compute the generic

form of xXnyp1q
JTµ

and xXnyp2q
JTµ

in free scalar case as

xXnyp1q
JTµ

“ ´2π
ÿ

i‰j

yij

x2ij
Gipξj ` xijByj qxXny (4.66)

and

xXnyp2q
JTµ

“ ´2xXnyp1q

TT
` 4π2

«
ÿ

i‰j

yij

x2ij
Gipξj ` xijByj q

ff2

xXny

` 4πi

" ÿ

i‰j‰k

GiGj

xij

«
yik

x2ik
pξk ` xikBykq ´ yjk

x2jk
pξk ` xjkBykq

ff

` 2
ÿ

i‰j

GiGj

yij

x3ij
pξj ` xijByjq ´

ÿ

i‰j

G2

i

yij

x3ij
pξj ` 2xijByjq

*
xXny

(4.67)

where xXnyp1q

TT
has been derived in (3.14).

4.3.3 Examples

Then we need to manifest the deformed poles by showing some examples, like we did

in TT deformation. We will compute the deformed correlators whose seeds have been

presented in (4.13).

Correlators full of vertex operators The first-order correction consisting of n-point

vertex operators is

x
nź

k“1

Vαk
pxk, ykqyp1q

JTµ
“ πi

ÿ

i‰j

yij

x2ij
αiαj

ˆ
´αj `xij

ÿ

sp‰jq

αs

xsj

˙
x

nź

k“1

Vαk
pxk, ykqyp0q (4.68)
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The second order correction is

x
nź

p“1

Vαp
pxp, ypqyp2q

JTµ

“ ´2xXnyp1q

TT
´ π2

„ ÿ

i‰j

yij

x2ij
αiαj

ˆ
αj ´ xij

ÿ

sp‰jq

αs

xsj

˙2

xXny

` 2πi

" ÿ

i‰j‰k

αiαjαk

xij

„
yik

x2ik

ˆ
αk ´ xik

ÿ

sp‰kq

αs

xsk

˙
´ yjk

x2jk

ˆ
αk ´ xjk

ÿ

sp‰kq

αs

xsk

˙

`
ÿ

i‰j

αiαj

yij

x3ij

„
α2

j ` αiαj ´ xijp2αi ` αjq
ÿ

sp‰jq

αs

xsj

*
x

nź

p“1

Vαp
pxp, ypqy

(4.69)

The first and second-order corrections are all factorized.

2-point Note that the two-point functions in (4.13) vanishes while inserting the opera-

tors Gi defined in (4.12). Therefore, the first-order correction for two-point functions all

vanished, and the second-order corrections xX2yp2q
JTµ

“ ´2xX2yp1q

TT
, which are the first-

order corrections of TT deformation derived in (4.24). Moreover, (4.24) shows that

xX2yp1q

TT
are all vanished. Therefore, the first-order and second-order correction of the

two-point functions all vanished, namely

xX2yp1q
JTµ

“ 0, xX2yp2q
JTµ

“ 0. (4.70)

3-point The first-order corrections of the three-point functions presented in (4.13) are

xO0p~x1qVαp~x2qV´αp~x3qyp1q
JTµ

“ ´6πiα3
y23

x223
xO0p~x1qVαp~x2qV´αp~x3qy (4.71)

and

xO1p~x1qVαp~x2qV´αp~x3qyp1q
JTµ

“ 2πα2

„
y12

x2
12

ˆ
2
x12

x23
´ 1

˙
´ y13

x2
13

ˆ
2
x13

x23
` 1

˙
xVαp~x2qV´αp~x3qyp0q

` 2πiα

x12x13x23

„ˆ
y23

x23
` y12

x12
´ y13

x13

˙
x2
12

´
ˆ
y23

x23
` y13

x13
´ y12

x12

˙
x2
13


xO0p~x1qVαp~x2qV´αp~x3qyp0q

` 2πiα

ˆ
x23

x12x13
´ 3α2

y23

x223

˙
xO1p~x1qVαp~x2qV´αp~x3qyp0q (4.72)

The second-order corrections are

xO0VαV´αyp2q
JTµ

“ ´12πα4
y23

x323

ˆ
7i` 3πα2

y23

x23

˙
xO0VαV´αyp0q (4.73)
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and

xO1p~x1qVαp~x2qV´αp~x3qyp2q
JTµ

“ iα3

„
y23

2x23

ˆ
1

x2
12

´ 1

x2
13

` 2

x12x13
` 24πi

x23x12

˙
` 4πi

ˆ
y12

x3
12

´ y13

x3
13

˙

´ 1

x23

ˆ
α2

2

y23

x23
` 8πi

˙ ˆ
y12

x212
` y13

x213

˙
´ 8πiy13

x12x13

ˆ
1

2x13
` 1

x23

˙

´
ˆ
y12

x12
´ y13

x13

˙ ˆ
x2
23

2x212x
2
13

` 5α2
y23

x323
` 3

x223

˙ 
xVαp~x2qV´αp~x3qyp0q

` α2

„ ˆ
y12

x12
´ y13

x13

˙ ˆ
1

x2
12

´ 1

x2
13

˙ ˆ
1 ` 8πi

x12x13

x2
23

˙
´ y23

x12x13x23

` 1

x23

ˆ
8πi ` 3α2

y23

x23

˙ ˆ
y12

x2
12

´ y13

x2
13

˙
` 16πi

y23

x3
23

x212 ` x213
x12x13

´ 8πi

ˆ
y12

x212
` y13

x213

˙ ˆ
1

x12
` 1

x13

˙
` 4πi

ˆ
y12

x312
` y13

x313

˙

´ y23

x323

ˆ
6α2

y23

x23
` 2

˙ ˆ
x2
23

x12x13
` 2

˙ 
xO0p~x1qVαp~x2qV´αp~x3qyp0q

` 3α4
y23

x23

„
1

x2
23

ˆ
3α2

y23

x23
` 2 ` 12πi

˙
´ 1

x12x13


xO1p~x1qVαp~x2qV´αp~x3qyp0q

(4.74)

4.4 Root-TT deformation

The data of the seed theory is (4.1)

Lp0q “ pByφq2 “ M. (4.75)

As discussed before, the first-order correction to the Lagrangian is proportion to Lp0q

Lp1q “ Lp0q “ M. (4.76)

Then the first-order correction to the stress tensor is

T
Ap1q
B “ BLp1q

BpBAφqBBφ´ δABL
p1q “ T

Ap0q
B . (4.77)

From (3.42), one can then derive the second-order correction to the Lagrangian as

Lp2q “ 1

2
?
M2

1ÿ

i“0

ˆ
1

2
T

Apiq
B T

Bp1´iq
A ´ 1

4
T

Apiq
A T

Bp1´iq
B

˙

“ 1

M

ˆ
1

2
T

Ap0q
B T

Bp0q
A ´ 1

4
T

Ap0q
A T

Bp0q
B

˙
“ M “ Lp0q.

(4.78)

This gives us an insight that each order of the Lagrangian is proportional to Lp0q, namely

Lpnq “ anL
p0q, T

Apnq
B “ anT

Ap0q
B , a0 “ 1. (4.79)
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where an-s are real numbers.

This can be proved by using induction on the correction order n. To get start, the

(4.79) is right for n “ 0, 1, 2 with a0 “ a1 “ a2 “ 1. Then, suppose (4.79) is true for

@n “ 1, 2, ¨ ¨ ¨ , n0. So the relation (3.42) can be rewritten as

8ÿ

n“0

λn

n!
Lpn`1q “

#
M2

«
1 `

n0ÿ

n“1

λn

n!

˜
nÿ

i“1

aian´iC
n
n0

¸ff

`
8ÿ

n“n0`1

λn

n!

«
nÿ

i“0

C i
n

ˆ
1

2
T

Apiq
B T

Bpn´iq
A ´ 1

4
T

Apiq
A T

Bpn´iq
B

˙ff + 1

2

,

(4.80)

where the second line of the above equation will contribute to the higher power of λ after

the Taylor expansion, while the first line will contribute to the λn0 power, which indicates

that Lpn0`1q is also proportion to Lp0q. Thus T
Apn0`1q
B is also proportion to T

Ap0q
B with the

same coefficient as Lpn0`1q. Therefore the eq (3.42) has been proven.

Then the deformed Lagrangian and stress tensor can be rewritten as the following

factorized form

Lrλs “ fpλqLp0q, T
Arλs
B “ fpλqTAp0q

B , (4.81)

where

fpλq “
8ÿ

n“0

λn

n!
an. (4.82)

Plugging this into the definition of the deformation, one obtains

f 1pλqLp0q “
c

1

2
T

Arλs
B T

Brλs
A ´ 1

4

´
T

Arλs
A

¯2

“ fpλqM “ fpλqLp0q. (4.83)

Therefore the constraint of fpλq
f 1pλq “ fpλq (4.84)

It is worth noting that when λ “ 0, the Lagrangian will degenerate to the seed theory,

which indicates that fp0q “ 1. Thus, one can simply work out the solution of the above

equation

fpλq “ eλ. (4.85)

Inserting this back to the factorized formula (4.81), one then obtains the deformed data

Lrλs “ eλLp0q, T
Arλs
B “ eλT

Ap0q
B . (4.86)

This indicates that all an-s are equal to 1. This is a trivial effect to the action since we can

rescale it to remove the constant eλ. Then the deformed correlators defined in (3.4) are

not affected by the
?
TT deformation, namely

xXny
?

TT

rλs “ xXnyr0s. (4.87)
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Finally, we should remark that the result we derived here does not contradict the first-order

correction computation because they are from different perspectives. On the one hand,

the computation of the correlator (4.87) is the non-perturbative version. It turns out that

the
?
TT deformed BMS free scalar model is still the BMS invariant field theory, which is

consistent with the property of a non-perturbative marginal deformation. Moreover, since

the action is invariant under scaling transformation, the
?
TT deformed free scalar model

is the same as its seed theory. On the other hand, the generic first-order correction of the?
TT discussed in subsection 3.3 is computed from the perturbative method, which may

break the BMS symmetry. So it is normal to use some extra terms. Specifically, while

keeping the factor eλ in (4.86) to perturbatively compute the first-order correction for the?
TT deformed free scalar model, the result will be the same as the generic first-order

correction of the
?
TT discussed in subsection 3.3.

5 Deforms for free Fermion model

5.1 Data of seed theory

The action of the BMS free fermion model is constructed by the field ψa “ pψ1, ψ2q
as [81, 85]

Sp0q “
ż

dxdyLp0q, Lp0q “ ψ1Bxψ1 ´ 1

2
ψ2Byψ1 ´ 1

2
ψ1Byψ2, (5.1)

with the following equation of motion (EoM)

Byψ1 “ 0, 2Bxψ1 “ Byψ2. (5.2)

By using the definition (3.3), the prototype of stress tensor can be derived as

T µp0q
ν “ BLp0q

BpBµψaqBνψa ´ δµνL
p0q “

˜
´ψ1Bxψ1 ´1

2
ψ2Bxψ1 ´ 1

2
ψ1Bxψ2

ψ1Byψ1
1

2
ψ2Byψ1 ` 1

2
ψ1Byψ2

¸
. (5.3)

This, however, is not in the same form as the standard expression of (2.6), which is derived

from the invariance of the BMS transform. In addition, it is even not a conserved current

since (2.7) is seemingly not satisfied. Fortunately, the standard stress tensor can be derived

by plugging the EoM (5.2) into its prototype (5.3) as

T µp0q
ν “

˜
M T

0 ´M

¸
, M “ ´ψ1Bxψ1, T “ ´1

2
ψ2Bxψ1 ´ 1

2
ψ1Bxψ2, (5.4)

which satisfies the conservation law (2.7) and is consistent with the standard form of

stress tensor (2.6). The enlarged symmetry of BMS free Fermion model is triggered by

the dilation symmetry D1 of the seed action (5.1), where [86]

D1 : px, yq Ñ px, λyq, pψ1, ψ2q Ñ pλ´ 1

2ψ1, λ
1

2ψ2q, (5.5)
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whose Noether currents are

J
µp0q
D1 “ T µp0q

y y ´ J
µ

p0q, J
µ

p0q “ BLp0q

BpBµψaqFa, Fa “ 1

2
p´ψ1, ψ2q. (5.6)

The BMS symmetry is enlarged by a dimension 1 current J
µ

p0q, whose components are

J
y

p0q “ J p0q
x “ ´1

2
: ψ1ψ2 :, Jx

p0q “ ´J p0q
y “ 0. (5.7)

The generators yielded from the stress tensor and J
µ

p0q form the BMS Kac-Moody algebra,

which is a specific case of (2.18), see the details in [81,86]. In BMS free Fermion model,

there are 3 kinds of primary fields: identity operators (singlet) with ∆ “ ξ “ 0; Fermion

field (multiplet) ψ “ pψ1, ψ2qT with conformal weight ∆ “ 1

2
and boost charge ξ “ 0;

composite operator P “ ´2J
y

p0q “: ψ1ψ2 : (singlet) with ∆ “ 1, ξ “ 0. With the OPEs

between the fields

ψ1px1qψ1px2q „ 0, ψ2px1, y1qψ2px2, y2q „ ´2y12

x2
12

,

ψ1px1qψ2px2, y2q „ ψ2px1, y1qψ1px2q „ 1

x12
,

(5.8)

one can easily check that the OPEs between the currents and the primary operators as

T px1, y1qψ1pxq „ ψ1pxq
2px1 ´ xq2 ` Bxψ1pxq

x1 ´ x
,

T px1, y1qψ2px, yq „ ψ2px, yq
2px1 ´ xq2 ´ 2py1 ´ yq

px1 ´ xq3ψ1px1q

` Bxψ2px, yq
x1 ´ x

´ y1 ´ y

px1 ´ xq2 Byψ2px, yq,

Mpx1qψ1pxq „0, Mpx1qψ2px, yq „ ψ1pxq
px1 ´ xq2 ` Byψ2px, yq

x1 ´ x
;

(5.9)

T px1, y1qP px, yq „ P px, yq
px1 ´ xq2 ` BxP px, yq

x1 ´ x
´ y1 ´ y

px1 ´ xq2 ByP px, yq,

Mpx1qP px, yq „ ByP px, yq
x1 ´ x

;

(5.10)

P px1, y1qP px1, y1q „ 1

x2
12

´ y12

x12
By2P px2, y2q, P px2, y2qψ1px2q „ ψ1px1q

x12
,

P px1, y1qψ2px2, y2q „ ´ψ2px2q
x12

` 2
y12

x2
12

ψ1px2q ` 2
y12

x12
Bx2
ψ1px2q.

(5.11)

Comparing with (2.17), one can easily deduce that ψi is a multiplet with weight ∆ “ 1

2

and vanished boost charge whileP is a singlet with conformal weight∆ “ 1 and vanished

boost charge. Moreover, it is easy to verify that OPEs between the components of stress

tensor also consist with (2.10) with cL “ 1 and cM “ 0.

34



Similarly, the correlators of the primaries in free Fermion can be derived from the

OPEs between the fields

xψ1px1qψ2px2, y2qyp0q “ 1

x12
, xψ2px1, y1qψ2px2, y2qyp0q “ ´2y12

x212
,

xψ1px1qψ2px2, y2qP px3, y3qyp0q “ ´ 1

x23x13
.

(5.12)

Other combinations of two-point and three-point functions of primaries are all vanished.

5.2 TT deformation

As derived in (3.3), the recursion relation of the deformed Lagrangian is

Lpn`1q “1

2

nÿ

i“0

C i
n

`
T µpiq

µ T νpn´iq
ν ´ T µpiq

ν T νpn´iq
µ

˘
,

T µpnq
ν “ BLpnq

BpBµψaqBνψa ´ δµνL
pnq, n “ 1, 2, ¨ ¨ ¨ .

(5.13)

With the explicit form of the stress tensor in seed theory T
µp0q
ν derived in (5.4), the de-

formed Lagrangian can be computed order by order. It is easy to verify that the first-order

correction of the Lagrangian isMM , which is consistent with the discussion in the section

3. However, one can immediately obtain that Lp0q vanishes since MM “ pψ1Bxψ1q2 “ 0.

This is because the Grassmann numbers ψ1 and Bxψ1 should not appear twice. Therefore,

the first-order correction to the components of the stress tensor all vanished

T µp1q
ν “ 0. (5.14)

indicating that the second-order correction to the Lagrangian and stress tensor vanish,

which can be easily verified as

Lp2q “ 1

2

“
T µp0q

µ T νp1q
ν ` T µp1q

µ T νp0q
ν ´ T µp0q

ν T νp1q
µ ´ T µp1q

ν T νp0q
µ

‰
“ 0

T µp2q
ν “ BLp2q

BpBµψaqBνψa ´ δµνL
p2q “ 0.

(5.15)

By induction on n, one can verify that all the correction terms vanish

Lpnq “ 0, T µpnq
ν “ 0, @n “ 1, 2, ¨ ¨ ¨ , (5.16)

causing the Lagrangian and the correlators of BMS free Fermion model to be unchanged

through the T T̄ flow, namely

Lrλs “ Lp0q, xXnyrλs

TT
“ xXnyp0q. (5.17)
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Until now, we have not used the EoM for the corrected terms. Actually if one imposes

the definition of T
µpnq
ν in (5.13) for T

µp0q
ν , namely substitute T

µp0q
ν for T

µp0q
ν

Lp1q “1

2

“
T xp0q

x T yp0q
y ` T yp0q

y T xp0q
x ´ T xp0q

y T yp0q
x ´ T xp0q

y T yp0q
x

‰

“ψ1ψ2Bxψ1Byψ1,

(5.18)

one can also derive that T
µp1q
ν “ 0 without the EoM of fields. Then (5.17) can be re-

derived by induction on n of Lpnq.

The TT deformation will change the theory in normal circumstances. However, the

result here has shown that the TT deformed free Fermion model is a fixed point through

the TT flow. This is not strange, since the structure of the Fermion model requires that

correct terms with multi-M are all zero. Moreover, the deformed data only contain M

and are independent of T . Therefore all corrections of TT are vanished.

5.3 JTµ deformation

The definition of JTµ is (4.32). With the expansion similar to (4.33), one can similarly

deduce the recursion relation of the deformed Lagrangian as

Lµ1¨¨¨µnµn`1
“

nÿ

i“0

C i
n

“
pJyqµi`1¨¨¨µn

pT x
µn`1

qµ1¨¨¨µi
´ pJxqµi`1¨¨¨µn

pT y
µn`1

qµ1¨¨¨µi

‰
, (5.19)

where

pT α
µqµ1¨¨¨µn

“ BLµ1¨¨¨µn

BpBαψaq Bµψa ´ δαµLµ1¨¨¨µn
,

pJβqµi`1¨¨¨µn
“ 1

2

BLµi`1¨¨¨µn

BpBβψ2q ψ2 ´ 1

2

BLµi`1¨¨¨µn

BpBβψ1q ψ1.

(5.20)

Similarly, the BMS free Fermion model is also a fixed point for JTµ flow. To see this,

we just need to compute the first-order correction of the Lagrangian. Having discussed

in subsection 5.2, the on-shell condition should not be implemented while computing

the corrections order by order, namely one should substitute the off-shell stress tensor

of the seed theory (5.3) for T
µp0q
ν here, instead of (5.4). The first-order correction of the

Lagrangian should be λµLµ “ λyLy ` λxLx, where

Ly “ J
y

p0qT
xp0q
y ´ Jx

p0qT
yp0q
y “ 1

4
ψ1ψ2pψ2Bxψ1 ` ψ1Bxψ2q (5.21)

and

Lx “ J
y

p0qT
xp0q
x ´ Jx

p0qT
yp0q
x “ ´1

4
ψ1ψ2pψ2Byψ1 ` ψ1Byψ2q. (5.22)

Then one can easily deduce that the above two equations have all vanished since ψ1

or ψ2 appears twice on the right-hand side of both equations. Therefore even without

implementing the on-shell condition, the first-order corrections still vanished

Ly “ 0, Lx “ 0. (5.23)
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Then, by using mathematical induction, one can easily prove that the higher-order correc-

tions have also vanished, namely

Lµ1¨¨¨µn
” 0, @n ě 1. (5.24)

This yields that the JTµ deformed Lagrangian and deformed correlators remain unchanged

Lrλs “ Lp0q, xXnyrλs
JTµ

“ xXnyp0q. (5.25)

which means that BMS free Fermion model is also a fixed point through JTµ flow.

5.4 Root-TT deformation

5.4.1 Deformed Lagrangian

The recursion relation can be derived from (3.42), with T
µp0q
ν in (5.4)

8ÿ

n“0

λn

n!
Lpn`1q “

gffeM2 `
8ÿ

n“1

λn

n!

nÿ

i“0

C i
n

ˆ
1

2
T

Apiq
B T

Bpn´iq
A ´ 1

4
T

Apiq
A T

Bpn´iq
B

˙

T µpnq
ν “ BLpnq

BpBµψaqBνψa ´ δµνL
pnq, n “ 1, 2, ¨ ¨ ¨ .

(5.26)

Note that in the free Fermion case, MM is zero while the
?
MM “ M is formally

non-zero. So the first-order correction is

Lp1q “ M “ ´ψ1Bxψ1, (5.27)

which consists of the generic discussion in section 3. Then the first-order correction of

the components of the stress tensor are

T yp1q
y “ ´M, T xp1q

y “ ´ψ1Byψ1, T yp1q
x “ T xp1q

x “ 0. (5.28)

So the second order correction is

Lp2q “ M´1

4

”
2T

Ap0q
B T

Bp1q
A ´ T

Ap0q
A T

Bp1q
B

ı
“ ´M

2
. (5.29)

One can prove that the corrected terms Lpnq with n “ 1, 2, ¨ ¨ ¨ are all proportional to Lp1q

by induction on n with the coefficient bn for n-th order. We have verified that this is true

for n “ 1, 2. Suppose this proposition is true for all n “ 1, 2, ¨ ¨ ¨ , n0, namely

Lpnq “ bnM “ bnL
p1q, n “ 1, 2, ¨ ¨ ¨ , n0. (5.30)

So the n-th order correction of the stress tensor is proportional to T
µp1q
ν

T
Apnq
B “ bnT

Ap1q
B , n “ 1, 2, ¨ ¨ ¨ , n0. (5.31)
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Then the formula (5.26) can be divided into the following form

8ÿ

n“0

λn

n!
Lpn`1q “

#
M2 `

n0ÿ

n“1

λn

n!

„
bn

ˆ
T

Ap0q
B T

Bp1q
A ´ 1

2
T

Ap0q
A T

Bp1q
B

˙

`
˜

n´1ÿ

i“1

C i
n

2
bibn´i

¸ ˆ
T

Ap1q
B T

Bp1q
A ´ 1

2
T

Ap1q
A T

Bp1q
B

˙ 

`
8ÿ

n“n0`1

λn

n!

nÿ

i“0

C i
n

ˆ
1

2
T

Apiq
B T

Bpn´iq
A ´ 1

4
T

Apiq
A T

Bpn´iq
B

˙ + 1

2

,

(5.32)

which can be rewritten as the following form with the expression of T
µp1q
ν and T

µp0q
ν in

(5.28) and (2.6)

8ÿ

n“0

λn

n!
Lpn`1q “

#
M2

«
1 `

n0ÿ

n“1

λn

n!

˜
n´1ÿ

i“1

C i
n

4
bibn´i ´ bn

¸ff

`
8ÿ

n“n0`1

λn

n!

nÿ

i“0

C i
n

ˆ
1

2
T

Apiq
B T

Bpn´iq
A ´ 1

4
T

Apiq
A T

Bpn´iq
B

˙ + 1

2

.

(5.33)

After expanding the square root near M by the power of λ and reading off the coefficient

in front of the λn0 in the right-hand side, which comes from the first line of the above

equation, one can deduce that the n0 ` 1-th order correction of the deformed Lagrangian

at n0 ` 1-th order is also proportional to Mp“ Lp1qq. Therefore the all-order corrected

Lagrangian and stress tensor can be expressed as

Lrλs “ Lp0q ` gpλqM, T
Arλs
B “ T

Ap0q
B ` gpλqTAp1q

B . (5.34)

Plugging them into the definition of the root-TT deformation (3.40) and (3.41), one can

derive a constraint for the function gpλq as

g1pλq “ 1

2
|gpλq ´ 2| (5.35)

Similarly, the Lagrangian will degenerate to the seed theory Lp0q, so gp0q “ 0. Together

with the constraints (5.27) and (5.29), the function gpλq can be fixed as

gpλq “ 2 ´ 2e´λ
2 . (5.36)

Unfortunately, if we substitute T
µp0q
ν for T

µp0q
ν , as we did in subsection 5.2, the off-shell

terms within the square root will not form a perfect square. Consequently, the definition

of the
?
TT deformation for the BMS fermion model becomes ill-defined, as the square

root of certain Grassmann numbers lacks a clear definition. Before proceeding further, it

is worth noting that the flow of the fields is not taken into account, which does not pose

any issues within the perturbative approach.
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5.4.2 Deformed correlator

The deformed correlators can be computed by path integral as

xXny
?

TT

rλs “
A
e´gpλq

ş
dxdyMpxqXn

E

“ exp

«
2πigpλq

ÿ

k

ykByk

ff
xXny

“ exp

«
4πi

´
1 ´ e´λ

2

¯ ÿ

k

ykByk

ff
xXny,

(5.37)

where we used the Ward identity (2.17) in the second line, and the integral here is the

same as we did in subsection 3.3. Now the rest of this sub-subsection is to manifest the

extra poles generated from the deformation by using the data of the seed theory derived

in (5.12), instead of leaving the derivative Byk-s here. Apart from xψ2ψ2y in (5.12), others

are all independent on yk, indicating that

xψ1px1qψ2px2, y2qy
?

TT

rλs “ xψ1px1qψ2px2, y2qyp0q,

xψ1px1qψ2px2, y2qP px3, y3qy
?

TT

rλs “ xψ1px1qψ2px2, y2qP px3, y3qyp0q.

(5.38)

Since xψ2px1, y1qψ2px2, y2qyp0q is proportional to y12, together with the fact that
ř

k ykByk

is the identity operator of y12, one can easily verify that

xψ2px1, y1qψ2px2, y2qy
?

TT

rλs “ exp
”
4πi

´
1 ´ e´λ

2

¯ı
xψ2px1, y1qψ2px2, y2qyp0q. (5.39)

Therefore, the only impact of the
?
TT deformation on xψ2px1, y1qψ2px2, y2qy is a mere

phase factor. This assures us that the BMS symmetries of the correlators in the BMS-free

Fermion case remain intact despite the deformation. This outcome is expected because

the
?
TT deformation is a marginal deformation that preserves the original symmetries

of the seed theory. As a result, the
?
TT deformed BMS-free Fermion model can be

considered a well-defined marginal deformed theory that still qualifies as a BMSFT even

after deformation.

In conclusion, as emphasized in subsection 4.4, it is important to reiterate that the

deformed correlators considered here encompass all order corrections and are cast into

closed forms. This non-perturbative approach differs significantly from the perturbative

method discussed in section 3. However, it is crucial to note that this disparity does

not imply a contradiction. Perturbative and non-perturbative methods operate at different

levels, and upon closer examination, it becomes evident that the first-order corrections

obtained from expanding the aforementioned results by power of λ are identical to those

derived from the perturbative method in section 3. Notably, the non-perturbative approach

offers greater precision and comprehensiveness compared to its perturbative counterpart.

Consequently, the perturbative method runs the risk of compromising the symmetries

inherent in the original theory.
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6 Conclusion

In this paper, we introduce various types of irrelevant and marginal deformations in the

BMSFT to evaluate the several types of action and lowest-order corrections to correlation

functions. Firstly, we define these irrelevant and marginal deformations properly which

is non-lorentize type of deformation. Based on the deformations, we apply the standard

perturbative field theory approach to analyze the universal first-order corrections to the

correlation functions of seed theories, which, based on our analysis, are only factorized

for two-point and three-point functions consisting of singlet primary operators. In addi-

tion, we also investigate the flow effects of the deformations by calculating the higher

order corrections for some specific case, e.g., free BMS Boson and Fermion theories,

since the first-order corrections do not flow the seed theory while the higher order correc-

tions depend on different seed theories. Particularly, we provide the all-order corrected

Lagrangian for the deformations for these two cases, and compute the higher-order cor-

rections of the deformed correlation functions systematically. As the classification of

the RG, the irrelevant deformation might flow the seed theory to different theories while

the well-defined marginal deformations will not. Specifically, the irrelevant TT and JTµ

deformations will indeed flow the local BMS free scalar theory to the non-local, and

string-like theories, which can be observed from both classic levels, namely the all-order

corrected Lagrangian

L
rλsscalar

TT
“

a
4λpByφq2 ` 1 ´ 1

2λ
, L

rλsscalar

JTµ
“ 1 ´ 2λByφ ´

a
1 ´ 4λByφ

2λ2
, (6.1)

and the quantum level, namely the higher-order corrections of the deformed correlators.

However, the TT or JTµ deformed free BMS Fermion model does not have any cor-

rections for both classic (Lagrangian) and quantum (Correlator) level, because of the

Grassmann structure of the Fermion. Besides, the
?
TT deformation for free BMS scalar

is a well-defined marginal deformation since it is simply a scale transform and the free

BMS scalar theory is scale invariant. Unfortunately, the
?
TT deformation for BMS-free

Fermion is not an invariant transform at the classic level, since the all-order corrected

Lagrangian is

L
rλsfermion?

TT
“ Lp0q ` 2

´
1 ´ e´λ

2

¯
M. (6.2)

Even though the deformed correlators have no corrections, we cannot claim that the
?
TT

deformation for BMS-free Fermion is a well-defined marginal deformation since the van-

ishing of the corrections of correlators originates from the structure of Fermion, rather

than the deformation itself.

40



Acknowledgments

The authors thank Bin Chen, Feng Hao, Pujian Mao, Hao Ouyang, and Xiyang Ran,

for their valuable discussions and comments. This work is partly supported by the Na-

tional Natural Science Foundation of China under Grant No. 12075101, No. 12235016,

No. 11935009 and No. 11905156. S.H. is grateful for financial support from the Funda-

mental Research Funds for the Central Universities and the Max Planck Partner Group.

A Seed BMSFT from UR limit

A.1 Algebras from UR limit

In this subsection, we discuss the BMS algebra (2.4) and NLKM algebra (2.18). The

BMS algebra can be derived from Virasoro algebra by implementing the UR limit. For

generators in 2D CFT

Ln “ ´zn`1Bz, Ln “ ´z̄n`1Bz̄, pz, z̄q “ px` iy, x´ iyq (A.1)

which satisfies the Virasoro algebra after the central extension

rLn,Lms “pn ´ mqLn`m ` c

12
npn2 ´ 1qδn`m,0,

rL̄n, L̄ms “pn ´ mqL̄n`m ` c̄

12
npn2 ´ 1qδn`m,0,

rLn, L̄ms “0.

(A.2)

By choosing the following UR limit

y Ñ ǫy, x Ñ x, ǫ Ñ 0, (A.3)

together with

Ln “ lim
ǫÑ0

pLn ´ L̄´nq, Mn “ lim
ǫÑ0

ǫpLn ` L̄´nq. (A.4)

cL “ lim
ǫÑ0

pc´ c̄q, cM “ lim
ǫÑ0

ǫpc` c̄q, (A.5)

the Virasoro algebra will then recover (2.4).

Similarly, the NLKM can also be derived from the UR limit of the Virasoro Kac-

Moody algebra. The holomorphic part of the Virasoro Kac-Moody algebra is

rLn,Lms “ pm ´ nqLm`n ` c

12
pm3 ´ mqδm`n,0, rLm, j

a
ns “ ´njam`n,

rjam, jbns “ ifabcjcm`n ` mkδm`n,0δ
ab.

(A.6)

where the anti-holomorphic part is similar. By choosing the UR limit as (A.3), (A.4), and

(A.5), together with

Ja
m “ jam ` j̄a´m, Ka

m “ ǫpjam ´ j̄a´mq (A.7)
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and

F abc “ 1

2
pfabc ` f̄abcq, Gabc “ 1

2ǫ
pfabc ` f̄abcq, (A.8)

k1 “ k ´ k̄, k2 “ ǫpk ` k̄q, (A.9)

the NLKM (2.18) will be explicitly re-derived.

A.2 OPEs from UR limit

In this subsection, we discuss the Ward identities of the stress tensor in BMSFT and its

OPE with the primary operators. We also need to give singlet and the multiplet result.

Singlets The OPE between 2 operators is related to their commutators from the radial

quantization

A “
¿
apzqdz, B “

¿
bpwqdw

rA,Bs “
¿

0

dw

¿

w

dzapzqbpwq, rA, bpwqs “
¿

w

dzapzqbpwq.
(A.10)

The OPEs between the components of the stress tensor can be derived from (2.4) as

Lpx1qLpxq „ cL

2px1 ´ xq4 ` 2Lpxq
px1 ´ xq2 ` BxLpxq

x1 ´ x
, Mpx1qMpxq „ 0,

Lpx1qMpxq „Mpx1qLpxq „ cM

2px1 ´ xq4 ` 2Mpxq
px1 ´ xq2 ` BxMpxq

x1 ´ x
.

(A.11)

The OPE between the singlet primary operators O and the stress tensor can be derived

from the UR limit. In CFT, we have

rLn,Os “
´

pn ` 1qhzn ` zn`1Bz

¯
O, rL̄n,Os “

´
pn` 1qh̄z̄n ` z̄n`1Bz̄

¯
O. (A.12)

By using UR limit (A.4), we obtain

rLn,Opx, yqs “
”
xn`1Bx ` pn` 1qxnyBy ` pn` 1qxn∆ ` npn ` 1qxn´1yξ

ı
Opx, yq,

rMn,Opx, yqs “
”
xn`1By ` pn ` 1qxnξ

ı
Opx, yq, n ě ´1. (A.13)

Then the OPE between the components of stress tensor and O can be easily derived from

(A.10) as

T px, yqOkpxk, ykq „ ∆kOk

px´ xkq2 ´ 2py ´ ykqξkOk

px´ xkq3 ` Bxk
Ok

x ´ xk
´ py ´ ykqBykOk

px´ xkq2

MpxqOkpxk, ykq „ ξkOk

px´ xkq2 ` BykOk

x´ xk
. (A.14)

We can only roughly see the pole structure by using the UR limit method. More precisely,

the pole structure can be observed by using the standard path integral method, which is

equivalent to substitute ∆x̃k “ x ´ xk ´ iεpy ´ ykq for x ´ xk, 0 ă ε ! 1, see details

in [59].
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Multiplets Similarly, for multiplets, we have

T px, yqOiapxi, yiq „ ∆Oia

p∆x̃iq2
´ 2py ´ yiqpξi ¨Oiqa

p∆x̃iq3
` Bxi

Oia

∆x̃i
´ py ´ yiqByiOia

p∆x̃iq2

MpxqOiapxi, yiq „pξi ¨Oiqa
p∆x̃iq2

` ByiOia

∆x̃i
.

(A.15)

B Deformations from UR limit

In this appendix, we give some insights that the deformations for BMSFT can also be

derived from UR limit of the deformations for CFT. Without losing generality and keeping

simplicity, we will mainly focus on the discussion of TT deformation. Suppose each

order of TT deformed relativistic CFTs are consisted of stress tensors T
p0q
zz , T

p0q
z̄z̄ in the

seed theories. The UR limit will link the coordinate in relativistic CFT pz, z̄q and that in

BMSFT px, yq as

z “ x ` ǫy ` Opǫ2q, z̄ “ x´ ǫy ` Opǫ2q. (B.1)

The ǫ here is equivalent to iε in footnote 1. The relation between volume element is

´2ǫdxdy “ d2z. (B.2)

Note that T
p0q
zz and T

p0q
z̄z̄ can be expanded by Virasoro generators as

T p0q
zz pzq “

ÿ

nPZ

z´n´2Ln, T
p0q
z̄z̄ pz̄q “

ÿ

nPZ

z̄´n´2L̄n. (B.3)

Then, by using (A.4), (B.1) and (2.8), one obtains

T p0q
zz ` T

p0q
z̄z̄ “

ÿ

n

pz´n´2Ln ` z̄´n´2L̄nq

“
ÿ

n

x´n´2

”´
1 ´ pn` 2qy

x
ǫ
¯
Ln `

´
1 ` pn` 2qy

x
ǫ
¯
L̄n

ı
` Opǫ2q

“Lpxq ` yBxMpxq ` Opǫ2q “ T px, yq.

(B.4)

Similarly,

T p0q
zz ´ Tz̄p0qz̄ “

ÿ

n

pz´n´2Ln ´ z̄´n´2L̄nq

“
ÿ

n

x´n´2

”´
1 ´ pn ` 2qy

x
ǫ
¯
Ln ´

´
1 ` pn ` 2qy

x
ǫ
¯
L̄n

ı
` Opǫ2q “ 1

ǫ
Mpxq.

(B.5)

Therefore, the UR limit yields

ǫT p0q
zz “ ´ǫT p0q

z̄z̄ “ M

2
. (B.6)
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So we just need to substituteM for T
p0q
zz and T

p0q
z̄z̄ for BMSFT, which indicates that the cor-

rection terms for TT deformed BMSFT consist entirely of M raised to different powers.

This is consistent with our proposal in the main text.

Specifically, the TT deformed scalar model for BMSFT and relativistic CFT are ex-

actly associated with each other by UR limit. In the classic level, the action of the un-

deformed relativistic free scalar model is

S
p0q
relativistic “ ´1

2

ż
d2zBzφcBz̄φc. (B.7)

The corresponding stress tensor in the relativistic seed theory is

T p0q
zz “ pBzφcq2, T

p0q
z̄z̄ “ pBz̄φcq2, T

p0q
zz̄ “ 0. (B.8)

Together with the definition of M in (4.5) and the relation (B.6), one obtains the relation

between the scalar fields in relativistic CFT and BMSFT

φc “ ǫ
1

2φ. (B.9)

The deformed action in relativistic CFT is [8]

S
rλ1s
relativistic “ ´1

2

ż
d2zL

rλ1s
relativistic , L

rλ1s
relativistic “

?
4λ1BzφcBz̄φc ` 1 ´ 1

2λ1
(B.10)

Then, by taking UR limit, the action becomes

S
rλ1s
relativistic

ˇ̌
ˇ
UR

Ñ
ż

dxdy

b
4λ
ǫ
pByφcq2 ` 1 ´ 1

2λ
“

ż
dxdy

a
4λpByφq2 ` 1 ´ 1

2λ
, (B.11)

where λ “ λ1{ǫ is the coupling constant of deformed BMSFT. Therefore, at the classic

level, the deformed free scalar model of BMSFT can also be derived from that of relativis-

tic CFT by taking the UR limit. In the quantum level, the TT deformed correlators have

been discussed in [87, 88] if the seed theory is relativistic CFT 6. One can easily check

that the quantum corrections of the correlators of the relativistic free scalar correlators

will fall off to the BMS free scalar derived in (4.19).

C Integral scheme

This appendix develops a scheme to work out the integral proposed in (3.11). Through

the analytical continuation, the integral of x for ak ą 0 can be extended to a contour

6Or, one can use the deformed partition function of relativistic free Boson in [82] to derive the deformed

correlators of relativistic CFT.
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integral surrounding the upper half plane with the anticlockwise direction. Notice that

the contour integral is trivial while considering all of the poles simultaneously

¿

x1„xn

dxśn

k“1
prx´ rxkqak “ 0, (C.1)

which means that the poles should be placed in different half-plane, or the result will be

zero, where the subscript x1 „ xn under the “
ű
” denotes the residue needs to be computed.

Moreover, the extra term iǫpy ´ ykq inside the pole of rx requires that the integral of y

should be divided by pyk, yk`1q with k “ 1, ¨ ¨ ¨ , n´1, because, for y ą yk, the pole xk is

in the upper half plane, which is inside of the contour of x, while for y ă yk, the pole xk

is in the lower half-plane, which is outside of the contour of x. After the range of y has

already been divided, the extra term iǫpy ´ ykq can be removed safely by ǫ Ñ 0 since it

will no longer contribute to the integral of x. Therefore the area integral can be rewritten

as

If
a1¨¨¨an “

ż 8

´8

dyfpy ´ yiq
ż 8

´8

dxśn
k“1

p∆x̃kqak

ˇ̌
ˇ̌
ǫÑ0

“
n´1ÿ

j“1

ż yj`1

yj

dyfpy ´ yiq
¿

xj`1„xn

dxśn

k“1
px ´ xkqak

“ ´
n´1ÿ

j“1

ż yj`1

yj

dyfpy ´ yiq
¿

x1„xj

dxśn

k“1
px´ xkqak .

(C.2)

This can be rewritten more beautifully, see the following Lemma and its corollary

Lemma C.1. Suppose y1 ă y2 ă ¨ ¨ ¨ ă yn, and p¨q denotes the pole structure without

iǫpy ´ ykq for simplicity. Then (C.2) can be rewritten as

ż
dydxp¨q “ ´

n´1ÿ

j“1

ż yn

yj

dy

¿

xj

dxp¨q. (C.3)

Proof. This can be easily proved by combining the contour integrals with the same pole

xj together.

Corollary C.1. By using (C.1), we can easily prove that for any k P t1, ¨ ¨ ¨ , nu, (C.3)

can be rewritten as ż
dxdyp¨q “ ´

ÿ

j‰k

ż yk

yj

dy

¿

xj

dxp¨q, (C.4)
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Proof. We divide (C.2) into j ě k and j ă k

ż
dxdyp¨q “ ´

˜
n´1ÿ

j“k

`
k´1ÿ

j“1

¸ ż yj`1

yj

dy

¿

x1„xj

dxp¨q

“
n´1ÿ

j“k

ż yj`1

yj

dy

¿

xj`1„xn

dxp¨q ´
k´1ÿ

j“1

ż yk

yj

dy

¿

xj

dxp¨q

“
n´1ÿ

j“k

ż yj`1

yk

dy

¿

xj`1

dxp¨q ´
k´1ÿ

j“1

ż yk

yj

dy

¿

xj

dxp¨q

“
nÿ

j“k`1

ż yj

yk

dy

¿

xj

dxp¨q ´
k´1ÿ

j“1

ż yk

yj

dy

¿

xj

dxp¨q

“ ´
nÿ

j“k`1

ż yk

yj

dy

¿

xj

dxp¨q ´
k´1ÿ

j“1

ż yk

yj

dy

¿

xj

dxp¨q,

where we used (C.1) in the second step.

Since yk can be chosen as any operator there is no need to constrain y1 ă ¨ ¨ ¨ ă yn while

using (C.4). Therefore (C.2) is

If
a1¨¨¨an “

nÿ

j“1

ż yk

yj

dyfpy ´ yiq
¿

xj

dxśn
i“1

px ´ xiqai
(C.5)

Then the integrals can be easily computed. In TT ,
?
TT case, one will meet f “ 1

cases, namely to compute

Ia1¨¨¨an “ 1

pa1 ´ 1q! ¨ ¨ ¨ 1

pan ´ 1q!Bx1
¨ ¨ ¨ Bxn

Ix1¨¨¨xn
. (C.6)

The new quantity If
x1¨¨¨xn

is introduced for simplicity

Ix1¨¨¨xn
“ ´

nÿ

j“1

yij

¿

xi

dxśn
k“1

px´ xkq , (C.7)

where we choose the reference point as yk “ yi. This kind of integrals can be computed

by using residue theorem as

Ix1¨¨¨xn
“ 2πi

yjiś
kp‰iq xik

(C.8)

Here we present the integrals that appeared in the main text

I4040 “

¨
˝y14

¿

x1

`y24
¿

x2

`y34
¿

x3

˛
‚ dx

px ´ x1q4px´ x3q4

“ 2πi

6

`
y14B3

x1
` y34B3

x3

˘ 1

x4
13

“ 2πi

6
y13B3

x1

1

x4
13

“ ´40πi
y13

x7
13

,

(C.9)
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I1313 “ 2πi

„
y14

x312x13x
3
14

` y34

x332x31x
3
34

´ y24
6x2

12
x2
23

` x2
24
x2
13

` 3x21x23x42px12 ` x32 ` x42q
x312x

3
23x

5
24


,

(C.10)

I2222 “y14
¿

x1

dx
ś

4

i“1
px´ xiq2

` p1 Ø 2q ` p1 Ø 3q “ Bx1

2πiy14

x2
12
x2
13
x2
14

` p1 Ø 2q ` p1 Ø 3q

“ ´ 4πi

„
y14

ˆ
1

x312x
2
13x

2
14

` 1

x212x
3
13x

2
14

` 1

x212x
2
13x

3
14

˙
` p1 Ø 2q ` p1 Ø 3q,

(C.11)

I3030 “

¨
˝y14

¿

x1

`y24
¿

x2

`y34
¿

x3

˛
‚ dx

px ´ x1q3px´ x3q3 “ B2

x1

πiy13

x3
13

“ 12πi
y13

x5
13

, (C.12)

I2020 “

¨
˝y14

¿

x1

`y24
¿

x2

`y34
¿

x3

˛
‚ dx

px´ x1q2px´ x3q2 “ Bx1

2πiy13

x2
13

“ ´4πi
y13

x3
13

,

(C.13)

I1212 “ 2πi

„
y14

x212x13x
2
14

` y34

x232x31x
2
34

` y24
2x12x23 ` x24px12 ` x32q

x212x
2
23x

3
24


, (C.14)

I1111 “ y14

¿

x1

dx
ś

4

i“1
px´ xiq

` p1 Ø 2q ` p1 Ø 3q “ 2πiy14

x12x13x14
` p1 Ø 2q ` p1 Ø 3q.

(C.15)

Then, in JTµ deformation, one might meet f “ py ´ yiqn pn ě 0, 1 ď i ď nq case,

namely

If
a1¨¨¨an “ 1

pa1 ´ 1q! ¨ ¨ ¨ 1

pan ´ 1q!Bx1
¨ ¨ ¨ Bxn

If
x1¨¨¨xn

. (C.16)

The new quantity If
x1¨¨¨xn

is introduced for simplicity

If
x1¨¨¨xn

“ ´
nÿ

j“1

ż yi

yj

dypy ´ yiqn
¿

xi

dxśn
k“1

px´ xkq . (C.17)

This can easily be calculated by using the residue theorem as

If
x1¨¨¨xn

“ ´ 2πi

n` 1

yn`1

jiś
kp‰iq xik

. (C.18)

Here we will not show some specific examples since the procedure is the same as that of

f “ 1 case. The integrals in TT case can be easily re-derived by setting n “ 0.
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