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S1. Samples 
We collated data from 87 datasets. The age-by-sex distribution of the current study sample is shown in supplementary figure S1 and details of the contributing datasets are provided in 
appendix 2. In the Figure below, we also illustrate the geographic distribution of the sample, with different colors representing the geographical region of each site. The clustering was 
conducted on all 150 morphometric measures (68 cortical thickness measure, 68 surface area measures, and 14 subcortical volume measures) of the entire sample. We did not identify 
region-specific clusters. The Figure was generated using t-SNE (t-distributed stochastic neighbor embedding) plot to visualize the high dimensional data into a 2D plot. 

 
 
 

Supplementary Figure S1. (left panel) Age-by-sex distribution of the study sample, and (right panel) geographic distribution of the sample. 
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S2. Quality assessment of neuroimaging data 
For samples participating in the ENIGMA Lifespan Working Group (appendix 2), quality assessment followed the ENIGMA consortium pipeline 
(http://enigma.ini.usc.edu/protocols/imaging-protocols/).1–7 These pipelines were therefore applied to 18,787 individuals in the study sample. Data from the Adolescent Brain Cognitive 
Development study were considered high-quality based on their quality assessment protocols (Txt file= FreeSurfer QC; item= fsqc_qc; scan excluded if 0).8 This applied to 3,116 
individuals in the study sample. For the remainder of the sample involving 15,504 participants, the T1-weighted images were downloaded and segmented locally, and the results were 
quality assessed using Qoala-T tool.9 

As an additional assessment of image quality, we calculated the Euler number (EN), a reliable indicator that closely approximates the manual assessment of scan quality10, 11 for the 
entire dataset. The addition of the EN to the covariates did not make a measurable difference in any model. We illustrate that for the Multivariate Fractional Polynomial Regression 
(MFPR) models for the left thalamic volume in males using the UKB data which are publicly accessible. The pattern observed for all other regions and models in each sex is the same 
and the data are available upon request. 

 

 

Supplementary Figure S2. Illustrative results of the minimal effect of Euler Number on the performance (MAE; mean absolute error and RMSE; root mean square error) 
of the Multivariate Fractional Polynomial Regression models.

http://enigma.ini.usc.edu/protocols/imaging-protocols/
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S3. Comparative evaluation of algorithms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure S3. Illustrative example of comparative algorithm performance for males. Algorithm performance for each regional morphometric measure was 
assessed separately in males and females using the mean absolute error (MAE), the root mean square error (RMSE), the Explained Variance (EV), and the central processing 
unit (CPU) time. The MAE, RMSE, EV, and CPU times of the models for left thalamic volume (left panel), the left medial orbitofrontal cortical thickness (middle panel), and 
surface area (right panel) as exemplars are presented here for males and in figure 2 in the main text for females. HBR=Hierarchical Bayesian Regression; OLSR=Ordinary 
Least Squares Regression; BLR=Bayesian Linear Regression; GAMLSS=Generalized Additive Models for Location, Scale, and Shape; LMS=Lambda (λ), Mu (μ), Sigma (σ) 
Method; GPR=Gaussian Process Regression; WBLR=Warped Bayesian Linear Regression; MFPR=Multivariable Fractional Polynomial Regression. 

 
 
 



5 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure S4. Comparative algorithm performance of region-specific models in females. The figure presents the distribution of the mean absolute error 
(MAE) and the root mean square error (RMSE) of all region-specific models. Mean MAE and RMSE values are marked with solid vertical lines, and the 25th percentiles and 
75th percentiles are marked with dotted vertical lines. HBR=Hierarchical Bayesian Regression; OLSR=Ordinary Least Squares Regression; BLR=Bayesian Linear Regression; 
GAMLSS=Generalized Additive Models for Location, Scale, and Shape; LMS=Lambda (λ), Mu (μ), Sigma (σ) Method; GPR=Gaussian Process Regression; WBLR=Warped 
Bayesian Linear Regression; MFPR=Multivariable Fractional Polynomial Regression. 
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Supplementary Figure S5. Comparative algorithm performance of region-specific models in males. The figure presents the distribution of the mean absolute error (MAE) 
and the root mean square error (RMSE) of all region-specific models. Mean MAE and RMSE values are marked with solid vertical lines, and the 25th percentiles and 75th 
percentiles are marked with dotted vertical lines. HBR=Hierarchical Bayesian Regression; OLSR=Ordinary Least Squares Regression; BLR=Bayesian Linear Regression; 
GAMLSS=Generalized Additive Models for Location, Scale, and Shape; LMS=Lambda (λ), Mu (μ), Sigma (σ) Method; GPR=Gaussian Process Regression; WBLR=Warped 
Bayesian Linear Regression; MFPR=Multivariable Fractional Polynomial Regression. 
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S4. Selection of explanatory variables for model optimization 

Supplementary Figure S6. Illustrative examples of the performance of MFPR-derived models as a function of explanatory variables for males. For each regional 
morphometric measure, sex-specific models derived from Multivariable Fractional Polynomial Regression (MFPR) were trained and tested using nine different covariate 
combinations that included linear and non-linear effects of age, FreeSurfer version (FS), scanner vendor, intracranial volume (ICV), and global estimates of mean cortical 
thickness or area. The mean absolute error (MAE) and root mean square error (RMSE) of all the models in males and females are shown in supplementary figures S7–S8 and 
appendix 4. In both sexes, the pattern identified was identical for all region-specific models. The MAE and RMSE of the models for left thalamic volume (left panel), the left 
medial orbitofrontal cortical thickness (middle panel) and surface area (right panel) as exemplars are presented here for males and in figure 3 in the main text for females. The 
optimal variable combination is marked with a dashed frame.
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Supplementary Figure S7. Performance of region-specific MFPR-derived models as a function of 
explanatory variables in females. The figure presents the distribution of the mean absolute error (MAE) and the 
root mean square error (RMSE) for all region-specific models derived from Multivariable Fractional Polynomial 
Regression (MFPR) as a function of explanatory variables in females. The mean MAE and RMSE values are 
marked with solid vertical lines, and the 25th percentiles and 75th percentiles are marked with dotted vertical 
lines. The optimal variable combination is marked with an asterisk. FS=FreeSurfer version; ICV=intracranial 
volume.   
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Supplementary Figure S8. Performance of region-specific MFPR-derived models as a function of 
explanatory variables in males. The figure presents the distribution of the mean absolute error (MAE) and the 
root mean square error (RMSE) for all region-specific models derived from Multivariable Fractional Polynomial 
Regression (MFPR) as a function of explanatory variables in males. The mean MAE and RMSE values are marked 
with solid vertical lines, and the 25th percentiles and 75th percentiles are marked with dotted vertical lines. The 
optimal variable combination is marked with an asterisk. FS=FreeSurfer version; ICV=intracranial volume.
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Supplementary Figure S9. Illustrative examples of the comparative performance of HBR, OLSR, BLR, GAMLSS, GPR, WBLR, and MFPR-derived models in males. 
Region-specific models with the optimized covariate combination were estimated in males and females separately using Hierarchical Bayesian Regression (HBR), Ordinary 
Least Squares Regression (OLSR), Bayesian Linear Regression (BLR), Generalized Additive Models for Location, Scale, and Shape (GAMLSS), Gaussian Process Regression 
(GPR), Warped Bayesian Linear Regression (WBLR), and Multivariable Fractional Polynomial Regression (MFPR). Model performance was assessed in terms of mean 
absolute error (MAE), root mean square error (RMSE), and central processing unit (CPU). The MAE, RMSE, and CPU time of the models for left thalamic volume (left panel), 
the left medial orbitofrontal cortical thickness (middle panel), and surface area (right panel) as exemplars are presented here for males and in figure 4 in the main text for 
females. 
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Supplementary Figure S10. Comparative performance of all region-specific optimized HBR, OLSR, BLR, GAMLSS, GPR, HBR, WBLR, and MFPR-derived models 
in females. The figure presents the distribution of the mean absolute error (MAE) and the root mean square error (RMSE) for all region-specific models derived from 
Hierarchical Bayesian Regression (HBR), Ordinary Least Squares Regression (OLSR), Bayesian Linear Regression (BLR), Generalized Additive Models for Location, Scale, 
and Shape (GAMLSS), Gaussian Process Regression (GPR), Warped Bayesian Linear Regression (WBLR), and Multivariable Fractional Polynomial Regression (MFPR). The 
mean MAE and RMSE values are marked with solid vertical lines, and the 25th percentiles and 75th percentiles are marked with dotted vertical lines. 
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Supplementary Figure S11. Comparative performance of all region-specific optimized HBR, OLSR, BLR, GAMLSS, GPR, HBR, WBLR, and MFPR-derived models 
in males. The figure presents the distribution of the mean absolute error (MAE) and the root mean square error (RMSE) for all region-specific models derived from Hierarchical 
Bayesian Regression (HBR), Ordinary Least Squares Regression (OLSR), Bayesian Linear Regression (BLR), Generalized Additive Models for Location, Scale, and Shape 
(GAMLSS), Gaussian Process Regression (GPR), Warped Bayesian Linear Regression (WBLR), and Multivariable Fractional Polynomial Regression (MFPR). The mean 
MAE and RMSE values are marked with solid vertical lines, and the 25th percentiles and 75th percentiles are marked with dotted vertical lines.
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S5. Sensitivity analyses 
S5.1 Sample size  
 

 
Supplementary Figure S12. Performance of region-specific MFPR-derived models as a function of sample 
size for males. Models for each regional morphometric measure were estimated in random sex-specific subsets 
of 200 to 15,000 participants, in increments of 200, generated from the study sample. Each line represents the 
values of the mean absolute error (MAE), or root mean square error (RMSE) derived from the optimized 
Multivariable Fractional Polynomial Regression (MFPR) models of each regional morphometric measure as a 
function of sample size. The pattern identified was identical in both sexes. The data for males are shown here and 
in figure 5 in the main text for females. 
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S5.2 Age bins 

Supplementary Figure S13. Performance of region-specific models in distinct age groups for males. Sex- and region-specific models for all morphometric measures for 
different age groups were estimated by partitioning the sex-specific training and testing subsets of the study sample into nine age bins (i.e., age≤10 years; 10<age≤20 years; 
20<age≤30 years; 30<age≤40 years; 40<age≤50 years; 50<age≤60 years; 60<age≤70 years; 70<age≤80 years; 80<age≤90 years). Details are provided in appendix 6. The 
pattern was identical in both sexes. Supplementary figure S9 presents the distribution of the mean absolute error (MAE) and the root mean square error (RMSE) across all 
region-specific models in males in the training (upper panel) and test subset (lower panel). The results for females are presented in figure 6 in the main text. 



 

15 
 

 
 
Supplementary Figure S13 (continued). Scatter plots between the MAE values of the models within the first age bin (age≤10 years) of male participants with those 
derived from the entire male sample. Across all age bins, the correlation coefficient between the MAE or RMSE values of the sex- and region-specific models obtained from 
the full study sample and MAE or RMSE values of the corresponding models estimated in each age bin were all greater than 0·98. Same pattern was observed for all age bins 
of both sexes. 
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S5. 3 Sensitivity analyses pertaining to the GAMLSS 
Prior studies have focused on GAMLSS algorithms and their relative performance in normative modeling of brain morphometric data. A key example is the paper by Dinga 
and colleagues.12 As shown in supplementary figures S14 and S15 for females and males below, five models were compared: Model 1 is a Gaussian model with linear effect; 
Model 2 is a non-linear Gaussian homoscedastic model; Model 3 is a non-linear Gaussian heteroscedastic model; Model 4 is a non-linear heteroscedastic SHASH model; and 
Model 5 is a non-linear heteroscedastic SHASH model where location, scale, and shape also depend on age.  
 
Model 1: regional neuromorphometric measure ~ 𝑁(𝜇, 𝜎), 𝜇 = 𝛽! + 𝛽"#$ ∗ 𝑎𝑔𝑒 
Model 2: regional neuromorphometric measure ~ 𝑁(𝜇, 𝜎), 𝜇 = 𝑓%(𝑎𝑔𝑒) 
Model 3: regional neuromorphometric measure ~ 𝑁(𝜇, 𝜎), 𝜇 = 𝑓%(𝑎𝑔𝑒), 𝜎 = 𝑓&(𝑎𝑔𝑒) 
Model 4: regional neuromorphometric measure ~ 𝑆𝐻𝐴𝑆𝐻(𝜇, 𝜎, 𝜈, 𝜏), 𝜇 = 𝑓%(𝑎𝑔𝑒), 𝜎 = 𝑓&(𝑎𝑔𝑒), 𝜈 = 𝛽'(, 𝜏 = 𝛽)"( 
Model 5: regional neuromorphometric measure ~ 𝑆𝐻𝐴𝑆𝐻(𝜇, 𝜎, 𝜈, 𝜏), 𝜇 = 𝑓%(𝑎𝑔𝑒), 𝜎 = 𝑓&(𝑎𝑔𝑒), 𝜈 = 𝑓*(𝑎𝑔𝑒), 𝜏 = 𝑓+(𝑎𝑔𝑒) 
 
Model 4 is the model used in our manuscript. All other models are from Dinga et al.12 These five GAMLSS models were compared in terms of MAE (mean absolute error), 
kurtosis, and skewness. All models have similar MAE, while model 4 and model 5 performed best in terms of kurtosis and skewness (i.e., for kurtosis and skewness, closer to 
0 is better). Since differences in the performance of models 4 and 5 are negligible, the results support our choice of using model 4, which is also simpler (figure 2 in the main 
text). The same pattern was found for RMSE (root mean squared error) and EV (explained variance). 

We also compared the performance of the GAMLSS models using either the “caret” or “gamlss” packages in terms of MAE, kurtosis, and skewness using the same sample as 
above. The results shown in supplementary figures S14-S15 demonstrate the similarity between the two packages in MAE. The output of the “caret” package used in our paper 
performed better in terms of the model fit of kurtosis and skewness (for kurtosis and skewness, closer to 0 is better) for the testing set. These analyses all support the choice of 
the package used in our manuscript.  
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Supplementary Figure S14. Comparative evaluations of five GAMLSS models in females. The models were compared in terms of MAE (mean absolute error), kurtosis, 
and skewness. The model used in our paper is model 4, all other models are from Dinga et al.12 All models have similar MAE, while model 4 and model 5 performed best in 
terms of kurtosis and skewness (i.e., for kurtosis and skewness, closer to 0 is better). Since differences in the performance of models 4 and 5 are negligible, the results support 
our choice of using model 4. 
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Supplementary Figure S15. Comparative evaluations of five GAMLSS models in males. The models were compared in terms of MAE (mean absolute error), kurtosis, and 
skewness. The model used in our paper is model 4, all other models are from Dinga et al.12 All models have similar MAE, while model 4 and model 5 performed best in terms 
of kurtosis and skewness (i.e., for kurtosis and skewness, closer to 0 is better). Since differences in the performance of models 4 and 5 are negligible, the results support our 
choice of using model 4. 
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Supplementary Figure S16. Comparative evaluation of GAMLSS models using the “caret” and “gamlss” software in females. GAMLSS models using the “caret” (pink) 
and “gamlss” (blue) packages in terms of MAE (mean absolute error), kurtosis, and skewness. Model performance in terms of MAE was similar for both packages. The output 
of the “caret” package used in our paper performed better in terms of the model fit of kurtosis and skewness (for kurtosis and skewness, closer to 0 is better) for the testing set. 
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Supplementary Figure S17. Comparative evaluation of GAMLSS models using the “caret” and “gamlss” software in males. GAMLSS models using the “caret” (pink) 
and “gamlss” (blue) packages in terms of MAE (mean absolute error), kurtosis, and skewness. Model performance in terms of MAE was similar for both packages. The output 
of the “caret” package used in our paper performed better in terms of the model fit of kurtosis and skewness (for kurtosis and skewness, closer to 0 is better) for the testing set. 
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 S5.4 Sensitivity analyses pertaining to site 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S18. Effect of site handling on algorithm performance. The performance of algorithms [Hierarchical Bayesian Regression (HBR); Ordinary Least 
Squares Regression (OLSR); Bayesian Linear Regression (BLR); Generalized Additive Models for Location, Scale, and Shape (GAMLSS); Warped Bayesian Linear Regression 
(WBLR); Multivariable Fractional Polynomial Regression (MFPR)] was compared when site was modeled either as a random factor or removed by site harmonisation using 
ComBat-GAM. The top performing algorithm when the site was used as a random effect was still the MFPR, followed closely by WBLR. Further, the model performance of 
the MFPR algorithm in terms of MAE was similar regardless of how site was handled.   
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S6. Clinical relevance of normative brain modeling for mental illness 
We tested the relative advantage of the brain regional normative deviation scores (Z-scores) compared to observed neuromorphometric data for the discrimination of healthy 
individuals from those with early onset psychosis and for the prediction of psychotic symptom severity. To achieve this, we used data from the Human Connectome Project 
(HCP) Early Psychosis Study which comprises cross-sectional neuroimaging data from 91 individuals with early psychosis and 57 healthy individuals (total sample: 48 
females/100 males; age range 16.67-35.67 years). T1-weighted images were downloaded from the HCP repository (https://www.humanconnectome.org/study/human-
connectome-project-for-early-psychosis) and preprocessed using FreeSurfer (version 7.1.0) to generate regional brain morphometric data. Then brain regional Z-scores were 
derived from each of the algorithms examined here. As described in the main manuscript, the classification accuracy of support vector classifiers (SVC) using brain regional 
Z-scores were compared to that of the classifier using observed data. Predictive accuracy for psychotic symptom severity was assessed using ridge regression models using 
brain regional Z-scores compared to that of the classifier using observed data.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S19. Comparative accuracy of diagnostic classification and symptom severity prediction in psychosis using either brain regional Z-scores or 
observed neuromorphometric data of the Human Connectome Project-Early Psychosis cohort. Left panel: Receiver Operating Characteristic Curves (ROC) of support 
vector classifiers (SCV) using brain regional Z-scores from each of the algorithms examined here. Middle Panel: Comparative performance in accuracy of diagnostic 
classification of the SVC using either Z-scores (red) or observed data (blue). Right panel: Predictive accuracy for psychotic symptom severity of ridge regression models using 
either Z-scores (red) or observed data (blue). In both these panels, two null distributions from the permutation tests are presented: one that illustrates the performance of models 
using the observed data (distributions with blue outlines) and the other illustrating the performance of models using Z-scores (distributions with red outlines). AUC=area under 
the curve; MAE=mean absolute error; OLSR=Ordinary Least Squares Regression; BLR=Bayesian Linear Regression; HBR=Hierarchical Bayesian Regression; 
GAMLSS=Generalized Additive Models for Location, Scale, and Shape; GPR=Gaussian Process Regression; WBLR=Warped Bayesian Linear Regression; 
MFPR=Multivariable Fractional Polynomial Regression. 

https://www.humanconnectome.org/study/human-connectome-project-for-early-psychosis
https://www.humanconnectome.org/study/human-connectome-project-for-early-psychosis
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